1
|
Navarro B, Turina M. Viroid and viroid-like elements in plants and plant-associated microbiota: a new layer of biodiversity for plant holobionts. THE NEW PHYTOLOGIST 2024; 244:1216-1222. [PMID: 39329334 DOI: 10.1111/nph.20156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
The functional relevance of plant-associated microorganisms is theoretically framed within the holobiont concept. The role of viruses in plant holobionts is being recognized both for their direct effects when hosted in plants (cryptic plant viruses) and for their indirect effects when infecting microorganisms associated with plants in tripartite interactions (e.g. mycoviruses and bacteriophages). We argue that viroids, the smallest infectious agents typically infecting only plant hosts, must also be included in plant holobiont studies. The same applies to the recently discovered large number of viroid-like elements infecting hosts of other life kingdoms that are closely associated with plants. Here we also describe in depth the diversity of such viroid-like elements and their initial functional characterization in plant-associated fungi.
Collapse
Affiliation(s)
- Beatriz Navarro
- Institute for Sustainable Plant Protection-Bari, National Research Council of Italy, 70126, Bari, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection-URT Brescia, National Research Council of Italy, 25123, Brescia, Italy
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
2
|
Koellsch C, Poulin R, Salloum PM. What shapes a microbiome? Differences in bacterial communities associated with helminth-amphipod interactions. Int J Parasitol 2024:S0020-7519(24)00155-3. [PMID: 39209213 DOI: 10.1016/j.ijpara.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The fast technological advances of molecular tools have enabled us to uncover a new dimension hidden within parasites and their hosts: their microbiomes. Increasingly, parasitologists characterise host microbiome changes in the face of parasitic infections, revealing the potential of these microscopic fast-evolving entities to influence host-parasite interactions. However, most of the changes in host microbiomes seem to depend on the host and parasite species in question. Furthermore, we should understand the relative role of parasitic infections as microbiome modulators when compared with other microbiome-impacting factors (e.g., host size, age, sex). Here, we characterised the microbiome of a single intermediate host species infected by two parasites belonging to different phyla: the acanthocephalan Plagiorhynchus allisonae and a dilepidid cestode, both infecting Transorchestia serrulata amphipods collected simultaneously from the same locality. We used the v4 hypervariable region of the 16S rRNA prokaryotic gene to identify the hemolymph bacterial community of uninfected, acanthocephalan-infected, and cestode-infected amphipods, as well as the bacteria in the amphipods' immediate environment and in the parasites infecting them. Our results show that parasitic infections were more strongly associated with differences in host bacterial community richness than amphipod size, presence of amphipod eggs in female amphipods, and even parasite load. Amphipods infected by acanthocephalans had the most divergent bacterial community, with a marked decrease in alpha diversity compared with cestode-infected and uninfected hosts. In accordance with the species-specific nature of microbiome changes in parasitic infections, we found unique microbial taxa associating with hosts infected by each parasite species, as well as taxa only shared between a parasite species and their infected hosts. However, there were some bacterial taxa detected in all parasitised amphipods (regardless of the parasite species), but not in uninfected amphipods or the environment. We propose that shared bacteria associated with all hosts parasitised by distantly related helminths may be important either in helping host defences or parasites' success, and could thus interact with host-parasite evolution.
Collapse
Affiliation(s)
- Célia Koellsch
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
3
|
Koellsch C, Poulin R, Salloum PM. Microbial artists: the role of parasite microbiomes in explaining colour polymorphism among amphipods and potential link to host manipulation. J Evol Biol 2024; 37:1009-1022. [PMID: 38989853 DOI: 10.1093/jeb/voae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Parasite infections are increasingly reported to change the microbiome of the parasitized hosts, while parasites bring their own microbes to what can be a multi-dimensional interaction. For instance, a recent hypothesis suggests that the microbial communities harboured by parasites may play a role in the well-documented ability of many parasites to manipulate host phenotype, and explain why the degree to which host phenotype is altered varies among conspecific parasites. Here, we explored whether the microbiomes of both hosts and parasites are associated with variation in host manipulation by parasites. Using colour quantification methods applied to digital images, we investigated colour variation among uninfected Transorchestia serrulata amphipods, as well as amphipods infected with Plagiorhynchus allisonae acanthocephalans and with a dilepidid cestode. We then characterized the bacteriota of amphipod hosts and of their parasites, looking for correlations between host phenotype and the bacterial taxa associated with hosts and parasites. We found large variation in amphipod colours, and weak support for a direct impact of parasites on the colour of their hosts. Conversely, and most interestingly, the parasite's bacteriota was more strongly correlated with colour variation among their amphipod hosts, with potential impact of amphipod-associated bacteria as well. Some bacterial taxa found associated with amphipods and parasites may have the ability to synthesize pigments, and we propose they may interact with colour determination in the amphipods. This study provides correlational support for an association between the parasite's microbiome and the evolution of host manipulation by parasites and host-parasite interactions more generally.
Collapse
Affiliation(s)
- Célia Koellsch
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
4
|
Kobel CM, Merkesvik J, Burgos IMT, Lai W, Øyås O, Pope PB, Hvidsten TR, Aho VTE. Integrating host and microbiome biology using holo-omics. Mol Omics 2024; 20:438-452. [PMID: 38963125 DOI: 10.1039/d4mo00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Holo-omics is the use of omics data to study a host and its inherent microbiomes - a biological system known as a "holobiont". A microbiome that exists in such a space often encounters habitat stability and in return provides metabolic capacities that can benefit their host. Here we present an overview of beneficial host-microbiome systems and propose and discuss several methodological frameworks that can be used to investigate the intricacies of the many as yet undefined host-microbiome interactions that influence holobiont homeostasis. While this is an emerging field, we anticipate that ongoing methodological advancements will enhance the biological resolution that is necessary to improve our understanding of host-microbiome interplay to make meaningful interpretations and biotechnological applications.
Collapse
Affiliation(s)
- Carl M Kobel
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Jenny Merkesvik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Wanxin Lai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ove Øyås
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Velma T E Aho
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
5
|
Gilbert SF. Inter-kingdom communication and the sympoietic way of life. Front Cell Dev Biol 2024; 12:1427798. [PMID: 39071805 PMCID: PMC11275584 DOI: 10.3389/fcell.2024.1427798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Organisms are now seen as holobionts, consortia of several species that interact metabolically such that they sustain and scaffold each other's existence and propagation. Sympoiesis, the development of the symbiotic relationships that form holobionts, is critical for our understanding the origins and maintenance of biodiversity. Rather than being the read-out of a single genome, development has been found to be sympoietic, based on multigenomic interactions between zygote-derived cells and symbiotic microbes. These symbiotic and sympoietic interactions are predicated on the ability of cells from different kingdoms of life (e.g., bacteria and animals) to communicate with one another and to have their chemical signals interpreted in a manner that facilitates development. Sympoiesis, the creation of an entity by the interactions of other entities, is commonly seen in embryogenesis (e.g., the creation of lenses and retinas through the interaction of brain and epidermal compartments). In holobiont sympoiesis, interactions between partners of different domains of life interact to form organs and biofilms, wherein each of these domains acts as the environment for the other. If evolution is forged by changes in development, and if symbionts are routinely involved in our development, then changes in sympoiesis can constitute an important factor in evolution.
Collapse
Affiliation(s)
- Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Evolutionary Phenomics Group, Biotechnology Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Marulanda-Gomez AM, Ribes M, Franzenburg S, Hentschel U, Pita L. Transcriptomic responses of Mediterranean sponges upon encounter with symbiont microbial consortia. BMC Genomics 2024; 25:674. [PMID: 38972970 PMCID: PMC11229196 DOI: 10.1186/s12864-024-10548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
Collapse
Affiliation(s)
| | - Marta Ribes
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain
| | - Sören Franzenburg
- Research Group Genetics and Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Lucia Pita
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain.
| |
Collapse
|
7
|
Fagan BT, Constable GWA, Law R. Maternal transmission as a microbial symbiont sieve, and the absence of lactation in male mammals. Nat Commun 2024; 15:5341. [PMID: 38937464 PMCID: PMC11211401 DOI: 10.1038/s41467-024-49559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Gut microbiomes of mammals carry a complex symbiotic assemblage of microorganisms. Feeding newborn infants milk from the mammary gland allows vertical transmission of the parental milk microbiome to the offspring's gut microbiome. This has benefits, but also has hazards for the host population. Using mathematical models, we demonstrate that biparental vertical transmission enables deleterious microbial elements to invade host populations. In contrast, uniparental vertical transmission acts as a sieve, preventing these invasions. Moreover, we show that deleterious symbionts generate selection on host modifier genes that keep uniparental transmission in place. Since microbial transmission occurs during birth in placental mammals, subsequent transmission of the milk microbiome needs to be maternal to avoid the spread of deleterious elements. This paper therefore argues that viviparity and the hazards from biparental transmission of the milk microbiome, together generate selection against male lactation in placental mammals.
Collapse
Affiliation(s)
- Brennen T Fagan
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK.
