1
|
Park H, Kingstad-Bakke B, Cleven T, Jung M, Kawaoka Y, Suresh M. Diversifying T-cell responses: safeguarding against pandemic influenza with mosaic nucleoprotein. J Virol 2025:e0086724. [PMID: 39898643 DOI: 10.1128/jvi.00867-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/22/2024] [Indexed: 02/04/2025] Open
Abstract
Pre-existing T-cell responses have been linked to reduced disease severity and better clinical outcomes during the 2009 influenza pandemic and the recent COVID-19 pandemic. We hypothesized that diversifying T-cell responses, particularly targeting conserved viral proteins such as the influenza A virus (IAV) nucleoprotein (NP), could protect against both epidemic and pandemic IAV strains. To test this, we created a mosaic nucleoprotein (MNP) by synthesizing a sequence that maximized the representation of 9-mer epitopes from 7422 NP sequences across human, swine, and avian IAVs. Notably, the MNP sequence showed high homology with the NP of the H5N1 strain affecting dairy cows in the ongoing outbreak. Mucosal immunization with the adjuvanted MNP vaccine induced robust CD8 and CD4 T-cell responses against both known immunodominant and in silico predicted subdominant epitopes. MNP-vaccinated mice challenged with epidemic H1N1 and H3N2 strains, which shared immunodominant CD8 and/or CD4 T-cell epitopes, showed a significant (~4 log) reduction in lung viral load. Importantly, MNP-vaccinated mice challenged with a pandemic H1N1 strain lacking shared immunodominant CD8 or CD4 epitopes exhibited a superior reduction in lung viral load, linked to T-cell responses targeting subdominant epitopes present in both the MNP and pandemic strain NP. These results suggest that a diversified T-cell response induced by the MNP vaccine could provide broad protection against severe disease from both current and emerging IAV strains. IMPORTANCE The World Health Organization (WHO) estimates that seasonal influenza causes 3-5 million cases of severe illness annually. The influenza virus frequently undergoes genetic changes through antigenic drift and antigenic shift, resulting in annual epidemics and occasional pandemics. Consequently, a major public health objective is to develop a universal influenza vaccine that offers broad protection against both current and pandemic influenza A strains. In this study, we designed a nucleoprotein (NP) antigen (termed mosaic NP) comprising antigenic regions found in thousands of influenza viruses, aiming to use it as a vaccine to induce broad anti-influenza T-cell responses. Our findings indicate that the mosaic NP vaccine provided significant protection against seasonal H1N1 and H3N2, as well as the pandemic H1N1 strain, demonstrating its effectiveness across various influenza subtypes. These findings suggest that the mosaic NP is a potential universal influenza vaccine antigen, capable of protecting against diverse strains of influenza viruses.
Collapse
Affiliation(s)
- Hongtae Park
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Thomas Cleven
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Myunghwan Jung
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Panthi S, Hong JY, Satange R, Yu CC, Li LY, Hou MH. Antiviral drug development by targeting RNA binding site, oligomerization and nuclear export of influenza nucleoprotein. Int J Biol Macromol 2024; 282:136996. [PMID: 39486729 DOI: 10.1016/j.ijbiomac.2024.136996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The quasispecies of the influenza virus poses a significant challenge for developing effective therapies. Current antiviral drugs such as oseltamivir, zanamivir, peramivir and baloxavir marboxil along with seasonal vaccines have limitations due to viral variability caused by antigenic drift and shift as well as the development of drug resistance. Therefore, there is a clear need for novel antiviral agents targeting alternative mechanisms, either independently or in combination with existing modalities, to reduce the impact of influenza virus-related infections. The influenza nucleoprotein (NP) is a key component of the viral ribonucleoprotein complex. The multifaceted nature of the NP makes it an attractive target for antiviral intervention. Recent reports have identified inhibitors that specifically target this protein. Recognizing the importance of developing influenza treatments for potential pandemics, this review explores the structural and functional aspects of NP and highlights its potential as an emerging target for anti-influenza drugs. We discuss various strategies for targeting NP, including RNA binding, oligomerization, and nuclear export, and also consider the potential of NP-based vaccines. Overall, this review provides insights into recent developments and future perspectives on targeting influenza NP for antiviral therapies.
Collapse
Affiliation(s)
- Sankar Panthi
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Jhen-Yi Hong
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Roshan Satange
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Long-Yuan Li
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| | - Ming-Hon Hou
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
3
|
Zhang Y, Gao J, Xu W, Huo X, Wang J, Xu Y, Ding W, Guo Z, Liu R. Advances in protein subunit vaccines against H1N1/09 influenza. Front Immunol 2024; 15:1499754. [PMID: 39650643 PMCID: PMC11621219 DOI: 10.3389/fimmu.2024.1499754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
The A/H1N1pdm09 influenza virus, which caused the 2009 pandemic, has since become a recurring strain in seasonal influenza outbreaks. Given the ongoing threat of influenza, protein subunit vaccines have garnered significant attention for their safety and effectiveness. This review seeks to highlight the latest developments in protein subunit vaccines that specifically target the A/H1N1pdm09 virus. It will also examine the structure and replication cycle of influenza A viruses and compare different types of influenza vaccines. Additionally, the review will address key aspects of H1N1 protein subunit vaccine development, such as antigen selection, protein expression systems, and the use of adjuvants. The role of animal models in evaluating these vaccines will also be discussed. Despite challenges like antigenic variability and the complexities of vaccine production and distribution, protein subunit vaccines remain a promising option for future influenza prevention efforts.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
- Department of Medical Imaging, School of Medicine, Zhoukou Vocational and Technical College, Zhoukou, China
| | - Jingyao Gao
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Wenqi Xu
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xingyu Huo
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jingyan Wang
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yirui Xu
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Wenting Ding
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zeliang Guo
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Rongzeng Liu
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Raza MA, Ashraf MA. Drug resistance and possible therapeutic options against influenza A virus infection over past years. Arch Microbiol 2024; 206:458. [PMID: 39499323 DOI: 10.1007/s00203-024-04181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Influenza A virus infection, commonly known as the flu, has persisted in the community for centuries. Although we have yearly vaccinations to prevent seasonal flu, there remains a dire need for antiviral drugs to treat active infections. The constantly evolving genome of the influenza A virus limits the number of effective antiviral therapeutic options. Over time, antiviral drugs become inefficient due to the development of resistance, as seen with adamantanes, which are now largely ineffective against most circulating strains of the virus. Neuraminidase inhibitors have long been the drug of choice, but due to selection pressure, strains are becoming resistant to this class of drugs. Baloxavir marboxil, a drug with a novel mode of action, can be used against strains resistant to other classes of drugs but is still not available in many countries. Deep research into nanoparticles has shown they are effective as antiviral drugs, opening a new avenue of research to use them as antiviral agents with novel modes of action. As this deadly virus, which has killed millions of people in the past, continues to develop resistance, there is an urgent need for new therapeutic agents with novel modes of action to halt active infections in patients. This review article covers the available therapeutic antiviral drug options with different modes of action, their effectiveness, and resistance to various strains of influenza A virus.
Collapse
Affiliation(s)
- Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Vatzia E, Paudyal B, Dema B, Carr BV, Sedaghat-Rostami E, Gubbins S, Sharma B, Moorhouse E, Morris S, Ulaszewska M, MacLoughlin R, Salguero FJ, Gilbert SC, Tchilian E. Aerosol immunization with influenza matrix, nucleoprotein, or both prevents lung disease in pig. NPJ Vaccines 2024; 9:188. [PMID: 39397062 PMCID: PMC11471855 DOI: 10.1038/s41541-024-00989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Current influenza vaccines are strain-specific and require frequent updates to combat new strains, making a broadly protective influenza vaccine (BPIV) highly desirable. A promising strategy is to induce T-cell responses against internal proteins conserved across influenza strains. In this study, pH1N1 pre-exposed pigs were immunized by aerosol using viral vectored vaccines (ChAdOx2 and MVA) expressing matrix (M1) and nucleoprotein (NP). Following H3N2 challenge, all immunizations (M1, NP or NPM1) reduced lung pathology, but M1 alone offered the greatest protection. NP or NPM1 immunization induced both T-cell and antibody responses. M1 immunization generated no detectable antibodies but elicited M1-specific T-cell responses, suggesting T cell-mediated protection. Additionally, a single aerosol immunization with the ChAdOx vaccine encoding M1, NP and neuraminidase reduced lung pathology. These findings provide insights into BPIV development using a relevant large natural host, the pig.
Collapse
Affiliation(s)
| | | | - Barbara Dema
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Susan Morris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah C Gilbert
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Shuklina M, Stepanova L, Ozhereleva O, Kovaleva A, Vidyaeva I, Korotkov A, Tsybalova L. Inserting CTL Epitopes of the Viral Nucleoprotein to Improve Immunogenicity and Protective Efficacy of Recombinant Protein against Influenza A Virus. BIOLOGY 2024; 13:801. [PMID: 39452110 PMCID: PMC11505154 DOI: 10.3390/biology13100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Conserved influenza virus proteins, such as the hemagglutinin stem domain (HA2), nucleoprotein (NP), and matrix protein (M), are the main targets in the development of universal influenza vaccines. Previously, we constructed a recombinant vaccine protein Flg-HA2-2-4M2ehs containing the extracellular domain of the M2 protein (M2e) and the aa76-130 sequence of the second HA subunit as target antigens. It demonstrated immunogenicity and broad protection against influenza A viruses after intranasal and parenteral administration. This study shows that CD8+ epitopes of NP, inserted into a flagellin-fused protein carrying M2e and HA2, affect the post-vaccination immune humoral response to virus antigens without reducing protection. No differences were found between the two proteins in their ability to stimulate the formation of follicular Th in the spleen, which may contribute to a long-lasting antigen-specific humoral response. The data obtained on Balb/c mice suggest that the insertion of CTL NP epitopes into the flagellin-fused protein carrying M2e and HA2 reduces the antibody response to M2e and A/H3N2. In C57Bl6 mice, this stimulates the formation of NP-specific CD8+ Tem and virus-specific mono- and multifunctional CD4+ and CD8+ Tem in the spleen and completely protects mice from influenza virus subtypes A/H1N1pdm09 and A/H3N2.
