1
|
Nongthombam GS, Ahmed SA, Saikia K, Gogoi S, Borah JC. Breaking boundaries in diabetic nephropathy treatment: design and synthesis of novel steroidal SGLT2 inhibitors. RSC Med Chem 2024:d4md00645c. [PMID: 39479473 PMCID: PMC11514366 DOI: 10.1039/d4md00645c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
The activity of sodium glucose co-transporter 2 (SGLT2) has always been an important parameter influencing chronic kidney disease in type-2 diabetic patients. Herein, we have meticulously designed, synthesized, and evaluated several novel steroidal pyrimidine molecules that possess the capability to successfully bind to the SGLT2 protein and inhibit its activity, thereby remedying kidney-related ailments in diabetic patients. The lead steroidal pyrimidine compounds were selected after virtually screening from a library of probable N-heterocyclic steroidal scaffolds. A nano-catalyzed synthetic route was also explored for the synthesis of the steroidal pyrimidine analogs demonstrating an environmentally benign protocol. Extensive in vitro investigations encompassing SGLT2 screening assays and cell viability assessments were conducted on the synthesized compounds. Among the steroidal pyrimidine derivatives evaluated, compound 9a exhibited the highest SGLT2 inhibition activity and underwent further scrutiny. Western blot analysis was employed to determine the impact of 9a on inflammatory and fibrotic proteins, aiming to elucidate its mechanism of action. Additionally, in silico analyses were performed to illuminate the structural dynamics and molecular interaction mechanism of 9a. The overall investigation is crucial for advancing the development of the next generation of anti-diabetic drugs.
Collapse
Affiliation(s)
- Geetmani Singh Nongthombam
- Chemical Biology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati-781035 Assam India
| | - Semim Akhtar Ahmed
- Chemical Biology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati-781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kangkon Saikia
- Chemical Biology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati-781035 Assam India
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Jagat Chandra Borah
- Chemical Biology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati-781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati 781101 Assam India
| |
Collapse
|
2
|
Agnes RS, Traughber BJ, Muzic RF. Development of a selective novel fluorescent substrate for sodium-dependent transporters. Life Sci 2024; 351:122847. [PMID: 38880166 DOI: 10.1016/j.lfs.2024.122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
AIM To synthesize, characterize, and validate 6FGA, a fluorescent glucose modified with a Cyanine5.5 at carbon-6 position, for probing the function of sodium-dependent glucose transporters, SGLT1 and SGLT2. MAIN METHODS The synthesis of fluorescent glucose analogue was achieved through "click chemistry" of Cyanine5.5-alkyne and 6-azido-6-deoxy-d-glucose. Cell system studies were conducted to characterize the in vivo transport properties. KEY FINDINGS Optical analyses revealed that 6FGA displayed similar spectral profiles to Cyanine5.5 in DMSO, allowing for concentration determination, thus supporting its utility in quantitative kinetic studies within biological assays. Uptake studies in cell system SGLT models, LLC-PK1 and HEK293 cells, exhibited concentration and time-dependent behavior, indicating saturation at specific concentrations and durations which are hallmarks of transported-mediated uptake. The results of cytotoxicity assays suggested cell viability at micromolar concentrations, enabling usage in assays for at least 1 h without significant toxicity. The dependence of 6FGA uptake on sodium, the co-transported cation, was demonstrated in LLC-PK1 and HEK293 cells. Fluorescence microscopy confirmed intracellular localization of 6FGA, particularly near the nucleus. Competition studies revealed that glucose tends to weakly reduce 6FGA uptake, although the effect did not achieve statistical significance. Assessments using standard SGLT and GLUT inhibitors highlighted 6FGA's sensitivity for probing SGLT-mediated transport. SIGNIFICANCE 6FGA is a new fluorescent glucose analog offering advantages over existing probes due to its improved photophysical properties, greater sensitivity, enabling subcellular resolution and efficient tissue penetration in near-infrared imaging. 6FGA presents practicality and cost-effectiveness, making it a promising tool for nonradioactive, microplate-based assays at investigating SGLT-mediated glucose transport mechanisms.