- Department of Mathematics, University of York, York, UK.
| | | | - Richard Law
- Department of Mathematics, University of York, York, UK
| |
Collapse
|
8
|
Roughgarden J. Lytic/Lysogenic Transition as a Life-History Switch. Virus Evol 2024; 10:veae028. [PMID: 38756985 PMCID: PMC11097211 DOI: 10.1093/ve/veae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
The transition between lytic and lysogenic life cycles is the most important feature of the life-history of temperate viruses. To explain this transition, an optimal life-history model is offered based a discrete-time formulation of phage/bacteria population dynamics that features infection of bacteria by Poisson sampling of virions from the environment. The time step is the viral latency period. In this model, density-dependent viral absorption onto the bacterial surface produces virus/bacteria coexistence and density dependence in bacterial growth is not needed. The formula for the transition between lytic and lysogenic phases is termed the 'fitness switch'. According to the model, the virus switches from lytic to lysogenic when its population grows faster as prophage than as virions produced by lysis of the infected cells, and conversely for the switch from lysogenic to lytic. A prophage that benefits the bacterium it infects automatically incurs lower fitness upon exiting the bacterial genome, resulting in its becoming locked into the bacterial genome in what is termed here as a 'prophage lock'. The fitness switch qualitatively predicts the ecogeographic rule that environmental enrichment leads to microbialization with a concomitant increase in lysogeny, fluctuating environmental conditions promote virus-mediated horizontal gene transfer, and prophage-containing bacteria can integrate into the microbiome of a eukaryotic host forming a functionally integrated tripartite holobiont. These predictions accord more with the 'Piggyback-the-Winner' hypothesis than with the 'Kill-the-Winner' hypothesis in virus ecology.
Collapse
Affiliation(s)
- Joan Roughgarden
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Segura-García I, Olson JB, Gochfeld DJ, Brandt ME, Chaves-Fonnegra A. Severe hurricanes increase recruitment and gene flow in the clonal sponge Aplysina cauliformis. Mol Ecol 2024; 33:e17307. [PMID: 38444224 DOI: 10.1111/mec.17307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Upright branching sponges, such as Aplysina cauliformis, provide critical three-dimensional habitat for other organisms and assist in stabilizing coral reef substrata, but are highly susceptible to breakage during storms. Breakage can increase sponge fragmentation, contributing to population clonality and inbreeding. Conversely, storms could provide opportunities for new genotypes to enter populations via larval recruitment, resulting in greater genetic diversity in locations with frequent storms. The unprecedented occurrence of two Category 5 hurricanes in close succession during 2017 in the U.S. Virgin Islands (USVI) provided a unique opportunity to evaluate whether recolonization of newly available substrata on coral reefs was due to local (e.g. re-growth of remnants, fragmentation, larval recruitment) or remote (e.g. larval transport and immigration) sponge genotypes. We sampled A. cauliformis adults and juveniles from four reefs around St. Thomas and two in St. Croix (USVI). Using a 2bRAD protocol, all samples were genotyped for single-nucleotide polymorphisms (SNPs). Results showed that these major storm events favoured sponge larval recruitment but did not increase the genetic diversity of A. cauliformis populations. Recolonization of substratum post-storms via clonality was lower (15%) than expected and instead was mainly due to sexual reproduction (85%) via local larval recruitment. Storms did enhance gene flow among and within reef sites located south of St. Thomas and north of St. Croix. Therefore, populations of clonal marine species with low pelagic dispersion, such as A. cauliformis, may benefit from increased frequency and magnitude of hurricanes for the maintenance of genetic diversity and to combat inbreeding, enhancing the resilience of Caribbean sponge communities to extreme storm events.
Collapse
Affiliation(s)
- Iris Segura-García
- Harbor Branch Oceanographic Institution, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Julie B Olson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Deborah J Gochfeld
- National Center for Natural Products Research, University of Mississippi, Oxford, Mississippi, USA
| | - Marilyn E Brandt
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, Virgin Islands, USA
| | - Andia Chaves-Fonnegra
- Harbor Branch Oceanographic Institution, Florida Atlantic University, Fort Pierce, Florida, USA
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
10
|
Afridi MS, Kumar A, Javed MA, Dubey A, de Medeiros FHV, Santoyo G. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol Res 2024; 279:127564. [PMID: 38071833 DOI: 10.1016/j.micres.2023.127564] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
A wide range of abiotic and biotic stresses adversely affect plant's growth and production. Under stress, one of the main responses of plants is the modulation of exudates excreted in the rhizosphere, which consequently leads to alterations in the resident microbiota. Thus, the exudates discharged into the rhizospheric environment play a preponderant role in the association and formation of plant-microbe interactions. In this review, we aimed to provide a synthesis of the latest and most pertinent literature on the diverse biochemical and structural compositions of plant root exudates. Also, this work investigates into their multifaceted role in microbial nutrition and intricate signaling processes within the rhizosphere, which includes quorum-sensing molecules. Specifically, it explores the contributions of low molecular weight compounds, such as carbohydrates, phenolics, organic acids, amino acids, and secondary metabolites, as well as the significance of high molecular weight compounds, including proteins and polysaccharides. It also discusses the state-of-the-art omics strategies that unveil the vital role of root exudates in plant-microbiome interactions, including defense against pathogens like nematodes and fungi. We propose multiple challenges and perspectives, including exploiting plant root exudates for host-mediated microbiome engineering. In this discourse, root exudates and their derived interactions with the rhizospheric microbiota should receive greater attention due to their positive influence on plant health and stress mitigation.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico.
| |
Collapse
|
11
|
Daybog I, Kolodny O. A computational framework for resolving the microbiome diversity conundrum. Nat Commun 2023; 14:7977. [PMID: 38042865 PMCID: PMC10693575 DOI: 10.1038/s41467-023-42768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 10/20/2023] [Indexed: 12/04/2023] Open
Abstract
Recent empirical studies offer conflicting findings regarding the relation between host fitness and the composition of its microbiome, a conflict which we term 'the microbial β- diversity conundrum'. The microbiome is crucial for host wellbeing and survival. Surprisingly, different healthy individuals' microbiome compositions, even in the same population, often differ dramatically, contrary to the notion that a vital trait should be highly conserved. Moreover, gnotobiotic individuals exhibit highly deleterious phenotypes, supporting the view that the microbiome is paramount to host fitness. However, the introduction of almost arbitrarily selected microbiota into the system often achieves a significant rescue effect of the deleterious phenotypes. This is true even for microbiota from soil or phylogenetically distant host species, highlighting an apparent paradox. We suggest several solutions to the paradox using a computational framework, simulating the population dynamics of hosts and their microbiomes over multiple generations. The answers invoke factors such as host population size, the specific mode of microbial contribution to host fitness, and typical microbiome richness, offering solutions to the conundrum by highlighting scenarios where even when a host's fitness is determined in full by its microbiome composition, this composition has little effect on the natural selection dynamics of the population.
Collapse
Affiliation(s)
- Itay Daybog
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Oren Kolodny
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
12
|
von der Dunk SHA, Hogeweg P, Snel B. Obligate endosymbiosis enables genome expansion during eukaryogenesis. Commun Biol 2023; 6:777. [PMID: 37491455 PMCID: PMC10368719 DOI: 10.1038/s42003-023-05153-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
The endosymbiosis of an alpha-proteobacterium that gave rise to mitochondria was one of the key events in eukaryogenesis. One striking outcome of eukaryogenesis was a much more complex cell with a large genome. Despite the existence of many alternative hypotheses for this and other patterns potentially related to endosymbiosis, a constructive evolutionary model in which these hypotheses can be studied is still lacking. Here, we present a theoretical approach in which we focus on the consequences rather than the causes of mitochondrial endosymbiosis. Using a constructive evolutionary model of cell-cycle regulation, we find that genome expansion and genome size asymmetry arise from emergent host-symbiont cell-cycle coordination. We also find that holobionts with large host and small symbiont genomes perform best on long timescales and mimic the outcome of eukaryogenesis. By designing and studying a constructive evolutionary model of obligate endosymbiosis, we uncovered some of the forces that may drive the patterns observed in nature. Our results provide a theoretical foundation for patterns related to mitochondrial endosymbiosis, such as genome size asymmetry, and reveal evolutionary outcomes that have not been considered so far, such as cell-cycle coordination without direct communication.
Collapse
Affiliation(s)
- Samuel H A von der Dunk
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| |
Collapse
|
13
|
Johnson NC, Marín C. Microbial villages in the geography of arbuscular mycorrhizal symbioses. THE NEW PHYTOLOGIST 2023; 238:461-463. [PMID: 36853427 DOI: 10.1111/nph.18803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Nancy Collins Johnson
- Department of Biological Sciences, Northern Arizona University, 617 S Beaver St., Flagstaff, AZ, 86011, USA
- School of Earth and Sustainability, Northern Arizona University, 624 S Knoles Dr., Flagstaff, AZ, 86011, USA
| | - César Marín
- Centro de Investigación e Innovación para el Cambio Climatico (CiiCC), Universidad Santo Tomás, Ave Ramón Picarte 1130, Valdivia, 5090000, Chile
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| |
Collapse
|
14
|
Fungal Host Affects Photosynthesis in a Lichen Holobiont. J Fungi (Basel) 2022; 8:jof8121267. [PMID: 36547600 PMCID: PMC9784818 DOI: 10.3390/jof8121267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Corals and lichens are iconic examples of photosynthetic holobionts, i.e., ecological and evolutionary units resulting from the tightly integrated association of algae and prokaryotic microbiota with animal or fungal hosts, respectively. While the role of the coral host in modulating photosynthesis has been clarified to a large extent in coral holobionts, the role of the fungal host in this regard is far less understood. Here, we address this question by taking advantage of the recent discovery of highly specific fungal-algal pairings corresponding to climatically adapted ecotypes of the lichen-forming genus Umbilicaria. Specifically, we compared chlorophyll a fluorescence kinetics among lichen thalli consisting of different fungal-algal combinations. We show that photosynthetic performance in these lichens is not only driven by algal genotype, but also by fungal host species identity and intra-host genotype. These findings shed new light on the closely intertwined physiological processes of fungal and algal partners in the lichen symbiosis. Indeed, the specific combinations of fungal and algal genotypes within a lichen individual-and the resulting combined functional phenotype-can be regarded as a response to the environment. Our findings suggest that characterizing the genetic composition of both eukaryotic partners is an important complimentary step to understand and predict the lichen holobiont's responses to environmental change.