Collapse
Affiliation(s)
- Marina Shuklina
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 15/17 Prof. Popova Str., St. Petersburg 197376, Russia
| | - Liudmila Stepanova
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 15/17 Prof. Popova Str., St. Petersburg 197376, Russia
| | | | | | | | | | | |
Collapse
|
7
|
Balderas-Cisneros FDJ, León-Buitimea A, Zarate X, Morones-Ramírez JR. Expression and purification of an NP-hoc fusion protein: Utilizing influenza a nucleoprotein and phage T4 hoc protein. Protein Expr Purif 2024; 221:106506. [PMID: 38772430 DOI: 10.1016/j.pep.2024.106506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Influenza poses a substantial health risk, with infants and the elderly being particularly susceptible to its grave impacts. The primary challenge lies in its rapid genetic evolution, leading to the emergence of new Influenza A strains annually. These changes involve punctual mutations predominantly affecting the two main glycoproteins: Hemagglutinin (HA) and Neuraminidase (NA). Our existing vaccines target these proteins, providing short-term protection, but fall short when unexpected pandemics strike. Delving deeper into Influenza's genetic makeup, we spotlight the nucleoprotein (NP) - a key player in the transcription, replication, and packaging of RNA. An intriguing characteristic of the NP is that it is highly conserved across all Influenza A variants, potentially paving the way for a more versatile and broadly protective vaccine. We designed and synthesized a novel NP-Hoc fusion protein combining Influenza A nucleoprotein and T4 phage Hoc, cloned using Gibson assembly in E. coli, and purified via ion affinity chromatography. Simultaneously, we explore the T4 coat protein Hoc, typically regarded as inconsequential in controlled viral replication. Yet, it possesses a unique ability: it can link with another protein, showcasing it on the T4 phage coat. Fusing these concepts, our study designs, expresses, and purifies a novel fusion protein named NP-Hoc. We propose this protein as the basis for a new generation of vaccines, engineered to guard broadly against Influenza A. The excitement lies not just in the immediate application, but the promise this holds for future pandemic resilience, with NP-Hoc marking a significant leap in adaptive, broad-spectrum influenza prevention.
Collapse
Affiliation(s)
- Francisco de Jesús Balderas-Cisneros
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad s/n. Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico; Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, Mexico
| | - Angel León-Buitimea
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad s/n. Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico; Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, Mexico
| | - Xristo Zarate
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad s/n. Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico
| | - José Rubén Morones-Ramírez
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad s/n. Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico; Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, Mexico.
| |
Collapse
|
8
|
Ding P, Liu H, Zhu X, Chen Y, Zhou J, Chai S, Wang A, Zhang G. Thiolated chitosan encapsulation constituted mucoadhesive nanovaccine confers broad protection against divergent influenza A viruses. Carbohydr Polym 2024; 328:121689. [PMID: 38220319 DOI: 10.1016/j.carbpol.2023.121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 01/16/2024]
Abstract
Influenza A virus (IAV) poses a significant threat to human and animal health, necessitating the development of universal influenza vaccines that can effectively activate mucosal immunity. Intranasal immunization has attracted significant attention due to its capacity to induce triple immune responses, including mucosal secretory IgA. However, inducing mucosal immunity through vaccination is challenging due to the self-cleansing nature of the mucosal surface. Thiolated chitosan (TCS) were explored for mucosal vaccine delivery, capitalizing on biocompatibility and bioadhesive properties of chitosan, with thiol modification enhancing mucoadhesive capability. The focus was on developing a universal nanovaccine by utilizing TCS-encapsulated virus-like particles displaying conserved B-cell and T-cell epitopes from M2e and NP proteins of IAV. The optimal conditions for nanoparticle formation were investigated by adjusting the thiol groups content of TCS and the amount of sodium tripolyphosphate. The nanovaccine induced robust immune responses and provided complete protection against IAVs from different species following intranasal immunization. The broad protective effect of nanovaccines can be attributed to the synergistic effect of antibodies and T cells. This study developed a universal intranasal nanovaccine and demonstrated the potential of TCS in the development of mucosal vaccines for respiratory infectious diseases.
Collapse
Affiliation(s)
- Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Shujun Chai
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China.
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100080, China.
| |
Collapse
|
9
|
Rijnink WF, Stadlbauer D, Puente-Massaguer E, Okba NMA, Kirkpatrick Roubidoux E, Strohmeier S, Mudd PA, Schmitz A, Ellebedy A, McMahon M, Krammer F. Characterization of non-neutralizing human monoclonal antibodies that target the M1 and NP of influenza A viruses. J Virol 2023; 97:e0164622. [PMID: 37916834 PMCID: PMC10688359 DOI: 10.1128/jvi.01646-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/08/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Currently, many groups are focusing on isolating both neutralizing and non-neutralizing antibodies to the mutation-prone hemagglutinin as a tool to treat or prevent influenza virus infection. Less is known about the level of protection induced by non-neutralizing antibodies that target conserved internal influenza virus proteins. Such non-neutralizing antibodies could provide an alternative pathway to induce broad cross-reactive protection against multiple influenza virus serotypes and subtypes by partially overcoming influenza virus escape mediated by antigenic drift and shift. Accordingly, more information about the level of protection and potential mechanism(s) of action of non-neutralizing antibodies targeting internal influenza virus proteins could be useful for the design of broadly protective and universal influenza virus vaccines.
Collapse
Affiliation(s)
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eduard Puente-Massaguer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nisreen M. A. Okba
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ericka Kirkpatrick Roubidoux
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Philip A. Mudd
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aaron Schmitz
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ali Ellebedy
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines (Basel) 2023; 11:1747. [PMID: 38140152 PMCID: PMC10747533 DOI: 10.3390/vaccines11121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Annual vaccination is considered as the main preventive strategy against seasonal influenza. Due to the highly variable nature of major viral antigens, such as hemagglutinin (HA) and neuraminidase (NA), influenza vaccine strains should be regularly updated to antigenically match the circulating viruses. The influenza virus nucleoprotein (NP) is much more conserved than HA and NA, and thus seems to be a promising target for the design of improved influenza vaccines with broad cross-reactivity against antigenically diverse influenza viruses. Traditional subunit or recombinant protein influenza vaccines do not contain the NP antigen, whereas live-attenuated influenza vaccines (LAIVs) express the viral NP within infected cells, thus inducing strong NP-specific antibodies and T-cell responses. Many strategies have been explored to design broadly protective NP-based vaccines, mostly targeted at the T-cell mode of immunity. Although the NP is highly conserved, it still undergoes slow evolutionary changes due to selective immune pressure, meaning that the particular NP antigen selected for vaccine design may have a significant impact on the overall immunogenicity and efficacy of the vaccine candidate. In this review, we summarize existing data on the conservation of the influenza A viral nucleoprotein and review the results of preclinical and clinical trials of NP-targeting influenza vaccine prototypes, focusing on the ability of NP-specific immune responses to protect against diverse influenza viruses.
Collapse
Affiliation(s)
| | | | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (A.R.); (I.I.-S.)
| |
Collapse
|
11
|
Yu J, Sreenivasan C, Sheng Z, Zhai SL, Wollman JW, Luo S, Huang C, Gao R, Wang Z, Kaushik RS, Christopher-Hennings J, Nelson E, Hause BM, Li F, Wang D. A recombinant chimeric influenza virus vaccine expressing the consensus H3 hemagglutinin elicits broad hemagglutination inhibition antibodies against divergent swine H3N2 influenza viruses. Vaccine 2023; 41:6318-6326. [PMID: 37689544 DOI: 10.1016/j.vaccine.2023.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The global distribution and ongoing evolution of type A swine influenza virus (IAV-S) continue to pose significant challenges against developing broadly protective vaccines to control swine influenza. This study focuses on the hemagglutinin (HA) consensus-based approach towards developing a more broadly protective swine influenza vaccine against various H3 strains circulating in domestic pig populations. By computationally analyzing >1000 swine H3 full-length HA sequences, we generated a consensus H3 and expressed it in the context of influenza A WSN/33 reverse genetics system. The derived recombinant chimeric swine influenza virus with the consensus H3 was inactivated and further evaluated as a potential universal vaccine in pigs. The consensus H3 vaccine elicited broadly active hemagglutination inhibition (HI) antibodies against divergent swine H3N2 influenza viruses including human H3N2 variant of concern, and strains belong to genetic clusters IV, IV-A, IV-B, IV-C, IV-D and IV-F. Importantly, vaccinated pigs were completely protected against challenge with a clinical swine H3N2 isolate in that neither viral shedding nor replication in lungs of vaccinated pigs were observed. These findings warrant further study of the consensus H3 vaccine platform for broad protection against diverse swine influenza viruses.