Collapse
Affiliation(s)
- Richard S Agnes
- Department of Radiology, University Hospitals of Cleveland and Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Bryan J Traughber
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Raymond F Muzic
- Department of Radiology, University Hospitals of Cleveland and Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Lee J, Hong SW, Kim MJ, Lim YM, Moon SJ, Kwon H, Park SE, Rhee EJ, Lee WY. Inhibition of Sodium-Glucose Cotransporter-2 during Serum Deprivation Increases Hepatic Gluconeogenesis via the AMPK/AKT/FOXO Signaling Pathway. Endocrinol Metab (Seoul) 2024; 39:98-108. [PMID: 38171209 PMCID: PMC10901661 DOI: 10.3803/enm.2023.1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGRUOUND Sodium-dependent glucose cotransporter 2 (SGLT2) mediates glucose reabsorption in the renal proximal tubules, and SGLT2 inhibitors are used as therapeutic agents for treating type 2 diabetes mellitus. This study aimed to elucidate the effects and mechanisms of SGLT2 inhibition on hepatic glucose metabolism in both serum deprivation and serum supplementation states. METHODS Huh7 cells were treated with the SGLT2 inhibitors empagliflozin and dapagliflozin to examine the effect of SGLT2 on hepatic glucose uptake. To examine the modulation of glucose metabolism by SGLT2 inhibition under serum deprivation and serum supplementation conditions, HepG2 cells were transfected with SGLT2 small interfering RNA (siRNA), cultured in serum-free Dulbecco's modified Eagle's medium for 16 hours, and then cultured in media supplemented with or without 10% fetal bovine serum for 8 hours. RESULTS SGLT2 inhibitors dose-dependently decreased hepatic glucose uptake. Serum deprivation increased the expression levels of the gluconeogenesis genes peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), glucose 6-phosphatase (G6pase), and phosphoenolpyruvate carboxykinase (PEPCK), and their expression levels during serum deprivation were further increased in cells transfected with SGLT2 siRNA. SGLT2 inhibition by siRNA during serum deprivation induces nuclear localization of the transcription factor forkhead box class O 1 (FOXO1), decreases nuclear phosphorylated-AKT (p-AKT), and p-FOXO1 protein expression, and increases phosphorylated-adenosine monophosphate-activated protein kinase (p-AMPK) protein expression. However, treatment with the AMPK inhibitor, compound C, reversed the reduction in the protein expression levels of nuclear p- AKT and p-FOXO1 and decreased the protein expression levels of p-AMPK and PEPCK in cells transfected with SGLT2 siRNA during serum deprivation. CONCLUSION These data show that SGLT2 mediates glucose uptake in hepatocytes and that SGLT2 inhibition during serum deprivation increases gluconeogenesis via the AMPK/AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yu-Mi Lim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Hsiao HY, Yen TH, Wu FY, Cheng CM, Liu JW, Fan YT, Huang JJ, Nien CY. Delivery and Transcriptome Assessment of an In Vitro Three-Dimensional Proximal Tubule Model Established by Human Kidney 2 Cells in Clinical Gelatin Sponges. Int J Mol Sci 2023; 24:15547. [PMID: 37958530 PMCID: PMC10650118 DOI: 10.3390/ijms242115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 11/15/2023] Open
Abstract
The high prevalence of kidney diseases and the low identification rate of drug nephrotoxicity in preclinical studies reinforce the need for representative yet feasible renal models. Although in vitro cell-based models utilizing renal proximal tubules are widely used for kidney research, many proximal tubule cell (PTC) lines have been indicated to be less sensitive to nephrotoxins, mainly due to altered expression of transporters under a two-dimensional culture (2D) environment. Here, we selected HK-2 cells to establish a simplified three-dimensional (3D) model using gelatin sponges as scaffolds. In addition to cell viability and morphology, we conducted a comprehensive transcriptome comparison and correlation analysis of 2D and 3D cultured HK-2 cells to native human PTCs. Our 3D model displayed stable and long-term growth with a tubule-like morphology and demonstrated a more comparable gene expression profile to native human PTCs compared to the 2D model. Many missing or low expressions of major genes involved in PTC transport and metabolic processes were restored, which is crucial for successful nephrotoxicity prediction. Consequently, we established a cost-effective yet more representative model for in vivo PTC studies and presented a comprehensive transcriptome analysis for the systematic characterization of PTC lines.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Center for Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Nephrology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Fang-Yu Wu
- Department of Life Science, National Central University, Taoyuan 32001, Taiwan; (F.-Y.W.); (Y.-T.F.)
