1
|
Adam A, Besson D, Bryant R, Rees S, Willis PA, Burrows JN, Hooft van Huisjduijnen R, Laleu B, Norton L, Canan S, Hawryluk N, Robinson D, Palmer M, Samby KK. Global Health Priority Box─Proactive Pandemic Preparedness. ACS Infect Dis 2024. [PMID: 39488746 DOI: 10.1021/acsinfecdis.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The coronavirus pandemic outbreak of 2019 highlighted the critical importance of preparedness for current and future public health threats (https://www.mmv.org/mmv-open/global-health-priority-box/about-global-health-priority-box). While the main attention for the past few years has been on COVID-19 research, this focus has reduced global resources on research in other areas, including malaria and neglected tropical diseases (NTDs). Such a shift in focus puts at risk the hard-earned progress in global health achieved over the past two decades (https://www.who.int/news-room/spotlight/10-global-health-issues-to-track-in-2021). To address the urgent need for new drugs to combat drug-resistant malaria, emerging zoonotic diseases, and vector control, Medicines for Malaria Venture (MMV) and Innovative Vector Control Consortium (IVCC) assembled a collection of 240 compounds and, in August 2022, launched the Global Health Priority Box (GHPB). This collection of compounds has confirmed activity against emerging pathogens or vectors and is available free of charge. This valuable tool enables researchers worldwide to build on each other's work and save precious time and resources by providing a starting point for the further development of treatments and insecticides. Furthermore, this open access box aligns with two of the many priorities outlined by the World Health Organization (WHO) (https://www.who.int/news-room/spotlight/10-global-health-issues-to-track-in-2021).
Collapse
Affiliation(s)
- Anna Adam
- MMV Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | - Rob Bryant
- Brychem/Agranova, BR6 9AP Kent, United Kingdom
| | - Sarah Rees
- Innovative Vector Control Consortium, L3 5QA Liverpool, United Kingdom
| | - Paul A Willis
- MMV Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | | | - Benoît Laleu
- MMV Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Larry Norton
- Innovative Vector Control Consortium, L3 5QA Liverpool, United Kingdom
| | - Stacie Canan
- Bristol Myers Squibb, California 92121, San Diego, United States of America
| | - Natalie Hawryluk
- Bristol Myers Squibb, California 92121, San Diego, United States of America
| | - Dale Robinson
- Bristol Myers Squibb, California 92121, San Diego, United States of America
| | - Mike Palmer
- MMV Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | |
Collapse
|
2
|
Azevedo Teotônio Cavalcanti MD, Da Silva Menezes KJ, Oliveira Viana JD, Oliveira Rios ÉD, Corrêa de Farias AG, Weber KC, Nogueira F, Dos Santos Nascimento IJ, de Moura RO. Current trends to design antimalarial drugs targeting N-myristoyltransferase. Future Microbiol 2024:1-18. [PMID: 39440556 DOI: 10.1080/17460913.2024.2412397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Malaria is a disease caused by Plasmodium spp., of which Plasmodium falciparum and Plasmodium vivax are the most prevalent. Unfortunately, traditional and some current treatment regimens face growing protozoan resistance. Thus, searching for and exploring new drugs and targets is necessary. One of these is N-myristoyltransferase (NMT). This enzyme is responsible for the myristoylation of several protein substrates in eukaryotic cells, including Plasmodium spp., thus enabling the assembly of protein complexes and stabilization of protein-membrane interactions. Given the importance of this target in developing new antiparasitic drugs, this review aims to explore the recent advances in the design of antimalarial drugs to target Plasmodium NMT.
Collapse
Affiliation(s)
- Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina, Grande-PB, Brazil
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
| | - Karla Joane Da Silva Menezes
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
- Postgraduate Program of Drug Development & Technology Innovation, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Jéssika De Oliveira Viana
- Postgraduate Program of Chemistry, Department of Chemistry, Federal University of Paraíba, João Pessoa, 58051-970, Brazil
| | | | - Arthur Gabriel Corrêa de Farias
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
| | - Karen Cacilda Weber
- Postgraduate Program of Chemistry, Department of Chemistry, Federal University of Paraíba, João Pessoa, 58051-970, Brazil
| | - Fatima Nogueira
- Universidade NOVA de Lisboa, UNL, Global Health & Tropical Medicine, GHTM, Associate Laboratory in Translation & Innovation Towards Global Health, LAREAL, Instituto de Higiene e Medicina Tropical, IHMT, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
- LAQV-REQUIMTE, MolSyn, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Igor José Dos Santos Nascimento
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina, Grande-PB, Brazil
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
- Cesmac University Center, Pharmacy Department, Maceió, 57051-180, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina, Grande-PB, Brazil
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
- Postgraduate Program of Drug Development & Technology Innovation, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| |
Collapse
|
3
|
Ghosh AK, Gulliver JP. Total Syntheses of Strasseriolide A and Strasseriolide B, Potent Antimalarial Agents. J Org Chem 2024; 89:12331-12340. [PMID: 39120520 DOI: 10.1021/acs.joc.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
We describe the convergent total syntheses of strasseriolides A and B, which are potent antimalarial agents recently isolated from an unnamed plant found in a remote region of New Zealand. Both natural products exhibited potent activity against malaria parasite, Plasmodium falciparum. The synthesis involved asymmetric syn-aldol, asymmetric alkylation, and asymmetric Johnson-Claisen rearrangement to set six of the seven chiral centers of strasseriolide B. The synthesis also highlights the formation of an 18-membered macrolactone from a diacid by using a Yamaguchi macrolactonization protocol. Other key transformations involved Grubbs' cross-metathesis, selective 1,4-reduction, hydrostannylation reaction, and NHK coupling reaction. The convergent synthesis of strasseriolide A required 27 total synthetic steps and 16 longest linear steps from known readily available intermediates.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - John P Gulliver
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Rosenthal PJ, Asua V, Bailey JA, Conrad MD, Ishengoma DS, Kamya MR, Rasmussen C, Tadesse FG, Uwimana A, Fidock DA. The emergence of artemisinin partial resistance in Africa: how do we respond? THE LANCET. INFECTIOUS DISEASES 2024; 24:e591-e600. [PMID: 38552654 DOI: 10.1016/s1473-3099(24)00141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/21/2024]
Abstract
Malaria remains one of the most important infectious diseases in the world, with the greatest burden in sub-Saharan Africa, primarily from Plasmodium falciparum infection. The treatment and control of malaria is challenged by resistance to most available drugs, but partial resistance to artemisinins (ART-R), the most important class for the treatment of malaria, was until recently confined to southeast Asia. This situation has changed, with the emergence of ART-R in multiple countries in eastern Africa. ART-R is mediated primarily by single point mutations in the P falciparum kelch13 protein, with several mutations present in African parasites that are now validated resistance mediators based on clinical and laboratory criteria. Major priorities at present are the expansion of genomic surveillance for ART-R mutations across the continent, more frequent testing of the efficacies of artemisinin-based regimens against uncomplicated and severe malaria in trials, more regular assessment of ex-vivo antimalarial drug susceptibilities, consideration of changes in treatment policy to deter the spread of ART-R, and accelerated development of new antimalarial regimens to overcome the impacts of ART-R. The emergence of ART-R in Africa is an urgent concern, and it is essential that we increase efforts to characterise its spread and mitigate its impact.
Collapse
Affiliation(s)
- Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA.
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda; University of Tübingen, Tübingen, Germany
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA; Departments of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Melissa D Conrad
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania; Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania; School of Public Health, Harvard University, Boston, MA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda; Department of Medicine, Makerere University, Kampala, Uganda
| | | | - Fitsum G Tadesse
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia; London School of Hygiene and Tropical Medicine, London, UK
| | - Aline Uwimana
- Rwanda Biomedical Center, Kigali, Rwanda; Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Neog S, Vinjamuri SR, Vijayan K, Kumar S, Trivedi V. NDV targets the invasion pathway in malaria parasite through cell surface sialic acid interaction. FASEB J 2024; 38:e23856. [PMID: 39092913 DOI: 10.1096/fj.202400004rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.
Collapse
Affiliation(s)
- Siddharth Neog
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Sandeep Reddy Vinjamuri
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Kamalakannan Vijayan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Sachin Kumar
- Viral Immunology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| |
Collapse
|
6
|
Sivakumar R, Floyd K, Erath J, Jacoby A, Kim Kim J, Bayguinov PO, Fitzpatrick JAJ, Goldfarb D, Jovanovic M, Tripathi A, Djuranovic S, Pavlovic-Djuranovic S. Poly-basic peptides and polymers as new drug candidates against Plasmodium falciparum. Malar J 2024; 23:227. [PMID: 39090669 PMCID: PMC11295857 DOI: 10.1186/s12936-024-05056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-based combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs, such as lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. In this study, a common characteristic of the P. falciparum proteome-stretches of poly-lysine residues, such as those found in proteins related to adhesion and pathogenicity-is investigated for its potential to treat infected erythrocytes. METHODS This study utilizes in vitro culturing of intra-erythrocytic P. falciparum to assess the ability of poly-lysine peptides to inhibit the parasite's growth, measured via flow cytometry of acridine orange-stained infected erythrocytes. The inhibitory effect of many poly-lysine lengths and modifications were tested this way. Affinity pull-downs and mass spectrometry were performed to identify the proteins interacting with these poly-lysines. RESULTS A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 h. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers retains or increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. CONCLUSION Since poly-lysine dendrimers are already FDA-approved for drug delivery and this study displays their potency against intraerythrocytic P. falciparum, their adaptation as anti-malarial drugs presents a promising new therapeutic strategy for malaria.
Collapse
Affiliation(s)
- Roshan Sivakumar
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine Floyd
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex Jacoby
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Roche Pharma Research & Early Development, F. Hoffmann-LaRoche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Abhai Tripathi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| | | |
Collapse
|
7
|
Manen-Freixa L, Moliner-Cubel S, Gamo FJ, Crespo B, Borrell JI, Teixidó J, Estrada-Tejedor R. Exploring the unexplored chemical space: Rational identification of new Tafenoquine analogs with antimalarial properties. Bioorg Chem 2024; 148:107472. [PMID: 38788364 DOI: 10.1016/j.bioorg.2024.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Patents tend to define a huge chemical space described by the combinatorial nature of Markush structures. However, the optimization of new principal active ingredient is frequently driven by a simple Free Wilson approach. This procedure leads to a highly focused study on the chemical space near a hit compound leaving many unexplored regions that may present highly biological active reservoirs. This study aims to demonstrate that this unveiled chemical space can hide compounds with interesting potential biological activity that would be worth pursuing. This underlines the value and necessity of broadening an approach beyond conventional strategies. Hence, we advocate for an alternative methodology that may be more efficient in the early drug discovery stages. We have selected the case of Tafenoquine, a single-dose treatment for the radical cure of P. vivax malaria approved by the FDA in 2018, as an example to illustrate the process. Through the deep exploration of the Tafenoquine chemical space, seven compounds with potential antimalarial activity have been rationally identified and synthesized. This small set is representative of the chemical diversity unexplored by the 58 analogs reported to date. After biological assessment, results evidence that our approach for rational design has proven to be a very efficient exploratory methodology suitable for the early drug discovery stages.