Collapse
Affiliation(s)
- Jieshi Yu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Chithra Sreenivasan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Zhizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Shao-Lun Zhai
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Jared W Wollman
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Sisi Luo
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Chen Huang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Zhao Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Ben M Hause
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
12
|
Kong HJ, Choi Y, Kim EA, Chang J. Vaccine Strategy That Enhances the Protective Efficacy of Systemic Immunization by Establishing Lung-Resident Memory CD8 T Cells Against Influenza Infection. Immune Netw 2023; 23:e32. [PMID: 37670808 PMCID: PMC10475829 DOI: 10.4110/in.2023.23.e32] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Most influenza vaccines currently in use target the highly variable hemagglutinin protein to induce neutralizing antibodies and therefore require yearly reformulation. T cell-based universal influenza vaccines focus on eliciting broadly cross-reactive T-cell responses, especially the tissue-resident memory T cell (TRM) population in the respiratory tract, providing superior protection to circulating memory T cells. This study demonstrated that intramuscular (i.m.) administration of the adenovirus-based vaccine expressing influenza virus nucleoprotein (rAd/NP) elicited weak CD8 TRM responses in the lungs and airways, and yielded poor protection against lethal influenza virus challenge. However, a novel "prime-and-deploy" strategy that combines i.m. vaccination of rAd/NP with subsequent intranasal administration of an empty adenovector induced strong NP-specific CD8+ TRM cells and provided complete protection against influenza virus challenge. Overall, our results demonstrate that this "prime-and-deploy" vaccination strategy is potentially applicable to the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Hyun-Jung Kong
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Youngwon Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Ah Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
13
|
Wang S, Zhuang Q, Jiang N, Zhang F, Chen Q, Zhao R, Li Y, Yu X, Li J, Hou G, Yuan L, Sun F, Pan Z, Wang K. Reverse transcription recombinase-aided amplification assay for avian influenza virus. Virus Genes 2023; 59:410-416. [PMID: 36781819 DOI: 10.1007/s11262-023-01979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Avian influenza virus (AIV) infection can lead to severe economic losses in the poultry industry and causes a serious risk for humans. A rapid and simple test for suspected viral infection cases is crucial. In this study, a reverse transcription recombinase-aided amplification assay (RT-RAA) for the rapid detection of all AIV subtypes was developed. The reaction temperature of the assays is at 39 °C and the detection process can be completed in less than 20 min. The specificity results of the assay showed that this method had no cross-reaction with other main respiratory viruses that affect birds, including Newcastle disease virus (NDV) and infectious bronchitis virus (IBV). The analytical sensitivity at a 95% confidence interval was 102 RNA copies per reaction. In comparison with a published assay for reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), the κ value of the RT-RAA assay in 384 avian clinical samples was 0.942 (p < 0.001). The sensitivity and specificity of the RT-RAA assay for avian clinical sample detection was determined as 97.59% (95% CI 93.55-99.23%) and 96.79% (95% CI 93.22-98.59%), respectively. The RT-RAA assay for AIV in this study provided an effective and practicable tool for AIV molecular detection.
Collapse
Affiliation(s)
- Suchun Wang
- China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, China.,Key Laboratory of Animal Biosafety Risk Prevention and Control (South), Ministry of Agriculture and Rural Affairs, 369 Nanjing Road, Qingdao, Shandong, China
| | - Qingye Zhuang
- China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, China.,Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
| | - Nan Jiang
- China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, China.,Yanbian University, Agricultural College, Yanji, Jilin, China
| | - Fuyou Zhang
- China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, China
| | - Qiong Chen
- Xiamen Agricultural Product Quality and Safety Testing Center, Xiamen, Fujian, China
| | - Ran Zhao
- Xiamen Agricultural Product Quality and Safety Testing Center, Xiamen, Fujian, China
| | - Yang Li
- China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, China
| | - Jinping Li
- China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, China
| | - Guangyu Hou
- China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, China
| | - Liping Yuan
- China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, China
| | - Fuliang Sun
- Yanbian University, Agricultural College, Yanji, Jilin, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kaicheng Wang
- China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, China. .,Key Laboratory of Animal Biosafety Risk Prevention and Control (South), Ministry of Agriculture and Rural Affairs, 369 Nanjing Road, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Hu TY, Lian YB, Qian JH, Yang YL, Ata EB, Zhang RR, Shi CW, Yang GL, Huang HB, Jiang YL, Wang JZ, Cao X, NanWang, Zeng Y, Yang WT, Wang CF. Immunogenicity of engineered probiotics expressing conserved antigens of influenza virus and FLIC flagellin against H9N2 AIVinfection in mice. Res Vet Sci 2022; 153:115-126. [PMID: 36351352 DOI: 10.1016/j.rvsc.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Avian influenza virus (AIV)is easy to cause diseases in birds and humans.It causes great economic losses to the poultry farms and leads to public health problems. Using vaccines is the main approach to control the prevalence of AIV. In our previously published article, a recombinant Lactobacillus plantarum (L. plantarum) expressing the NP-M2 peptide ofH9N2 AIV was generated, and its protective effect was evaluated in a chicken model. In this study, the protective effect was estimated in mice model. Humoral and cellular immune response parameters were measured using flow cytometry adding to body weight loss, survival rate, virus load, and histopathological changes in the lung. The obtained results elucidated that, the recombinant L. plantarum can promote the activation of dendritic cells (DC), proliferation of T and B cells adding to eliciting protective secretory IgA (sIgA) and humeral IgG level in mice model. Accordingly, it could be used as a patent vaccine to control the AIV infection.
Collapse
Affiliation(s)
- Tian-Yang Hu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yi-Bing Lian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jia-Hao Qian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yong-Lei Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Emad Beshir Ata
- Parasitology and Animal Diseases Dep., Vet. Res. Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Rong-Rong Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - NanWang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
15
|
Nelson SA, Richards KA, Glover MA, Chaves FA, Crank MC, Graham BS, Kanekiyo M, Sant AJ. CD4 T cell epitope abundance in ferritin core potentiates responses to hemagglutinin nanoparticle vaccines. NPJ Vaccines 2022; 7:124. [PMID: 36289232 PMCID: PMC9605951 DOI: 10.1038/s41541-022-00547-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
Abstract
Nanoparticle vaccines based on H. pylori ferritin are increasingly used as a vaccine platform for many pathogens, including RSV, influenza, and SARS-CoV-2. They have been found to elicit enhanced, long-lived B cell responses. The basis for improved efficacy of ferritin nanoparticle vaccines remains unresolved, including whether recruitment of CD4 T cells specific for the ferritin component of these vaccines contributes to cognate help in the B cell response. Using influenza HA-ferritin nanoparticles as a prototype, we have performed an unbiased assessment of the CD4 T cell epitope composition of the ferritin particles relative to that contributed by influenza HA using mouse models that express distinct constellations of MHC class II molecules. The role that these CD4 T cells play in the B cell responses was assessed by quantifying follicular helper cells (TFH), germinal center (GC) B cells, and antibody secreting cells. When mice were immunized with equimolar quantities of soluble HA-trimers and HA-Fe nanoparticles, HA-nanoparticle immunized mice had an increased overall abundance of TFH that were found to be largely ferritin-specific. HA-nanoparticle immunized mice had an increased abundance of HA-specific isotype-switched GC B cells and HA-specific antibody secreting cells (ASCs) relative to mice immunized with soluble HA-trimers. Further, there was a strong, positive correlation between CD4 TFH abundance and GC B cell abundance. Thus, availability of helper CD4 T cell epitopes may be a key additional mechanism that underlies the enhanced immunogenicity of ferritin-based HA-Fe-nanoparticle vaccines.
Collapse
Affiliation(s)
- Sean A Nelson
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Maryah A Glover
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Francisco A Chaves
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institute for Asthma & Allergy, Chevy Chase, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
16
|
Sun Z, Lin KF, Zhao ZH, Wang Y, Hong XX, Guo JG, Ruan QY, Lu LY, Li X, Zhang R, Yang CY, Li BA. An automated nucleic acid detection platform using digital microfluidics with an optimized Cas12a system. Sci China Chem 2022; 65:630-640. [PMID: 35126481 PMCID: PMC8809245 DOI: 10.1007/s11426-021-1169-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to prevent the further spread of the epidemic. An optimized RPA-Cas12a-based platform combined with digital microfluidics (DMF), the RCD platform, was established to achieve the automated, rapid detection of influenza viruses and SARS-CoV-2. The probe in the RPA-Cas12a system was optimized to produce maximal fluorescence to increase the amplification signal. The reaction droplets in the platform were all at the microliter level and the detection could be accomplished within 30 min due to the effective mixing of droplets by digital microfluidic technology. The whole process from amplification to recognition is completed in the chip, which reduces the risk of aerosol contamination. One chip can contain multiple detection reaction areas, offering the potential for customized detection. The RCD platform demonstrated a high level of sensitivity, specificity (no false positives or negatives), speed (≤30 min), automation and multiplexing. We also used the RCD platform to detect nucleic acids from influenza patients and COVID-19 patients. The results were consistent with the findings of qPCR. The RCD platform is a one-step, rapid, highly sensitive and specific method with the advantages of digital microfluidic technology, which circumvents the shortcomings of manual operation. The development of the RCD platform provides potential for the isothermal automatic detection of nucleic acids during epidemics.
![]()
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Kang-Feng Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Ze-Hang Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yang Wang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xin-Xin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Jian-Guang Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Qing-Yu Ruan
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Lian-Yu Lu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Rui Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, 361005 China
| | - Chao-Yong Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Bo-An Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, 361005 China
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| |
Collapse
|
17
|
Kim M, Cheong Y, Lee J, Lim J, Byun S, Jang YH, Seong BL. A Host-Restricted Self-Attenuated Influenza Virus Provides Broad Pan-Influenza A Protection in a Mouse Model. Front Immunol 2021; 12:779223. [PMID: 34925355 PMCID: PMC8674563 DOI: 10.3389/fimmu.2021.779223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza virus infections can cause a broad range of symptoms, form mild respiratory problems to severe and fatal complications. While influenza virus poses a global health threat, the frequent antigenic change often significantly compromises the protective efficacy of seasonal vaccines, further increasing the vulnerability to viral infection. Therefore, it is in great need to employ strategies for the development of universal influenza vaccines (UIVs) which can elicit broad protection against diverse influenza viruses. Using a mouse infection model, we examined the breadth of protection of the caspase-triggered live attenuated influenza vaccine (ctLAIV), which was self-attenuated by the host caspase-dependent cleavage of internal viral proteins. A single vaccination in mice induced a broad reactive antibody response against four different influenza viruses, H1 and rH5 (HA group 1) and H3 and rH7 subtypes (HA group 2). Notably, despite the lack of detectable neutralizing antibodies, the vaccination provided heterosubtypic protection against the lethal challenge with the viruses. Sterile protection was confirmed by the complete absence of viral titers in the lungs and nasal turbinates after the challenge. Antibody-dependent cellular cytotoxicity (ADCC) activities of non-neutralizing antibodies contributed to cross-protection. The cross-protection remained robust even after in vivo depletion of T cells or NK cells, reflecting the strength and breadth of the antibody-dependent effector function. The robust mucosal secretion of sIgA reflects an additional level of cross-protection. Our data show that the host-restricted designer vaccine serves an option for developing a UIV, providing pan-influenza A protection against both group 1 and 2 influenza viruses. The present results of potency and breadth of protection from wild type and reassortant viruses addressed in the mouse model by single immunization merits further confirmation and validation, preferably in clinically relevant ferret models with wild type challenges.