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300193, Taiwan;
| | - Jia-Wei Liu
- Center for Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Yu-Ting Fan
- Department of Life Science, National Central University, Taoyuan 32001, Taiwan; (F.-Y.W.); (Y.-T.F.)
| | - Jung-Ju Huang
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chung-Yi Nien
- Department of Life Science, National Central University, Taoyuan 32001, Taiwan; (F.-Y.W.); (Y.-T.F.)
| |
Collapse
|
5
|
Sportiello M, Poindexter A, Reilly EC, Geber A, Lambert Emo K, Jones TN, Topham DJ. Mouse Memory CD8 T Cell Subsets Defined by Tissue-Resident Memory Integrin Expression Exhibit Distinct Metabolic Profiles. Immunohorizons 2023; 7:652-669. [PMID: 37855738 PMCID: PMC10615656 DOI: 10.4049/immunohorizons.2300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023] Open
Abstract
Tissue-resident memory CD8 T cells (TRM) principally reside in peripheral nonlymphoid tissues, such as lung and skin, and confer protection against a variety of illnesses ranging from infections to cancers. The functions of different memory CD8 T cell subsets have been linked with distinct metabolic pathways and differ from other CD8 T cell subsets. For example, skin-derived memory T cells undergo fatty acid oxidation and oxidative phosphorylation to a greater degree than circulating memory and naive cells. Lung TRMs defined by the cell-surface expression of integrins exist as distinct subsets that differ in gene expression and function. We hypothesize that TRM subsets with different integrin profiles will use unique metabolic programs. To test this, differential expression and pathway analysis were conducted on RNA sequencing datasets from mouse lung TRMs yielding significant differences related to metabolism. Next, metabolic models were constructed, and the predictions were interrogated using functional metabolite uptake assays. The levels of oxidative phosphorylation, mitochondrial mass, and neutral lipids were measured. Furthermore, to investigate the potential relationships to TRM development, T cell differentiation studies were conducted in vitro with varying concentrations of metabolites. These demonstrated that lipid conditions impact T cell survival, and that glucose concentration impacts the expression of canonical TRM marker CD49a, with no effect on central memory-like T cell marker CCR7. In summary, it is demonstrated that mouse resident memory T cell subsets defined by integrin expression in the lung have unique metabolic profiles, and that nutrient abundance can alter differentiation.
Collapse
Affiliation(s)
- Mike Sportiello
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY
| | - Alexis Poindexter
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Emma C. Reilly
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Adam Geber
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY
| | - Kris Lambert Emo
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Taylor N. Jones
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - David J. Topham
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
6
|
Navarro-Nateras L, Diaz-Gonzalez J, Aguas-Chantes D, Coria-Oriundo LL, Battaglini F, Ventura-Gallegos JL, Zentella-Dehesa A, Oza G, Arriaga LG, Casanova-Moreno JR. Development of a Redox-Polymer-Based Electrochemical Glucose Biosensor Suitable for Integration in Microfluidic 3D Cell Culture Systems. BIOSENSORS 2023; 13:582. [PMID: 37366947 DOI: 10.3390/bios13060582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
The inclusion of online, in situ biosensors in microfluidic cell cultures is important to monitor and characterize a physiologically mimicking environment. This work presents the performance of second-generation electrochemical enzymatic biosensors to detect glucose in cell culture media. Glutaraldehyde and ethylene glycol diglycidyl ether (EGDGE) were tested as cross-linkers to immobilize glucose oxidase and an osmium-modified redox polymer on the surface of carbon electrodes. Tests employing screen printed electrodes showed adequate performance in a Roswell Park Memorial Institute (RPMI-1640) media spiked with fetal bovine serum (FBS). Comparable first-generation sensors were shown to be heavily affected by complex biological media. This difference is explained in terms of the respective charge transfer mechanisms. Under the tested conditions, electron hopping between Os redox centers was less vulnerable than H2O2 diffusion to biofouling by the substances present in the cell culture matrix. By employing pencil leads as electrodes, the incorporation of these electrodes in a polydimethylsiloxane (PDMS) microfluidic channel was achieved simply and at a low cost. Under flow conditions, electrodes fabricated using EGDGE presented the best performance with a limit of detection of 0.5 mM, a linear range up to 10 mM, and a sensitivity of 4.69 μA mM-1 cm-2.