Collapse
Affiliation(s)
- Leticia Manen-Freixa
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | | | | | - Benigno Crespo
- Global Health Medicines R&D, GSK, Severo Ochoa, 2, 28760 Tres Cantos, Spain
| | - José I Borrell
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Jordi Teixidó
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Roger Estrada-Tejedor
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain.
| |
Collapse
|
8
|
Melebari S, Hafiz A, Alzabeedi KH, Alzahrani AA, Almalki Y, Jadkarim RJ, Qabbani F, Bakri R, Jalal NA, Mashat H, Alsaadi A, Hakim A, Malibari FH, Alkhyami A, Fallatah O. Malaria during COVID-19 Travel Restrictions in Makkah, Saudi Arabia. Trop Med Infect Dis 2024; 9:112. [PMID: 38787045 PMCID: PMC11125771 DOI: 10.3390/tropicalmed9050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Malaria is a parasitic infection that may result in an acute, life-threatening illness. It is a major public health problem in the tropical world. The disease is caused by the parasites of the genus Plasmodium and is transmitted by female Anopheles mosquitoes. Saudi Arabia is in the elimination phase of malaria control. Several parts of Saudi Arabia report cases of imported malaria among travelers and visitors. The city of Makkah in Saudi Arabia has a population of about 2.3 million. Moreover, over 6 million religious visitors from different parts of the world visit Makkah annually. During the COVID-19 outbreak, travel restrictions were enforced in Makkah to contain the spread of COVID-19. We compare the total reported cases of malaria in Makkah before, during, and after COVID-19 travel restrictions in this retrospective cross-sectional study. Data on demographics, clinical data, and laboratory parameters were collected from the medical records of the Ministry of Health, Saudi Arabia. The annual malaria incidence rates in Makkah were 29.13/million people (2018), 37.82/million people (2019), 15.65/million people (2020), 12.61/million people (2021), and 48.69/million people (2022). Most of the malaria cases in Makkah were caused by Plasmodium falciparum, followed by P. vivax. Sudan, Nigeria, Yamen, Pakistan, and India are the top five countries contributing to malaria cases in Makkah. Weekly malaria case analyses revealed that COVID-19-related travel restrictions resulted in zero malaria cases in Makkah, indicating the magnitude of the travel-related malaria burden in the city.
Collapse
Affiliation(s)
- Sami Melebari
- Department of Molecular Biology, The Regional Laboratory, Ministry of Health, Makkah 21955, Saudi Arabia; (S.M.); (F.Q.); (H.M.); (A.A.); (A.H.)
| | - Abdul Hafiz
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia (N.A.J.)
| | - Kamal H. Alzabeedi
- Departments of Medical Research, Clinical Biochemistry, The Regional Laboratory, Ministry of Health, Makkah 21955, Saudi Arabia;
| | - Abdullah A. Alzahrani
- Vector Born and Zoonotic Diseases Administration, Public Health, Ministry of Health, Makkah 21955, Saudi Arabia; (A.A.A.); (Y.A.)
| | - Yehya Almalki
- Vector Born and Zoonotic Diseases Administration, Public Health, Ministry of Health, Makkah 21955, Saudi Arabia; (A.A.A.); (Y.A.)
| | - Renad J. Jadkarim
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia (N.A.J.)
| | - Fadel Qabbani
- Department of Molecular Biology, The Regional Laboratory, Ministry of Health, Makkah 21955, Saudi Arabia; (S.M.); (F.Q.); (H.M.); (A.A.); (A.H.)
| | - Rowaida Bakri
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia (N.A.J.)
| | - Naif A. Jalal
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia (N.A.J.)
| | - Hutaf Mashat
- Department of Molecular Biology, The Regional Laboratory, Ministry of Health, Makkah 21955, Saudi Arabia; (S.M.); (F.Q.); (H.M.); (A.A.); (A.H.)
| | - Aisha Alsaadi
- Department of Molecular Biology, The Regional Laboratory, Ministry of Health, Makkah 21955, Saudi Arabia; (S.M.); (F.Q.); (H.M.); (A.A.); (A.H.)
| | - Ashwaq Hakim
- Department of Molecular Biology, The Regional Laboratory, Ministry of Health, Makkah 21955, Saudi Arabia; (S.M.); (F.Q.); (H.M.); (A.A.); (A.H.)
| | - Feras Hashim Malibari
- Epidemiology and Infection Control Department, Saudi German Hospital, Makkah 21955, Saudi Arabia;
| | - Ahmed Alkhyami
- Department of Microbiology, The Regional Laboratory, Ministry of Health, Makkah 21955, Saudi Arabia;
| | - Othman Fallatah
- Department of Serology, The Regional Laboratory, Ministry of Health, Makkah 21955, Saudi Arabia;
| |
Collapse
|
9
|
Nandal R, Kumar D, Aggarwal N, Kumar V, Narasimhan B, Marwaha RK, Sharma PC, Kumar S, Bansal N, Chopra H, Deep A. Recent advances, challenges and updates on the development of therapeutics for malaria. EXCLI JOURNAL 2024; 23:672-713. [PMID: 38887396 PMCID: PMC11180964 DOI: 10.17179/excli2023-6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/03/2024] [Indexed: 06/20/2024]
Abstract
Malaria has developed as a serious worldwide health issue as a result of the introduction of resistant Plasmodium species strains. Because of the common chemo resistance to most of the existing drugs on the market, it poses a severe health problem and significant obstacles in drug research. Malaria treatment has evolved during the last two decades in response to Plasmodium falciparum drug sensitivity and a return of the disease in tropical areas. Plasmodium falciparum is now highly resistant to the majority of antimalarial drugs. The parasite resistance drew focus to developing novel antimalarials to combat parasite resistance. The requirement for many novel antimalarial drugs in the future year necessitates adopting various drug development methodologies. Different innovative strategies for discovering antimalarial drugs are now being examined here. This review is primarily concerned with the description of newly synthesized antimalarial compounds, i.e. Tafenoquine, Cipargamin, Ferroquine, Artefenomel, DSM265, MMV390048 designed to improve the activity of pure antimalarial enantiomers. In this review, we selected the representative malarial drugs in clinical trials, classified them with detailed targets according to their action, discussed the relationship within the human trials, and generated a summative discussion with prospective expectations.
Collapse
Affiliation(s)
- Rimmy Nandal
- Shri Baba MastNath Institute of Pharmaceutical Sciences and Research, Baba Mast Nath University, Asthal Bohar, Rohtak-124001, Haryana, India
| | - Davinder Kumar
- College of Pharmacy, PGIMS University of Health Sciences, Rohtak-124001, Haryana, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Virender Kumar
- College of Pharmacy, PGIMS University of Health Sciences, Rohtak-124001, Haryana, India
| | | | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak 124001 Haryana, India
| | - Prabodh Chander Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani-127021, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai - 602105, Tamil Nadu, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| |
Collapse
|
10
|
Tian X, Janes HE, Kublin JG. Statistical design and analysis of controlled human malaria infection trials. Malar J 2024; 23:133. [PMID: 38702775 PMCID: PMC11068571 DOI: 10.1186/s12936-024-04959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Malaria is a potentially life-threatening disease caused by Plasmodium protozoa transmitted by infected Anopheles mosquitoes. Controlled human malaria infection (CHMI) trials are used to assess the efficacy of interventions for malaria elimination. The operating characteristics of statistical methods for assessing the ability of interventions to protect individuals from malaria is uncertain in small CHMI studies. This paper presents simulation studies comparing the performance of a variety of statistical methods for assessing efficacy of intervention in CHMI trials. METHODS Two types of CHMI designs were investigated: the commonly used single high-dose design (SHD) and the repeated low-dose design (RLD), motivated by simian immunodeficiency virus (SIV) challenge studies. In the context of SHD, the primary efficacy endpoint is typically time to infection. Using a continuous time survival model, five statistical tests for assessing the extent to which an intervention confers partial or full protection under single dose CHMI designs were evaluated. For RLD, the primary efficacy endpoint is typically the binary infection status after a specific number of challenges. A discrete time survival model was used to study the characteristics of RLD versus SHD challenge studies. RESULTS In a SHD study with the continuous time survival model, log-rank test and t-test are the most powerful and provide more interpretable results than Wilcoxon rank-sum tests and Lachenbruch tests, while the likelihood ratio test is uniformly most powerful but requires knowledge of the underlying probability model. In the discrete time survival model setting, SHDs are more powerful for assessing the efficacy of an intervention to prevent infection than RLDs. However, additional information can be inferred from RLD challenge designs, particularly using a likelihood ratio test. CONCLUSIONS Different statistical methods can be used to analyze controlled human malaria infection (CHMI) experiments, and the choice of method depends on the specific characteristics of the experiment, such as the sample size allocation between the control and intervention groups, and the nature of the intervention. The simulation results provide guidance for the trade off in statistical power when choosing between different statistical methods and study designs.
Collapse
Affiliation(s)
- Xiaowen Tian
- Department of Biostatistics, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA.
| | - Holly E Janes
- Department of Biostatistics, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Sadhu C, Mitra AK. Synthetic, biological and optoelectronic properties of phenoxazine and its derivatives: a state of the art review. Mol Divers 2024; 28:965-1007. [PMID: 36757655 PMCID: PMC9909160 DOI: 10.1007/s11030-023-10619-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Phenoxazines have sparked a lot of interest owing to their numerous applications in material science, organic light-emitting diodes, photoredox catalyst, dye-sensitized solar cells and chemotherapy. Among other things, they have antioxidant, antidiabetic, antimalarial, anti-alzheimer, antiviral, anti-inflammatory and antibiotic properties. Actinomycin D, which contains a phenoxazine moiety, functions both as an antibiotic and anticancer agent. Several research groups have worked on various structural modifications over the years in order to develop new phenoxazines with improved properties. Both phenothiazines and phenoxazines have gained prominence in medicine as pharmacological lead structures from their traditional uses as dyes and pigments. Organoelectronics and material sciences have recently found these compounds and their derivatives to be quite useful. Due to this, organic synthesis has been used in an unprecedented amount of exploratory alteration of the parent structures in an effort to create novel derivatives with enhanced biological and material capabilities. As a result, it is critical to conduct more frequent reviews of the work done in this area. Various stages of the synthetic transformation of phenoxazine scaffolds have been depicted in this article. This article aims to provide a state of the art review for the better understanding of the phenoxazine derivatives highlighting the progress and prospects of the same in medicinal and material applications.
Collapse
Affiliation(s)
- Chandrita Sadhu
- Department of Chemistry, Rani Rashmoni Green University, Tarakeswar, Hooghly, West Bengal, India
| | - Amrit Krishna Mitra
- Department of Chemistry, Government General Degree College, Singur, Singur, Hooghly, West Bengal, 712409, India.
| |
Collapse
|
12
|
Aziz S, Waqas M, Naz HF, Halim SA, Jan A, Muhsinah AB, Khan A, Al-Harrasi A. Identification of novel compounds and repurposing of FDA drugs for 1-deoxy-D-xylulose 5-phosphate reductoisomerase enzyme of Plasmodium falciparum to combat malaria resistance. Int J Biol Macromol 2024; 257:128672. [PMID: 38092105 DOI: 10.1016/j.ijbiomac.2023.128672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
The rise of Plasmodium falciparum resistance to Artemisinin-based combination therapies (ACTs) is a significant concern in the fight against malaria. This situation calls for the search for novel anti-malarial candidates. 1-deoxy-D-xylulose 5-phosphate reductoisomerase (IspC) is a potential target involved in various cellular processes in P. falciparum (Pf). We screened ∼0.69 billion novel compounds from the ZINC20 library and repurposed ∼1400 FDA drugs using computational drug discovery methods against PfIspC. Following our computational pipeline, we found five novel ZINC20 compounds (Z-2, Z-3, Z-10, Z-13, and Z-14) and three FDA drugs (Aliskiren, Ceftolozane, and Ombitasvir) that showed striking docking energy (ranging from -8.405 to -10.834 kcal/mol), and strong interactions with key binding site residues (Ser269, Ser270, Ser306, Asn311, Lys312, and Met360) of PfIspC. The novel anti-malarial compounds also exhibited favorable pharmacokinetics and physicochemical properties. Furthermore, through molecular dynamics simulation, we observed the stable dynamics of PfIspC-inhibitor complexes and the influence of inhibitor binding on the protein's conformational arrangements. Notably, the binding free energy estimation confirmed high binding affinity (varied from -11.68 to -33.16 kcal/mol) of these compounds for PfIspC. Our findings could contribute to the ongoing efforts in combating malaria and invite experimental-lab researchers for validation.