Collapse
Affiliation(s)
- Minjin Kim
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Department of Integrated OMICS for Biomedical Science, College of Life science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jongkwan Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sanguine Byun
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University, Andong, South Korea.,Vaccine Industry Research Institute, Andong National University, Andong, South Korea
| | - Baik Lin Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, South Korea.,Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, South Korea
| |
Collapse
|
18
|
Nelson SA, Sant AJ. Potentiating Lung Mucosal Immunity Through Intranasal Vaccination. Front Immunol 2021; 12:808527. [PMID: 34970279 PMCID: PMC8712562 DOI: 10.3389/fimmu.2021.808527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 01/28/2023] Open
Abstract
Yearly administration of influenza vaccines is our best available tool for controlling influenza virus spread. However, both practical and immunological factors sometimes result in sub-optimal vaccine efficacy. The call for improved, or even universal, influenza vaccines within the field has led to development of pre-clinical and clinical vaccine candidates that aim to address limitations of current influenza vaccine approaches. Here, we consider the route of immunization as a critical factor in eliciting tissue resident memory (Trm) populations that are not a target of current licensed intramuscular vaccines. Intranasal vaccination has the potential to boost tissue resident B and T cell populations that reside within specific niches of the upper and lower respiratory tract. Within these niches, Trm cells are poised to respond rapidly to pathogen re-encounter by nature of their anatomic localization and their ability to rapidly deliver anti-pathogen effector functions. Unique features of mucosal immunity in the upper and lower respiratory tracts suggest that antigen localized to these regions is required for the elicitation of protective B and T cell immunity at these sites and will need to be considered as an important attribute of a rationally designed intranasal vaccine. Finally, we discuss outstanding questions and areas of future inquiry in the field of lung mucosal immunity.
Collapse
Affiliation(s)
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
19
|
Toward a universal influenza virus vaccine: Some cytokines may fulfill the request. Cytokine 2021; 148:155703. [PMID: 34555604 DOI: 10.1016/j.cyto.2021.155703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/21/2023]
Abstract
The influenza virus annually causes widespread damages to the health and economy of the global community. Vaccination is currently the most crucial strategy in reducing the number of patients. Genetic variations, the high diversity of pandemic viruses, and zoonoses make it challenging to select suitable strains for annual vaccine production. If new pandemic viruses emerge, it will take a long time to produce a vaccine according to the new strains. In the present study, intending to develop a universal influenza vaccine, new bicistronic DNA vaccines were developed that expressed NP or NPm antigen with one of modified IL-18/ IL-17A/ IL-22 cytokine adjuvants. NPm is a mutant form of the antigen that has the ability for cytoplasmic accumulation. In order to investigate and differentiate the role of each of the components of Th1, Th2, Th17, and Treg cellular immune systems in the performance of vaccines, Treg competent and Treg suppressed mouse groups were used. Mice were vaccinated with Foxp3-FC immunogen to produce Treg suppressed mouse groups. The potential of the vaccines to stimulate the immune system was assessed by IFN-γ/IL-17A Dual FluoroSpot. The vaccine's ability to induce humoral immune response was determined by measuring IgG1, IgG2a, and IgA-specific antibodies against the antigen. Kinetics of Th1, Th2, and Th17 cellular immune responses after vaccination, were assessed by evaluating the expression changes of IL-17A, IFN-γ, IL-18, IL-22, IL-4, and IL-2 cytokines by semi-quantitative real-time RT-PCR. To assess the vaccines' ability to induce heterosubtypic immunity, challenge tests with homologous and heterologous viruses were performed and then the virus titer was measured in the lungs of animals. Evaluation of the data obtained from this study showed that the DNA-vaccines coding NPm have more ability to induces a potent cross-cellular immune response and protective immunity than DNA-vaccines coding NP. Although the use of IL-18/ IL-17A/ IL-22 genetic adjuvants enhanced immune responses and protective immunity, Administration of NPm in combination with modified IL-18 (Igk-mIL18-IgFC) induced the most effective immunity in Treg competent mice group.
Collapse
|
20
|
Combination of conserved recombinant proteins (NP & 3M2e) formulated with Alum protected BALB/c mice against influenza A/PR8/H1N1 virus challenge. Biotechnol Lett 2021; 43:2137-2147. [PMID: 34491470 DOI: 10.1007/s10529-021-03174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Influenza is one of the most important agents of pandemic outbreak causing substantial morbidity and mortality. Vaccination strategies of influenza must be adapted annually due to constant antigenic changes in various strains. Therefore, the present study was conducted to evaluate protective immunity of the conserved influenza proteins. METHODS For this purpose, three tandem repeats of M2e (3M2e) and NP were separately expressed in E. coli and were purified using column chromatography. Female Balb/c mice were injected intradermally with a combination of the purified 3M2e and NP alone or formulated with Alum (AlOH3) adjuvant in three doses. The mice were challenged by intranasal administration of H1N1 (A/PR/8/34) 2 weeks after the last vaccination. RESULTS The results demonstrated that recombinant NP and M2e proteins are immunogenic and could efficiently elicit immune responses in mice compared to non-immunized mice. The combination of 3M2e and NP supplemented with Alum stimulated both NP and M2e-specific antibodies, which were higher than those stimulated by each single antigen plus Alum. In addition, the secretion of IFN-γ and IL-4 as well as the induction of lymphocyte proliferation in mice received the mixture of these proteins with Alum was considerably higher than other groups. Moreover, the highest survival rate (86%) with the least body weight change was observed in the mice immunized with 3M2e and NP supplemented with Alum followed by the mice received NP supplemented with Alum (71%). CONCLUSION Accordingly, this regimen can be considered as an attractive candidate for global vaccination against influenza.
Collapse
|
21
|
Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021; 13:v13060973. [PMID: 34073996 PMCID: PMC8225176 DOI: 10.3390/v13060973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.
Collapse
|
22
|
Yin Y, Li B, Zhou L, Luo J, Liu X, Wang S, Lu Q, Tan W, Chen Z. Protein transduction domain-mediated influenza NP subunit vaccine generates a potent immune response and protection against influenza virus in mice. Emerg Microbes Infect 2021; 9:1933-1942. [PMID: 32811334 PMCID: PMC8284974 DOI: 10.1080/22221751.2020.1812436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleoprotein (NP) is a highly conserved internal protein of the influenza virus, a major target for universal influenza vaccine. Our previous studies have proven NP-based subunit vaccine can provide partial protection in mice. It is reported that the protein transduction domain (PTD) TAT protein from human immunodeficiency virus-1 (HIV-1) is able to penetrate cells when added exogenous protein and could effectively enhance the immune response induced by the exogenous protein. In present study, the recombinant protein TAT-NP, a fusion of TAT and NP was effectively expressed in Escherichia coli and purified as a candidate component for an influenza vaccine. We evaluated the immunogenicity and protective efficacy of recombinant influenza TAT-NP vaccine by intranasal immunization. In vitro experiments showed that TAT-NP could efficiently penetrate into cells. Animal results showed that mice vaccinated with TAT-NP could not only induce higher levels of IgG and mucosal IgA, but also elicit a robust cellular immune response. Moreover, the TAT-NP fusion protein could significantly increase the protection of mice against lethal doses of homologous influenza virus PR8 and could also provide mice protection against a lethal dose challenge against heterosubtypic H9N2 and H3N2 influenza virus. In conclusion, the recombinant TAT-NP might be a universal vaccine candidate against influenza virus.
Collapse
Affiliation(s)
- Yuan Yin
- Department of Clinical Laboratory, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - BeiBei Li
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Linting Zhou
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Jian Luo
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Xueying Liu
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Shilei Wang
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Qun Lu
- Department of Clinical Laboratory, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China.,College of Life Science, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
23
|
Kwak C, Nguyen QT, Kim J, Kim TH, Poo H. Influenza Chimeric Protein (3M2e-3HA2-NP) Adjuvanted with PGA/Alum Confers Cross-Protection against Heterologous Influenza A Viruses. J Microbiol Biotechnol 2021; 31:304-316. [PMID: 33263336 PMCID: PMC9705887 DOI: 10.4014/jmb.2011.11029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
Vaccination is the most effective way to prevent influenza virus infections. However, conventional vaccines based on hemagglutinin (HA) have to be annually updated because the HA of influenza viruses constantly mutates. In this study, we produced a 3M2e-3HA2-NP chimeric protein as a vaccine antigen candidate using an Escherichia coli expression system. The vaccination of chimeric protein (15 μg) conferred complete protection against A/Puerto Rico/8/1934 (H1N1; PR8) in mice. It strongly induced influenza virus-specific antibody responses, cytotoxic T lymphocyte activity, and antibody-dependent cellular cytotoxicity. To spare the dose and enhance the cross-reactivity of the chimeric, we used a complex of poly-γ-glutamic acid and alum (PGA/alum) as an adjuvant. PGA/alum-adjuvanted, low-dose chimeric protein (1 or 5 μg) exhibited higher cross-protective effects against influenza A viruses (PR8, CA04, and H3N2) compared with those of chimeric alone or alum-adjuvanted proteins in vaccinated mice. Moreover, the depletion of CD4+ T, CD8+ T, and NK cells reduced the survival rate and efficacy of the PGA/alum-adjuvanted chimeric protein. Collectively, the vaccination of PGA/alum-adjuvanted chimeric protein induced strong protection efficacy against homologous and heterologous influenza viruses in mice, which suggests that it may be a promising universal influenza vaccine candidate.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Alum Compounds/administration & dosage
- Animals
- Antibodies, Viral/immunology
- Cross Reactions
- Female
- Hemagglutinins, Viral
- Humans
- Immunity, Humoral
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nucleocapsid Proteins/administration & dosage
- Nucleocapsid Proteins/genetics
- Nucleocapsid Proteins/immunology
- Polyglutamic Acid/administration & dosage
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Viral Matrix Proteins/administration & dosage
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- Chaewon Kwak
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Quyen Thi Nguyen
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jaemoo Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae-Hwan Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
| | - Haryoung Poo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
24
|
Sharma S, Kumari V, Kumbhar BV, Mukherjee A, Pandey R, Kondabagil K. Immunoinformatics approach for a novel multi-epitope subunit vaccine design against various subtypes of Influenza A virus. Immunobiology 2021; 226:152053. [PMID: 33517154 DOI: 10.1016/j.imbio.2021.152053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/24/2020] [Accepted: 12/17/2020] [Indexed: 01/24/2023]
Abstract
Vaccination is the best strategy for the control and prevention of contagious diseases caused by Influenza A viruses. Extraordinary genetic variability and continual evolvability are responsible for the virus having survival and adaptation to host cell immune response, thus rendering the current influenza vaccines with suboptimal effectiveness.Therefore, in the present study, using a novel immunoinformatics approach, we have designed a universal influenza subunit vaccine based on the highly conserved epitopic sequences of rapidly evolving (HA), a moderately evolving (NP) and slow evolving (M1) proteins of the virus. The vaccine design includes 2 peptide adjuvants, 26 CTL epitopes, 9 HTL epitopes, and 7 linear BCL epitopes to induce innate, cellular, and humoral immune responses against Influenza A viruses. We also analyzed the physicochemical properties of the designed construct to validate its thermodynamic stability, hydrophilicity, PI, antigenicity, and allergenicity. Furthermore, we predicted a highly stable tertiary model of the designed subunit vaccine, wherein additional disulfide bonds were incorporated to enhance its stability. The molecular docking and molecular dynamics simulations of the refined vaccine model with TLR3, TLR7, TLR8, MHC-I and MHC-II showed stable vaccine and receptors complexes, thus confirming the immunogenicity of the designed vaccine. Collectively, these findings suggest that our multi-epitope vaccine construct may confer protection against various strains of influenza A virus subtypes, which could prevent the need for annual reformulation of vaccine and alleviate disease burden.
Collapse
Affiliation(s)
- Shipra Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Vibha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Bajarang Vasant Kumbhar
- HaystackAnalytics Private Limited, Society for Innovation and Entrepreneurship (SINE), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Amrita Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ruchika Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
25
|
Improvement of PR8-Derived Recombinant Clade 2.3.4.4c H5N6 Vaccine Strains by Optimization of Internal Genes and H103Y Mutation of Hemagglutinin. Vaccines (Basel) 2020; 8:vaccines8040781. [PMID: 33419331 PMCID: PMC7766170 DOI: 10.3390/vaccines8040781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/04/2022] Open
Abstract
Clade 2.3.4.4c H5N6 avian influenza A viruses (AIVs) may have originally adapted to infect chickens and have caused highly pathogenic avian influenza (HPAI) in poultry and human fatalities. Although A/Puerto Rico/8/1934 (H1N1) (PR8)-derived recombinant clade 2.3.4.4c H5N6 vaccine strains have been effective in embryonated chicken eggs-based vaccine production system, they need to be improved in terms of immunogenicity and potential mammalian pathogenicity. We replaced the PB2 gene alone or the PB2 (polymerase basic protein 2), NP (nucleoprotein), M (matrix protein) and NS (non-structural protein) genes together in the PR8 strain with corresponding genes from AIVs with low pathogenicity to remove mammalian pathogenicity and to match CD8+ T cell epitopes with contemporary HPAI viruses, respectively, without loss of viral fitness. Additionally, we tested the effect of the H103Y mutation of hemagglutinin (HA) on antigen productivity, mammalian pathogenicity and heat/acid stability. The replacement of PB2 genes and the H103Y mutation reduced the mammalian pathogenicity but increased the antigen productivity of the recombinant vaccine strains. The H103Y mutation increased heat stability but unexpectedly decreased acid stability, probably resulting in increased activation pH for HA. Interestingly, vaccination with inactivated recombinant virus with replaced NP, M and NS genes halted challenge virus shedding earlier than the recombinant vaccine without internal genes replacement. In conclusion, we successfully generated recombinant clade 2.3.4.4c H5N6 vaccine strains that were less pathogenic to mammals and more productive and heat stable than conventional PR8-derived recombinant strains by optimization of internal genes and the H103Y mutation of HA.
Collapse
|
26
|
Heinrich MA, Martina B, Prakash J. Nanomedicine strategies to target coronavirus. NANO TODAY 2020; 35:100961. [PMID: 32904707 PMCID: PMC7457919 DOI: 10.1016/j.nantod.2020.100961] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
With the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, the middle east respiratory syndrome CoV (MERS-CoV) in 2012 and the recently discovered SARS-CoV-2 in December 2019, the 21st first century has so far faced the outbreak of three major coronaviruses (CoVs). In particular, SARS-CoV-2 spread rapidly over the globe affecting nearly 25.000.000 people up to date. Recent evidences pointing towards mutations within the viral spike proteins of SARS-CoV-2 that are considered the cause for this rapid spread and currently around 300 clinical trials are running to find a treatment for SARS-CoV-2 infections. Nanomedicine, the application of nanocarriers to deliver drugs specifically to a target sites, has been applied for different diseases, such as cancer but also in viral infections. Nanocarriers can be designed to encapsulate vaccines and deliver them towards antigen presenting cells or function as antigen-presenting carriers themselves. Furthermore, drugs can be encapsulated into such carriers to directly target them to infected cells. In particular, virus-mimicking nanoparticles (NPs) such as self-assembled viral proteins, virus-like particles or liposomes, are able to replicate the infection mechanism and can not only be used as delivery system but also to study viral infections and related mechanisms. This review will provide a detailed description of the composition and replication strategy of CoVs, an overview of the therapeutics currently evaluated in clinical trials against SARS-CoV-2 and will discuss the potential of NP-based vaccines, targeted delivery of therapeutics using nanocarriers as well as using NPs to further investigate underlying biological processes in greater detail.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Byron Martina
- Artemis One Health Research Institute, 2629JD, Delft, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| |
Collapse
|
27
|
Protein and Peptide Nanocluster Vaccines. Curr Top Microbiol Immunol 2020. [PMID: 33165870 DOI: 10.1007/82_2020_228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recombinant protein- and peptide-based vaccines can deliver large amounts of specific antigens for tailored immune responses. One class of these are protein and peptide nanoclusters (PNCs), which are made entirely from the crosslinked antigen. PNCs leverage the inherent immunogenicity of nanoparticulate antigens while minimizing the use of excipients normally used to create them. In this chapter, we discuss PNC fabrication methods, immunostimulatory properties of nanoclusters observed in vitro and in vivo, and protective benefits of PNC vaccines against influenza and cancer mouse models. We conclude with an outlook on future studies of PNCs and PNC design strategies, as well as their use in future vaccine formulations.
Collapse
|
28
|
Ecker JW, Kirchenbaum GA, Pierce SR, Skarlupka AL, Abreu RB, Cooper RE, Taylor-Mulneix D, Ross TM, Sautto GA. High-Yield Expression and Purification of Recombinant Influenza Virus Proteins from Stably-Transfected Mammalian Cell Lines. Vaccines (Basel) 2020; 8:vaccines8030462. [PMID: 32825605 PMCID: PMC7565037 DOI: 10.3390/vaccines8030462] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Influenza viruses infect millions of people each year, resulting in significant morbidity and mortality in the human population. Therefore, generation of a universal influenza virus vaccine is an urgent need and would greatly benefit public health. Recombinant protein technology is an established vaccine platform and has resulted in several commercially available vaccines. Herein, we describe the approach for developing stable transfected human cell lines for the expression of recombinant influenza virus hemagglutinin (HA) and recombinant influenza virus neuraminidase (NA) proteins for the purpose of in vitro and in vivo vaccine development. HA and NA are the main surface glycoproteins on influenza virions and the major antibody targets. The benefits for using recombinant proteins for in vitro and in vivo assays include the ease of use, high level of purity and the ability to scale-up production. This work provides guidelines on how to produce and purify recombinant proteins produced in mammalian cell lines through either transient transfection or generation of stable cell lines from plasmid creation through the isolation step via Immobilized Metal Affinity Chromatography (IMAC). Collectively, the establishment of this pipeline has facilitated large-scale production of recombinant HA and NA proteins to high purity and with consistent yields, including glycosylation patterns that are very similar to proteins produced in a human host.