Collapse
Affiliation(s)
- L Navarro-Nateras
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - Jancarlo Diaz-Gonzalez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - Diana Aguas-Chantes
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - Lucy L Coria-Oriundo
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, CONICET-Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando Battaglini
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, CONICET-Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - José Luis Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - L G Arriaga
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| | - Jannu R Casanova-Moreno
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico
| |
Collapse
|
7
|
Sun Q, Geng H, Zhao M, Li Y, Chen X, Sha Q, Lai P, Tang D, Yang D, Liang J, Guo M. FTO-mediated m 6 A modification of SOCS1 mRNA promotes the progression of diabetic kidney disease. Clin Transl Med 2022; 12:e942. [PMID: 35731980 PMCID: PMC9217105 DOI: 10.1002/ctm2.942] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Qiang Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Houfa Geng
- Department of EndocrinologyXuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical UniversityXuzhouJiangsuChina
| | - Meng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yang Li
- Institute of Thoracic Oncology and Department of Thoracic SurgeryWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xi Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Qian Sha
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Peng Lai
- Department of EndocrinologyXuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical UniversityXuzhouJiangsuChina
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jun Liang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
- Department of EndocrinologyXuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical UniversityXuzhouJiangsuChina
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
8
|
Xu J, Kitada M, Ogura Y, Liu H, Koya D. Dapagliflozin Restores Impaired Autophagy and Suppresses Inflammation in High Glucose-Treated HK-2 Cells. Cells 2021; 10:cells10061457. [PMID: 34200774 PMCID: PMC8230404 DOI: 10.3390/cells10061457] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Sodium-glucose cotransporter2 (SGLT2) inhibitors have a reno-protective effect in diabetic kidney disease. However, the detailed mechanism remains unclear. In this study, human proximal tubular cells (HK-2) were cultured in 5 mM glucose and 25 mM mannitol (control), 30 mM glucose (high glucose: HG), or HG and SGLT2 inhibitor, dapagliflozin-containing medium for 48 h. The autophagic flux was decreased, accompanied by the increased phosphorylation of S6 kinase ribosomal protein (p-S6RP) and the reduced phosphorylation of AMP-activated kinase (p-AMPK) expression in a HG condition. Compared to those of the control, dapagliflozin and SGLT2 knockdown ameliorated the HG-induced alterations of p-S6RP, p-AMPK, and autophagic flux. In addition, HG increased the nuclear translocation of nuclear factor-κB p65 (NF-κB) p65 and the cytoplasmic nucleotide-binding oligomerization domain-like receptor 3 (NLRP3), mature interleukin-1β (IL-1β), IL-6, and tumor necrosis factorα (TNFα) expression. Dapagliflozin, SGLT2 knockdown, and NF-κB p65 knockdown reduced the extent of these HG-induced inflammatory alterations. The inhibitory effect of dapagliflozin on the increase in the HG-induced nuclear translocation of NF-κB p65 was abrogated by knocking down AMPK. These data indicated that in diabetic renal proximal tubular cells, dapagliflozin ameliorates: (1) HG-induced autophagic flux reduction, via increased AMPK activity and mTOR suppression; and (2) inflammatory alterations due to NF-κB pathway suppression.
Collapse
Affiliation(s)
- Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (J.X.); (Y.O.); (H.L.); (D.K.)
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (J.X.); (Y.O.); (H.L.); (D.K.)
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan
- Correspondence: ; Tel.: +81-76-286-2211
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (J.X.); (Y.O.); (H.L.); (D.K.)
| | - Haijie Liu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (J.X.); (Y.O.); (H.L.); (D.K.)
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (J.X.); (Y.O.); (H.L.); (D.K.)
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan
| |
Collapse
|
9
|
Angiotensin II up-regulates sodium-glucose co-transporter 2 expression and SGLT2 inhibitor attenuates Ang II-induced hypertensive renal injury in mice. Clin Sci (Lond) 2021; 135:943-961. [PMID: 33822013 DOI: 10.1042/cs20210094] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Clinical trials indicate that sodium/glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) improve kidney function, yet, the molecular regulation of SGLT2 expression is incompletely understood. Here, we investigated the role of the intrarenal renin-angiotensin system (RAS) on SGLT2 expression. In adult non-diabetic participants in the Nephrotic Syndrome Study Network (NEPTUNE, n=163), multivariable linear regression analysis showed SGLT2 mRNA was significantly associated with angiotensinogen (AGT), renin, and angiotensin-converting enzyme (ACE) mRNA levels (P<0.001). In vitro, angiotensin II (Ang II) dose-dependently stimulated SGLT2 expression in HK-2, human immortalized renal proximal tubular cells (RPTCs); losartan and antioxidants inhibited it. Sglt2 expression was increased in transgenic (Tg) mice specifically overexpressing Agt in their RPTCs, as well as in WT mice with a single subcutaneous injection of Ang II (1.44 mg/kg). Moreover, Ang II (1000 ng/kg/min) infusion via osmotic mini-pump in WT mice for 4 weeks increased systolic blood pressure (SBP), glomerulosclerosis, tubulointerstitial fibrosis, and albuminuria; canaglifozin (Cana, 15 mg/kg/day) reversed these changes, with the exception of SBP. Fractional glucose excretion (FeGlu) was higher in Ang II+Cana than WT+Cana, whereas Sglt2 expression was similar. Our data demonstrate a link between intrarenal RAS and SGLT2 expression and that SGLT2i ameliorates Ang II-induced renal injury independent of SBP.
Collapse
|
10
|
Handl J, Čapek J, Majtnerová P, Báčová J, Roušar T. The effect of repeated passaging on the susceptibility of human proximal tubular HK-2 cells to toxic compounds. Physiol Res 2020; 69:731-738. [PMID: 32672047 DOI: 10.33549/physiolres.934491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human proximal tubular HK-2 cell line is an immortalized cell line commonly used for studying proximal tubular toxicity. Even as their use is presently increasing, there unfortunately are no studies focused on functional changes in HK-2 cells associated with passaging. The aim of the present study, therefore, was to evaluate the functional stability of HK-2 cells during 13 weeks of continuous passaging after 6 and 24 h of treatment with model nephrotoxic compounds (i.e., acetaminophen, cisplatin, CdCl(2)). Short tandem repeat profile, the doubling time, cell diameter, glutathione concentration, and intracellular dehydrogenase activity were measured in HK-2 cells at each tested passage. The results showed that HK-2 cells exhibit stable morphology, cell size, and cell renewal during passaging. Mean doubling time was determined to be 54 h. On the other hand, we observed a significant effect of passaging on the susceptibility of HK-2 cells to toxic compounds. The largest difference in results was found in both cadmium and cisplatin treated cells across passages. We conclude that the outcomes of scientific studies on HK-2 cells can be affected by the number of passages even after medium-term cultivation and passaging for 13 weeks.
Collapse
Affiliation(s)
- J Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
| | | | | | | | | |
Collapse
|
11
|
Hodrea J, Balogh DB, Hosszu A, Lenart L, Besztercei B, Koszegi S, Sparding N, Genovese F, Wagner LJ, Szabo AJ, Fekete A. Reduced O-GlcNAcylation and tubular hypoxia contribute to the antifibrotic effect of SGLT2 inhibitor dapagliflozin in the diabetic kidney. Am J Physiol Renal Physiol 2020; 318:F1017-F1029. [PMID: 32116017 PMCID: PMC7242633 DOI: 10.1152/ajprenal.00021.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease is a worldwide epidemic, and therapies are incomplete. Clinical data suggest that improved renal outcomes by Na+-glucose cotransporter 2 inhibitor (SGLT2i) are partly beyond their antihyperglycemic effects; however, the mechanisms are still elusive. Here, we investigated the effect of the SGLT2i dapagliflozin (DAPA) in the prevention of elevated O-GlcNAcylation and tubular hypoxia as contributors of renal fibrosis. Type 1 diabetes was induced by streptozotocin in adult male Wistar rats. After the onset of diabetes, rats were treated for 6 wk with DAPA or DAPA combined with losartan (LOS). The effect of hyperglycemia was tested in HK-2 cells kept under normal or high glucose conditions. To test the effect of hypoxia, cells were kept in 1% O2 for 2 h. Cells were treated with DAPA or DAPA combined with LOS. DAPA slowed the loss of renal function, mitigated renal tubular injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), and reduced tubulointerstitial fibrosis. DAPA diminished high glucose-induced protein O-GlcNAcylation and moderated the tubular response to hypoxia through the hypoxia-inducible factor pathway. DAPA alone was as effective as combined treatment with LOS in all outcome parameters. These data highlight the role of ameliorated O-GlcNAcylation and diminished tubular hypoxia as important benefits of SGLT2i treatment. Our results support the link between glucose toxicity, tubular hypoxia, and fibrosis, a vicious trio that could be targeted by SGLT2i in kidney diseases of other origins as well.
Collapse
Affiliation(s)
- Judit Hodrea
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dora B Balogh
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Adam Hosszu
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Lilla Lenart
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balazs Besztercei
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Sandor Koszegi
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nadja Sparding
- Nordic Bioscience, Biomarkers & Research, Herlev, Denmark.,Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N, Denmark
| | | | - Laszlo J Wagner
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Attila J Szabo
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.,MTA-SE Paediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Shibusawa R, Yamada E, Okada S, Nakajima Y, Bastie CC, Maeshima A, Kaira K, Yamada M. Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Sci Rep 2019; 9:9887. [PMID: 31285506 PMCID: PMC6614429 DOI: 10.1038/s41598-019-46402-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/26/2019] [Indexed: 01/14/2023] Open
Abstract
The new type 2 diabetes drug, dapagliflozin, reduces blood glucose levels and body weight by inhibiting sodium glucose transporter 2 (SGLT2) in proximal tubular cells. SGLT2 inhibitors might modulate glucose influx into renal tubular cells, thereby regulating the metabolic conditions that cause endoplasmic reticulum (ER) stress in the cells. In this study, we examined the effect of dapagliflozin on ER stress in the HK-2 proximal tubular cell line and in the kidney of db/db mice to characterise its function in diabetic nephropathy (DN). We found that dapagliflozin regulated ER stress-mediated apoptosis in vitro and in vivo. Only the elf2α-ATF4-CHOP pathway was regulated under these conditions. Notably, the drug rescued C2 ceramide-induced ER stress-mediated apoptosis and ER stress-mediated apoptosis, which might occur in DN, in db/db mice. Our study shows a novel role for dapagliflozin as an inhibitor of ER stress and suggests that dapagliflozin might be useful for the prevention of DN.
Collapse
Affiliation(s)
- Ryo Shibusawa
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Eijiro Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.
| | - Shuichi Okada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Yasuyo Nakajima
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Claire C Bastie
- Division of Biomedical Sciences, Warwick Medical School, Coventry, West Midlands, United Kingdom
| | - Akito Maeshima
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigii, Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| |
Collapse
|