Collapse
Affiliation(s)
- Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25130, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21120, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, 616 Nizwa, Oman
| | - Hafiza Farah Naz
- Department of Biotechnology, , Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, 616 Nizwa, Oman
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, 616 Nizwa, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, 616 Nizwa, Oman.
| |
Collapse
|
13
|
Erhunse N, Kumari S, Anmol, Singh P, Omoregie ES, Singh AP, Sharma U, Sahal D. Annickia affinis (Exell) Versteegh & Sosef methanol stem bark extract, potent fractions and isolated Berberine alkaloid target both blood and liver stages of malaria parasites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117269. [PMID: 37813288 DOI: 10.1016/j.jep.2023.117269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Having identified Annickia affinis as the most potent antiplasmodial plant constituent in a hepta-herbal Agbo-iba (HHA) formula commonly used to manage malaria in Benin city, Nigeria, we have in this study attempted to identify the specialized metabolites responsible for antiplasmodial activity of A. affinis through anti-blood stage malaria parasite activity guided isolation of potent molecules from its stem bark methanol extract. After that, phenotypic effects, including stage-specific kill kinetics, were investigated. Further, the crude extract, its potent fractions, and specialized metabolites were also tested against the liver-stage malaria parasite. MATERIALS AND METHODS A. affinis was subjected to molecular PCR-based analysis to confirm its identity. Thereafter, extraction of its stem bark with methanol was carried out. Alkaloid enriched fractions from this stem bark extract were obtained using the acid-base-solvent extraction method. These alkaloid-enriched fractions were subjected to various chromatographic techniques that led to the isolation of two protoberberine alkaloids identified as berberine and palmatine based on NMR and mass spectrometry analysis. The efficacy of crude extract, fractions and purified alkaloids was tested against the malaria parasite's blood and liver stages, respectively. RESULTS AND DISCUSSION Annickia affinis methanol extract, fractions, and the isolated protoberberine alkaloids showed excellent antiplasmodial activity with good selectivity against blood-stage malaria parasite. Thus, their IC50 against various strains of the parasite ranged from 0.95 to 18.65 μg/ml, while CC50 against Human embryonic kidney (HEK) and the human hepatoma (HUH-7) cell lines ranged between 10 and > 100 μg/ml. Interestingly, the crude extract and the alkaloid enriched fractions showed promising activity against the liver-stage malaria parasite. Between berberine and palmatine isolated from the potent fractions, only the former showed ∼100% and 90% inhibitions of liver stage parasite at 5 μg/ml and 1 μg/ml, respectively, while the latter showed no inhibition even at 20 μg/ml. CONCLUSION This study reports that the ethnomedicinal use of HHA to manage malaria can be attributed to the presence of promising antiplasmodial protoberberine alkaloids together with synergistic effects via either enhancement of bioavailability or improved pharmacokinetics by other phytoconstituent(s) coming from other HHA constituent plants. The protoberberine alkaloids isolated have been identified as fast-acting antiplasmodial agents, with activity against all erythrocytic stages of the malaria parasite. Further, A. affinis methanol stembark extract and the protoberberine alkaloid berberine isolated from it also displayed excellent activity (>90% inhibition at 1 μg/ml) against the liver-stage malaria parasite. A. affinis and HHA can thus be useful as both liver-stage prophylactic and blood-stage curative agents.
Collapse
Affiliation(s)
- Nekpen Erhunse
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India; Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin city, Nigeria
| | - Surekha Kumari
- Chemical Technology Division CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anmol
- Chemical Technology Division CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhiz, 110067, India
| | | | - Agam Prasad Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhiz, 110067, India
| | - Upendra Sharma
- Chemical Technology Division CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinkar Sahal
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
14
|
Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 2023; 19:688-709. [PMID: 37857843 DOI: 10.1038/s41582-023-00881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.
Collapse
Affiliation(s)
- Alexandros Hadjilaou
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany.
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Brandi
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Mathias Riehn
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| |
Collapse
|
15
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
16
|
Gupta A, Laha JK. Growing Utilization of Radical Chemistry in the Synthesis of Pharmaceuticals. CHEM REC 2023; 23:e202300207. [PMID: 37565381 DOI: 10.1002/tcr.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Our current unhealthy lifestyle and the exponential surge in the population getting affected by a variety of diseases have made pharmaceuticals or drugs an imperative part of life, making the development of innovative strategies for drug discovery or the introduction of refined, cost-effective and modern technologies for the synthesis of clinically used drugs, a need of the hour. Ever since their discovery, free radicals and radical cations or anions as reactive intermediates have captivated the chemists, resulting in an exceptional utilization of these moieties throughout the field of chemical synthesis, owing to their unprecedented and widespread reactivity. Sticking with the idea of not judging the book by its cover, despite the conventional thought process of radicals being unstable and difficult to control entities, scientists and academicians around the globe have done an appreciable amount of work utilizing both persistent as well as transient radicals for a variety of organic transformations, exemplifying them with the synthesis of significant biologically active pharmaceutical ingredients. This review truly accounts for the organic radical transformations including radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling with metal-complexes and radical cations coupling with nucleophiles, that offers fascinating and unconventional approaches towards the construction of intricate structural frameworks of marketed APIs with high atom- and step-economy; complementing the otherwise employed traditional methods. This tutorial review presents a comprehensive package of diverse methods utilized for radical generation, featuring their reactivity to form critical bonds in pharmaceutical total synthesis or in building key starting materials or intermediates of their synthetic journey, acknowledging their excellence, downsides and underlying mechanisms, which are otherwise poorly highlighted in the literature. Despite great achievements over the past few decades in this area, many challenges and obstacles are yet to be unraveled to shorten the distance between the academics and the industry, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| |
Collapse
|
17
|
Sivakumar R, Floyd K, Jessey E, Kim JK, Bayguinov PO, Fitzpatrick JA, Goldfrab D, Jovanovic M, Tripathi A, Djuranovic S, Pavlovic-Djuranovic S. Poly-basic peptides and polymers as new drug candidate against Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558069. [PMID: 37745508 PMCID: PMC10516022 DOI: 10.1101/2023.09.16.558069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs like lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. Our study shows that a common characteristic of the P. falciparum proteome - stretches of poly-lysine residues such as those found in proteins related to adhesion and pathogenicity - can serve as an effective peptide treatment for infected erythrocytes. A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 hours. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers further increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, our affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. Since poly-lysine dendrimers are already FDA-approved for drug delivery, their adaptation as antimalarial drugs presents a promising new therapeutic strategy.
Collapse
Affiliation(s)
- Roshan Sivakumar
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | - Katherine Floyd
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | - Erath Jessey
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University; New York, New York, USA
| | - Peter O. Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Missouri, USA
- Department of Neuroscience, Washington University School of Medicine; Missouri, USA
| | - James A.J. Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Missouri, USA
- Department of Neuroscience, Washington University School of Medicine; Missouri, USA
| | - Dennis Goldfrab
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University; New York, New York, USA
| | - Abhai Tripathi
- Johns Hopkins Bloomberg School of Public Health; Baltimore, Maryland, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine; Missouri, USA
| | | |
Collapse
|
18
|
Guissou RM, Amaratunga C, de Haan F, Tou F, Cheah PY, Yerbanga RS, Moors EHM, Dhorda M, Tindana P, Boon WPC, Dondorp AM, Ouédraogo JB. The impact of anti-malarial markets on artemisinin resistance: perspectives from Burkina Faso. Malar J 2023; 22:269. [PMID: 37705004 PMCID: PMC10498571 DOI: 10.1186/s12936-023-04705-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Widespread artemisinin resistance in Africa could be catastrophic when drawing parallels with the failure of chloroquine in the 1970s and 1980s. This article explores the role of anti-malarial market characteristics in the emergence and spread of arteminisin resistance in African countries, drawing on perspectives from Burkina Faso. METHODS Data were collected through in-depth interviews and focus group discussions. A representative sample of national policy makers, regulators, public and private sector wholesalers, retailers, clinicians, nurses, and community members were purposively sampled. Additional information was also sought via review of policy publications and grey literature on anti-malarial policies and deployment practices in Burkina Faso. RESULTS Thirty seven in-depth interviews and 6 focus group discussions were conducted. The study reveals that the current operational mode of anti-malarial drug markets in Burkina Faso promotes arteminisin resistance emergence and spread. The factors are mainly related to the artemisinin-based combination therapy (ACT) supply chain, to ACT quality, ACT prescription monitoring and to ACT access and misuse by patients. CONCLUSION Study findings highlight the urgent requirement to reform current characteristics of the anti-malarial drug market in order to delay the emergence and spread of artemisinin resistance in Burkina Faso. Four recommendations for public policy emerged during data analysis: (1) Address the suboptimal prescription of anti-malarial drugs, (2) Apply laws that prohibit the sale of anti-malarials without prescription, (3) Restrict the availability of street drugs, (4) Sensitize the population on the value of compliance regarding correct acquisition and intake of anti-malarials. Funding systems for anti-malarial drugs in terms of availability and accessibility must also be stabilized.
Collapse
Affiliation(s)
- Rosemonde M Guissou
- Institut de Recherche en Sciences de la Sante, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso.
| | - Chanaki Amaratunga
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Freek de Haan
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Fatoumata Tou
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Phaik Yeong Cheah
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - R Serge Yerbanga
- Institut de Recherche en Sciences de la Sante, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Ellen H M Moors
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paulina Tindana
- School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Wouter P C Boon
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
19
|
Ellis JT, Reichel MP. Twitter trends in #Parasitology determined by text mining and topic modelling. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100138. [PMID: 37670843 PMCID: PMC10475476 DOI: 10.1016/j.crpvbd.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
This study investigated the emergence and use of Twitter, as of July 2023 being rebranded as X, as the main forum for social media communication in parasitology. A dataset of tweets was constructed using a keyword search of Twitter with the search terms 'malaria', 'Plasmodium', 'Leishmania', 'Trypanosoma', 'Toxoplasma' and 'Schistosoma' for the period from 2011 to 2020. Exploratory data analyses of tweet content were conducted, including language, usernames and hashtags. To identify parasitology topics of discussion, keywords and phrases were extracted using KeyBert and biterm topic modelling. The sentiment of tweets was analysed using VADER. The results show that the number of tweets including the keywords increased from 2011 (for malaria) and 2013 (for the others) to 2020, with the highest number of tweets being recorded in 2020. The maximum number of yearly tweets for Plasmodium, Leishmania, Toxoplasma, Trypanosoma and Schistosoma was recorded in 2020 (2804, 2161, 1570, 680 and 360 tweets, respectively). English was the most commonly used language for tweeting, although the percentage varied across the searches. In tweets mentioning Leishmania, only ∼37% were in English, with Spanish being more common. Across all the searches, Portuguese was another common language found. Popular tweets on Toxoplasma contained keywords relating to mental health including depression, anxiety and schizophrenia. The Trypanosoma tweets referenced drugs (benznidazole, nifurtimox) and vectors (bugs, triatomines, tsetse), while the Schistosoma tweets referenced areas of biology including pathology, eggs and snails. A wide variety of individuals and organisations were shown to be associated with Twitter activity. Many journals in the parasitology arena regularly tweet about publications from their journal, and professional societies promote activity and events that are important to them. These represent examples of trusted sources of information, often by experts in their fields. Social media activity of influencers, however, who have large numbers of followers, might have little or no training in science. The existence of such tweeters does raise cause for concern to parasitology, as one may start to question the quality of information being disseminated.