Collapse
Affiliation(s)
- Jeffrey W. Ecker
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Greg A. Kirchenbaum
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Spencer R. Pierce
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Amanda L. Skarlupka
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Rodrigo B. Abreu
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - R. Ethan Cooper
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Dawn Taylor-Mulneix
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
- Correspondence: ; Tel.: +1-706-542-6711
| |
Collapse
|
29
|
Chimeric hemagglutinin vaccine elicits broadly protective CD4 and CD8 T cell responses against multiple influenza strains and subtypes. Proc Natl Acad Sci U S A 2020; 117:17757-17763. [PMID: 32669430 DOI: 10.1073/pnas.2004783117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccination has been used to control the spread of seasonal flu; however, the virus continues to evolve and escape from host immune response through mutation and increasing glycosylation. Efforts have been directed toward development of a universal vaccine with broadly protective activity against multiple influenza strains and subtypes. Here we report the design and evaluation of various chimeric vaccines based on the most common avian influenza H5 and human influenza H1 sequences. Of these constructs, the chimeric HA (cHA) vaccine with consensus H5 as globular head and consensus H1 as stem was shown to elicit broadly protective CD4+ and CD8+ T cell responses. Interestingly, the monoglycosylated cHA (cHAmg) vaccine with GlcNAc on each glycosite induced more stem-specific antibodies, with higher antibody-dependent cellular cytotoxicity (ADCC), and better neutralizing and stronger cross-protection activities against H1, H3, H5, and H7 strains and subtypes. Moreover, the cHAmg vaccine combined with a glycolipid adjuvant designed for class switch further enhanced the vaccine efficacy with more IFN-γ, IL-4, and CD8+ memory T cells produced.
Collapse
|
30
|
An approach to the influenza chimeric subunit vaccine (3M2e-HA2-NP) provides efficient protection against lethal virus challenge. Biotechnol Lett 2020; 42:1147-1159. [PMID: 32152828 DOI: 10.1007/s10529-020-02822-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/26/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Vaccination is the most effective preventive strategy for influenza disease. As the virus undergoes high antigenic drift, it requires a constant reformulation to obtain high protection. RESULTS Immunogenicity of a purified chimeric protein containing conserved regions of influenza A/H1N1 viruses including the Hemagglutinin stalk domain, Nucleoprotein, and Matrix protein produced in a prokaryotic system was assessed in vitro and in vivo, alone or in combination with adjuvants by evaluating antibody responses, cytokine production, lymphocyte proliferative assay, and mortality rate after challenge. The animals that received the chimeric protein had specific antibody responses, elicited memory CD4 cells, cytokines of Th1 and Th2 cells and showed 75% protection against influenza virus lethal challenge. The animals injected with the chimeric protein supplemented with Alum showed improved immune responses, but they had 67% protection. In other words, although Alum adjuvant enriched the chimera specific immune responses potently, it could not enhance its protectivity. CONCLUSION Regarding the immunogenicity and protectivity of the chimeric protein construct against influenza, findings of the study suggested that the chimeric protein could be considered as a promising influenza vaccine candidate.
Collapse
|
31
|
Gao R, Sheng Z, Sreenivasan CC, Wang D, Li F. Influenza A Virus Antibodies with Antibody-Dependent Cellular Cytotoxicity Function. Viruses 2020; 12:v12030276. [PMID: 32121563 PMCID: PMC7150983 DOI: 10.3390/v12030276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Influenza causes millions of cases of hospitalizations annually and remains a public health concern on a global scale. Vaccines are developed and have proven to be the most effective countermeasures against influenza infection. Their efficacy has been largely evaluated by hemagglutinin inhibition (HI) titers exhibited by vaccine-induced neutralizing antibodies, which correlate fairly well with vaccine-conferred protection. Contrarily, non-neutralizing antibodies and their therapeutic potential are less well defined, yet, recent advances in anti-influenza antibody research indicate that non-neutralizing Fc-effector activities, especially antibody-dependent cellular cytotoxicity (ADCC), also serve as a critical mechanism in antibody-mediated anti-influenza host response. Monoclonal antibodies (mAbs) with Fc-effector activities have the potential for prophylactic and therapeutic treatment of influenza infection. Inducing mAbs mediated Fc-effector functions could be a complementary or alternative approach to the existing neutralizing antibody-based prevention and therapy. This review mainly discusses recent advances in Fc-effector functions, especially ADCC and their potential role in influenza countermeasures. Considering the complexity of anti-influenza approaches, future vaccines may need a cocktail of immunogens in order to elicit antibodies with broad-spectrum protection via multiple protective mechanisms.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibody-Dependent Cell Cytotoxicity
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Innate
- Influenza A virus/immunology
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
| | - Zizhang Sheng
- Zuckerman Institute, Columbia University, New York, NY 10027, USA;
| | - Chithra C. Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
- Correspondence: (D.W.); (F.L.)
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (R.G.); (C.C.S.)
- BioSNTR, Brookings, SD 57007, USA
- Correspondence: (D.W.); (F.L.)
| |
Collapse
|
32
|
Boudreau CM, Alter G. Extra-Neutralizing FcR-Mediated Antibody Functions for a Universal Influenza Vaccine. Front Immunol 2019; 10:440. [PMID: 30949165 PMCID: PMC6436086 DOI: 10.3389/fimmu.2019.00440] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
While neutralizing antibody titers measured by hemagglutination inhibition have been proposed as a correlate of protection following influenza vaccination, neutralization alone is a modest predictor of protection against seasonal influenza. Instead, emerging data point to a critical role for additional extra-neutralizing functions of antibodies in protection from infection. Specifically, beyond binding and neutralization, antibodies mediate a variety of additional immune functions via their ability to recruit and deploy innate immune effector function. Along these lines, antibody-dependent cellular cytotoxicity, antibody-mediated macrophage phagocytosis and activation, antibody-driven neutrophil activation, antibody-dependent complement deposition, and non-classical Fc-receptor antibody trafficking have all been implicated in protection from influenza infection. However, the precise mechanism(s) by which the immune system actively tunes antibody functionality to drive protective immunity has been poorly characterized. Here we review the data related to Fc-effector functional protection from influenza and discuss prospects to leverage this humoral immune activity for the development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Carolyn M Boudreau
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States.,Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| |
Collapse
|
33
|
Abstract
Annually recurring seasonal influenza causes massive economic loss and poses severe threats to public health worldwide. The current seasonal influenza vaccines are the most effective means of preventing influenza infections but possess major weaknesses. Seasonal influenza vaccines require annual updating of the vaccine strains. However, it is an unreachable task to accurately predict the future circulating strains. Vaccines with mismatched strains dramatically compromise the vaccine efficacy. In addition, the seasonal influenza vaccines are ineffective against an unpredictable pandemic. A universal influenza vaccine would overcome these weaknesses of the seasonal vaccines and abolish the threat of influenza pandemics. One approach under investigation is to design influenza vaccine immunogens based on conserved, type-specific amino acid sequences and conformational epitopes, rather than strain-specific. Such vaccines can elicit broadly reactive humoral and cellular immunity. Universal influenza vaccine development has intensively employed nanotechnology because the structural and morphological properties of nanoparticles dramatically improve vaccine immunogenicity and the induced immunity duration. Layered protein nanoparticles can decrease off-target immune responses, fine-tune antigen recognition and processing, and facilitate comprehensive immune response induction. Herein, we review the designs of effective nanoparticle universal influenza vaccines, the recent discoveries of specific nanoparticle features that contribute to immunogenicity enhancement, and recent progress in clinical trials.
Collapse
Affiliation(s)
- Lei Deng
- Center for Inflammation, Immunity & Infection, Georgia State University, 145 Piedmont Avenue SE, Atlanta, Georgia 30302-3965, United States
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, 145 Piedmont Avenue SE, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
34
|
Keshavarz M, Mirzaei H, Salemi M, Momeni F, Mousavi MJ, Sadeghalvad M, Arjeini Y, Solaymani-Mohammadi F, Sadri Nahand J, Namdari H, Mokhtari-Azad T, Rezaei F. Influenza vaccine: Where are we and where do we go? Rev Med Virol 2018; 29:e2014. [PMID: 30408280 DOI: 10.1002/rmv.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
The alarming rise of morbidity and mortality caused by influenza pandemics and epidemics has drawn attention worldwide since the last few decades. This life-threatening problem necessitates the development of a safe and effective vaccine to protect against incoming pandemics. The currently available flu vaccines rely on inactivated viral particles, M2e-based vaccine, live attenuated influenza vaccine (LAIV) and virus like particle (VLP). While inactivated vaccines can only induce systemic humoral responses, LAIV and VLP vaccines stimulate both humoral and cellular immune responses. Yet, these vaccines have limited protection against newly emerging viral strains. These strains, however, can be targeted by universal vaccines consisting of conserved viral proteins such as M2e and capable of inducing cross-reactive immune response. The lack of viral genome in VLP and M2e-based vaccines addresses safety concern associated with existing attenuated vaccines. With the emergence of new recombinant viral strains each year, additional effort towards developing improved universal vaccine is warranted. Besides various types of vaccines, microRNA and exosome-based vaccines have been emerged as new types of influenza vaccines which are associated with new and effective properties. Hence, development of a new generation of vaccines could contribute to better treatment of influenza.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Medical Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Salemi
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Fatemeh Momeni
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Mousavi
- Department of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Sadeghalvad
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Arjeini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Solaymani-Mohammadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Medical Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Wang Y, Deng L, Kang SM, Wang BZ. Universal influenza vaccines: from viruses to nanoparticles. Expert Rev Vaccines 2018; 17:967-976. [PMID: 30365905 DOI: 10.1080/14760584.2018.1541408] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The current seasonal influenza vaccine confers only limited protection due to waning antibodies or the antigenic shift and drift of major influenza surface antigens. A universal influenza vaccine which induces broad cross-protection against divergent influenza viruses with a comparable or better efficacy to seasonal influenza vaccines against matched strains will negate the need for an annual update of vaccine strains and protect against possible influenza pandemics. AREAS COVERED In this review, we summarize the recent progress in nanoparticle-based universal influenza vaccine development. We compared the most potent nanoparticle categories, focusing on how they encapsulate conserved influenza epitopes, stimulate the innate and adaptive immune systems, exhibit antigen depot effect, extend the period for antigen-processing and presentation, and exert an intrinsic adjuvant effect on inducing robust immune responses. EXPERT COMMENTARY The development of an effective universal influenza vaccine is an urgent task. Traditional influenza vaccine approaches are not sufficient for preventing recurrent epidemics or occasional pandemics. Nanoparticles are compatible with different immunogens and immune stimulators and can overcome the intrinsically low immunogenicity of conserved influenza virus antigens. We foresee that an affordable universal influenza vaccine will be available within ten years by integrating nanoparticles with other targeted delivery and controlled release technology.
