1
|
Wei M, Chen S, Huang Z, Zhang P, Yang Y, Chen S, Wan P, Huang Z, Chen X. Multi-omics analysis reveals the protective effects of Chinese yam polysaccharide against cisplatin-induced renal interstitial fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156200. [PMID: 39603894 DOI: 10.1016/j.phymed.2024.156200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Chinese yam polysaccharide (SYDT) has been reported to protect renal function and mitigate renal fibrosis in mice with diabetic nephropathy. Based on a multi-omics analysis, the objectives of this study were to determine the effect of SYDT on cisplatin (CDDP)-induced chronic renal interstitial fibrosis (RIF) and the underlying molecular mechanisms using an in vivo model. METHODS Rats were intraperitoneally injected with a single dose of CDDP and then treated with SYDT or amifostine (AMF). The levels of urinary N-acetyl-β-d-glucosaminidase (NAG), blood urea nitrogen (BUN) and serum creatinine (Scr) were detected to assess renal function. Renal tissue damage and fibrosis were evaluated using hematoxylin and eosin (H&E) and Masson's trichrome staining, respectively. In addition, this study applied transcriptomics and metabolomics to predict the possible mechanism of SYDT action, which was verified by several relevant examinations. RESULTS SYDT significantly protected the renal function, alleviated renal tissue damage and fibrosis, as well as decreased the protein levels of vimentin, α-SMA and CTGF, whereas SYDT significantly increased MMP-1 protein level in renal tissues from rats treated with CDDP. There were 1130 differently expressed genes (DEGs) between the CDDP model and SYDT-M groups proved by transcriptome analysis, indicating that metabolic pathways were likely the primary targets of relevance. Consistent with the transcriptome analysis, metabolome analysis identified 276 differentially expressed metabolites (DEMs) between the SYDT-M and CDDP model groups, with predominant clustering within glycerophospholipid metabolism. Integrative analysis of the transcriptome and metabolome indicated that SYDT inhibited the glycerophospholipid metabolism pathway by regulating the target genes Gpd2, Gpam, Agpat3, Lcat, and Pla2g4b. Notably, integrative analysis showed that the Phospholipase D (PLD) signaling pathway may be the most relevant target. Moreover, related signaling pathway analysis confirmed that SYDT inhibited CDDP-induced RIF in rats by down-regulating the PLD pathway. CONCLUSION Our study showed that the alleviation of CDDP-induced RIF in vivo can be achieved through the inhibition of glycerophospholipid metabolism and PLD signaling pathways by SYDT.
Collapse
Affiliation(s)
- Meizhen Wei
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Shurui Chen
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Zhenguang Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Pingli Zhang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Yufang Yang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - Shasha Chen
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Peiyuan Wan
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Zhiling Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Xingqing Chen
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| |
Collapse
|
2
|
Su X, Bai M, Shang Y, Du Y, Xu S, Lin X, Xiao Y, Zhang Y, Chen H, Zhang A. Slc25a21 in cisplatin-induced acute kidney injury: a new target for renal tubular epithelial protection by regulating mitochondrial metabolic homeostasis. Cell Death Dis 2024; 15:891. [PMID: 39695098 DOI: 10.1038/s41419-024-07231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
Acute kidney injury (AKI) is a significant global health issue, which is often caused by cisplatin therapy and characterized by mitochondrial dysfunction. Restoring mitochondrial homeostasis in tubular cells could exert therapeutic effects. Here, we investigated Slc25a21, a mitochondrial carrier, as a potential target for AKI intervention. Renal Slc25a21 expression is negatively associated with kidney function in both AKI patients and cisplatin-induced murine models. Sustaining renal expression of Slc25a21 slowed down AKI progression by reducing cellular apoptosis, necroptosis, and the inflammatory response, likely through its regulation of 2-oxoadipate conversion. Slc25a21 is highly expressed in proximal tubular epithelial cells, and its down-regulation contributes to compromised mitochondrial biogenesis and integrity, as well as impaired oxidative phosphorylation. Mechanistically, reduced Slc25a21 in AKI disrupts mitochondrial 2-oxoadipate transport, affecting related metabolites influx and the tricarboxylic acid cycle. These findings demonstrate a previously unappreciated metabolic function of Slc25a21 in tubular cells, and suggest that targeting mitochondrial metabolic homeostasis by sustaining Slc25a21 expression could be a potential novel therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Xin Su
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yaqiong Shang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yang Du
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Xiuli Lin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yunzhi Xiao
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Huimei Chen
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore.