Collapse
Affiliation(s)
- John T. Ellis
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Michael P. Reichel
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
20
|
Amambua-Ngwa A, Button-Simons KA, Li X, Kumar S, Brenneman KV, Ferrari M, Checkley LA, Haile MT, Shoue DA, McDew-White M, Tindall SM, Reyes A, Delgado E, Dalhoff H, Larbalestier JK, Amato R, Pearson RD, Taylor AB, Nosten FH, D'Alessandro U, Kwiatkowski D, Cheeseman IH, Kappe SHI, Avery SV, Conway DJ, Vaughan AM, Ferdig MT, Anderson TJC. Chloroquine resistance evolution in Plasmodium falciparum is mediated by the putative amino acid transporter AAT1. Nat Microbiol 2023; 8:1213-1226. [PMID: 37169919 PMCID: PMC10322710 DOI: 10.1038/s41564-023-01377-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
Malaria parasites break down host haemoglobin into peptides and amino acids in the digestive vacuole for export to the parasite cytoplasm for growth: interrupting this process is central to the mode of action of several antimalarial drugs. Mutations in the chloroquine (CQ) resistance transporter, pfcrt, located in the digestive vacuole membrane, confer CQ resistance in Plasmodium falciparum, and typically also affect parasite fitness. However, the role of other parasite loci in the evolution of CQ resistance is unclear. Here we use a combination of population genomics, genetic crosses and gene editing to demonstrate that a second vacuolar transporter plays a key role in both resistance and compensatory evolution. Longitudinal genomic analyses of the Gambian parasites revealed temporal signatures of selection on a putative amino acid transporter (pfaat1) variant S258L, which increased from 0% to 97% in frequency between 1984 and 2014 in parallel with the pfcrt1 K76T variant. Parasite genetic crosses then identified a chromosome 6 quantitative trait locus containing pfaat1 that is selected by CQ treatment. Gene editing demonstrated that pfaat1 S258L potentiates CQ resistance but at a cost of reduced fitness, while pfaat1 F313S, a common southeast Asian polymorphism, reduces CQ resistance while restoring fitness. Our analyses reveal hidden complexity in CQ resistance evolution, suggesting that pfaat1 may underlie regional differences in the dynamics of resistance evolution, and modulate parasite resistance or fitness by manipulating the balance between both amino acid and drug transport.
Collapse
Affiliation(s)
- Alfred Amambua-Ngwa
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Katrina A Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Katelyn Vendrely Brenneman
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marco Ferrari
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meseret T Haile
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Douglas A Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marina McDew-White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sarah M Tindall
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ann Reyes
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Elizabeth Delgado
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Haley Dalhoff
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - James K Larbalestier
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | - Alexander B Taylor
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, Antonio, TX, USA
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Umberto D'Alessandro
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Ian H Cheeseman
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - David J Conway
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Michael T Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Timothy J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
21
|
de Amorim MR, Barbosa CDS, Paz TA, Ióca LP, Nicácio KJ, de Oliveira LFP, Goulart MO, Paulino JM, da Cruz MO, Ferreira AG, Furlan M, de Lira SP, Dos Santos RA, Rodrigues A, Guido RVC, Berlinck RGS. Polyketide- and Terpenoid-Derived Metabolites Produced by a Marine-Derived Fungus, Peroneutypa sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:1476-1486. [PMID: 37289832 DOI: 10.1021/acs.jnatprod.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioassay-guided investigation of the EtOAc-soluble extract of a culture of the marine-derived fungus Peroneutypa sp. M16 led to the isolation of seven new polyketide- and terpenoid-derived metabolites (1, 2, 4-8), along with known polyketides (3, 9-13). Structures of compounds 1, 2, and 4-8 were established by analysis of spectroscopic data. Absolute configurations of compounds 1, 2, 4, 6, 7, and 8 were determined by the comparison of experimental ECD spectra with calculated CD data. Compound 5 exhibited moderate antiplasmodial activity against both chloroquine-sensitive and -resistant strains of Plasmodium falciparum.
Collapse
Affiliation(s)
- Marcelo R de Amorim
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Camila de S Barbosa
- Instituto de Física de São Carlos, Universidade de São Paulo, CEP 13563-120, São Carlos, SP, Brazil
| | - Tiago A Paz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Karen J Nicácio
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| | - Lucianne F P de Oliveira
- Departamento de Ciências Exatas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CEP 13418-900, Piracicaba, SP, Brazil
| | - Mirian O Goulart
- Centro de Pesquisa em Ciência e Tecnologia, Universidade de Franca, CEP 14404-600, Franca, SP, Brazil
| | - Julia M Paulino
- Centro de Pesquisa em Ciência e Tecnologia, Universidade de Franca, CEP 14404-600, Franca, SP, Brazil
| | - Mateus O da Cruz
- Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho", CEP 13506-900, Rio Claro, SP, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Maysa Furlan
- Instituto de Química de Araraquara, Universidade Estadual Paulista "Júlio de Mesquita Filho", CEP 14800-900, Araraquara, SP, Brazil
| | - Simone P de Lira
- Departamento de Ciências Exatas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CEP 13418-900, Piracicaba, SP, Brazil
| | - Raquel A Dos Santos
- Centro de Pesquisa em Ciência e Tecnologia, Universidade de Franca, CEP 14404-600, Franca, SP, Brazil
| | - André Rodrigues
- Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho", CEP 13506-900, Rio Claro, SP, Brazil
| | - Rafael V C Guido
- Instituto de Física de São Carlos, Universidade de São Paulo, CEP 13563-120, São Carlos, SP, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
22
|
Nascimento IJDS, Cavalcanti MDAT, de Moura RO. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases. Eur J Med Chem 2023; 258:115550. [PMID: 37336067 DOI: 10.1016/j.ejmech.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Neglected tropical diseases (NTDs) constitute a group of approximately 20 infectious diseases that mainly affect the impoverished population without basic sanitation in tropical countries. These diseases are responsible for many deaths worldwide, costing billions of dollars in public health investment to treat and control these infections. Among them are the diseases caused by protozoa of the Trypanosomatid family, which constitute Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness), and Leishmaniasis. In addition, there is a classification of other diseases, called the big three, AIDS, tuberculosis, and malaria, which are endemic in countries with tropical conditions. Despite the high mortality rates, there is still a gap in the treatment. The drugs have a high incidence of side effects and protozoan resistance, justifying the investment in developing new alternatives. In fact, the Target-Based Drug Design (TBDD) approach is responsible for identifying several promising compounds, and among the targets explored through this approach, N-myristoyltransferase (NMT) stands out. It is an enzyme related to the co-translational myristoylation of N-terminal glycine in various peptides. The myristoylation process is a co-translation that occurs after removing the initiator methionine. This process regulates the assembly of protein complexes and stability, which justifies its potential as a drug target. In order to propose NMT as a potential target for parasitic diseases, this review will address the entire structure and function of this enzyme and the primary studies demonstrating its promising potential against Leishmaniasis, T. cruzi, T. brucei, and malaria. We hope our information can help researchers worldwide search for potential drugs against these diseases that have been threatening the health of the world's population.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Cesmac University Center, Pharmacy Departament, Maceió, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil.
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
23
|
Umumararungu T, Nkuranga JB, Habarurema G, Nyandwi JB, Mukazayire MJ, Mukiza J, Muganga R, Hahirwa I, Mpenda M, Katembezi AN, Olawode EO, Kayitare E, Kayumba PC. Recent developments in antimalarial drug discovery. Bioorg Med Chem 2023; 88-89:117339. [PMID: 37236020 DOI: 10.1016/j.bmc.2023.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Although malaria remains a big burden to many countries that it threatens their socio-economic stability, particularly in the countries where malaria is endemic, there have been great efforts to eradicate this disease with both successes and failures. For example, there has been a great improvement in malaria prevention and treatment methods with a net reduction in infection and mortality rates. However, the disease remains a global threat in terms of the number of people affected because it is one of the infectious diseases that has the highest prevalence rate, especially in Africa where the deadly Plasmodium falciparum is still widely spread. Methods to fight malaria are being diversified, including the use of mosquito nets, the target candidate profiles (TCPs) and target product profiles (TPPs) of medicine for malarial venture (MMV) strategy, the search for newer and potent drugs that could reverse chloroquine resistance, and the use of adjuvants such as rosiglitazone and sevuparin. Although these adjuvants have no antiplasmodial activity, they can help to alleviate the effects which result from plasmodium invasion such as cytoadherence. The list of new antimalarial drugs under development is long, including the out of ordinary new drugs MMV048, CDRI-97/78 and INE963 from South Africa, India and Novartis, respectively.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Jean Baptiste Nyandwi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Raymond Muganga
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Innocent Hahirwa
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Alain Nyirimigabo Katembezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Egide Kayitare
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Pierre Claver Kayumba
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
24
|
Pandey SK, Anand U, Siddiqui WA, Tripathi R. Drug Development Strategies for Malaria: With the Hope for New Antimalarial Drug Discovery—An Update. Adv Med 2023; 2023:5060665. [PMID: 36960081 PMCID: PMC10030226 DOI: 10.1155/2023/5060665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Malaria continued to be a deadly situation for the people of tropical and subtropical countries. Although there has been a marked reduction in new cases as well as mortality and morbidity rates in the last two decades, the reporting of malaria caused 247 million cases and 619000 deaths worldwide in 2021, according to the WHO (2022). The development of drug resistance and declining efficacy against most of the antimalarial drugs/combination in current clinical practice is a big challenge for the scientific community, and in the absence of an effective vaccine, the problem becomes worse. Experts from various research organizations worldwide are continuously working hard to stop this disaster by employing several strategies for the development of new antimalarial drugs/combinations. The current review focuses on the history of antimalarial drug discovery and the advantages, loopholes, and opportunities associated with the common strategies being followed for antimalarial drug development.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- 1Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Uttpal Anand
- 2Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Waseem A. Siddiqui
- 3Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
| | - Renu Tripathi
- 4Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
25
|
Recent approaches in the drug research and development of novel antimalarial drugs with new targets. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:1-27. [PMID: 36692468 DOI: 10.2478/acph-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.