Collapse
|
15
|
Johnston EC, Cunning R, Burgess SC. Cophylogeny and specificity between cryptic coral species (Pocillopora spp.) at Mo'orea and their symbionts (Symbiodiniaceae). Mol Ecol 2022; 31:5368-5385. [PMID: 35960256 PMCID: PMC9805206 DOI: 10.1111/mec.16654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
The congruence between phylogenies of tightly associated groups of organisms (cophylogeny) reflects evolutionary links between ecologically important interactions. However, despite being a classic example of an obligate symbiosis, tests of cophylogeny between scleractinian corals and their photosynthetic algal symbionts have been hampered in the past because both corals and algae contain genetically unresolved and morphologically cryptic species. Here, we studied co-occurring, cryptic Pocillopora species from Mo'orea, French Polynesia, that differ in their relative abundance across depth. We constructed new phylogenies of the host Pocillopora (using complete mitochondrial genomes, genomic loci, and thousands of single nucleotide polymorphisms) and their Symbiodiniaceae symbionts (using ITS2 and psbAncr markers) and tested for cophylogeny. The analysis supported the presence of five Pocillopora species on the fore reef at Mo'orea that mostly hosted either Cladocopium latusorum or C. pacificum. Only Pocillopora species hosting C. latusorum also hosted taxa from Symbiodinium and Durusdinium. In general, the Cladocopium phylogeny mirrored the Pocillopora phylogeny. Within Cladocopium species, lineages also differed in their associations with Pocillopora haplotypes, except those showing evidence of nuclear introgression, and with depth in the two most common Pocillopora species. We also found evidence for a new Pocillopora species (haplotype 10), that has so far only been sampled from French Polynesia, that warrants formal identification. The linked phylogenies of these Pocillopora and Cladocopium species and lineages suggest that symbiont speciation is driven by niche diversification in the host, but there is still evidence for symbiont flexibility in some cases.
Collapse
Affiliation(s)
- Erika C. Johnston
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd AquariumChicagoIllinoisUSA
| | - Scott C. Burgess
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
16
|
Haque R, Das II, Sawant PB, Chadha NK, Sahoo L, Kumar R, Sundaray JK. Tenets in Microbial Endocrinology: A New Vista in Teleost Reproduction. Front Physiol 2022; 13:871045. [PMID: 36035477 PMCID: PMC9411670 DOI: 10.3389/fphys.2022.871045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Climate vulnerability and induced changes in physico-chemical properties of aquatic environment can bring impairment in metabolism, physiology and reproduction in teleost. Variation in environmental stimuli mainly acts on reproduction by interfering with steroidogenesis, gametogenesis and embryogenesis. The control on reproductive function in captivity is essential for the sustainability of aquaculture production. There are more than 3,000 teleost species across the globe having commercial importance; however, adequate quality and quantity of seed production have been the biggest bottleneck. Probiotics are widely used in aquaculture as a growth promoter, stress tolerance, pathogen inhibition, nutrient digestibility and metabolism, reproductive performance and gamete quality. As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, therefore it is considered to be a full-fledged endocrine organ. Researches on Gut-Brain-Gonad axis (GBG axis) and its importance on physiology and reproduction have already been highlighted for higher mammals; however, the study on fish physiology and reproduction is limited. While looking into the paucity of information, we have attempted to review the present status of microbiome and its interaction between the brain and gut. This review will address a process of the microbiome physiological mechanism involved in fish reproduction. The gut microbiota influences the BPG axis through a wide variety of compounds, including neuropeptides, neurotransmitter homologs and transmitters. Currently, research is being conducted to determine the precise process by which gut microbial composition influences brain function in fish. The gut-brain bidirectional interaction can influence brain biochemistry such as GABA, serotonin and tryptophan metabolites which play significant roles in CNS regulation. This review summarizes the fact, how microbes from gut, skin and other parts of the body influence fish reproduction through the Gut-Brain-Gonad axis.
Collapse
Affiliation(s)
- Ramjanul Haque
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ipsita Iswari Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | | | - Narinder Kumar Chadha
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Rajesh Kumar
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Jitendra Kumar Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
- *Correspondence: Jitendra Kumar Sundaray,
| |
Collapse
|
17
|
Mueller UG, Linksvayer TA. Microbiome breeding: conceptual and practical issues. Trends Microbiol 2022; 30:997-1011. [PMID: 35595643 DOI: 10.1016/j.tim.2022.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Microbiome breeding is a new artificial selection technique that seeks to change the genetic composition of microbiomes in order to benefit plant or animal hosts. Recent experimental and theoretical analyses have shown that microbiome breeding is possible whenever microbiome-encoded genetic factors affect host traits (e.g., health) and microbiomes are transmissible between hosts with sufficient fidelity, such as during natural microbiome transmission between individuals of social animals, or during experimental microbiome transplanting between plants. To address misunderstandings that stymie microbiome-breeding programs, we (i) clarify and visualize the corresponding elements of microbiome selection and standard selection; (ii) elucidate the eco-evolutionary processes underlying microbiome selection within a quantitative genetic framework to summarize practical guidelines that optimize microbiome breeding; and (iii) characterize the kinds of host species most amenable to microbiome breeding.
Collapse
Affiliation(s)
- Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Timothy A Linksvayer
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
18
|
Szitenberg A, Beca-Carretero P, Azcárate-García T, Yergaliyev T, Alexander-Shani R, Winters G. Teasing apart the host-related, nutrient-related and temperature-related effects shaping the phenology and microbiome of the tropical seagrass Halophila stipulacea. ENVIRONMENTAL MICROBIOME 2022; 17:18. [PMID: 35428367 PMCID: PMC9013022 DOI: 10.1186/s40793-022-00412-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/24/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Halophila stipulacea seagrass meadows are an ecologically important and threatened component of the ecosystem in the Gulf of Aqaba. Recent studies have demonstrated correlated geographic patterns for leaf epiphytic community composition and leaf morphology, also coinciding with different levels of water turbidity and nutrient concentrations. Based on these observations, workers have suggested an environmental microbial fingerprint, which may reflect various environmental stress factors seagrasses have experienced, and may add a holobiont level of plasticity to seagrasses, assisting their acclimation to changing environments and through range expansion. However, it is difficult to tease apart environmental effects from host-diversity dependent effects, which have covaried in field studies, although this is required in order to establish that differences in microbial community compositions among sites are driven by environmental conditions rather than by features governed by the host. RESULTS In this study we carried out a mesocosm experiment, in which we studied the effects of warming and nutrient stress on the composition of epiphytic bacterial communities and on some phenological traits. We studied H. stipulacea collected from two different meadows in the Gulf of Aqaba, representing differences in the host and the environment alike. We found that the source site from which seagrasses were collected was the major factor governing seagrass phenology, although heat increased shoot mortality and nutrient loading delayed new shoot emergence. Bacterial diversity, however, mostly depended on the environmental conditions. The most prominent pattern was the increase in Rhodobacteraceae under nutrient stress without heat stress, along with an increase in Microtrichaceae. Together, the two taxa have the potential to maintain nitrate reduction followed by an anammox process, which can together buffer the increase in nutrient concentrations across the leaf surface. CONCLUSIONS Our results thus corroborate the existence of environmental microbial fingerprints, which are independent from the host diversity, and support the notion of a holobiont level plasticity, both important to understand and monitor H. stipulacea ecology under the changing climate.
Collapse
Affiliation(s)
- Amir Szitenberg
- Dead Sea and Arava Science Center, Dead Sea Branch, 8693500, Masada, Israel.
- Ben-Gurion University of the Negev, 8858537, Eilat, Israel.
| | - Pedro Beca-Carretero
- Department of Theoretical Ecology and Modelling, Leibniz Centre for Tropical Marine Research, Fahrenheitstrasse 6, 28359, Bremen, Germany
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain
- Departamento de Biología, Área de Ecología, Facultad de Ciencias del Mar Y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Tomás Azcárate-García
- Department of Theoretical Ecology and Modelling, Leibniz Centre for Tropical Marine Research, Fahrenheitstrasse 6, 28359, Bremen, Germany
- Departamento de Biología, Área de Ecología, Facultad de Ciencias del Mar Y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
- Dead Sea and Arava Science Center, Central Arava Branch, 8682500, Sapir, Israel
| | - Timur Yergaliyev
- Dead Sea and Arava Science Center, Dead Sea Branch, 8693500, Masada, Israel
- Hohenheim Center for Livestock Microbiome Research (HoLMiR), Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Gidon Winters
- Ben-Gurion University of the Negev, 8858537, Eilat, Israel
- Dead Sea and Arava Science Center, Central Arava Branch, 8682500, Sapir, Israel
| |
Collapse
|
19
|
Jorge F, Dheilly NM, Froissard C, Wainwright E, Poulin R. Consistency of Bacterial Communities in a Parasitic Worm: Variation Throughout the Life Cycle and Across Geographic Space. MICROBIAL ECOLOGY 2022; 83:724-738. [PMID: 34136952 DOI: 10.1007/s00248-021-01774-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Microbial communities within metazoans are increasingly linked with development, health and behaviour, possibly functioning as integrated evolutionary units with the animal in which they live. This would require microbial communities to show some consistency both ontogenetically (across life stages) and geographically (among populations). We characterise the bacteriome of the parasitic trematode Philophthalmus attenuatus, which undergoes major life cycle transitions, and test whether its bacteriome remains consistent on developmental and spatial scales. Based on sequencing the prokaryotic 16S SSU rRNA gene, we compared the parasite bacteriome (i) across three life stages (rediae in snails, cercariae exiting snails, adults in birds) in one locality and (ii) among three geographic localities for rediae only. We found that each life stage harbours a bacteriome different from that of its host (except the adult stage) and the external environment. Very few bacterial taxa were shared among life stages, suggesting substantial ontogenetic turnover in bacteriome composition. Rediae from the three different localities also had different bacteriomes, with dissimilarities increasing with geographical distance. However, rediae from different localities nevertheless shared more bacterial taxa than did different life stages from the same locality. Changes in the bacteriome along the parasite's developmental history but some degree of geographical stability within a given life stage point toward non-random, stage-specific acquisition, selection and/or propagation of bacteria.
Collapse
Affiliation(s)
- Fátima Jorge
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Nolwenn M Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
- ANSES, Agence Nationale de Sécurité Sanitaire de L'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, Ploufragan, France
| | - Céline Froissard
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Eleanor Wainwright
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
20
|
Quigley KM, van Oppen MJH. Predictive models for the selection of thermally tolerant corals based on offspring survival. Nat Commun 2022; 13:1543. [PMID: 35351901 PMCID: PMC8964693 DOI: 10.1038/s41467-022-28956-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
Finding coral reefs resilient to climate warming is challenging given the large spatial scale of reef ecosystems. Methods are needed to predict the location of corals with heritable tolerance to high temperatures. Here, we combine Great Barrier Reef-scale remote sensing with breeding experiments that estimate larval and juvenile coral survival under exposure to high temperatures. Using reproductive corals collected from the northern and central Great Barrier Reef, we develop forecasting models to locate reefs harbouring corals capable of producing offspring with increased heat tolerance of an additional 3.4° heating weeks (~3 °C). Our findings predict hundreds of reefs (~7.5%) may be home to corals that have high and heritable heat-tolerance in habitats with high daily and annual temperature ranges and historically variable heat stress. The locations identified represent targets for protection and consideration as a source of corals for use in restoration of degraded reefs given their potential to resist climate change impacts and repopulate reefs with tolerant offspring.
Collapse
Affiliation(s)
- K M Quigley
- Australian Institute of Marine Science, Townsville, QLD, Australia.
| | - M J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
21
|
Shuster SM, Keith AR, Whitham TG. Simulating selection and evolution at the community level using common garden data. Ecol Evol 2022; 12:e8696. [PMID: 35342594 PMCID: PMC8928883 DOI: 10.1002/ece3.8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
A key issue in evolutionary biology is whether selection acting at levels higher than the individual can cause evolutionary change. If it can, then conceptual and empirical studies must consider how selection operates at multiple levels of biological organization. Here, we test the hypothesis that estimates of broad-sense community heritability, H C 2 , can be used to predict the evolutionary response by community-level phenotypes when community-level selection is imposed. Using an approach informed by classic quantitative genetics, we made three predictions. First, when we imposed community-level selection, we expected a significant change in the average phenotype of arthropod communities associated with individual tree genotypes [we imposed selection by favoring high and low NMDS (nonmetric multidimensional scaling) scores that reflected differences in arthropod species richness, abundance and composition]. Second, we expected H C 2 to predict the magnitude of the community-level response. Third, we expected no significant change in average NMDS scores with community-level selection imposed at random. We tested these hypotheses using three years of common garden data for 102 species comprising the arthropod communities, associated with nine clonally replicated Populus angustifolia genotypes. Each of our predictions were met. We conclude that estimates of H C 2 account for the resemblance among communities sharing common ancestry, the persistence of community composition over time, and the outcome of selection when it occurs at the community level. Our results provide a means for exploring how this process leads to large-scale community evolutionary change, and they identify the circumstances in which selection may routinely act at the community level.
Collapse
Affiliation(s)
- Stephen M. Shuster
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Arthur R. Keith
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Thomas G. Whitham
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
22
|
Laihonen M, Saikkonen K, Helander M, Vázquez de Aldana BR, Zabalgogeazcoa I, Fuchs B. Epichloë Endophyte-Promoted Seed Pathogen Increases Host Grass Resistance Against Insect Herbivory. Front Microbiol 2022; 12:786619. [PMID: 35087489 PMCID: PMC8787217 DOI: 10.3389/fmicb.2021.786619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plants host taxonomically and functionally complex communities of microbes. However, ecological studies on plant-microbe interactions rarely address the role of multiple co-occurring plant-associated microbes. Here, we contend that plant-associated microbes interact with each other and can have joint consequences for higher trophic levels. In this study we recorded the occurrence of the plant seed pathogenic fungus Claviceps purpurea and aphids (Sitobion sp.) on an established field experiment with red fescue (Festuca rubra) plants symbiotic to a seed transmitted endophytic fungus Epichloë festucae (E+) or non-symbiotic (E-). Both fungi are known to produce animal-toxic alkaloids. The study was conducted in a semi-natural setting, where E+ and E- plants from different origins (Spain and Northern Finland) were planted in a randomized design in a fenced common garden at Kevo Subarctic Research Station in Northern Finland. The results reveal that 45% of E+ plants were infected with Claviceps compared to 31% of E- plants. Uninfected plants had 4.5 times more aphids than Claviceps infected plants. By contrast, aphid infestation was unaffected by Epichloë symbiosis. Claviceps alkaloid concentrations correlated with a decrease in aphid numbers, which indicates their insect deterring features. These results show that plant mutualistic fungi can increase the infection probability of a pathogenic fungus, which then becomes beneficial to the plant by controlling herbivorous insects. Our study highlights the complexity and context dependency of species-species and multi-trophic interactions, thus challenging the labeling of species as plant mutualists or pathogens.
Collapse
Affiliation(s)
| | | | - Marjo Helander
- Department of Biology, University of Turku, Turku, Finland
| | | | - Iñigo Zabalgogeazcoa
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | | |
Collapse
|
23
|
Rosenberg E, Zilber-Rosenberg I. Special Issue: The Role of Microorganisms in the Evolution of Animals and Plants. Microorganisms 2022; 10:microorganisms10020250. [PMID: 35208704 PMCID: PMC8874999 DOI: 10.3390/microorganisms10020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/05/2022] Open
|
24
|
Medina M, Baker DM, Baltrus DA, Bennett GM, Cardini U, Correa AMS, Degnan SM, Christa G, Kim E, Li J, Nash DR, Marzinelli E, Nishiguchi M, Prada C, Roth MS, Saha M, Smith CI, Theis KR, Zaneveld J. Grand Challenges in Coevolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.618251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
25
|
Natural selection for imprecise vertical transmission in host-microbiota systems. Nat Ecol Evol 2022; 6:77-87. [PMID: 34949814 PMCID: PMC9901532 DOI: 10.1038/s41559-021-01593-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023]
Abstract
How and when the microbiome modulates host adaptation remains an evolutionary puzzle, despite evidence that the extended genetic repertoire of the microbiome can shape host phenotypes and fitness. One complicating factor is that the microbiome is often transmitted imperfectly across host generations, leading to questions about the degree to which the microbiome contributes to host adaptation. Here, using an evolutionary model, we demonstrate that decreasing vertical transmission fidelity can increase microbiome variation, and thus phenotypic variation, across hosts. When the most beneficial microbial genotypes change unpredictably from one generation to the next (for example, in variable environments), hosts can maximize fitness by increasing the microbiome variation among offspring, as this improves the chance of there being an offspring with the right microbial combination for the next generation. Imperfect vertical transmission can therefore be adaptive in varying environments. We characterize how selection on vertical transmission is shaped by environmental conditions, microbiome changes during host development and the contribution of other factors to trait variation. We illustrate how environmentally dependent microbial effects can favour intermediate transmission and set our results in the context of examples from natural systems. We also suggest research avenues to empirically test our predictions. Our model provides a basis to understand the evolutionary pathways that potentially led to the wide diversity of microbe transmission patterns found in nature.
Collapse
|
26
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
27
|
Greif H. Adaptation and its analogues: Biological categories for biosemantics. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2021; 90:298-307. [PMID: 34794099 DOI: 10.1016/j.shpsa.2021.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/22/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
"Teleosemantic" or "biosemantic" theories form a strong naturalistic programme in the philosophy of mind and language. They seek to explain the nature of mind and language by recourse to a natural history of "proper functions" as selected-for effects of language- and thought-producing mechanisms. However, they remain vague with respect to the nature of the proposed analogy between selected-for effects on the biological level and phenomena that are not strictly biological, such as reproducible linguistic and cultural forms. This essay critically explores various interpretations of this analogy. It suggests that these interpretations can be explicated by contrasting adaptationist with pluralist readings of the evolutionary concept of adaptation. Among the possible interpretations of the relations between biological adaptations and their analogues in language and culture, the two most relevant are a linear, hierarchical, signalling-based model that takes its cues from the evolution of co-operation and joint intentionality and a mutualistic, pluralist model that takes its cues from mimesis and symbolism in the evolution of human communication. Arguing for the merits of the mutualistic model, the present analysis indicates a path towards an evolutionary pluralist version of biosemantics that will align with theories of cognition as being environmentally "scaffolded". Language and other cultural forms are partly independent reproducible structures that acquire proper functions of their own while being integrated with organism-based cognitive traits in co-evolutionary fashion.
Collapse
Affiliation(s)
- Hajo Greif
- Warsaw University of Technology, Faculty of Administration and Social Sciences, Plac Politechniki 1, 00-661 Warsaw, Poland.
| |
Collapse
|
28
|
Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature. THE ISME JOURNAL 2021; 15:3693-3703. [PMID: 34188180 PMCID: PMC8630103 DOI: 10.1038/s41396-021-01046-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
The interactions between insects and their bacterial symbionts are shaped by a variety of abiotic factors, including temperature. As global temperatures continue to break high records, a great deal of uncertainty surrounds how agriculturally important insect pests and their symbionts may be affected by elevated temperatures, and its implications for future pest management. In this study, we examine the role of bacterial symbionts in the brown planthopper Nilaparvata lugens response to insecticide (imidacloprid) under different temperature scenarios. Our results reveal that the bacterial symbionts orchestrate host detoxification metabolism via the CncC pathway to promote host insecticide resistance, whereby the symbiont-inducible CncC pathway acts as a signaling conduit between exogenous abiotic stimuli and host metabolism. However, this insect-bacterial partnership function is vulnerable to high temperature, which causes a significant decline in host-bacterial content. In particular, we have identified the temperature-sensitive Wolbachia as a candidate player in N. lugens detoxification metabolism. Wolbachia-dependent insecticide resistance was confirmed through a series of insecticide assays and experiments comparing Wolbachia-free and Wolbachia-infected N. lugens and also Drosophila melanogaster. Together, our research reveals elevated temperatures negatively impact insect-bacterial symbiosis, triggering adverse consequences on host response to insecticide (imidacloprid) and potentially other xenobiotics.
Collapse
|
29
|
Ramos C, Calus M, Schokker D. Persistence of functional microbiota composition across generations. Sci Rep 2021; 11:19007. [PMID: 34561474 PMCID: PMC8463531 DOI: 10.1038/s41598-021-98097-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Holobionts are defined as a host and its microbiota, however, only a fraction of the bacteria are inherited vertically and thus coevolve with the host. The "it's the song, not the singer" theory proposes that functional traits, instead of taxonomical microbiota composition, could be preserved across generations if interspecies interaction patterns perpetuate themselves. We tested conservation of functional composition across generations using zooplankton, mosquito, and plant datasets. Then, we tested if there is a change of functional microbiota composition over time within a generation in human datasets. Finally, we simulated microbiota communities to investigate if (pairwise) interactions can lead to multiple stable community compositions. Our results suggest that the vertically transmitted microbiota starts a predictable change of functions performed by the microbiota over time, whose robustness depends on the arrival of diverse migrants. This succession culminates in a stable functional composition state. The results suggest that the host-microbiota interaction and higher order interactions in general have an important contribution to the robustness of the final community. If the proposed mechanism proves to be valid for a diverse array of host species, this would support the concept of holobionts being used as units of selection, including animal breeding, suggesting this has a wider applicability.
Collapse
Affiliation(s)
- Christian Ramos
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
- Carrera de Biología, Facultad de Ciencias Puras Y Naturales, Universidad Mayor de San Andrés, Casilla 10077-Correo Central, La Paz, Bolivia
| | - Mario Calus
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Dirkjan Schokker
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|
30
|
Abstract
Recent human activity has profoundly transformed Earth biomes on a scale and at rates that are unprecedented. Given the central role of symbioses in ecosystem processes, functions, and services throughout the Earth biosphere, the impacts of human-driven change on symbioses are critical to understand. Symbioses are not merely collections of organisms, but co-evolved partners that arise from the synergistic combination and action of different genetic programs. They function with varying degrees of permanence and selection as emergent units with substantial potential for combinatorial and evolutionary innovation in both structure and function. Following an articulation of operational definitions of symbiosis and related concepts and characteristics of the Anthropocene, we outline a basic typology of anthropogenic change (AC) and a conceptual framework for how AC might mechanistically impact symbioses with select case examples to highlight our perspective. We discuss surprising connections between symbiosis and the Anthropocene, suggesting ways in which new symbioses could arise due to AC, how symbioses could be agents of ecosystem change, and how symbioses, broadly defined, of humans and "farmed" organisms may have launched the Anthropocene. We conclude with reflections on the robustness of symbioses to AC and our perspective on the importance of symbioses as ecosystem keystones and the need to tackle anthropogenic challenges as wise and humble stewards embedded within the system.
Collapse
Affiliation(s)
- Erik F. Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677 USA
| | - Alexandra S. Penn
- Department of Sociology and Centre for Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, Surrey, GU2 7XH UK
| |
Collapse
|
31
|
Selvaraj G, Santos-Garcia D, Mozes-Daube N, Medina S, Zchori-Fein E, Freilich S. An eco-systems biology approach for modeling tritrophic networks reveals the influence of dietary amino acids on symbiont dynamics of Bemisia tabaci. FEMS Microbiol Ecol 2021; 97:6348090. [PMID: 34379764 DOI: 10.1093/femsec/fiab117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 01/12/2023] Open
Abstract
Metabolic conversions allow organisms to produce essential metabolites from the available nutrients in an environment, frequently requiring metabolic exchanges among co-inhabiting organisms. Here, we applied genomic-based simulations for exploring tri-trophic interactions among the sap-feeding insect whitefly (Bemisia tabaci), its host-plants, and symbiotic bacteria. The simplicity of this ecosystem allows capturing the interacting organisms (based on genomic data) and the environmental content (based on metabolomics data). Simulations explored the metabolic capacities of insect-symbiont combinations under environments representing natural phloem. Predictions were correlated with experimental data on the dynamics of symbionts under different diets. Simulation outcomes depict a puzzle of three-layer origins (plant-insect-symbionts) for the source of essential metabolites across habitats and stratify interactions enabling the whitefly to feed on diverse hosts. In parallel to simulations, natural and artificial feeding experiments provide supporting evidence for an environment-based effect on symbiont dynamics. Based on simulations, a decrease in the relative abundance of a symbiont can be associated with a loss of fitness advantage due to an environmental excess in amino-acids whose production in a deprived environment used to depend on the symbiont. The study demonstrates that genomic-based predictions can bridge environment and community dynamics and guide the design of symbiont manipulation strategies.
Collapse
Affiliation(s)
- Gopinath Selvaraj
- Institute of Plant Sciences, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel.,Institute of Plant Protection, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Diego Santos-Garcia
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Netta Mozes-Daube
- Institute of Plant Protection, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Shlomit Medina
- Institute of Plant Sciences, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Einat Zchori-Fein
- Institute of Plant Protection, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| | - Shiri Freilich
- Institute of Plant Sciences, Newe Ya'ar Research Center, The Agricultural Research Organization, P.O.B. 1021, Ramat Yishay, 30095, Israel
| |
Collapse
|
32
|
Schneider T. The holobiont self: understanding immunity in context. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:99. [PMID: 34370107 PMCID: PMC8350931 DOI: 10.1007/s40656-021-00454-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/26/2021] [Indexed: 05/31/2023]
Abstract
Both concepts of the holobiont and the immune system are at the heart of an ongoing scientific and philosophical examination concerning questions of the organism's individuality and identity as well as the relations between organisms and their environment. Examining the holobiont, the question of boundaries and individuality is challenging because it is both an assemblage of organisms with physiological cohesive aspects. I discuss the concept of immunity and the immune system function from the holobiont perspective. Because of the host-microbial close relations of codependence and interdependence, the holobiont is more often than not confused with the host, as the host is the domain in which this entity exists. I discuss the holobiont unique ecological characteristics of microbial assemblages connected to a host in a network of interactions in which the host is one of the organisms in the community but also its landscape. Therefore, I suggest viewing the holobiont as a host-ecosystem and discuss the implication of such a view on the concept of immunity and the meaning of protection. Furthermore, I show that viewing the holobiont as a host ecosystem opens the possibility of using the same ecological definition of boundaries and immunity dealing with an ecological system. Thus, the holobiont's boundaries and immunity are defined by the persistence of its complex system of interactions integrating existing and new interactions. This way of thinking presents a notion of immunity that materializes as the result of the complex interdependence relations between the different organisms composing the holobiont similar to that of an ecosystem. Taking this view further, I discuss the notion of immunogenicity that is ontologically heterogeneous with various causal explanations of the processes of tolerance and targeted immune response. Finally, I discuss the possible conceptualization of already existing and new biomedical practices.
Collapse
Affiliation(s)
- Tamar Schneider
- Cohn Institute for History and Philosophy of Science and Ideas, Humanities Faculty, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel.
| |
Collapse
|
33
|
Kaup M, Trull S, Hom EFY. On the move: sloths and their epibionts as model mobile ecosystems. Biol Rev Camb Philos Soc 2021; 96:2638-2660. [PMID: 34309191 PMCID: PMC9290738 DOI: 10.1111/brv.12773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Sloths are unusual mobile ecosystems, containing a high diversity of epibionts living and growing in their fur as they climb slowly through the canopies of tropical forests. These epibionts include poorly studied algae, arthropods, fungi, and bacteria, making sloths likely reservoirs of unexplored biodiversity. This review aims to identify gaps and eliminate misconceptions in our knowledge of sloths and their epibionts, and to identify key questions to stimulate future research into the functions and roles of sloths within a broader ecological and evolutionary context. This review also seeks to position the sloth fur ecosystem as a model for addressing fundamental questions in metacommunity and movement ecology. The conceptual and evidence-based foundation of this review aims to serve as a guide for future hypothesis-driven research into sloths, their microbiota, sloth health and conservation, and the coevolution of symbioses in general.
Collapse
Affiliation(s)
- Maya Kaup
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS, 38677-1848, U.S.A
| | - Sam Trull
- The Sloth Institute, Tulemar Gardens, Provincia de Puntarenas, Manuel Antonio, 60601, Costa Rica
| | - Erik F Y Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS, 38677-1848, U.S.A
| |
Collapse
|
34
|
Catania F, Baedke J, Fábregas-Tejeda A, Nieves Delgado A, Vitali V, Long LAN. Global climate change, diet, and the complex relationship between human host and microbiome: Towards an integrated picture. Bioessays 2021; 43:e2100049. [PMID: 33829521 DOI: 10.1002/bies.202100049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Dietary changes can alter the human microbiome with potential detrimental consequences for health. Given that environment, health, and evolution are interconnected, we ask: Could diet-driven microbiome perturbations have consequences that extend beyond their immediate impact on human health? We address this question in the context of the urgent health challenges posed by global climate change. Drawing on recent studies, we propose that not only can diet-driven microbiome changes lead to dysbiosis, they can also shape life-history traits and fuel human evolution. We posit that dietary shifts prompt mismatched microbiome-host genetics configurations that modulate human longevity and reproductive success. These mismatches can also induce a heritable intra-holobiont stress response, which encourages the holobiont to re-establish equilibrium within the changed nutritional environment. Thus, while mismatches between climate change-related genetic and epigenetic configurations within the holobiont increase the risk and severity of diseases, they may also affect life-history traits and facilitate adaptive responses. These propositions form a framework that can help systematize and address climate-related dietary challenges for policy and health interventions.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jan Baedke
- Department of Philosophy I, Ruhr University Bochum, Bochum, Germany
| | | | - Abigail Nieves Delgado
- Knowledge, Technology & Innovation, Wageningen University, Wageningen, The Netherlands.,Freudenthal Institute, Utrecht University, Utrecht, The Netherlands
| | - Valerio Vitali
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Le Anh Nguyen Long
- Department of Public Administration, University of Twente, Enschede, The Netherlands
| |
Collapse
|
35
|
Aldana M, Robeva R. New Challenges in Systems Biology: Understanding the Holobiont. Front Physiol 2021; 12:662878. [PMID: 33841191 PMCID: PMC8033030 DOI: 10.3389/fphys.2021.662878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maximino Aldana
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, Mexico
| | - Raina Robeva
- Department of Mathematics, Randolph-Macon College, Ashland, VA, United States
| |
Collapse
|
36
|
Lyu D, Zajonc J, Pagé A, Tanney CAS, Shah A, Monjezi N, Msimbira LA, Antar M, Nazari M, Backer R, Smith DL. Plant Holobiont Theory: The Phytomicrobiome Plays a Central Role in Evolution and Success. Microorganisms 2021; 9:675. [PMID: 33805166 PMCID: PMC8064057 DOI: 10.3390/microorganisms9040675] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Under natural conditions, plants are always associated with a well-orchestrated community of microbes-the phytomicrobiome. The nature and degree of microbial effect on the plant host can be positive, neutral, or negative, and depends largely on the environment. The phytomicrobiome is integral for plant growth and function; microbes play a key role in plant nutrient acquisition, biotic and abiotic stress management, physiology regulation through microbe-to-plant signals, and growth regulation via the production of phytohormones. Relationships between the plant and phytomicrobiome members vary in intimacy, ranging from casual associations between roots and the rhizosphere microbial community, to endophytes that live between plant cells, to the endosymbiosis of microbes by the plant cell resulting in mitochondria and chloroplasts. If we consider these key organelles to also be members of the phytomicrobiome, how do we distinguish between the two? If we accept the mitochondria and chloroplasts as both members of the phytomicrobiome and the plant (entrained microbes), the influence of microbes on the evolution of plants becomes so profound that without microbes, the concept of the "plant" is not viable. This paper argues that the holobiont concept should take greater precedence in the plant sciences when referring to a host and its associated microbial community. The inclusivity of this concept accounts for the ambiguous nature of the entrained microbes and the wide range of functions played by the phytomicrobiome in plant holobiont homeostasis.
Collapse
Affiliation(s)
- Dongmei Lyu
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Jonathan Zajonc
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Antoine Pagé
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
- National Research Council Canada, Aquatic and Crop Resource Development (ACRD), Montréal, QC H4P 2R2, Canada
| | - Cailun A. S. Tanney
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Ateeq Shah
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Nadia Monjezi
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Levini A. Msimbira
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Mohammed Antar
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Mahtab Nazari
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Rachel Backer
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Donald L. Smith
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| |
Collapse
|
37
|
Stencel A, Suárez J. Do Somatic Cells Really Sacrifice Themselves? Why an Appeal to Coercion May be a Helpful Strategy in Explaining the Evolution of Multicellularity. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s13752-021-00376-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractAn understanding of the factors behind the evolution of multicellularity is one of today’s frontiers in evolutionary biology. This is because multicellular organisms are made of one subset of cells with the capacity to transmit genes to the next generation (germline cells) and another subset responsible for maintaining the functionality of the organism, but incapable of transmitting genes to the next generation (somatic cells). The question arises: why do somatic cells sacrifice their lives for the sake of germline cells? How is germ/soma separation maintained? One conventional answer refers to inclusive fitness theory, according to which somatic cells sacrifice themselves altruistically, because in so doing they enhance the transmission of their genes by virtue of their genetic relatedness to germline cells. In the present article we will argue that this explanation ignores the key role of policing mechanisms in maintaining the germ/soma divide. Based on the pervasiveness of the latter, we argue that the role of altruistic mechanisms in the evolution of multicellularity is limited and that our understanding of this evolution must be enriched through the consideration of coercion mechanisms.
Collapse
|
38
|
The Seagrass Holobiont: What We Know and What We Still Need to Disclose for Its Possible Use as an Ecological Indicator. WATER 2021. [DOI: 10.3390/w13040406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microbes and seagrass establish symbiotic relationships constituting a functional unit called the holobiont that reacts as a whole to environmental changes. Recent studies have shown that the seagrass microbial associated community varies according to host species, environmental conditions and the host’s health status, suggesting that the microbial communities respond rapidly to environmental disturbances and changes. These changes, dynamics of which are still far from being clear, could represent a sensitive monitoring tool and ecological indicator to detect early stages of seagrass stress. In this review, the state of art on seagrass holobiont is discussed in this perspective, with the aim of disentangling the influence of different factors in shaping it. As an example, we expand on the widely studied Halophila stipulacea’s associated microbial community, highlighting the changing and the constant components of the associated microbes, in different environmental conditions. These studies represent a pivotal contribution to understanding the holobiont’s dynamics and variability pattern, and to the potential development of ecological/ecotoxicological indices. The influences of the host’s physiological and environmental status in changing the seagrass holobiont, alongside the bioinformatic tools for data analysis, are key topics that need to be deepened, in order to use the seagrass-microbial interactions as a source of ecological information.
Collapse
|
39
|
Affiliation(s)
- Guy Bunin
- Dept of Physics, Technion‐Israel Inst. of Technology Haifa Israel
| |
Collapse
|
40
|
Jervis P, Pintanel P, Hopkins K, Wierzbicki C, Shelton JMG, Skelly E, Rosa GM, Almeida-Reinoso D, Eugenia-Ordoñez M, Ron S, Harrison X, Merino-Viteri A, Fisher MC. Post-epizootic microbiome associations across communities of neotropical amphibians. Mol Ecol 2021; 30:1322-1335. [PMID: 33411382 DOI: 10.1111/mec.15789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
Microbiome-pathogen interactions are increasingly recognized as an important element of host immunity. While these host-level interactions will have consequences for community disease dynamics, the factors which influence host microbiomes at larger scales are poorly understood. We here describe landscape-scale pathogen-microbiome associations within the context of post-epizootic amphibian chytridiomycosis, a disease caused by the panzootic chytrid fungus Batrachochytrium dendrobatidis. We undertook a survey of Neotropical amphibians across altitudinal gradients in Ecuador ~30 years following the observed amphibian declines and collected skin swab-samples which were metabarcoded using both fungal (ITS-2) and bacterial (r16S) amplicons. The data revealed marked variation in patterns of both B. dendrobatidis infection and microbiome structure that are associated with host life history. Stream breeding amphibians were most likely to be infected with B. dendrobatidis. This increased probability of infection was further associated with increased abundance and diversity of non-Batrachochytrium chytrid fungi in the skin and environmental microbiome. We also show that increased alpha diversity and the relative abundance of fungi are lower in the skin microbiome of adult stream amphibians compared to adult pond-breeding amphibians, an association not seen for bacteria. Finally, stream tadpoles exhibit lower proportions of predicted protective microbial taxa than pond tadpoles, suggesting reduced biotic resistance. Our analyses show that host breeding ecology strongly shapes pathogen-microbiome associations at a landscape scale, a trait that may influence resilience in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Phillip Jervis
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK.,Institute of Zoology, Zoological Society of London, London, UK.,Department of Chemistry, UCL, London, UK.,Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Pol Pintanel
- Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, London, UK
| | - Claudia Wierzbicki
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK.,Institute of Zoology, Zoological Society of London, London, UK
| | - Jennifer M G Shelton
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK
| | - Emily Skelly
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK.,Institute of Zoology, Zoological Society of London, London, UK
| | - Gonçalo M Rosa
- Institute of Zoology, Zoological Society of London, London, UK.,Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Diego Almeida-Reinoso
- Museo de Zoologίa (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Catόlica del Ecuador, Quito, Ecuador.,SARgrillo: Ex situ Management Program of Endangered Amphibians and Insect Breeding program, Quito, Ecuador
| | - Maria Eugenia-Ordoñez
- Fungario QCAM, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Santiago Ron
- Museo de Zoologίa (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Catόlica del Ecuador, Quito, Ecuador
| | - Xavier Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Andrés Merino-Viteri
- Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London, UK
| |
Collapse
|
41
|
Nuño de la Rosa L, Pavličev M, Etxeberria A. Pregnant Females as Historical Individuals: An Insight From the Philosophy of Evo-Devo. Front Psychol 2021; 11:572106. [PMID: 33551898 PMCID: PMC7854466 DOI: 10.3389/fpsyg.2020.572106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Criticisms of the "container" model of pregnancy picturing female and embryo as separate entities multiply in various philosophical and scientific contexts during the last decades. In this paper, we examine how this model underlies received views of pregnancy in evolutionary biology, in the characterization of the transition from oviparity to viviparity in mammals and in the selectionist explanations of pregnancy as an evolutionary strategy. In contrast, recent evo-devo studies on eutherian reproduction, including the role of inflammation and new maternal cell types, gather evidence in favor of considering pregnancy as an evolved relational novelty. Our thesis is that from this perspective we can identify the emergence of a new historical individual in evolution. In evo-devo, historical units are conceptualized as evolved entities which fulfill two main criteria, their continuous persistence and their non-exchangeability. As pregnancy can be individuated in this way, we contend that pregnant females are historical individuals. We argue that historical individuality differs from, and coexists with, other views of biological individuality as applied to pregnancy (the physiological, the evolutionary and the ecological one), but brings forward an important new insight which might help dissolve misguided conceptions.
Collapse
Affiliation(s)
- Laura Nuño de la Rosa
- Department of Logic and Theoretical Philosophy, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Mihaela Pavličev
- Department of Theoretical Biology, University of Vienna, Vienna, Austria
| | - Arantza Etxeberria
- Department of Logic and Philosophy of Science, IAS Research Center for Life, Mind, and Society, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| |
Collapse
|
42
|
Büttiker P, Weissenberger S, Stefano GB, Kream RM, Ptacek R. SARS-CoV-2, Trait Anxiety, and the Microbiome. Front Psychiatry 2021; 12:720082. [PMID: 34566721 PMCID: PMC8455943 DOI: 10.3389/fpsyt.2021.720082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
During the COVID-19 pandemic, research on the relationships between the virus and its human host has become fundamental to understand this pathology and its effects. Attaining this profound understanding is critical for the effective containment and treatment of infections caused by the virus. In this review, we present some possible mechanisms by which psychopathological symptoms emerge following viral infections of the central nervous system (CNS). These proposed mechanisms are based on microbial communication and the induced priming of microglial antibody activation within the CNS through Toll-like receptor signaling. In this process, chronic microglial activation causes increased glutamate release in virally-altered, high-density neuronal structures, thereby modulating cognitive networks and information integration processes. This modulation, in turn, we suggest, affects the accuracy of sensory integration and connectivity of major control networks, such as the default mode network. The chronic activation of immunological responses and neurochemical shifts toward an elevated glutamate/gamma-aminobutyric acid ratio lead to negative reinforcement learning and suboptimal organismic functioning, for example, maintaining the body in an anxious state, which can later become internalized as trait anxiety. Therefore, we hypothesize that the homeostatic relationship between host, microbiome, and virome, would be decisive in determining the efficiency of subsequent immunological responses, disease susceptibility, and long-term psychopathological effects of diseases that impact the CNS, such as the COVID-19.
Collapse
Affiliation(s)
- Pascal Büttiker
- First Faculty of Medicine, Center for Cognitive and Molecular Neuroscience, Charles University in Prague, Prague, Czechia
| | - Simon Weissenberger
- First Faculty of Medicine, Center for Cognitive and Molecular Neuroscience, Charles University in Prague, Prague, Czechia.,Department of Psychology, University of New York in Prague, Prague, Czechia
| | - George B Stefano
- First Faculty of Medicine, Center for Cognitive and Molecular Neuroscience, Charles University in Prague, Prague, Czechia
| | - Richard M Kream
- First Faculty of Medicine, Center for Cognitive and Molecular Neuroscience, Charles University in Prague, Prague, Czechia
| | - Radek Ptacek
- First Faculty of Medicine, Center for Cognitive and Molecular Neuroscience, Charles University in Prague, Prague, Czechia
| |
Collapse
|
43
|
Triviño V, Suárez J. Holobionts: Ecological communities, hybrids, or biological individuals? A metaphysical perspective on multispecies systems. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2020; 84:101323. [PMID: 32788054 DOI: 10.1016/j.shpsc.2020.101323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Holobionts are symbiotic assemblages composed by a macrobe host (animal or plant) plus its symbiotic microbiota. In recent years, the ontological status of holobionts has created a great amount of controversy among philosophers and biologists: are holobionts biological individuals or are they rather ecological communities of independent individuals that interact together? Chiu and Eberl have recently developed an eco-immunity account of the holobiont wherein holobionts are neither biological individuals nor ecological communities, but hybrids between a host and its microbiota. According to their account, the microbiota is not a proper part of the holobiont. Yet, it should be regarded as a set of scaffolds that support the individuality of the host. In this paper, we approach Chiu and Eberl's account from a metaphysical perspective and argue that, contrary to what the authors claim, the eco-immunity account entails that the microorganisms that compose the host's microbiota are proper parts of the holobiont. Second, we argue that by claiming that holobionts are hybrids, and therefore, not biological individuals, the authors seem to be assuming a controversial position about the ontology of hybrids, which are conventionally characterized as a type of biological individual. In doing so, our paper aligns with the contemporary tendency to incorporate metaphysical resources to shed light on current biological debates and builds on that to provide additional support to the consideration of holobionts as biological individuals from an eco-immunity perspective.
Collapse
Affiliation(s)
- Vanessa Triviño
- Department of Philosophy, Universidad Rey Juan Carlos I, Spain
| | - Javier Suárez
- Department of Philosophy, University of Bielefeld, Bielefeld, Germany.
| |
Collapse
|
44
|
Serra V, Gammuto L, Nitla V, Castelli M, Lanzoni O, Sassera D, Bandi C, Sandeep BV, Verni F, Modeo L, Petroni G. Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra-reduced endosymbiont "Candidatus Pinguicoccus supinus" sp. nov. Sci Rep 2020; 10:20311. [PMID: 33219271 PMCID: PMC7679464 DOI: 10.1038/s41598-020-76348-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/30/2020] [Indexed: 01/30/2023] Open
Abstract
Taxonomy is the science of defining and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism characterization: (1) the presence of associated microorganisms (e.g.: symbionts, microbiome), (2) the mitochondrial genome of the host, (3) the symbiont genome. This approach aims to provide a deeper comprehension of the evolutionary/ecological dimensions of organisms since their very first description. Particularly interesting, are those complexes formed by the host plus associated microorganisms, that in the present study we refer to as "holobionts". We illustrate this approach through the description of the ciliate Euplotes vanleeuwenhoeki sp. nov. and its bacterial endosymbiont "Candidatus Pinguicoccus supinus" gen. nov., sp. nov. The endosymbiont possesses an extremely reduced genome (~ 163 kbp); intriguingly, this suggests a high integration between host and symbiont.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Leandro Gammuto
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Venkatamahesh Nitla
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Michele Castelli
- Department of Biosciences, Romeo and Enrica Invernizzi Pediatric Research Center, University of Milan, Milan, Italy
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia University, Pavia, Italy
| | - Olivia Lanzoni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia University, Pavia, Italy
| | - Claudio Bandi
- Department of Biosciences, Romeo and Enrica Invernizzi Pediatric Research Center, University of Milan, Milan, Italy
| | | | - Franco Verni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy
| | - Letizia Modeo
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy.
- CIME, Centro Interdipartimentale di Microscopia Elettronica, Università di Pisa, Pisa, Italy.
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, India.
| | - Giulio Petroni
- Department of Biology, University of Pisa, Via Volta 4/6, 56126, Pisa, Italy.
- CIME, Centro Interdipartimentale di Microscopia Elettronica, Università di Pisa, Pisa, Italy.
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, India.
| |
Collapse
|
45
|
Stencel A. Do seasonal microbiome changes affect infection susceptibility, contributing to seasonal disease outbreaks? Bioessays 2020; 43:e2000148. [PMID: 33165975 DOI: 10.1002/bies.202000148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
The aim of the present paper is to explore whether seasonal outbreaks of infectious diseases may be linked to changes in host microbiomes. This is a very important issue, because one way to have more control over seasonal outbreaks is to understand the factors that underlie them. In this paper, I will evaluate the relevance of the microbiome as one of such factors. The paper is based on two pillars of reasoning. Firstly, on the idea that microbiomes play an important role in their hosts' defence against infectious diseases. Secondly, on the idea that microbiomes are not stable, but change seasonally. These two ideas are combined in order to argue that seasonal changes in a given microbiome may influence the functionality of the host's immune system and consequently make it easier for infectious agents to infect the host at certain times of year. I will argue that, while this is only a theoretical possibility, certain studies may back up such claims. Furthermore, I will show that this does not necessarily contradict other hypotheses aimed at explaining seasonal outbreaks; in fact, it may even enhance them.
Collapse
Affiliation(s)
- Adrian Stencel
- Institute of Philosophy, Jagiellonian University, Kraków, Poland
| |
Collapse
|
46
|
Bapteste E, Papale F. Modeling the evolution of interconnected processes: It is the song and the singers: Tracking units of selection with interaction networks. Bioessays 2020; 43:e2000077. [PMID: 33165956 DOI: 10.1002/bies.202000077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 01/04/2023]
Abstract
Recently, Doolittle and Inkpen formulated a thought provoking theory, asserting that evolution by natural selection was responsible for the sideways evolution of two radically different kinds of selective units (also called Domains). The former entities, termed singers, correspond to the usual objects studied by evolutionary biologists (gene, genomes, individuals, species, etc.), whereas the later, termed songs, correspond to re-produced biological and ecosystemic functions, processes, information, and memes. Singers perform songs through selected patterns of interactions, meaning that a wealth of critical phenomena might receive novel evolutionary explanations. However, this theory did not provide an empirical approach to study evolution in such a broadened context. Here, we show that analyzing songs and singers, using patterns of interaction networks as a common ontology for both, offers a novel, actionable, inclusive and mathematical way to analyze not only the re-production but also the evolution and fitness of biological and ecosystemic interconnected processes.
Collapse
Affiliation(s)
- Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, 7, quai Saint Bernard, Bâtiment A 4ème étage, pièce 427, Paris, 75005, France
| | - François Papale
- Departement of Philosophy, University of Montreal, 2910 Édouard-Montpetit blvd, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
47
|
Zapién-Campos R, Sieber M, Traulsen A. Stochastic colonization of hosts with a finite lifespan can drive individual host microbes out of equilibrium. PLoS Comput Biol 2020; 16:e1008392. [PMID: 33137114 PMCID: PMC7660904 DOI: 10.1371/journal.pcbi.1008392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 11/12/2020] [Accepted: 09/02/2020] [Indexed: 12/04/2022] Open
Abstract
Macroorganisms are inhabited by microbial communities that often change through the lifespan of an individual. One of the factors contributing to this change is colonization from the environment. The colonization of initially microbe-free hosts is particularly interesting, as their microbiome depends entirely on microbes of external origin. We present a mathematical model of this process with a particular emphasis on the effect of ecological drift and a finite host lifespan. Our results indicate the host lifespan becomes especially relevant for short-living organisms (e.g. Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio). In this case, alternative microbiome states (often called enterotypes), the coexistence of microbe-free and colonized hosts, and a reduced probability of colonization can be observed in our model. These results unify multiple reported observations around colonization and suggest that no selective or deterministic drivers are necessary to explain them. Microbial communities are prevalent not only in the environment but also in hosts. Although the drivers of environmental microbiomes have been studied extensively, less is known about the drivers distinguishing a host environment. Recent experimental observations have highlighted the influence of ecological drift in hosts with short lifespan, including model organisms like C. elegans, D. melanogaster and D. rerio. We have developed a theoretical model to study the effect of a finite host lifespan on relevant observables of the microbiome, including the microbial load, probability of colonization of a microbial taxon, and distribution of microbiome composition in a host population. Although we focus on a case free of any selection, our results indicate the possible coexistence of hosts with alternative microbiome composition, and to a larger extent the coexistence of colonized and microbe-free hosts. A quantitative description is provided.
Collapse
Affiliation(s)
- Román Zapién-Campos
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Michael Sieber
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Arne Traulsen
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
- * E-mail:
| |
Collapse
|
48
|
Mote S, Gupta V, De K, Nanajkar M, Damare SR, Ingole B. Bacterial diversity associated with a newly described bioeroding sponge, Cliona thomasi, from the coral reefs on the West Coast of India. Folia Microbiol (Praha) 2020; 66:203-211. [PMID: 33140282 DOI: 10.1007/s12223-020-00830-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
The bacterial diversity associated with eroding sponges belonging to the Cliona viridis species complex is scarcely known. Cliona thomasi described from the West Coast of India is a new introduction to the viridis species complex. In this study, we determined the bacterial diversity associated with C. thomasi using next-generation sequencing. The results revealed the dominance of Proteobacteria followed by Cyanobacteria, Actinobacteria and Firmicutes. Among Proteobacteria, the Alphaproteobacteria were found to be the most dominant class. Furthermore, at the genus level, Rhodothalassium were highly abundant followed by Endozoicomonas in sponge samples. The beta-diversity and species richness measures showed remarkably lower diversity in Cliona thomasi than the ambient environment. The determined lower bacterial diversity in C. thomasi than the environmental samples, thus, categorized it as a low microbial abundance (LMA). Functional annotation of the C. thomasi-associated bacterial community indicates their possible role in photo-autotrophy, aerobic nitrification, coupling of sulphate reduction and sulphide oxidization. The present study unveils the bacterial diversity in bioeroding C. thomasi, which is a crucial step to determine the functions of the sponge holobiont in coral reef ecosystem.
Collapse
Affiliation(s)
- Sambhaji Mote
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India.,Department of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Vishal Gupta
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India. .,School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Kalyan De
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India.,School of Earth, Ocean, and Atmospheric Sciences, Goa University, Taleigao, Goa, India
| | - Mandar Nanajkar
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Samir R Damare
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Baban Ingole
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India.
| |
Collapse
|
49
|
Whitham TG, Allan GJ, Cooper HF, Shuster SM. Intraspecific Genetic Variation and Species Interactions Contribute to Community Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-123655] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolution has been viewed as occurring primarily through selection among individuals. We present a framework based on multilevel selection for evaluating evolutionary change from individuals to communities, with supporting empirical evidence. Essential to this evaluation is the role that interspecific indirect genetic effects play in shaping community organization, in generating variation among community phenotypes, and in creating community heritability. If communities vary in phenotype, and those phenotypes are heritable and subject to selection at multiple levels, then a community view of evolution must be merged with mainstream evolutionary theory. Rapid environmental change during the Anthropocene will require a better understanding of these evolutionary processes, especially selection acting at the community level, which has the potential to eliminate whole communities while favoring others.
Collapse
Affiliation(s)
- Thomas G. Whitham
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Gerard J. Allan
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Hillary F. Cooper
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Stephen M. Shuster
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| |
Collapse
|
50
|
Boilard A, Dubé CE, Gruet C, Mercière A, Hernandez-Agreda A, Derome N. Defining Coral Bleaching as a Microbial Dysbiosis within the Coral Holobiont. Microorganisms 2020; 8:microorganisms8111682. [PMID: 33138319 PMCID: PMC7692791 DOI: 10.3390/microorganisms8111682] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Coral microbiomes are critical to holobiont health and functioning, but the stability of host–microbial interactions is fragile, easily shifting from eubiosis to dysbiosis. The heat-induced breakdown of the symbiosis between the host and its dinoflagellate algae (that is, “bleaching”), is one of the most devastating outcomes for reef ecosystems. Yet, bleaching tolerance has been observed in some coral species. This review provides an overview of the holobiont’s diversity, explores coral thermal tolerance in relation to their associated microorganisms, discusses the hypothesis of adaptive dysbiosis as a mechanism of environmental adaptation, mentions potential solutions to mitigate bleaching, and suggests new research avenues. More specifically, we define coral bleaching as the succession of three holobiont stages, where the microbiota can (i) maintain essential functions for holobiont homeostasis during stress and/or (ii) act as a buffer to mitigate bleaching by favoring the recruitment of thermally tolerant Symbiodiniaceae species (adaptive dysbiosis), and where (iii) environmental stressors exceed the buffering capacity of both microbial and dinoflagellate partners leading to coral death.
Collapse
Affiliation(s)
- Aurélie Boilard
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
| | - Caroline E. Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
- California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA;
- Correspondence: (C.E.D.); (N.D.)
| | - Cécile Gruet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
| | - Alexandre Mercière
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66860 Perpignan CEDEX, France;
- Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea, French Polynesia
| | | | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: (C.E.D.); (N.D.)
| |
Collapse
|