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Younis MA, Alsogaihi MA, Abdellatif AAH, Saleem I. Nanoformulations in the treatment of lung cancer: current status and clinical potential. Drug Dev Ind Pharm 2024:1-17. [PMID: 39629952 DOI: 10.1080/03639045.2024.2437562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/17/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVE Recent developments in nanotechnology have regained hope in enabling the eradication of lung cancer, while overcoming the drawbacks of the classic therapeutics. Nevertheless, there are still formidable obstacles that hinder the translation of such platforms from the bench into the clinic. Herein, we shed light on the clinical potential of these formulations and discuss their future directions. SIGNIFICANCE OF REVIEW The current article sheds light on the recent advancements in the recruitment of nanoformulations against lung cancer, focusing on their unique features, merits, and demerits. Moreover, inorganic nanoparticles, including gold, silver, magnetic, and carbon nanotubes are highlighted as emerging drug delivery technologies. Furthermore, the clinical status of these formulations is discussed, with particular attention on the challenges that they encounter in their clinical translation. Lastly, the future perspectives in this promising area are inspired. KEY FINDINGS Nanoformulations have a promising potential in improving the physico-chemical properties, pharmacokinetics, delivery efficiency, and selectivity of lung cancer therapeutics. The key challenges that encounter their clinical translation include their structural intricacy, high production cost, scale-up issues, and unclear toxicity profiles. The application of biodegradable platforms improves the biosafety of lung cancer-targeted nanomedicine. Moreover, the design of novel targeting strategies that apply a lower number of components can promote their industrial scalability and deliver them to the market at affordable prices. CONCLUSIONS Nanomedicines have opened up new possibilities for treating lung cancer. Focusing on tackling the challenges that hinder their clinical translation will promote the future of this area of endeavor.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohammad A Alsogaihi
- Pharma D Student, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Imran Saleem
- Nanomedicine, Formulation & Delivery Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
4
|
Yang X, Xin Y, Gu Y, Wang Y, Hu X, Ying G, Zhang Q, He X. Total alkaloids of Aconitum carmichaelii Debx alleviate cisplatin-induced acute renal injury by inhibiting inflammation and oxidative stress related to gut microbiota metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156128. [PMID: 39442279 DOI: 10.1016/j.phymed.2024.156128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Cisplatin-induced acute kidney injury (AKI) is a complex and serious clinical issue, representing a major cause of hospital-acquired AKI. Alkaloids are the main active constituents of Aconitum carmichaelii Debx, which exhibit protective effects in several kidney disease models and against other acute organ injuries. However, its activity and mechanism of action in AKI treatment remain unclear. PURPOSE This study aimed to elucidate the effect of Aconitum carmichaelii Debx (ACA) in a model of cisplain-induced AKI and comprehensively investigate its underlying mechanisms. METHODS The major alkaloids in ACA were analyzed using high-performance liquid chromatography. Blood urea nitrogen (BUN) and serum creatine levels were measured using automated biochemical instruments. 16S rRNA sequencing, short-chain fatty acid (SCFA) analysis, fecal microbiota transplantation (FMT), non-targeted metabolomics, and transcriptomics were performed to systematically identify prospective biomarkers after ACA treatment. Anti-inflammatory and anti-oxidative stress activities were monitored using ELISA and western blotting. RESULTS Four main compounds (fuziline, neoline, talatisamine, and songorine) were identified in ACA. ACA significantly alleviated cisplatin-induced AKI by reducing (BUN) and serum creatine levels and improving histopathological scores. Moreover, ACA balanced cisplatin-mediated confoundments in microbial composition and function, including decreasing the levels of Escherichia-Shigella, Clostridium, and Ruminococcus, as well as increasing Ligilactobacillus, Anaerotruncus, Bacteroides and Desulfovibrio levels, accompanied by uremic toxin reduction, and augmenting serum SCFAs. The FMT experiments further confirmed that ACA exerts anti-AKI effects by affecting gut microbiota. A multi-omics study has shown that ACA regulates glutathione and tryptophan metabolism and mediates pathways that trigger inflammatory responses. Finally, ACA reduced serum levels of inflammatory factors (IL-1β, IL-6, and TNF-α), restored enzymes of the antioxidative system (SOD and CAT) and GSH values, and decreased monoester diterpene alkaloid levels in the kidney by inhibiting the expression of NF-κB pathway-related proteins and increasing Nrf2/HO-1 pathway-related protein expression. CONCLUSION ACA protects against cisplatin-induced AKI through its anti-inflammatory and antioxidant functions, which may be associated with the restoration of gut microbiota metabolism. ACA is a potential drug for AKI and other forms of organ damage related to the disruption of the gut microbiota.
Collapse
Affiliation(s)
- Xi Yang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Yijing Xin
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Yanzhi Gu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Youlei Wang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Xingjiang Hu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Guanghui Ying
- Department of Nephrology, The People's Hospital of Beilun District, The Branch Hospital of First Affiliated Hospital, Zhejiang University School of Medicine, Ningbo 315000, China.
| | - Qiao Zhang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China.
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Okamoto K, Saito Y, Yamaguchi A, Narumi K, Kobayashi M. Relationship between magnesium dosage and the preventive effect on cisplatin-induced nephrotoxicity: meta-analysis and meta-regression analysis. Int J Clin Oncol 2024; 29:1817-1824. [PMID: 39317811 DOI: 10.1007/s10147-024-02629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Cisplatin (CDDP) is an anticancer drug used to treat several types of cancer. CDDP-induced nephrotoxicity (CIN) is a serious adverse effect of CDDP treatment. Although magnesium sulfate (Mg) premedication has been proven to prevent CIN, the relationship between Mg dosage and its preventive effects on CIN are unknown. Therefore, we have evaluated this relationship using meta-analysis and meta-regression analysis to optimize cancer chemotherapies, including CDDP. METHODS We selected candidate studies, generated a forest plot to evaluate the preventive effects of Mg on CIN, and performed subgroup analyses. Moreover, a meta-regression analysis was conducted to reveal the relationship between Mg dosage and its preventive effects on CIN. RESULTS We identified 17 related studies and the total odds ratio (OR) of Mg premedication on CIN was 0.26 and the 95% confidence interval (95% CI) was 0.17-0.41 (p < 0.00001) although funnel plot suggested asymmetry. In subgroup analysis by forest plot, total OR with 95% CI of low Mg dosage administration (less than 10 mEq) and high Mg dosage administration (10 mEq or higher) was 0.35 (0.16-0.77, p = 0.0169) and 0.12 (0.07-0.21, p < 0.0001), respectively. In addition, meta-regression analysis was performed on Mg dosage and the OR of related studies, indicating a relationship between Mg dosage and OR (p = 0.0349). CONCLUSION This study has revealed that premedication with Mg prevented CIN in a dose-dependent manner.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-Chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshitaka Saito
- Department of Clinical Pharmaceutics & Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 4-1, Maeda 7-jo 15-Chome, Teine-ku, Sapporo, 006-8585, Japan
| | - Atsushi Yamaguchi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-Chome, Kita-ku, Sapporo, 060-0812, Japan
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-Chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-Chome, Kita-ku, Sapporo, 060-0812, Japan
- Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-Chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-Chome, Kita-ku, Sapporo, 060-0812, Japan.
- Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-Chome, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
6
|
Yao H, Zhu Z, Liu M, Sun F, Du M, Sun Y, Du B. Multifunctional Nanosystem Based on Ultrasmall Carbon Dots for the Treatment of Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:4970-4984. [PMID: 39022808 DOI: 10.1021/acsbiomaterials.4c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Acute kidney injury (AKI) is a critical medical condition characterized by high morbidity and mortality rates. The pathogenesis of AKI potentially involves bursts of reactive oxygen species (ROS) bursts and elevated levels of inflammatory mediators. