1
|
Belimov AA, Shaposhnikov AI, Azarova TS, Yuzikhin OS, Sekste EA, Safronova VI, Tikhonovich IA. Aluminum-Immobilizing Rhizobacteria Modulate Root Exudation and Nutrient Uptake and Increase Aluminum Tolerance of Pea Mutant E107 ( brz). PLANTS (BASEL, SWITZERLAND) 2023; 12:2334. [PMID: 37375958 DOI: 10.3390/plants12122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
It is well known that plant-growth-promoting rhizobacteria (PGPRs) increase the tolerance of plants to abiotic stresses; however, the counteraction of Al toxicity has received little attention. The effects of specially selected Al-tolerant and Al-immobilizing microorganisms were investigated using pea cultivar Sparkle and its Al-sensitive mutant E107 (brz). The strain Cupriavidus sp. D39 was the most-efficient in the growth promotion of hydroponically grown peas treated with 80 µM AlCl3, increasing the plant biomass of Sparkle by 20% and of E107 (brz) by two-times. This strain immobilized Al in the nutrient solution and decreased its concentration in E107 (brz) roots. The mutant showed upregulated exudation of organic acids, amino acids, and sugars in the absence or presence of Al as compared with Sparkle, and in most cases, the Al treatment stimulated exudation. Bacteria utilized root exudates and more actively colonized the root surface of E107 (brz). The exudation of tryptophan and the production of IAA by Cupriavidus sp. D39 in the root zone of the Al-treated mutant were observed. Aluminum disturbed the concentrations of nutrients in plants, but inoculation with Cupriavidus sp. D39 partially restored such negative effects. Thus, the E107 (brz) mutant is a useful tool for studying the mechanisms of plant-microbe interactions, and PGPR plays an important role in protecting plants against Al toxicity.
Collapse
Affiliation(s)
- Andrey A Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Alexander I Shaposhnikov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Tatiana S Azarova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Oleg S Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Edgar A Sekste
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Vera I Safronova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
- Department of Biology, Saint-Petersburg State University, University Embankment, 199034 Saint-Petersburg, Russia
| |
Collapse
|
2
|
Liu L, Cheng L, Liu K, Yu T, Liu Q, Gong Z, Cai Z, Liu J, Zhao X, Nian H, Ma Q, Lian T. Transgenic soybean of GsMYB10 shapes rhizosphere microbes to promote resistance to aluminum (Al) toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131621. [PMID: 37187122 DOI: 10.1016/j.jhazmat.2023.131621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Plant resistance genes could affect rhizosphere microbiota, which in turn enhanced plant resistance to stresses. Our previous study found that overexpression of the GsMYB10 gene led to enhanced tolerance of soybean plants to aluminum (Al) toxicity. However, whether GsMYB10 gene could regulate rhizosphere microbiota to mitigate Al toxicity remains unclear. Here, we analyzed the rhizosphere microbiomes of HC6 soybean (WT) and transgenic soybean (trans-GsMYB10) at three Al concentrations, and constructed three different synthetic microbial communities (SynComs), including bacterial, fungal and cross-kingdom (bacteria and fungi) SynComs to verify their role in improving Al tolerance of soybean. Trans-GsMYB10 shaped the rhizosphere microbial communities and harbored some beneficial microbes, such as Bacillus, Aspergillus and Talaromyces under Al toxicity. Fungal and cross-kingdom SynComs showed a more effective role than the bacterial one in resistance to Al stress, and these SynComs helped soybean resist Al toxicity via affecting some functional genes that involved cell wall biosynthesis and organic acid transport etc. Overall, this study reveals the mechanism of soybean functional genes regulating the synergistic resistance of rhizosphere microbiota and plants to Al toxicity, and also highlights the possibility of focusing on the rhizobial microbial community as a potential molecular breeding target to produce crops.
Collapse
Affiliation(s)
- Lingrui Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Kun Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Taobing Yu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhihui Gong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junjie Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xueqiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Phukunkamkaew S, Tisarum R, Sotesaritkul T, Maksup S, Singh HP, Cha-Um S. Aluminum uptake, translocation, physiological changes, and overall growth inhibition in rice genotypes (Oryza sativa) at vegetative stage. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:187-197. [PMID: 35635683 DOI: 10.1007/s10653-022-01291-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) contamination in acidic soil is a major problem in paddy field, causing grain yield loss, especially in central plains of Thailand. The objective of this study was to assess Al content in the root tissues, its translocation to the leaves, and Al toxicity in three genotypes of rice, RD35 (local acidic-tolerant), Azucena (positive-check Al-tolerant), and IR64 (high yielding) under 0 (control) or 1 mM AlCl3 (Al toxicity) at pH 4.5. Al content in the root tissues of rice cv. RD35 under 1 mM AlCl3 was peaked at 4.18 mg g‒1 DW and significantly translocated to leaf tissues (0.35 mg g‒1 DW), leading to reduced leaf greenness (SPAD) (by 44.9% over the control) and declined net photosynthetic rate (Pn) (by 54.5% over the control). In contrast, Al level in cvs. Azucena and IR64 was restricted in the roots (2.12 mg g‒1 DW) with low amount of translocation in the leaf tissues (0.26 mg g‒1 DW), resulting in maintained values of SPAD and Pn. In cv. RD35, root and shoot traits including root length, root fresh weight, shoot height, shoot fresh weight, and shoot dry weight in 1 mM Al treatment were significantly dropped by > 35% over the control, whereas these parameters in cvs. Azucena and IR64 were retained. Based on the results, RD35 rice genotype was identified as Al sensitive as it demonstrated Al toxicity in both aboveground and belowground parts, whereas Azucena and IR64 were found tolerant to 1 mM Al as they demonstrated storage of Al in the root tissues to reduce toxicity in the leaf tissues. The study suggests that root traits, shoot attributes, chlorophyll degradation, and photosynthetic reduction can be successfully employed for the screening of Al-tolerant genotypes in rice breeding programs.
Collapse
Affiliation(s)
- Suwanna Phukunkamkaew
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sarunyaporn Maksup
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
4
|
Belimov AA, Shaposhnikov AI, Azarova TS, Syrova DS, Kitaeva AB, Ulyanich PS, Yuzikhin OS, Sekste EA, Safronova VI, Vishnyakova MA, Tsyganov VE, Tikhonovich II. Rhizobacteria Mitigate the Negative Effect of Aluminum on Pea Growth by Immobilizing the Toxicant and Modulating Root Exudation. PLANTS (BASEL, SWITZERLAND) 2022; 11:2416. [PMID: 36145816 PMCID: PMC9503566 DOI: 10.3390/plants11182416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
High soil acidity is one of the main unfavorable soil factors that inhibit the growth and mineral nutrition of plants. This is largely due to the toxicity of aluminum (Al), the mobility of which increases significantly in acidic soils. Symbiotic microorganisms have a wide range of beneficial properties for plants, protecting them against abiotic stress factors. This report describes the mechanisms of positive effects of plant growth-promoting rhizobacteria Pseudomonas fluorescens SPB2137 on four pea (Pisum sativum L.) genotypes grown in hydroponics and treated with 80 µM AlCl3. In batch culture, the bacteria produced auxins, possessed 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, alkalized the medium and immobilized Al, forming biofilm-like structures and insoluble phosphates. Inoculation with Ps. fluorescens SPB2137 increased root and/or shoot biomass of Al-treated plants. The bacteria alkalized the nutrient solution and transferred Al from the solution to the residue, which contained phosphorus that was exuded by roots. As a result, the Al concentration in roots decreased, while the amount of precipitated Al correlated negatively with its concentration in the solution, positively with the solution pH and negatively with Al concentration in roots and shoots. Treatment with Al induced root exudation of organic acids, amino acids and sugars. The bacteria modulated root exudation via utilization and/or stimulation processes. The effects of Al and bacteria on plants varied depending on pea genotype, but all the effects had a positive direction and the variability was mostly quantitative. Thus, Ps. fluorescens SPB2137 improved the Al tolerance of pea due to immobilization and exclusion of toxicants from the root zone.
Collapse
Affiliation(s)
- Andrey A. Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Alexander I. Shaposhnikov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Tatiana S. Azarova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Darya S. Syrova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Anna B. Kitaeva
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Pavel S. Ulyanich
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Oleg S. Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Edgar A. Sekste
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Vera I. Safronova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Margarita A. Vishnyakova
- Federal Research Center Vavilov All-Russia Institute of Plant Genetic Resources, 42–44, ul., Bol’shaya Morskaya, 190000 Saint-Petersburg, Russia
| | - Viktor E. Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Igor I. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
- Department of Biology, Saint-Petersburg State University, University Embankment, 199034 Saint-Petersburg, Russia
| |
Collapse
|
5
|
Suárez JC, Contreras AT, Anzola JA, Vanegas JI, Rao IM. Physiological Characteristics of Cultivated Tepary Bean (Phaseolus acutifolius A. Gray) and Its Wild Relatives Grown at High Temperature and Acid Soil Stress Conditions in the Amazon Region of Colombia. PLANTS 2021; 11:plants11010116. [PMID: 35009119 PMCID: PMC8747739 DOI: 10.3390/plants11010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Common bean (Phaseolus vulgaris L.) is sensitive to different types of abiotic stresses (drought, high temperature, low soil fertility, and acid soil), and this may limit its adaptation and consequently to its yield under stress. Because of this, a sister species, tepary bean (Phaseolus acutifolius A. Gray), has recently gained attention in breeding for improved abiotic stress tolerance in common bean. In this study, we evaluated the adaptation of 302 accessions of tepary bean (Phaseolus acutifolius A. Gray) and its wild relatives (grouped in four types of tepary bean genetic resource: cultivated, acutifolius regressive, acutifolius wild, tenuifolius wild) when grown under high temperature and acid soil conditions with aluminum toxicity in the Amazon region of Colombia. Our objective was to determine differences among four types of tepary bean genetic resource in their morpho-phenological, agronomic, and physiological responses to combined high temperature and acid soil stress conditions. We found that cultivated P. acutifolius var acutifolius presented a greater number of pods per plant, as well as larger seeds and a greater number of seeds per pod. Some traits, such as root biomass, days to flowering and physiological maturity, specific leaf area, and stomatal density, showed significant differences between types of tepary bean genetic resource, probably contributing to difference in adaptation to combined stress conditions of high temperature and acid soil conditions. The photochemical quenching (qP) was higher in cultivated P. acutifolius var. acutifolius, while energy dissipation by non-photochemical quenching (NPQ) in the form of heat and the coefficient of non-photochemical dissipation (qN) were higher in acutifolius regressive and tenuifolius wild accessions. We have identified 6 accessions of cultivated and 19 accessions of tenuifolius wild that exhibited grain yields above 1800 kg ha−1. These accessions could be suitable to use as parents to improve dry seed production of tepary bean under combined stress conditions of high temperature and acid soil.
Collapse
Affiliation(s)
- Juan Carlos Suárez
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (A.T.C.); (J.A.A.); (J.I.V.)
- Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia
- Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Florencia 180001, Colombia
- Correspondence: ; Tel.: +57-320-280-4455
| | - Amara Tatiana Contreras
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (A.T.C.); (J.A.A.); (J.I.V.)
- Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia
| | - José Alexander Anzola
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (A.T.C.); (J.A.A.); (J.I.V.)
| | - José Iván Vanegas
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (A.T.C.); (J.A.A.); (J.I.V.)
| | - Idupulapati M. Rao
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia;
| |
Collapse
|
6
|
Singh CK, Singh D, Taunk J, Chaudhary P, Tomar RSS, Chandra S, Singh D, Pal M, Konjengbam NS, Singh MP, Singh Sengar R, Sarker A. Comparative Inter- and IntraSpecies Transcriptomics Revealed Key Differential Pathways Associated With Aluminium Stress Tolerance in Lentil. FRONTIERS IN PLANT SCIENCE 2021; 12:693630. [PMID: 34531881 PMCID: PMC8438445 DOI: 10.3389/fpls.2021.693630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/30/2021] [Indexed: 05/28/2023]
Abstract
Aluminium stress causes plant growth retardation and engenders productivity loss under acidic soil conditions. This study accentuates morpho-physiological and molecular bases of aluminium (Al) tolerance within and between wild (ILWL-15) and cultivated (L-4602 and BM-4) lentil species. Morpho-physiological studies revealed better cyto-morphology of tolerant genotypes over sensitive under Al3+ stress conditions. Mitotic lesions were observed in root cells under these conditions. Transcriptome analysis under Al3+ stress revealed 30,158 specifically up-regulated genes in different comparison groups showing contigs between 15,305 and 18,861 bp. In tolerant genotypes, top up-regulated differentially expressed genes (DEGs) were found to be involved in organic acid synthesis and exudation, production of antioxidants, callose synthesis, protein degradation, and phytohormone- and calcium-mediated signalling under stress conditions. DEGs associated with epigenetic regulation and Al3+ sequestration inside vacuole were specifically upregulated in wild and cultivars, respectively. Based on assembled unigenes, an average of 6,645.7 simple sequence repeats (SSRs) and 14,953.7 high-quality single nucleotide polymorphisms (SNPs) were spotted. By quantitative real-time polymerase chain reaction (qRT-PCR), 12 selected genes were validated. Gene ontology (GO) annotation revealed a total of 8,757 GO terms in three categories, viz., molecular, biological, and cellular processes. Kyoto Encyclopaedia of Genes and Genomes pathway scanning also revealed another probable pathway pertaining to metacaspase-1,-4, and -9 for programmed cell death under Al-stress conditions. This investigation reveals key inter- and intraspecies metabolic pathways associated with Al-stress tolerance in lentil species that can be utilised in designing future breeding programmes to improve lentil and related species towards Al3+ stress.
Collapse
Affiliation(s)
- Chandan Kumar Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Dharmendra Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Taunk
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Priya Chaudhary
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Ram Sewak Singh Tomar
- College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi, India
| | - Shivani Chandra
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut, India
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Noren Singh Konjengbam
- College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University—Imphal, Umiam, India
| | - M. Premjit Singh
- College of Agriculture, Central Agricultural University—Imphal, Iroisemba, India
| | - Rakesh Singh Sengar
- College of Biotechnology, Sardar Vallabh Bhai Patel Agricultural University, Meerut, India
| | - Ashutosh Sarker
- International Center for Agriculture Research in the Dry Areas, New Delhi, India
| |
Collapse
|
7
|
Ambachew D, Blair MW. Genome Wide Association Mapping of Root Traits in the Andean Genepool of Common Bean ( Phaseolus vulgaris L.) Grown With and Without Aluminum Toxicity. FRONTIERS IN PLANT SCIENCE 2021; 12:628687. [PMID: 34249030 PMCID: PMC8269929 DOI: 10.3389/fpls.2021.628687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Common bean is one of the most important grain legumes for human diets but is produced on marginal lands with unfavorable soil conditions; among which Aluminum (Al) toxicity is a serious and widespread problem. Under low pH, stable forms of Al dissolve into the soil solution and as phytotoxic ions inhibit the growth and function of roots through injury to the root apex. This results in a smaller root system that detrimentally effects yield. The goal of this study was to evaluate 227 genotypes from an Andean diversity panel (ADP) of common bean and determine the level of Al toxicity tolerance and candidate genes for this abiotic stress tolerance through root trait analysis and marker association studies. Plants were grown as seedlings in hydroponic tanks at a pH of 4.5 with a treatment of high Al concentration (50 μM) compared to a control (0 μM). The roots were harvested and scanned to determine average root diameter, root volume, root surface area, number of root links, number of root tips, and total root length. Percent reduction or increase was calculated for each trait by comparing treatments. Genome wide association study (GWAS) was conducted by testing phenotypic data against single nucleotide polymorphism (SNP) marker genotyping data for the panel. Principal components and a kinship matrix were included in the mixed linear model to correct for population structure. Analyses of variance indicated the presence of significant difference between genotypes. The heritability of traits ranged from 0.67 to 0.92 in Al-treated and reached similar values in non-treated plants. GWAS revealed significant associations between root traits and genetic markers on chromosomes Pv01, Pv04, Pv05, Pv06, and Pv11 with some SNPs contributing to more than one trait. Candidate genes near these loci were analyzed to explain the detected association and included an Al activated malate transporter gene and a multidrug and toxic compound extrusion gene. This study showed that polygenic inheritance was critical to aluminum toxicity tolerance in common beans roots. Candidate genes found suggested that exudation of malate and citrate as organic acids would be important for Al tolerance. Possible cross-talk between mechanisms of aluminum tolerance and resistance to other abiotic stresses are discussed.
Collapse
|
8
|
Phukunkamkaew S, Tisarum R, Pipatsitee P, Samphumphuang T, Maksup S, Cha-Um S. Morpho-physiological responses of indica rice (Oryza sativa sub. indica) to aluminum toxicity at seedling stage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29321-29331. [PMID: 33555471 DOI: 10.1007/s11356-021-12804-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Aluminum (Al) toxicity in acidic soils is a major problem in rice crop production, especially in the acid sulfate soil (pH < 4.0). Selecting Al-tolerant varieties of rice with low toxicity is one of the most appropriate strategies to overcome this problem. In the present study, we investigated the Al content in different rice genotypes, IR64 (high yielding), RD35 (local acidic-tolerant), and Azucena (AZU, positive-check Al-tolerant), and their physiological and morphological adaptations under a wide range Al (10, 25, 50 mM [Al2(SO4)3]) treatments in the greenhouse conditions. Under 50-mM Al treatment, Al levels in the root tissues of rice seedlings cvs. AZU and IR64 were increased by 2.74- and 2.10-fold over control. Interestingly, Al contents in the roots of cv. RD35 were also exhibited by 2.04-fold over control. Similarly, Al contents in the leaves trend to increase in relation to a degree of Al treatments, leading to increase leaf temperature, chlorophyll degradation, limited CO2 assimilation, and negative effect on root traits under 50 mM Al were evidently observed. Therefore, leaf temperature was considered a sensitive parameter regulated by high concentration of Al (50 mM), leading to increase in crop water stress index (CWSI > 0.6) and decrease in stomata conductance. Net photosynthetic rate (Pn) and transpiration rate (E) in rice seedlings of cv. RD35 subjected to 50 mM Al were significantly dropped by 74.76% and 47.71% over the control, respectively, resulting in reduced growth performances in terms of root length (26.57% reduction) and shoot fresh weight (46.15% reduction). An enrichment of Al in the root tissues without toxicity in rice cv. AZU may further help in discovering the Al homeostasis. In summary, Al enrichment in rice genotypes grown under Al-treatments was evidently observed in the root, leading to the limited root growth, root length, and root dry weight, especially in cv. RD35. Al restriction in the root tissues of cv. AZU (Al-tolerant) may play a key role as defense mechanisms to avoid translocation to other organs and the stomata closure was an alternative key factor to limit H2O transpiration.
Collapse
Affiliation(s)
- Suwanna Phukunkamkaew
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Piyanan Pipatsitee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sarunyaporn Maksup
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
9
|
Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:635. [PMID: 33801570 PMCID: PMC8066251 DOI: 10.3390/plants10040635] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Worldwide, the effects of metal and metalloid toxicity are increasing, mainly due to anthropogenic causes. Soil contamination ranks among the most important factors, since it affects crop yield, and the metals/metalloids can enter the food chain and undergo biomagnification, having concomitant effects on human health and alterations to the environment. Plants have developed complex mechanisms to overcome these biotic and abiotic stresses during evolution. Metals and metalloids exert several effects on plants generated by elements such as Zn, Cu, Al, Pb, Cd, and As, among others. The main strategies involve hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Recent studies in the omics era have increased knowledge on the plant genome and transcriptome plasticity to defend against these stimuli. The aim of the present review is to summarize relevant findings on the mechanisms by which plants take up, accumulate, transport, tolerate, and respond to this metal/metalloid stress. We also address some of the potential applications of biotechnology to improve plant tolerance or increase accumulation.
Collapse
Affiliation(s)
- Paola I. Angulo-Bejarano
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
- School of Engineering and Sciences, Centre of Bioengineering, Tecnologico de Monterrey, Queretaro 21620, Mexico
| | - Jonathan Puente-Rivera
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| |
Collapse
|
10
|
Belimov AA, Shaposhnikov AI, Syrova DS, Kichko AA, Guro PV, Yuzikhin OS, Azarova TS, Sazanova AL, Sekste EA, Litvinskiy VA, Nosikov VV, Zavalin AA, Andronov EE, Safronova VI. The Role of Symbiotic Microorganisms, Nutrient Uptake and Rhizosphere Bacterial Community in Response of Pea ( Pisum sativum L.) Genotypes to Elevated Al Concentrations in Soil. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1801. [PMID: 33353122 PMCID: PMC7766424 DOI: 10.3390/plants9121801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023]
Abstract
Aluminium being one of the most abundant elements is very toxic for plants causing inhibition of nutrient uptake and productivity. The aim of this study was to evaluate the potential of microbial consortium consisting of arbuscular mycorrhizal fungus (AMF), rhizobia and PGPR for counteracting negative effects of Al toxicity on four pea genotypes differing in Al tolerance. Pea plants were grown in acid soil supplemented with AlCl3 (pHKCl = 4.5) or neutralized with CaCO3 (pHKCl = 6.2). Inoculation increased shoot and/or seed biomass of plants grown in Al-supplemented soil. Nodule number and biomass were about twice on roots of Al-treated genotypes after inoculation. Inoculation decreased concentrations of water-soluble Al in the rhizosphere of all genotypes grown in Al-supplemented soil by about 30%, improved N2 fixation and uptake of fertilizer 15N and nutrients from soil, and increased concentrations of water-soluble nutrients in the rhizosphere. The structure of rhizospheric microbial communities varied to a greater extent depending on the plant genotype, as compared to soil conditions and inoculation. Thus, this study highlights the important role of symbiotic microorganisms and the plant genotype in complex interactions between the components of the soil-microorganism-plant continuum subjected to Al toxicity.
Collapse
Affiliation(s)
- Andrey A. Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Alexander I. Shaposhnikov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Darya S. Syrova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Arina A. Kichko
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Polina V. Guro
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Oleg S. Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Tatiana S. Azarova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Anna L. Sazanova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Edgar A. Sekste
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Vladimir A. Litvinskiy
- Pryanishnikov Institute of Agrochemisty, Pryanishnikova str. 31A, 127434 Moscow, Russia; (V.A.L.); (V.V.N.); (A.A.Z.)
| | - Vladimir V. Nosikov
- Pryanishnikov Institute of Agrochemisty, Pryanishnikova str. 31A, 127434 Moscow, Russia; (V.A.L.); (V.V.N.); (A.A.Z.)
| | - Aleksey A. Zavalin
- Pryanishnikov Institute of Agrochemisty, Pryanishnikova str. 31A, 127434 Moscow, Russia; (V.A.L.); (V.V.N.); (A.A.Z.)
| | - Evgeny E. Andronov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
- Department of Biology, Saint-Petersburg State University, University Embankment, 199034 Saint-Petersburg, Russia
| | - Vera I. Safronova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| |
Collapse
|
11
|
de Sousa A, Saleh AM, Habeeb TH, Hassan YM, Zrieq R, Wadaan MAM, Hozzein WN, Selim S, Matos M, AbdElgawad H. Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133636. [PMID: 31377375 DOI: 10.1016/j.scitotenv.2019.133636] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 05/03/2023]
Abstract
Aluminum (Al) toxicity is a major constraint for crop production in acid soils. Therefore, looking for sustainable solutions to increase plant tolerance to Al toxicity is needed. Although several studies addressed the potential utilization of silica or silicon dioxide nanoparticles (SNPs) to ameliorate heavy metal phytotoxicity, the exact mechanisms underlying SNPs-induced stress tolerance are still unknown. The current study investigated how SNPs could mitigate Al toxicity in maize plants grown on acidic soil. The impact of Al alone or in combination with SNPs on Al accumulation and detoxification, plant growth, photosynthetic C assimilation and redox homeostasis has been investigated. Al accumulation in stressed-maize organs reduced their growth, decreased photosynthesis related parameters and increased production of reactive oxygen species, through induced NADPH oxidase and photorespiration activities, and cell damage. These effects were more pronounced in roots than in leaves. SNPs ameliorated Al toxicity at growth, physiological and oxidative damage levels. Co-application of SNPs significantly reduced the activities of the photorespiratory enzymes and NADPH oxidase. It stimulated the antioxidant defense systems at enzymatic (superoxide dismutase, catalase, ascorbate and glutathione peroxidases) and non-enzymatic (ascorbate, glutathione, polyphenols, flavonoids, tocopherols, and FRAP) levels. Moreover, SNPs increased organic acids accumulation and metal detoxification (i.e. glutathione-S-transferase activity) in roots, as a protective mechanism against Al toxicity. The SNPs induced-protective mechanisms was dependent on the applied Al concentration and acted in organ-specific manner. Overall, the current study suggests the promising application of SNPs as an innovative approach to mitigate Al phytotoxicity in acidic soils and provides a comprehensive view of the cellular and biochemical mechanisms underlying this mitigation capacity.
Collapse
Affiliation(s)
- Alexandra de Sousa
- GreenUPorto - Sustainable Agrifood Production Research Center, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ahmed M Saleh
- Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, 46423 Yanbu El-Bahr, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Talaat H Habeeb
- Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, 46423 Yanbu El-Bahr, Saudi Arabia
| | - Yasser M Hassan
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rafat Zrieq
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mohammed A M Wadaan
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia; Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Manuela Matos
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal; Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
12
|
Rahman MA, Lee SH, Ji HC, Kabir AH, Jones CS, Lee KW. Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. Int J Mol Sci 2018; 19:E3073. [PMID: 30297682 PMCID: PMC6213855 DOI: 10.3390/ijms19103073] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 01/24/2023] Open
Abstract
Aluminum (Al) toxicity is one of the major limitations that inhibit plant growth and development in acidic soils. In acidic soils (pH < 5.0), phototoxic-aluminum (Al3+) rapidly inhibits root growth, and subsequently affects water and nutrient uptake in plants. This review updates the existing knowledge concerning the role of mineral nutrition for alleviating Al toxicity in plants to acid soils. Here, we explored phosphorus (P) is more beneficial in plants under P-deficient, and Al toxic conditions. Exogenous P addition increased root respiration, plant growth, chlorophyll content, and dry matter yield. Calcium (Ca) amendment (liming) is effective for correcting soil acidity, and for alleviating Al toxicity. Magnesium (Mg) is able to prevent Al migration through the cytosolic plasma membrane in root tips. Sulfur (S) is recognized as a versatile element that alleviates several metals toxicity including Al. Moreover, silicon (Si), and other components such as industrial byproducts, hormones, organic acids, polyamines, biofertilizers, and biochars played promising roles for mitigating Al toxicity in plants. Furthermore, this review provides a comprehensive understanding of several new methods and low-cost effective strategies relevant to the exogenous application of mineral nutrition on Al toxicity mitigation. This information would be effective for further improvement of crop plants in acid soils.
Collapse
Affiliation(s)
- Md Atikur Rahman
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Sang-Hoon Lee
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Hee Chung Ji
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| | - Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Chris Stephen Jones
- Feed and Forage Biosciences, International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia.
| | - Ki-Won Lee
- Molecular Breeding Laboratory, Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea.
| |
Collapse
|
13
|
Jaiswal SK, Naamala J, Dakora FD. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. BIOLOGY AND FERTILITY OF SOILS 2018; 54:309-318. [PMID: 31258230 PMCID: PMC6560468 DOI: 10.1007/s00374-018-1262-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/14/2017] [Accepted: 01/01/2018] [Indexed: 05/18/2023]
Abstract
Recent findings on the effect of aluminium (Al) on the functioning of legumes and their associated microsymbionts are reviewed here. Al represents 7% of solid matter in the Earth's crust and is an important abiotic factor that alters microbial and plant functioning at very early stages. The trivalent Al (Al3+) dominates at pH < 5 in soils and becomes a constraint to legume productivity through its lethal effect on rhizobia, the host plant and their interaction. Al3+ has lethal effects on many aspects of the rhizobia/legume symbiosis, which include a decrease in root elongation and root hair formation, lowered soil rhizobial population, and suppression of nitrogen metabolism involving nitrate reduction, nitrite reduction, nitrogenase activity and the functioning of uptake of hydrogenases (Hup), ultimately impairing the N2 fixation process. At the molecular level, Al is known to suppress the expression of nodulation genes in symbiotic rhizobia, as well as the induction of genes for the formation of hexokinase, phosphodiesterase, phosphooxidase and acid/alkaline phosphatase. Al toxicity can also induce the accumulation of reactive oxygen species and callose, in addition to lipoperoxidation in the legume root elongation zone. Al tolerance in plants can be achieved through over-expression of citrate synthase gene in roots and/or the synthesis and release of organic acids that reverse Al-induced changes in proteins, as well as metabolic regulation by plant-secreted microRNAs. In contrast, Al tolerance in symbiotic rhizobia is attained via the production of exopolysaccharides, the synthesis of siderophores that reduce Al uptake, induction of efflux pumps resistant to heavy metals and the expression of metal-inducible (dmeRF) gene clusters in symbiotic Rhizobiaceae. In soils, Al toxicity is usually ameliorated through liming, organic matter supply and use of Al-tolerant species. Our current understanding of crop productivity in high Al soils suggests that a much greater future accumulation of Al is likely to occur in agricultural soils globally if crop irrigation is increased under a changing climate.
Collapse
Affiliation(s)
- Sanjay K. Jaiswal
- Department of Chemistry, Tshwane University of Technology, Arcadia campus, 175 Nelson Mandela Drive, Private Bag X680, Pretoria, 0001 South Africa
| | - Judith Naamala
- Department of Crop Sciences, Tshwane University of Technology, Arcadia campus, 175 Nelson Mandela Drive, Private Bag X680, Pretoria, 0001 South Africa
| | - Felix D. Dakora
- Department of Chemistry, Tshwane University of Technology, Arcadia campus, 175 Nelson Mandela Drive, Private Bag X680, Pretoria, 0001 South Africa
| |
Collapse
|
14
|
Giles CD, Brown LK, Adu MO, Mezeli MM, Sandral GA, Simpson RJ, Wendler R, Shand CA, Menezes-Blackburn D, Darch T, Stutter MI, Lumsdon DG, Zhang H, Blackwell MSA, Wearing C, Cooper P, Haygarth PM, George TS. Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 255:12-28. [PMID: 28131338 DOI: 10.1016/j.plantsci.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems.
Collapse
Affiliation(s)
- Courtney D Giles
- James Hutton Institute, The James Hutton Institute, Aberdeen, AB15 8QH and Dundee, DD2 5DA, Scotland, UK.
| | - Lawrie K Brown
- James Hutton Institute, The James Hutton Institute, Aberdeen, AB15 8QH and Dundee, DD2 5DA, Scotland, UK
| | - Michael O Adu
- James Hutton Institute, The James Hutton Institute, Aberdeen, AB15 8QH and Dundee, DD2 5DA, Scotland, UK
| | - Malika M Mezeli
- James Hutton Institute, The James Hutton Institute, Aberdeen, AB15 8QH and Dundee, DD2 5DA, Scotland, UK
| | | | | | - Renate Wendler
- James Hutton Institute, The James Hutton Institute, Aberdeen, AB15 8QH and Dundee, DD2 5DA, Scotland, UK
| | - Charles A Shand
- James Hutton Institute, The James Hutton Institute, Aberdeen, AB15 8QH and Dundee, DD2 5DA, Scotland, UK
| | | | - Tegan Darch
- Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK
| | - Marc I Stutter
- James Hutton Institute, The James Hutton Institute, Aberdeen, AB15 8QH and Dundee, DD2 5DA, Scotland, UK
| | - David G Lumsdon
- James Hutton Institute, The James Hutton Institute, Aberdeen, AB15 8QH and Dundee, DD2 5DA, Scotland, UK
| | - Hao Zhang
- Lancaster University, Lancaster Environment Centre, Lancaster, LA1 4YQ, UK
| | | | - Catherine Wearing
- Lancaster University, Lancaster Environment Centre, Lancaster, LA1 4YQ, UK
| | - Patricia Cooper
- James Hutton Institute, The James Hutton Institute, Aberdeen, AB15 8QH and Dundee, DD2 5DA, Scotland, UK
| | - Philip M Haygarth
- Lancaster University, Lancaster Environment Centre, Lancaster, LA1 4YQ, UK
| | - Timothy S George
- James Hutton Institute, The James Hutton Institute, Aberdeen, AB15 8QH and Dundee, DD2 5DA, Scotland, UK
| |
Collapse
|
15
|
Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M. Aluminum, a Friend or Foe of Higher Plants in Acid Soils. FRONTIERS IN PLANT SCIENCE 2017; 8:1767. [PMID: 29075280 PMCID: PMC5643487 DOI: 10.3389/fpls.2017.01767] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/27/2017] [Indexed: 05/11/2023]
Abstract
Aluminum (Al) is the most abundant metal in the earth's crust, but its availability depends on soil pH. Despite this abundance, Al is not considered an essential element and so far no experimental evidence has been put forward for a biological role. In plants and other organisms, Al can have a beneficial or toxic effect, depending on factors such as, metal concentration, the chemical form of Al, growth conditions and plant species. Here we review recent advances in the study of Al in plants at physiological, biochemical and molecular levels, focusing mainly on the beneficial effect of Al in plants (stimulation of root growth, increased nutrient uptake, the increase in enzyme activity, and others). In addition, we discuss the possible mechanisms involved in improving the growth of plants cultivated in soils with acid pH, as well as mechanisms of tolerance to the toxic effect of Al.
Collapse
Affiliation(s)
- Emanuel Bojórquez-Quintal
- CONACYT-Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, La Piedad, Mexico
| | - Camilo Escalante-Magaña
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Manuel Martínez-Estévez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
- *Correspondence: Manuel Martínez-Estévez,
| |
Collapse
|
16
|
Brunetto G, Bastos de Melo GW, Terzano R, Del Buono D, Astolfi S, Tomasi N, Pii Y, Mimmo T, Cesco S. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. CHEMOSPHERE 2016; 162:293-307. [PMID: 27513550 DOI: 10.1016/j.chemosphere.2016.07.104] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 05/23/2023]
Abstract
Viticulture represents an important agricultural practice in many countries worldwide. Yet, the continuous use of fungicides has caused copper (Cu) accumulation in soils, which represent a major environmental and toxicological concern. Despite being an important micronutrient, Cu can be a potential toxicant at high concentrations since it may cause morphological, anatomical and physiological changes in plants, decreasing both food productivity and quality. Rhizosphere processes can, however, actively control the uptake and translocation of Cu in plants. In particular, root exudates affecting the chemical, physical and biological characteristics of the rhizosphere, might reduce the availability of Cu in the soil and hence its absorption. In addition, this review will aim at discussing the advantages and disadvantages of agronomic practices, such as liming, the use of pesticides, the application of organic matter, biochar and coal fly ashes, the inoculation with bacteria and/or mycorrhizal fungi and the intercropping, in alleviating Cu toxicity symptoms.
Collapse
Affiliation(s)
- Gustavo Brunetto
- Departament of Soil Science, Federal University of Santa Maria, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - George Wellington Bastos de Melo
- National Research Center of Grape and Wine (Centro Nacional de Pesquisa de Uva e Vinho - CNPUV), Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária - Embrapa), Bento Gonçalves, Rio Grande do Sul, CEP: 95700-000, Brazil
| | - Roberto Terzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari "Aldo Moro", I-70126, Bari, Italy
| | - Daniele Del Buono
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Stefania Astolfi
- Department of Agricultural and Forestry Sciences (DAFNE), Università della Tuscia, Viterbo, I-01100, Italy
| | - Nicola Tomasi
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, I-33100, Udine, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
17
|
Pontigo S, Ribera A, Gianfreda L, de la Luz Mora M, Nikolic M, Cartes P. Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions. PLANTA 2015; 242:23-37. [PMID: 26007688 DOI: 10.1007/s00425-015-2333-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/15/2015] [Indexed: 05/07/2023]
Abstract
So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.
Collapse
Affiliation(s)
- Sofía Pontigo
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | | | | | | | | | | |
Collapse
|
18
|
Vondráčková S, Száková J, Drábek O, Tejnecký V, Hejcman M, Müllerová V, Tlustoš P. Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH. PLoS One 2015; 10:e0123351. [PMID: 25880431 PMCID: PMC4400109 DOI: 10.1371/journal.pone.0123351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/03/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND AIMS High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. METHODS We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. RESULTS Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of "oxalate plants." The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. CONCLUSIONS In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids.
Collapse
Affiliation(s)
- Stanislava Vondráčková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic
| | - Jiřina Száková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic
| | - Ondřej Drábek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic
| | - Václav Tejnecký
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic
| | - Michal Hejcman
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic
| | - Vladimíra Müllerová
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic
| |
Collapse
|
19
|
Zhang H, Jiang Z, Qin R, Zhang H, Zou J, Jiang W, Liu D. Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana. BMC PLANT BIOLOGY 2014; 14:264. [PMID: 25267390 PMCID: PMC4189629 DOI: 10.1186/s12870-014-0264-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/25/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND Masson pine (Pinus massoniana) is one of the most important timber species with adaptable, fast growing, versatile advantages in southern China. Despite considerable research efforts, the cellular and molecular mechanisms of A1 toxicity and resistance in P. massoniana are still poorly understood. The effects of Al on uptake and translocation of Al and other minerals, cell division and nucleolus in P. massoniana were investigated. RESULTS The results indicated that Al accumulated mainly in the roots, and small amounts were transported to aboveground organs. In the presence of Al, the contents of Mg and Fe in stems increased and decreased in roots. Accumulation of Mn in the organs was inhibited significantly. Evidence from cellular experiments showed that Al had an inhibitory effect on the root growth at all concentrations (10⁻⁵ - 10⁻² M) used. Chromosome fragments, chromosome bridges, C-mitosis and chromosome stickiness were induced during mitosis in the root tip cells. Al induced the formation of abnormal microtubule (MT) arrays, consisting of discontinuous wavy MTs or short MT fragments at the cell periphery. MT organization and function of the mitotic spindle and phragmoplast were severely disturbed. The nucleolus did not disaggregate normally and still remained its characteristic structure during metaphase. Nucleolar particles containing argyrophilic proteins were accumulated and leached out from the nucleus to the cytoplasm. Evidence confirmed that these proteins contained nucleophosmin (B23), nucleolin (C23) and fibrillarin. Western immunoblot analysis revealed that the contents of three nucleolar proteins increased significantly. CONCLUSION Based on the information provided in this article, it is concluded that root tips of plants are the most sensitive organ to environmental stresses and the accumulation of Al ions primarily is in roots of P. massoniana, and small amounts of Al are transported to aboveground. Root apical meristems play a key role in the immediate reaction to stress factors by activating signal cascades to the other plant organs. Al induces a series of the cellular toxic changes concerning with cell division and nucleolus. The data presented above can be also used as valuable and early markers in cellular changes induced by metals for the evaluation of metal contamination.
Collapse
Affiliation(s)
- Huanhuan Zhang
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
| | - Ze Jiang
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
| | - Rong Qin
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
- />School of Life Science, South China Normal University, Guangzhou, Guangzhou 510631 PR China
| | - Huaning Zhang
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
| | - Jinhua Zou
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
| | - Wusheng Jiang
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
| | - Donghua Liu
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
| |
Collapse
|