Collapse
Affiliation(s)
- Ye Wang
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| | - Lei Deng
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| | - Sang-Moo Kang
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| | - Bao-Zhong Wang
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| |
Collapse
|
36
|
Wang SC, Liao HY, Zhang JY, Cheng TJR, Wong CH. Development of a universal influenza vaccine using hemagglutinin stem protein produced from Pichia pastoris. Virology 2018; 526:125-137. [PMID: 30388628 DOI: 10.1016/j.virol.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022]
Abstract
The development of a universal influenza vaccine has become a major effort to combat the high mutation rate of influenza. To explore the use of the highly conserved stem region of hemagglutinin (HA) as a universal vaccine, we produced HA-stem-based protein using yeast expression systems. The glycosylation effects on the immunogenicity and protection activities were investigated. The yield of the A/Brisbane/59/2007 HA stem produced from Pichia pastoris reached 100 mg/l. The immunogenicity of HA stem proteins in various glycoforms was further investigated and compared. All glycoforms of the HA stem protein can induce cross-reactive antibody responses, antibody-dependent cellular cytotoxicity (ADCC)-mediated protection as well as T-cell responses, with broad protection in mice. The monoglycosylated form of the A/Brisbane/59/2007 HA stem produced in yeast, together with the glycolipid C34 as the adjuvant, can elicit greater ADCC responses, better neutralizing activities against heterologous strains, and broader protection in mice.
Collapse
Affiliation(s)
- Shih-Chi Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Hsin-Yu Liao
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Jia-Yan Zhang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Ting-Jen Rachel Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
| | - Chi-Huey Wong
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
| |
Collapse
|
37
|
Bernasconi V, Bernocchi B, Ye L, Lê MQ, Omokanye A, Carpentier R, Schön K, Saelens X, Staeheli P, Betbeder D, Lycke N. Porous Nanoparticles With Self-Adjuvanting M2e-Fusion Protein and Recombinant Hemagglutinin Provide Strong and Broadly Protective Immunity Against Influenza Virus Infections. Front Immunol 2018; 9:2060. [PMID: 30271406 PMCID: PMC6146233 DOI: 10.3389/fimmu.2018.02060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
Due to the high risk of an outbreak of pandemic influenza, the development of a broadly protective universal influenza vaccine is highly warranted. The design of such a vaccine has attracted attention and much focus has been given to nanoparticle-based influenza vaccines which can be administered intranasally. This is particularly interesting since, contrary to injectable vaccines, mucosal vaccines elicit local IgA and lung resident T cell immunity, which have been found to correlate with stronger protection in experimental models of influenza virus infections. Also, studies in human volunteers have indicated that pre-existing CD4+ T cells correlate well to increased resistance against infection. We have previously developed a fusion protein with 3 copies of the ectodomain of matrix protein 2 (M2e), which is one of the most explored conserved influenza A virus antigens for a broadly protective vaccine known today. To improve the protective ability of the self-adjuvanting fusion protein, CTA1-3M2e-DD, we incorporated it into porous maltodextrin nanoparticles (NPLs). This proof-of-principle study demonstrates that the combined vaccine vector given intranasally enhanced immune protection against a live challenge infection and reduced the risk of virus transmission between immunized and unimmunized individuals. Most importantly, immune responses to NPLs that also contained recombinant hemagglutinin (HA) were strongly enhanced in a CTA1-enzyme dependent manner and we achieved broadly protective immunity against a lethal infection with heterosubtypic influenza virus. Immune protection was mediated by enhanced levels of lung resident CD4+ T cells as well as anti-HA and -M2e serum IgG and local IgA antibodies.
Collapse
Affiliation(s)
- Valentina Bernasconi
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beatrice Bernocchi
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Liang Ye
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Minh Quan Lê
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Ajibola Omokanye
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rodolphe Carpentier
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Karin Schön
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Staeheli
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Didier Betbeder
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France.,Faculté des Sciences du Sport, University of Artois, Arras, France
| | - Nils Lycke
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
Heterosubtypic influenza protection elicited by double-layered polypeptide nanoparticles in mice. Proc Natl Acad Sci U S A 2018; 115:E7758-E7767. [PMID: 30065113 DOI: 10.1073/pnas.1805713115] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Influenza is a persistent threat to public health. Here we report that double-layered peptide nanoparticles induced robust specific immunity and protected mice against heterosubtypic influenza A virus challenges. We fabricated the nanoparticles by desolvating a composite peptide of tandem copies of nucleoprotein epitopes into nanoparticles as cores and cross-linking another composite peptide of four tandem copies of influenza matrix protein 2 ectodomain epitopes to the core surfaces as a coating. Delivering the nanoparticles via dissolvable microneedle patch-based skin vaccination further enhanced the induced immunity. These peptide-only, layered nanoparticles demonstrated a strong antigen depot effect and migrated into spleens and draining (inguinal) lymph nodes for an extended period compared with soluble antigens. This increased antigen-presentation time correlated with the stronger immune responses in the nanoparticle-immunized group. The protection conferred by nanoparticle immunization was transferable by passive immune serum transfusion and depended partially on a functional IgG receptor FcγRIV. Using a conditional cell depletion, we found that CD8+ T cells were involved in the protection. The immunological potency and stability of the layered peptide nanoparticles indicate applications for other peptide-based vaccines and peptide drug delivery.
Collapse
|
39
|
Kumar A, Meldgaard TS, Bertholet S. Novel Platforms for the Development of a Universal Influenza Vaccine. Front Immunol 2018; 9:600. [PMID: 29628926 PMCID: PMC5877485 DOI: 10.3389/fimmu.2018.00600] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses. Frequent genetic shift and drift among influenza-virus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly neutralizing antibodies, and nucleic acid-based vaccines. This review discusses recent scientific advances in the development of next-generation universal influenza vaccines.
Collapse
Affiliation(s)
- Arun Kumar
- GSK, Research and Development Center, Siena, Italy.,Linköping University, Linköping, Sweden
| | - Trine Sundebo Meldgaard
- GSK, Research and Development Center, Siena, Italy.,DTU Nanotech, Technical University of Denmark, Copenhagen, Denmark
| | - Sylvie Bertholet
- GSK, Research and Development Center, Siena, Italy.,GSK, Research and Development Center, Rockville, MD, United States
| |
Collapse
|
40
|
Firsov A, Tarasenko I, Mitiouchkina T, Shaloiko L, Kozlov O, Vinokurov L, Rasskazova E, Murashev A, Vainstein A, Dolgov S. Expression and Immunogenicity of M2e Peptide of Avian Influenza Virus H5N1 Fused to Ricin Toxin B Chain Produced in Duckweed Plants. Front Chem 2018; 6:22. [PMID: 29487846 PMCID: PMC5816751 DOI: 10.3389/fchem.2018.00022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/26/2018] [Indexed: 12/03/2022] Open
Abstract
The amino acid sequence of the extracellular domain of the virus-encoded M2 matrix protein (peptide M2e) is conserved among all subtypes of influenza A strains, enabling the development of a broad-range vaccine against them. We expressed M2e from avian influenza virus A/chicken/Kurgan/5/2005 (H5N1) in nuclear-transformed duckweed plants for further development of an avian influenza vaccine. The 30-amino acid N-terminal fragment of M2, including M2e (denoted M130), was selected for expression. The M2e DNA sequence fused in-frame to the 3' end of ricin toxin B chain (RTB) was cloned under control of the CaMV 35S promoter into pBI121. The resulting plasmid was used for duckweed transformation, and 23 independent transgenic duckweed lines were obtained. Asialofetuin-binding ELISA of protein samples from the transgenic plants using polyclonal anti-RTB antibodies confirmed the expression of the RTB-M130 fusion protein in 20 lines. Quantitative ELISA of crude protein extracts from these lines showed RTB-M130 accumulation ranging from 0.25-2.5 μg/g fresh weight (0.0006-0.01% of total soluble protein). Affinity chromatography with immobilized asialofetuin and western blot analysis of protein samples from the transgenic plants showed expression of fusion protein RTB-M130 in the aggregate form with a molecular mass of about 70 kDa. Mice were immunized orally with a preparation of total soluble protein from transgenic plants, receiving four doses of 7 μg duckweed-derived RTB-M130 each, with no additional adjuvant. Specific IgG against M2e was detected in immunized mice, and the endpoint titer of nti-M2e IgG was 1,024. It was confirmed that oral immunization with RTB-M130 induces production of specific antibodies against peptide M2e, one of the most conserved antigens of the influenza virus. These results may provide further information for the development of a duckweed-based expression system to produce a broad-range edible vaccine against avian influenza.
Collapse
Affiliation(s)
| | | | | | | | - Oleg Kozlov
- Institute of Bioorganic Chemistry (RAS), Moscow, Russia
| | | | | | | | - Alexander Vainstein
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Sergey Dolgov
- Institute of Bioorganic Chemistry (RAS), Moscow, Russia
| |
Collapse
|
41
|
M2e-tetramer-specific memory CD4 T cells are broadly protective against influenza infection. Mucosal Immunol 2018; 11:273-289. [PMID: 28295019 DOI: 10.1038/mi.2017.14] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/24/2017] [Indexed: 02/04/2023]
Abstract
Matrix protein 2 ectodomain (M2e) is considered an attractive component of a broadly protective, universal influenza A vaccine. Here we challenge the canonical view that antibodies against M2e are the prime effectors of protection. Intranasal immunizations of Balb/c mice with CTA1-3M2e-DD-generated M2e-specific memory CD4 T cells that were I-Ad restricted and critically protected against infection, even in the complete absence of antibodies, as observed in JhD mice. Whereas some M2e-tetramer-specific memory CD4 T cells resided in spleen and lymph nodes, the majority were lung-resident Th17 cells, that rapidly expanded upon a viral challenge infection. Indeed, immunized IL-17A-/- mice were significantly less well protected compared with wild-type mice despite exhibiting comparable antibody levels. Similarly, poor protection was also observed in congenic Balb/B (H-2b) mice, which failed to develop M2e-specific CD4 T cells, but exhibited comparable antibody levels. Lung-resident CD69+ CD103low M2e-specific memory CD4 T cells were αβ TCR+ and 50% were Th17 cells that were associated with an early influx of neutrophils after virus challenge. Adoptively transferred M2e memory CD4 T cells were strong helper T cells, which accelerated M2e- but more importantly also hemagglutinin-specific IgG production. Thus, for the first time we demonstrate that M2e-specific memory CD4 T cells are broadly protective.
Collapse
|
42
|
Khodamoradi S, Shenagari M, Kheiri MT, Sabahi F, Jamali A, Heidari A, Ashrafkhani B. IRES-based co-expression of influenza virus conserved genes can promote synergistic antiviral effects both in vitro and in vivo. Arch Virol 2017; 163:877-886. [DOI: 10.1007/s00705-017-3682-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/07/2017] [Indexed: 01/21/2023]
|
43
|
Ricklin ME, Python S, Vielle NJ, Brechbühl D, Zumkehr B, Posthaus H, Zimmer G, Ruggli N, Summerfield A. Virus replicon particle vaccines expressing nucleoprotein of influenza A virus mediate enhanced inflammatory responses in pigs. Sci Rep 2017; 7:16379. [PMID: 29180817 PMCID: PMC5703990 DOI: 10.1038/s41598-017-16419-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/10/2017] [Indexed: 11/22/2022] Open
Abstract
Studies in the mouse model indicate that the nucleoprotein of influenza A virus represents an interesting vaccine antigen being well conserved across subtypes of influenza virus but still able to induce protective immune responses. Here we show that immunizations of pigs with vesicular stomatitis virus- and classical swine fever virus-derived replicon (VRP) particles expressing the nucleoprotein (NP) of H1N1 A/swine/Belzig/2/01 induced potent antibody and T-cell responses against influenza A virus. In contrast to a conventional whole inactivated virus vaccine, the VRP vaccines induced both NP-specific CD4 and CD8 T cells responses, including interferon-γ and tumor-necrosis-factor dual-secreting cell. Although T-cells and antibody responses were cross-reactive with the heterologous H1N2 A/swine/Bakum/R757/2010 challenge virus, they did not provide protection against infection. Surprisingly, vaccinated pigs showed enhanced virus shedding, lung inflammation and increased levels of systemic and lung interferon-α as well as elevated lung interleukin-6. In conclusion, our study shows that NP, although efficacious in the mouse model, appears not to be a promising stand-alone vaccine antigen for pigs.
Collapse
Affiliation(s)
- Meret E Ricklin
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Sylvie Python
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Nathalie J Vielle
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Daniel Brechbühl
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Beatrice Zumkehr
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Horst Posthaus
- Institute for Animal Pathology, Vetsuisse Faculty, University of Bern, Länggasstrasse 122, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggasstrasse 122, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland. .,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggasstrasse 122, Bern, Switzerland.
| |
Collapse
|
44
|
Abstract
Development of a universal influenza vaccine is a research priority for the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health. To facilitate this goal, we convened a workshop in Rockville, Maryland to identify knowledge gaps in influenza research and develop strategies to fill them.
Collapse
Affiliation(s)
- Catharine I Paules
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hilary D Marston
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W Eisinger
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Anthony S Fauci
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Nachbagauer R, Krammer F. Universal influenza virus vaccines and therapeutic antibodies. Clin Microbiol Infect 2017; 23:222-228. [PMID: 28216325 PMCID: PMC5389886 DOI: 10.1016/j.cmi.2017.02.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Current influenza virus vaccines are effective when well matched to the circulating strains. Unfortunately, antigenic drift and the high diversity of potential emerging zoonotic and pandemic viruses make it difficult to select the right strains for vaccine production. This problem causes vaccine mismatches, which lead to sharp drops in vaccine effectiveness and long response times to manufacture matched vaccines in case of novel pandemic viruses. AIMS To provide an overview of universal influenza virus vaccines and therapeutic antibodies in preclinical and clinical development. SOURCES PubMed and clinicaltrials.gov were used as sources for this review. CONTENT Universal influenza virus vaccines that target conserved regions of the influenza virus including the haemagglutinin stalk domain, the ectodomain of the M2 ion channel or the internal matrix and nucleoproteins are in late preclinical and clinical development. These vaccines could confer broad protection against all influenza A and B viruses including drift variants and thereby abolish the need for annual re-formulation and re-administration of influenza virus vaccines. In addition, these novel vaccines would enhance preparedness against emerging influenza virus pandemics. Finally, novel therapeutic antibodies against the same conserved targets are in clinical development and could become valuable tools in the fight against influenza virus infection. IMPLICATIONS Both universal influenza virus vaccines and therapeutic antibodies are potential future options for the control of human influenza infections.
Collapse
Affiliation(s)
- R Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - F Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
46
|
Zheng M, Liu F, Shen Y, Wang S, Xu W, Fang F, Sun B, Xie Z, Chen Z. Cross-protection against influenza virus infection by intranasal administration of nucleoprotein-based vaccine with compound 48/80 adjuvant. Hum Vaccin Immunother 2015; 11:397-406. [PMID: 25607884 DOI: 10.4161/21645515.2014.995056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nucleoprotein (NP) of influenza viruses is highly conserved and therefore has become one of the major targets of current universal influenza vaccine (UIV) studies. In this study, the recombinant nucleoprotein (NP) of the A/PR/8/34 (H1N1) influenza virus strain was expressed using an Escherichia coli (E. coli) expression system and then purified as a candidate UIV. The NP protein was administered intranasally or intraperitoneally twice at 3-week intervals to female BALB/c mice in combination with C48/80 adjuvant. Then, the mice were challenged with homologous or heterologous influenza viruses at a lethal dose 3 weeks after the last immunization. The results showed that the serum IgG titers of all of the mice immunized with NP reached a higher level and the protection provided by NP vaccine against the homologous virus depended on the administered dosage and adjuvant. In addition, immunization with 100 μg NP in combination with C48/80 adjuvant could provide good cross-protection against heterologous H9N2 avian influenza viruses. This study indicated that NP as a candidate antigen of UIV immunized intranasally could effectively induce mucosal and cell-mediated immunity, with the potential to control epidemics caused by the appearance of new emerging influenza viruses.
Collapse
Affiliation(s)
- Mei Zheng
- a Shanghai Institute of Biological Products ; Shanghai , China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
He F, Leyrer S, Kwang J. Strategies towards universal pandemic influenza vaccines. Expert Rev Vaccines 2015; 15:215-25. [DOI: 10.1586/14760584.2016.1115352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Sonja Leyrer
- Emergent Product Development Germany GmbH, Munich, Germany
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Centralized Consensus Hemagglutinin Genes Induce Protective Immunity against H1, H3 and H5 Influenza Viruses. PLoS One 2015; 10:e0140702. [PMID: 26469190 PMCID: PMC4607479 DOI: 10.1371/journal.pone.0140702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
With the exception of the live attenuated influenza vaccine there have been no substantial changes in influenza vaccine strategies since the 1940’s. Here we report an alternative vaccine approach that uses Adenovirus-vectored centralized hemagglutinin (HA) genes as vaccine antigens. Consensus H1-Con, H3-Con and H5-Con HA genes were computationally derived. Mice were immunized with Ad vaccines expressing the centralized genes individually. Groups of mice were vaccinated with 1 X 1010, 5 X 107 and 1 X 107 virus particles per mouse to represent high, intermediate and low doses, respectively. 100% of the mice that were vaccinated with the high dose vaccine were protected from heterologous lethal challenges within each subtype. In addition to 100% survival, there were no signs of weight loss and disease in 7 out of 8 groups of high dose vaccinated mice. Lower doses of vaccine showed a reduction of protection in a dose-dependent manner. However, even the lowest dose of vaccine provided significant levels of protection against the divergent influenza strains, especially considering the stringency of the challenge virus. In addition, we found that all doses of H5-Con vaccine were capable of providing complete protection against mortality when challenged with lethal doses of all 3 H5N1 influenza strains. This data demonstrates that centralized H1-Con, H3-Con and H5-Con genes can be effectively used to completely protect mice against many diverse strains of influenza. Therefore, we believe that these Ad-vectored centralized genes could be easily translated into new human vaccines.
Collapse
|
49
|
Abstract
The best way to combat influenza virus infection is to prevent it. However, the continual evolution of circulating influenza virus strains and the constant threat of newly emerging viruses forces the public health community to annually update seasonal influenza vaccines while stockpiling potential pandemic virus vaccines. Thus, there is an urgent need to develop a "universal" influenza vaccine that affords protection against all strains. In their recent article, L. M. Schwartzman et al. (mBio 6:e01044-15, 2015, doi:10.1128/mBio.01044-15) demonstrated that intranasal immunization of mice with a cocktail of viral-like particles (VLPs) expressing distinct influenza virus hemagglutinin (HA) proteins can broadly protect against infection not only with the same viral strains but also with unrelated strains. These findings suggest a promising strategy for developing a broadly protective "universal" influenza vaccine.
Collapse
Affiliation(s)
- Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
50
|
In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential. BIOMED RESEARCH INTERNATIONAL 2015; 2015:813047. [PMID: 26346523 PMCID: PMC4544958 DOI: 10.1155/2015/813047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/13/2015] [Accepted: 06/14/2015] [Indexed: 12/15/2022]
Abstract
The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques.
Collapse
|