Collapse
|
26
|
Antimalarial activity of the 80%methanol extract and solvent fractions of Cucumis ficifolius A. rich roots against Plasmodium berghei in mice. Heliyon 2023; 9:e13690. [PMID: 36852070 PMCID: PMC9958454 DOI: 10.1016/j.heliyon.2023.e13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Ethnopharmacological relevance Malaria is still a known health threat, especially in parts of sub-Saharan Africa. It is one of the frequently mentioned issues with hospital admission and outpatient care in Ethiopia. Cucumis ficifolius A. Rich roots are historically used in Ethiopia to treat meningitis, inflammation, and malaria. However, the antimalarial activity of this plant has not been scientifically studied so far. Aim of the study This study aimed to determine the in vivo antimalarial activity of 80% methanol extract and solvent fractions of the roots of Cucumis ficifolius against Plasmodium berghei infection in mice. Methods The in vivo antimalarial activity of the 80% methanol extract and solvent fractions of Cucumis ficifolius A. Rich was evaluated by standard chemo suppressive, curative and repository tests using Plasmodium berghei (ANKA strain) in Swiss albino mice at doses of 100, 200 and 400 mg/kg/day. The level of parasitemia, survival time, variation in weight, rectal temperature, and packed cell volume of mice were determined to establish the activity of the extracts. Result The 80% methanol extract of Cucumis ficifolius A. Rich roots had a promising suppression of parasitemia at 400 mg/kg with a chemosuppression value of 65.21 ± 1.20%. Among the solvent fractions, the chloroform fraction showed the highest antimalarial activity in the four-day suppressive test with a chemosuppression value of 55.9 ± 0.28%, followed by the n-butanol (42.9 ± 0.24%), and aqueous (40.57 ± 0.52%) fractions at a dose of 400 mg/kg. The highest survival times were observed with crude extract (15.4 ± 0.24 days) at 400 mg/kg, and chloroform fraction (13.4 + 0.24 days), though all extracts increased survival time. Conclusion The findings of the present study collectively indicate the root extract of Cucumis ficifolius has a promising antiplasmodial activity which substantiates the traditional claim of the plant.
Collapse
|
27
|
Quercetin nano phytosome: as a novel anti-leishmania and anti-malarial natural product. J Parasit Dis 2023; 47:257-264. [PMID: 36685738 PMCID: PMC9838256 DOI: 10.1007/s12639-022-01561-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023] Open
Abstract
Leishmaniasis is a vector-borne disease that affects several populations worldwide with the clinical manifestations in skin, mucous membranes, and internal organs and there are not any effective and available vaccines and conventional treatments are highly toxic. Quercetin is a kind of flavonoid with different biological effects including free radical scavenging and anti-microbial activity and this study is aimed to assess the anti-leishmania and anti-malarial effects of quercetin loaded phytosome and quercetin alone. In this experimental study, the in vitro activity of above drugs were measured using microscopically examinations and for evaluation the anti-leishmanial efficacy, the size of lesions were measured. Moreover the cytotoxicity of the treatments was evaluated on WI38 and J774 cell lines. Our results indicated that quercetin loaded phytosome and quercetin alone have acceptable anti-parasitic activity mostly at concentration of 400 µg/ml on both P. falciparium and L. major. The results of cytotoxicity revealed that the mentioned drugs have no effects on human cell lines and also have no hemolytic activity. The drug of choice for the treatment of leishmaniasis, in addition to killing the parasite, should not have a toxic effect on human cells and our results indicated that quercetin can be a valuable candidate for treatment of different kinds of leishmaniasis.
Collapse
|
28
|
Spirofused Tetrahydroisoquinoline-Oxindole Hybrids (Spiroquindolones) as Potential Multitarget Antimalarial Agents: Preliminary Hit Optimization and Efficacy Evaluation in Mice. Antimicrob Agents Chemother 2022; 66:e0060722. [PMID: 36409128 PMCID: PMC9765129 DOI: 10.1128/aac.00607-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Previous studies suggest that 3',5'-dihydro-2'H-spiro[indoline-3,1'-isoquinolin]-2-ones (DSIIQs [spiroquindolones]) are multitarget antiplasmodial agents that combine the actions of spiroindolone and naphthylisoquinoline antimalarial agents. In this study, 12 analogues of compound (±)-5 (moxiquindole), the prototypical spiroquindolone, were synthesized and tested for antiplasmodial activity. Compound (±)-11 (a mixture of compounds 11a and 11b), the most potent analogue, displayed low-nanomolar activity against P. falciparum chloroquine-sensitive 3D7 strain (50% inhibitory concentration [IC50] for 3D7 = 21 ± 02 nM) and was active against all major erythrocytic stages of the parasite life cycle (ring, trophozoite, and schizont); it also inhibited hemoglobin metabolism and caused extensive vacuolation in parasites. In drug-resistant parasites, compound (±)-11 exhibited potent activity (IC50 for Dd2 = 58.34 ± 2.04 nM) against the P. falciparum multidrug-resistant Dd2 strain, and both compounds (±)-5 and (±)-11 displayed significant cross-resistance against the P. falciparum ATP4 mutant parasite Dd2 SJ733 but not against the Dd2 KAE609 strain. In mice, both compounds (±)-5 and (±)-11 displayed dose-dependent reduction of parasitemia with suppressive 50% effective dose (ED50) values of 0.44 and 0.11 mg/kg of body weight, respectively. The compounds were also found to be curative in vivo and are thus worthy of further investigation.
Collapse
|
29
|
Sinha S, Medhi B, Radotra BD, Batovska DI, Markova N, Bhalla A, Sehgal R. Antimalarial and immunomodulatory potential of chalcone derivatives in experimental model of malaria. BMC Complement Med Ther 2022; 22:330. [PMID: 36510199 PMCID: PMC9743746 DOI: 10.1186/s12906-022-03777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Malaria is a complex issue due to the availability of few therapies and chemical families against Plasmodium and mosquitoes. There is increasing resistance to various drugs and insecticides in Plasmodium and in the vector. Additionally, human behaviors are responsible for promoting resistance as well as increasing the risk of exposure to infections. Chalcones and their derivatives have been widely explored for their antimalarial effects. In this context, new derivatives of chalcones have been evaluated for their antimalarial efficacy. METHODS BALB/c mice were infected with P. berghei NK-65. The efficacy of the three most potent chalcone derivations (1, 2, and 3) identified after an in vitro compound screening test was tested. The selected doses of 10 mg/kg, 20 mg/kg, and 10 mg/kg were studied by evaluating parasitemia, changes in temperature, body weights, organ weights, histopathological features, nitric oxide, cytokines, and ICAM-1 expression. Also, localization of parasites inside the two vital tissues involved during malaria infections was done through a transmission electron microscope. RESULTS All three chalcone derivative treated groups showed significant (p < 0.001) reductions in parasitemia levels on the fifth and eighth days of post-infection compared to the infected control. These derivatives were found to modulate the immune response in a P. berghei infected malaria mouse model with a significant reduction in IL-12 levels. CONCLUSIONS The present study indicates the potential inhibitory and immunomodulatory actions of chalcones against the rodent malarial parasite P. berghei.
Collapse
Affiliation(s)
- Shweta Sinha
- grid.415131.30000 0004 1767 2903Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Bikash Medhi
- grid.415131.30000 0004 1767 2903Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - B. D. Radotra
- grid.415131.30000 0004 1767 2903Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Daniela I. Batovska
- grid.410344.60000 0001 2097 3094Institute of Organic Chemistry With Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadezhda Markova
- grid.410344.60000 0001 2097 3094Institute of Organic Chemistry With Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ashish Bhalla
- grid.415131.30000 0004 1767 2903Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- grid.415131.30000 0004 1767 2903Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| |
Collapse
|
30
|
Schuster S, Vavra M, Kern WV. A Screening of Antimalarials Extends the Range of Known Escherichia coli AcrB Efflux Substrates and Reveals Two Candidates with Antimicrobial Drug-Enhancing Activity. Microb Drug Resist 2022; 28:1065-1070. [PMID: 36255442 DOI: 10.1089/mdr.2022.0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Efflux by resistance nodulation cell division transporters, such as AcrAB-TolC in Escherichia coli, substantially contributes to the development of Gram-negative multidrug resistance. Therefore, the finding of compounds that counteract efflux is an urgent goal in the fight against infectious diseases. Previously, an efflux inhibitory activity of the antimalarials mefloquine and artesunate was reported. In this study, we have investigated further antimalarials regarding efflux by AcrB, the pumping part of AcrAB-TolC, and their drug-enhancing potency in E. coli. We show that 10 of the 24 drugs tested are substrates of the multidrug efflux pump AcrB. Among them, tafenoquine and proguanil, when used at subinhibitory concentrations, caused an at least 4- and up to 24-fold enhancement in susceptibility to 6 and 14 antimicrobial agents, respectively. Both antimalarials are able to increase the intracellular accumulation of Hoechst 33342, with proguanil showing similar effectiveness as the efflux inhibitor 1-(1-naphthylmethyl)piperazine. In the case of proguanil, AcrB-dependent efflux inhibition could also be demonstrated in a real-time efflux assay. In addition to presenting new AcrB substrates, our study reveals two previously unknown efflux inhibitors among antimalarials. Particularly proguanil appears as a promising candidate and its chemical scaffold might be further optimized for repurposing as antimicrobial drug enhancer.
Collapse
Affiliation(s)
- Sabine Schuster
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
| | - Martina Vavra
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
| | - Winfried V Kern
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany.,Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
31
|
Wakoli DM, Ondigo BN, Ochora DO, Amwoma JG, Okore W, Mwakio EW, Chemwor G, Juma J, Okoth R, Okudo C, Yeda R, Opot BH, Cheruiyot AC, Juma D, Roth A, Ogutu BR, Boudreaux D, Andagalu B, Akala HM. Impact of parasite genomic dynamics on the sensitivity of Plasmodium falciparum isolates to piperaquine and other antimalarial drugs. BMC Med 2022; 20:448. [PMID: 36397090 PMCID: PMC9673313 DOI: 10.1186/s12916-022-02652-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine (DHA-PPQ) is an alternative first-line antimalarial to artemether-lumefantrine in Kenya. However, recent reports on the emergence of PPQ resistance in Southeast Asia threaten its continued use in Kenya and Africa. In line with the policy on continued deployment of DHA-PPQ, it is imperative to monitor the susceptibility of Kenyan parasites to PPQ and other antimalarials. METHODS Parasite isolates collected between 2008 and 2021 from individuals with naturally acquired P. falciparum infections presenting with uncomplicated malaria were tested for in vitro susceptibility to piperaquine, dihydroartemisinin, lumefantrine, artemether, and chloroquine using the malaria SYBR Green I method. A subset of the 2019-2021 samples was further tested for ex vivo susceptibility to PPQ using piperaquine survival assay (PSA). Each isolate was also characterized for mutations associated with antimalarial resistance in Pfcrt, Pfmdr1, Pfpm2/3, Pfdhfr, and Pfdhps genes using real-time PCR and Agena MassARRAY platform. Associations between phenotype and genotype were also determined. RESULTS The PPQ median IC50 interquartile range (IQR) remained stable during the study period, 32.70 nM (IQR 20.2-45.6) in 2008 and 27.30 nM (IQR 6.9-52.8) in 2021 (P=0.1615). The median ex vivo piperaquine survival rate (IQR) was 0% (0-5.27) at 95% CI. Five isolates had a PSA survival rate of ≥10%, consistent with the range of PPQ-resistant parasites, though they lacked polymorphisms in Pfmdr1 and Plasmepsin genes. Lumefantrine and artemether median IC50s rose significantly to 62.40 nM (IQR 26.9-100.8) (P = 0.0201); 7.00 nM (IQR 2.4-13.4) (P = 0.0021) in 2021 from 26.30 nM (IQR 5.1-64.3); and 2.70 nM (IQR 1.3-10.4) in 2008, respectively. Conversely, chloroquine median IC50s decreased significantly to 10.30 nM (IQR 7.2-20.9) in 2021 from 15.30 nM (IQR 7.6-30.4) in 2008, coinciding with a decline in the prevalence of Pfcrt 76T allele over time (P = 0.0357). The proportions of piperaquine-resistant markers including Pfpm2/3 and Pfmdr1 did not vary significantly. A significant association was observed between PPQ IC50 and Pfcrt K76T allele (P=0.0026). CONCLUSIONS Circulating Kenyan parasites have remained sensitive to PPQ and other antimalarials, though the response to artemether (ART) and lumefantrine (LM) is declining. This study forms a baseline for continued surveillance of current antimalarials for timely detection of resistance.
Collapse
Affiliation(s)
- Dancan M Wakoli
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton-Njoro, Kenya. .,Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton-Njoro, Kenya.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Douglas O Ochora
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Joseph G Amwoma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.,Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Winnie Okore
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.,Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Edwin W Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Gladys Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Jackeline Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Raphael Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Charles Okudo
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Benjamin H Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Agnes C Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Amanda Roth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Benhards R Ogutu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Daniel Boudreaux
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Hoseah M Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.
| |
Collapse
|
32
|
Habibi P, Shi Y, Fatima Grossi-de-Sa M, Khan I. Plants as Sources of Natural and Recombinant Antimalaria Agents. Mol Biotechnol 2022; 64:1177-1197. [PMID: 35488142 PMCID: PMC9053566 DOI: 10.1007/s12033-022-00499-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Malaria is one of the severe infectious diseases that has victimized about half a civilization billion people each year worldwide. The application of long-lasting insecticides is the main strategy to control malaria; however, a surge in antimalarial drug development is also taking a leading role to break off the infections. Although, recurring drug resistance can compromise the efficiency of both conventional and novel antimalarial medicines. The eradication of malaria is significantly contingent on discovering novel potent agents that are low cost and easy to administer. In this context, plant metabolites inhibit malaria infection progression and might potentially be utilized as an alternative treatment for malaria, such as artemisinin. Advances in genetic engineering technology, especially the advent of molecular farming, have made plants more versatile in producing protein drugs (PDs) to treat infectious diseases, including malaria. These recent developments in genetic modifications have enabled the production of native pharmaceutically active compounds and the accumulation of diverse heterologous proteins such as human antibodies, booster vaccines, and many PDs to treat infectious diseases and genetic disorders. This review will discuss the pivotal role of a plant-based production system that expresses natural antimalarial agents or host protein drugs to cure malaria infections. The potential of these natural and induced compounds will support modern healthcare systems in treating malaria infections, especially in developing countries to mitigate human fatalities.
Collapse
Affiliation(s)
- Peyman Habibi
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yao Shi
- Department of Basic and Applied Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Catholic University of Brasília, Brasília-DF, Brazil
- National Institute of Science and Technology, INCT Plant Stress Biotech, Embrapa, Brazil
| | - Imran Khan
- Department of Chemical Engineering, University of California, Davis, CA, USA.
| |
Collapse
|
33
|
Tassone G, Mazzorana M, Pozzi C. Structural Basis of Parasitic HSP90 ATPase Inhibition by Small Molecules. Pharmaceuticals (Basel) 2022; 15:1341. [PMID: 36355513 PMCID: PMC9692773 DOI: 10.3390/ph15111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2024] Open
Abstract
Protozoan parasites are responsible for several harmful and widespread human diseases that cause high morbidity and mortality. Currently available treatments have serious limitations due to poor efficiency, strong adverse effects, and high cost. Hence, the identification of new targets and the development of specific drug therapies against parasitic diseases are urgent needs. Heat shock protein 90 (HSP90) is an ATP-dependent molecular chaperone that plays a key role in parasite survival during the various differentiation stages, spread over the vector insect and the human host, which they undergo during their life cycle. The N-terminal domain (NTD) of HSP90, containing the main determinants for ATPase activity, represents the most druggable domain for inhibitor targeting. The molecules investigated on parasite HSP90 are mainly developed from known inhibitors of the human counterpart, and they have strong limitations due to selectivity issues, accounting for the high conservation of the ATP-binding site between the parasite and human proteins. The current review highlights the recent structural progress made to support the rational design of new molecules able to effectively block the chaperone activity of parasite HSP90.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Mazzorana
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
34
|
Chaves JB, Portugal Tavares de Moraes B, Regina Ferrarini S, Noé da Fonseca F, Silva AR, Gonçalves-de-Albuquerque CF. Potential of nanoformulations in malaria treatment. Front Pharmacol 2022; 13:999300. [PMID: 36386185 PMCID: PMC9645116 DOI: 10.3389/fphar.2022.999300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Malaria is caused by the protozoan Plasmodium sp and affects millions of people worldwide. Its clinical form ranges from asymptomatic to potentially fatal and severe. Current treatments include single drugs such as chloroquine, lumefantrine, primaquine, or in combination with artemisinin or its derivatives. Resistance to antimalarial drugs has increased; therefore, there is an urgent need to diversify therapeutic approaches. The disease cycle is influenced by biological, social, and anthropological factors. This longevity and complexity contributes to the records of drug resistance, where further studies and proposals for new therapeutic formulations are needed for successful treatment of malaria. Nanotechnology is promising for drug development. Preclinical formulations with antimalarial agents have shown positive results, but only a few have progressed to clinical phase. Therefore, studies focusing on the development and evaluation of antimalarial formulations should be encouraged because of their enormous therapeutic potential.
Collapse
Affiliation(s)
- Janaina Braga Chaves
- Immunopharmacology Laboratory, Department of Biochemistry, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares de Moraes
- Immunopharmacology Laboratory, Department of Biochemistry, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro, Brazil
| | - Stela Regina Ferrarini
- Pharmaceutical Nanotechnology Laboratory, Federal University of Mato Grosso of Sinop Campus—UFMT, Cuiabá, Brazil
| | - Francisco Noé da Fonseca
- Empresa Brasileira de Pesquisa Agropecuária, Parque Estação Biológica—PqEB, EMBRAPA, Brasília, Brazil
| | - Adriana Ribeiro Silva
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ—UNIRIO, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Immunopharmacology Laboratory, Department of Biochemistry, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ—UNIRIO, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Manen-Freixa L, Borrell JI, Teixidó J, Estrada-Tejedor R. Deconstructing Markush: Improving the R&D Efficiency Using Library Selection in Early Drug Discovery. Pharmaceuticals (Basel) 2022; 15:ph15091159. [PMID: 36145380 PMCID: PMC9503783 DOI: 10.3390/ph15091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Most of the product patents claim a large number of compounds based on a Markush structure. However, the identification and optimization of new principal active ingredients is frequently driven by a simple Free Wilson approach, leading to a highly focused study only involving the chemical space nearby a hit compound. This fact raises the question: do the tested compounds described in patents really reflect the full molecular diversity described in the Markush structure? In this study, we contrast the performance of rational selection to conventional approaches in seven real-case patents, assessing their ability to describe the patent's chemical space. Results demonstrate that the integration of computer-aided library selection methods in the early stages of the drug discovery process would boost the identification of new potential hits across the chemical space.
Collapse
|
36
|
Sovari SN, Golding TM, Mbaba M, Mohunlal R, Egan TJ, Smith GS, Zobi F. Rhenium(I) derivatives of aminoquinoline and imidazolopiperidine-based ligands: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. J Inorg Biochem 2022; 234:111905. [PMID: 35752063 DOI: 10.1016/j.jinorgbio.2022.111905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 06/12/2022] [Indexed: 12/31/2022]
Abstract
A small library of aminoquinoline and imidazolopiperidine (IMP)-based ligands, containing the 1,2,3-triazole moiety, and their corresponding tricarbonyl rhenium complexes were synthesised and their inhibitory activities evaluated against the chloroquine-sensitive (CQS) and multidrug-resistant (MDR) strains (NF54 and K1, respectively) of P. falciparum. The quinoline-based compounds (L1, L2, ReL1, and ReL2) were at least six-fold more potent than their IMP-based counterparts (L3, L4, ReL3, and ReL4) against both strains of P. falciparum, with the most promising compound (L1) displaying activity comparable to chloroquine diphosphate (CQDP) in the MDR strain. Additionally, all of the synthesised compounds have resistance indices less than CQDP. To gain insight into a possible mechanism of action, in silico hemozoin docking simulations were performed. These studies proposed that the tested compounds may act via hemozoin inhibition, as the new aminoquinoline-derivatives, with the exception of complex ReL2 (binding affinity: -12.62 kcal/mol), showed higher binding affinities than the reference drug chloroquine (CQ, -13.56 kcal/mol). Furthermore, the ligands exhibited superior binding affinity relative to their corresponding Re(I) complexes, which is reflected in their antiplasmodial activity.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Taryn M Golding
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Roxanne Mohunlal
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
37
|
Ibezim A, Ofokansi MN, Ndukwe X, Chiama CS, Obi BC, Isiogugu ON, Ikechukwu PE, Onwuka AM, Ihim SA, Asegbeloyin JN, Nwodo NJ. Evaluation of anti-malarial potency of new pyrazole-hydrazine coupled to Schiff base derivatives. Malar J 2022; 21:243. [PMID: 35996135 PMCID: PMC9396901 DOI: 10.1186/s12936-022-04266-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background The search for pharmacologically effective agents among molecules bearing multiple functionalities is commonly practiced. In continuation of the search for new anti-malarial agents, new pyrazole-hydrazine coupled Schiff-base derivatives previously synthesized were screened for anti-malarial property. Methods Here, in vivo prophylactic and curative activities of the compounds were assessed while their binding affinity for falcipain-2, a crucial enzyme in Plasmodium survival, was done using computational techniques. Results The two derivatives (BepINH and BepBeH) respectively led to a significant (p < 0.05) reduction in parasitaemia count (0.76 ± 1.11 and 0.79 ± 1.19) at day 3 post-treatment relative to the negative control (16.37 ± 1.25). For the prophylactic study, it was observed that the highest parasitaemia suppression level of 95.35% and 95.17% for BepINH and BepBeH at 15 mg/kg was slightly comparable to that obtained for ACT-Lonart (99.38%). In addition, their haematological profiles indicate that they are potentially beneficial in suppressing haemolytic damage to RBC, thereby protecting the body against infection-induced anaemia. Docking calculations on the derivatives toward the Plasmodium falciparum falcipain-2 revealed that they favourably interacted with a binding affinity higher than that of a known cocrystallized inhibitor. Conclusion This study confirms the relevance of multi-functional molecules in the search for new and effective anti-plasmodial agent and lay the foundation for further development of these compound series to potent anti-plasmodial agent that interacts with falcipain-2. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04266-8.
Collapse
Affiliation(s)
- Akachukwu Ibezim
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka, Nigeria.
| | - Martha N Ofokansi
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria.
| | - Xavier Ndukwe
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Chidera S Chiama
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Bonaventure C Obi
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Ogechukwu N Isiogugu
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Peter E Ikechukwu
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Akachukwu M Onwuka
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Stella A Ihim
- Department of Science Laboratory, University of Nigeria, Nsukka, Nigeria
| | - Jonnie N Asegbeloyin
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Ngozi J Nwodo
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
38
|
Du Y, Luo Y, Hu Z, Lu J, Liu X, Xing C, Wu J, Duan T, Chu J, Wang HY, Su X, Yu X, Wang R. Activation of cGAS-STING by Lethal Malaria N67C Dictates Immunity and Mortality through Induction of CD11b + Ly6C hi Proinflammatory Monocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103701. [PMID: 35635376 PMCID: PMC9353503 DOI: 10.1002/advs.202103701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/25/2022] [Indexed: 05/16/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) play critical roles in the innate immunity against infectious diseases and are required to link pathogen DNA sensing to immune responses. However, the mechanisms by which cGAS-STING-induced cytokines suppress the adaptive immune response against malaria infections remain poorly understood. Here, cGAS-STING signaling is identified to play a detrimental role in regulating anti-malaria immunity. cGAS or STING deficiency in mice markedly prolongs mouse survival during lethal malaria Plasmodium yoelii nigeriensis N67C infections by reducing late interleukin (IL)-6 production. Mechanistically, cGAS/STING recruits myeloid differentiation factor 88 (MyD88) and specifically induces the p38-dependent signaling pathway for late IL-6 production, which, in turn, expands CD11b+ Ly6Chi proinflammatory monocytes to inhibit immunity. Moreover, the blockage or ablation of the cGAS-STING-MyD88-p38-IL-6 signaling axis or the depletion of CD11b+ Ly6Chi proinflammatory monocytes provides mice a significant survival benefit during N67C and other lethal malaria-strain infections. Taken together, these findings identify a previously unrecognized detrimental role of cGAS-STING-MyD88-p38 axis in infectious diseases through triggering the late IL-6 production and proinflammatory monocyte expansion and provide insight into how targeting the DNA sensing pathway, dysregulated cytokines, and proinflammatory monocytes enhances immunity against infection.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Yien Luo
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Zhiqiang Hu
- Department of ImmunologyGuangdong Provincial Key Lab of Single Cell Technology and ApplicationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jiansen Lu
- Department of ImmunologyGuangdong Provincial Key Lab of Single Cell Technology and ApplicationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Department of Joint SurgeryThe Fifth Affiliated HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Xin Liu
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Changsheng Xing
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Jian Wu
- Malaria Functional Genomics SectionLaboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Tianhao Duan
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Junjun Chu
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Helen Y. Wang
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Department of PediatricsChildren's HospitalKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90027USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Xin‐zhuan Su
- Malaria Functional Genomics SectionLaboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Xiao Yu
- Department of ImmunologyGuangdong Provincial Key Lab of Single Cell Technology and ApplicationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Department of Joint SurgeryThe Fifth Affiliated HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Rong‐Fu Wang
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Department of PediatricsChildren's HospitalKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90027USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| |
Collapse
|
39
|
Tian Y, Zheng Z, Wang X, Liu S, Gu L, Mu J, Zheng X, Li Y, Shen S. Establishment and evaluation of glucose-modified nanocomposite liposomes for the treatment of cerebral malaria. J Nanobiotechnology 2022; 20:318. [PMID: 35794597 PMCID: PMC9258070 DOI: 10.1186/s12951-022-01493-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening neurological complication caused by Plasmodium falciparum. About 627,000 patients died of malaria in 2020. Currently, artemisinin and its derivatives are the front-line drugs used for the treatment of cerebral malaria. However, they cannot target the brain, which decreases their effectiveness. Therefore, increasing their ability to target the brain by the nano-delivery system with brain-targeted materials is of great significance for enhancing the effects of antimalarials and reducing CM mortality. This study used glucose transporter 1 (GLUT1) on the blood-brain barrier as a target for a synthesized cholesterol-undecanoic acid-glucose conjugate. The molecular dynamics simulation found that the structural fragment of glucose in the conjugate faced the outside the phospholipid bilayers, which was conducive to the recognition of brain-targeted liposomes by GLUT1. The fluorescence intensity of the brain-targeted liposomes (na-ATS/TMP@lipoBX) in the mouse brain was significantly higher than that of the non-targeted liposomes (na-ATS/TMP@lipo) in vivo (P < 0.001) after intranasal administration. The infection and recurrence rate of the mice receiving na-ATS/TMP@lipoBX treatment were significantly decreased, which had more advantages than those of other administration groups. The analysis of pharmacokinetic data showed that na-ATS/TMP@lipoBX could enter the brain in both systemic circulation and nasal-brain pathway to treat malaria. Taken together, these results in this study provide a new approach to the treatment of cerebral malaria.
Collapse
Affiliation(s)
- Ya Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- The Hospital of Nanbu County, Sichuan, People's Republic of China
| | - Zhongyuan Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xi Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Shuzhi Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Liwei Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jing Mu
- Chinese Traditional Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xiaojun Zheng
- Pharmacy Department of the first hospital of Shanxi Medical University, Shanxi, 10114, People's Republic of China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Shuo Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
40
|
Cohen JM, Okumu F, Moonen B. The fight against malaria: Diminishing gains and growing challenges. Sci Transl Med 2022; 14:eabn3256. [PMID: 35767649 DOI: 10.1126/scitranslmed.abn3256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Since the year 2000, historic reductions in malaria incidence and mortality have been driven by the widespread distribution of bed nets, drugs, and insecticides for the prevention and treatment of malaria. Scale-up of these tools has been enabled by an increase in malaria financing compounded by price reductions, yet these trends are unlikely to continue at the same rate. Rapid population growth in high-endemic areas requires procurement of more of these tools just to maintain current coverage, even as prices are likely to increase as resistance to drugs and insecticides forces shifts to newer products. Further progress toward the long-term goal of malaria eradication requires a combination of greater funding, more cost-effective resource allocation, and fundamental changes to the global malaria control strategy.
Collapse
Affiliation(s)
| | - Fredros Okumu
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Ifakara, Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Bruno Moonen
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
41
|
Gupta Y, Sharma N, Singh S, Romero JG, Rajendran V, Mogire RM, Kashif M, Beach J, Jeske W, Poonam, Ogutu BR, Kanzok SM, Akala HM, Legac J, Rosenthal PJ, Rademacher DJ, Durvasula R, Singh AP, Rathi B, Kempaiah P. The Multistage Antimalarial Compound Calxinin Perturbates P. falciparum Ca 2+ Homeostasis by Targeting a Unique Ion Channel. Pharmaceutics 2022; 14:1371. [PMID: 35890267 PMCID: PMC9319510 DOI: 10.3390/pharmaceutics14071371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Malaria elimination urgently needs novel antimalarial therapies that transcend resistance, toxicity, and high costs. Our multicentric international collaborative team focuses on developing multistage antimalarials that exhibit novel mechanisms of action. Here, we describe the design, synthesis, and evaluation of a novel multistage antimalarial compound, 'Calxinin'. A compound that consists of hydroxyethylamine (HEA) and trifluoromethyl-benzyl-piperazine. Calxinin exhibits potent inhibitory activity in the nanomolar range against the asexual blood stages of drug-sensitive (3D7), multidrug-resistant (Dd2), artemisinin-resistant (IPC4912), and fresh Kenyan field isolated Plasmodium falciparum strains. Calxinin treatment resulted in diminished maturation of parasite sexual precursor cells (gametocytes) accompanied by distorted parasite morphology. Further, in vitro liver-stage testing with a mouse model showed reduced parasite load at an IC50 of 79 nM. A single dose (10 mg/kg) of Calxinin resulted in a 30% reduction in parasitemia in mice infected with a chloroquine-resistant strain of the rodent parasite P. berghei. The ex vivo ookinete inhibitory concentration within mosquito gut IC50 was 150 nM. Cellular in vitro toxicity assays in the primary and immortalized human cell lines did not show cytotoxicity. A computational protein target identification pipeline identified a putative P. falciparum membrane protein (Pf3D7_1313500) involved in parasite calcium (Ca2+) homeostasis as a potential Calxinin target. This highly conserved protein is related to the family of transient receptor potential cation channels (TRP-ML). Target validation experiments showed that exposure of parasitized RBCs (pRBCs) to Calxinin induces a rapid release of intracellular Ca2+ from pRBCs; leaving de-calcinated parasites trapped in RBCs. Overall, we demonstrated that Calxinin is a promising antimalarial lead compound with a novel mechanism of action and with potential therapeutic, prophylactic, and transmission-blocking properties against parasites resistant to current antimalarials.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
| | - Snigdha Singh
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
| | - Jesus G. Romero
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
- School of Biology, Institute of Experimental Biology, Central University of Venezuela, Caracas 1040, Venezuela
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India;
| | - Reagan M. Mogire
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India; (M.K.); (A.P.S.)
| | - Jordan Beach
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
| | - Walter Jeske
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, New Delhi 110021, India;
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110007, India
| | - Bernhards R. Ogutu
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Hoseah M. Akala
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Jennifer Legac
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (J.L.); (P.J.R.)
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (J.L.); (P.J.R.)
| | - David J. Rademacher
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
- Core Imaging Facility and Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ravi Durvasula
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| | - Agam P. Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India; (M.K.); (A.P.S.)
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110007, India
| | - Prakasha Kempaiah
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| |
Collapse
|
42
|
Gao P, Liu YQ, Xiao W, Xia F, Chen JY, Gu LW, Yang F, Zheng LH, Zhang JZ, Zhang Q, Li ZJ, Meng YQ, Zhu YP, Tang H, Shi QL, Guo QY, Zhang Y, Xu CC, Dai LY, Wang JG. Identification of antimalarial targets of chloroquine by a combined deconvolution strategy of ABPP and MS-CETSA. Mil Med Res 2022; 9:30. [PMID: 35698214 PMCID: PMC9195458 DOI: 10.1186/s40779-022-00390-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a devastating infectious disease that disproportionally threatens hundreds of millions of people in developing countries. In the history of anti-malaria campaign, chloroquine (CQ) has played an indispensable role, however, its mechanism of action (MoA) is not fully understood. METHODS We used the principle of photo-affinity labeling and click chemistry-based functionalization in the design of a CQ probe and developed a combined deconvolution strategy of activity-based protein profiling (ABPP) and mass spectrometry-coupled cellular thermal shift assay (MS-CETSA) that identified the protein targets of CQ in an unbiased manner in this study. The interactions between CQ and these identified potential protein hits were confirmed by biophysical and enzymatic assays. RESULTS We developed a novel clickable, photo-affinity chloroquine analog probe (CQP) which retains the antimalarial activity in the nanomole range, and identified a total of 40 proteins that specifically interacted and photo-crosslinked with CQP which was inhibited in the presence of excess CQ. Using MS-CETSA, we identified 83 candidate interacting proteins out of a total of 3375 measured parasite proteins. At the same time, we identified 8 proteins as the most potential hits which were commonly identified by both methods. CONCLUSIONS We found that CQ could disrupt glycolysis and energy metabolism of malarial parasites through direct binding with some of the key enzymes, a new mechanism that is different from its well-known inhibitory effect of hemozoin formation. This is the first report of identifying CQ antimalarial targets by a parallel usage of labeled (ABPP) and label-free (MS-CETSA) methods.
Collapse
Affiliation(s)
- Peng Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan-Qing Liu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Xiao
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fei Xia
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jia-Yun Chen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li-Wei Gu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fan Yang
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Liu-Hai Zheng
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Jun-Zhe Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qian Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhi-Jie Li
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yu-Qing Meng
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yong-Ping Zhu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Tang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiao-Li Shi
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu-Yan Guo
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng-Chao Xu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ling-Yun Dai
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China. .,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| | - Ji-Gang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
43
|
Dong Y, Liu L, Han J, Zhang L, Wang Y, Li J, Li Y, Liu H, Zhou K, Li L, Wang X, Shen X, Zhang M, Zhang B, Hu X. Worldwide Research Trends on Artemisinin: A Bibliometric Analysis From 2000 to 2021. Front Med (Lausanne) 2022; 9:868087. [PMID: 35602470 PMCID: PMC9121127 DOI: 10.3389/fmed.2022.868087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveArtemisinin is an organic compound that comes from Artemisia annua. Artemisinin treatment is the most important and effective method for treating malaria. Bibliometric analysis was carried out to identify the global research trends, hot spots, scientific frontiers, and output characteristics of artemisinin from 2000 to 2021.MethodsPublications and their recorded information from 2000 to 2021 were retrieved through the Web of Science Core Collection (WoSCC). Using VOSviewer and Citespace, the hotspots and trends of studies on artemisinin were visualized.ResultsA total of 8,466 publications were retrieved, and for the past 22 years, the annual number of publications associated with artemisinin kept increasing. The United States published most papers. The H-index and number of citations of the United States ranked first. The University of Oxford and MALARIA JOURNAL were the most productive affiliation and journal, respectively. A paper written by E.A. Ashley in 2011 achieved the highest global citation score. Keywords, such as “malaria,” “artesunate,” “plasmodium-falciparum,” “in-vitro,” “artemisinin resistance,” “plasmodium falciparum,” “resistance,” and “artemether-lumefantrine,” appeared most frequently. The research on artemisinin includes clinical research and animal and cell experiments.ConclusionThe biosynthesis, drug resistance mechanism, and combination of artemisinin have become more popular than before. Studies on artemisinin treating coronavirus disease 2019 (COVID-19) have been carried out, and good research results have been obtained.
Collapse
Affiliation(s)
- Yankai Dong
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lina Liu
- General Medical Department, Nankai Hospital, Tianjin, China
| | - Jie Han
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lianqing Zhang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yi Wang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Juan Li
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yuexiang Li
- College of Life Sciences, Northwest University, Xi'an, China
| | - He Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kun Zhou
- College of Life Sciences, Northwest University, Xi'an, China
| | - Luyao Li
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xin Wang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xue Shen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Meiling Zhang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Bo Zhang
- Clinical Laboratory, Ankang Hospital of Traditional Chinese Medicine, Ankang, China
- *Correspondence: Bo Zhang
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Xiaofei Hu
| |
Collapse
|
44
|
Potential of Triterpenic Natural Compound Betulinic Acid for Neglected Tropical Diseases New Treatments. Biomedicines 2022; 10:biomedicines10040831. [PMID: 35453582 PMCID: PMC9027248 DOI: 10.3390/biomedicines10040831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Neglected tropical diseases are one of the most important public health problems in many countries around the world. Among them are leishmaniasis, Chagas disease, and malaria, which contribute to more than 250 million infections worldwide. There is no validated vaccine to prevent these infections and the treatments available are obsolete, highly toxic, and non-effective due to parasitic drug resistance. Additionally, there is a high incidence of these diseases, and they may require hospitalization, which is expensive to the public health systems. Therefore, there is an urgent need to develop new treatments to improve the management of infected people, control the spread of resistant strains, and reduce health costs. Betulinic acid (BA) is a triterpene natural product which has shown antiparasitic activity against Leishmania, Trypanosoma cruzi, and Plasmodium. Here, we review the main results regarding the in vitro and in vivo pharmacological activity of BA and its derivatives against these parasites. Some chemical modifications of BA have been shown to improve its activities against the parasites. Further improvement on studies of drug-derived, as well as structure–activity relationship, are necessary for the development of new betulinic acid-based treatments.
Collapse
|
45
|
Kong XJ, Liu KM, Zuo HL, Huang HD, Hu YJ. The Changing Global Landscape in the Development of Artemisinin-Based Treatments: A Clinical Trial Perspective. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:733-748. [PMID: 35282805 DOI: 10.1142/s0192415x22500306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Artemisinin and its derivatives (ARTs), due to their potent antimalarial activities, are widely used as frontline antimalarials across the world. Although the large-scale deployment of ARTs has significantly contributed to a substantial decline in malaria deaths, the global malaria burden is still high. New antimalarial treatments need to be developed to manage the growing artemisinin resistance. Understanding the status of ART development is crucial for developing strategies for new alternatives and identifying opportunities to develop ART-based treatments. This study sampled ART clinical trials from the past two decades to gain an overview of the global ART-development landscape. A total of 768 trials were collected to analyze the disease focuses, activity trends, development status, geographic distribution, and combination treatment profiles of ART trials. The findings highlighted the constant focus of ARTs on malaria, the evolving combination research focus, the distinctions between ART development preferences across global regions, the urgent demands for treatments for artemisinin-resistant malaria, and the unavoidable need to consider ART combinations in the development of new antimalarials.
Collapse
Affiliation(s)
- Xiang-Jun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, P. R. China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao 999078, P. R. China
| | - Kun-Meng Liu
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, P. R. China
| | - Hua-Li Zuo
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, P. R. China
- School of Life and Health Sciences, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, P. R. China
- School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, P. R. China
- School of Life and Health Sciences, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, P. R. China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, P. R. China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao 999078, P. R. China
| |
Collapse
|
46
|
Energetic and Geometric Characteristics of Substituents, Part 3: The Case of NO2 and NH2 Groups in Their Mono-Substituted Derivatives of Six-Membered Heterocycles. Symmetry (Basel) 2022. [DOI: 10.3390/sym14010145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Substituted heterocyclic arenes play important roles in biochemistry, catalysis, and in the design of functional materials. Exemplary six-membered heteroaromatic molecules, that differ from benzene by inclusion of one heteroatom, are pyridine, phosphorine, arsabenzene, and borabenzene. This theoretical study concerns the influence of the heteroatom present in these molecules on the properties of substituents of two types: electron-donating (ED) NH2 group and electron-accepting (EA) NO2 group, attached at the 2-, 3-, or 4-position. The effect is evaluated by the energy of interaction (Erel) between the substituent and the substituted system and electronic properties of the substituents described by the charge of the substituent active region (cSAR) index. In addition, several geometric descriptors of the substituent and heteroaromatic ring, as well as changes in the aromaticity, are considered. The latter are assessed using the Electron Density of Delocalized Bonds (EDDBs) property of delocalized π electrons. The obtained results show that the electronegativity (EN) of the heteroatom has a profound effect on the EA/ED properties of the substituents. This effect is also reflected in the geometry of studied molecules. The Erel parameter indicates that the relative stability of the molecules is highly related to the electronic interactions between the substituent and the heteroarene. This especially applies to the enhancement or weakening of π-resonance due to the EN of the heteroatom. Additionally, in the 2-heteroarene derivatives, specific through-space ortho interactions contribute to the heteroatom effects.
Collapse
|
47
|
Upadhyay C, Sharma N, Kumar S, Sharma PP, Fontinha D, Chhikara BS, Mukherjee B, Kumar D, Prudencio M, Singh AP, Poonam. Synthesis of the new analogs of morpholine and their antiplasmodial evaluation against the human malaria parasite Plasmodium falciparum. NEW J CHEM 2022. [DOI: 10.1039/d1nj04198c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of morpholine analogs functionalized with hydroxyethylamine (HEA) pharmacophore was synthesized and assayed for the initial screening against Plasmodium falciparum 3D7 in culture, which suggested that analog 6k is a hit molecule with an inhibitory concentration of 5.059 ± 0.2036 μM.
Collapse
Affiliation(s)
- Charu Upadhyay
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
| | - Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | | | - Budhaditya Mukherjee
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur-721302, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Miguel Prudencio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Agam P. Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| |
Collapse
|
48
|
Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies. Pharmaceutics 2021; 13:pharmaceutics13122189. [PMID: 34959470 PMCID: PMC8706932 DOI: 10.3390/pharmaceutics13122189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs' target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them.
Collapse
|
49
|
Ghoghari AM, Patel HV, Nayak NN, Mansuri TH, Pillai SM, Jain MR, Patel HB, Kansagra K, Resta ID, Möhrle J, Parmar DV. Simultaneous estimation of ZY-19489 and its active metabolite ZY-20486 in human plasma using LC-MS/MS, a novel antimalarial compound. Bioanalysis 2021; 13:1761-1777. [PMID: 34779650 DOI: 10.4155/bio-2021-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: ZY-19489 is a new antimalarial drug candidate and selective LC-MS/MS method was established for estimation of ZY-19489 and its metabolite in human plasma. Materials & methods: LLE was employed for extraction, mass spectrometric quantification performed using positive ionization mode and DCP-IMP was used as an internal standard. The chromatographic separation was achieved using mobile phase 5 mM ammonium formate in water and 0.1% v/v ammonia solution in methanol:acetonitrile (90:10% v/v) and column Agilent Zorbex Extended C18, 3.5 μm, 100 × 4.6 mm with a 6-min run time. Results: The calibration curve of ZY-19489 was linear over range 1-500 ng/ml and 2-200 ng/ml for metabolite. Assay was reproducible, selective and devoid of matrix effect. Conclusion: The validated assay was implemented for clinical sample analysis derived from healthy human subjects and parasitemia-induced subjects.
Collapse
Affiliation(s)
- Ashok M Ghoghari
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Harilal V Patel
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Nisarg N Nayak
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Tariq H Mansuri
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Soma M Pillai
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Mukul R Jain
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Hardik B Patel
- Clinical Research, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Kevin Kansagra
- Clinical Research, Zydus Research Centre, Ahmedabad, Gujarat, India
| | | | - Jörg Möhrle
- Medicines for Malaria Venture, Geneva, Switzerland
| | | |
Collapse
|
50
|
Gorki V, Walter NS, Chauhan M, Kaur M, Dhingra N, Bagai U, Kaur S. Ethanol extract of Bergenia ciliata (Haw.) Sternb. (rhizome) impedes the propagation of the malaria parasite. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114417. [PMID: 34265382 DOI: 10.1016/j.jep.2021.114417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The increasing resistant cases even against artemisinin-based combination therapy have necessitated the need to develop new antimalarials. Phytomedicinal therapy is a benchmark for malaria in the Himalayan region. As the dialect and traditional variations have been seen along with this, usage of medicinal plant, its portion (shoot and root system) and mode of preparation also varies. There is no scientific evidence available for illustrating the antiplasmodial activity of the rhizomes of Bergenia ciliata (Saxifragaceae), which is known to be an antipyretic (fever akin to malaria), hepato-protective, and also for spleen enlargement. AIM OF THE STUDY The present study evaluates the antimalarial activity of ethanol extract of B. ciliata rhizomes (EREBC). MATERIALS AND METHODS HPTLC was performed to identify and quantify three marker compounds in EREBC. The in vitro antimalarial activity was evaluated by schizont maturation inhibition assay. MTT assay was employed to test the cytotoxicity of EREBC. Peter's 4-day test and Peters method was employed to discern the suppressive and preventive activity of the extract respectively. RESULTS HPTLC analysis revealed the presence of bergenin, epicatechin and gallic acid in the extract. EREBC exhibited considerable inhibition (IC50 < 5 μg/mL) of schizont maturation of both RKL-9 and MRC-2 strains of P. falciparum. EREBC was non-toxic to both HeLa cells and normal dermal fibroblasts (CC50 > 1000 μg/mL). The selectivity index was > 200 for both strains. Acute toxicity of EREBC was > 4 g/kg. EREBC exhibited considerable in vivo suppressive activity with 96.48% inhibition at 500 mg/kg in comparison to chloroquine (96.08%). The ED50 of the extract was < 50 mg/kg. No mortality was evident in mice administered with different doses of EREBC (50-500 mg/kg) throughout the follow up period of 28 days. EREBC exhibited safety to liver and kidney function of mice as observed from biochemical analysis. CONCLUSION Overall, the study illustrates the marked efficacy and potential of EREBC as an antimalarial agent with bergenin, epicatechin and gallic acid its major constituents, which played a pivotal role in the generation of the immune response.
Collapse
Affiliation(s)
- Varun Gorki
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| | - Neha Sylvia Walter
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| | - Monika Chauhan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | - Manninder Kaur
- Centre for Stem Cell and Tissue Engineering, Panjab University, Chandigarh, India.
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | - Upma Bagai
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|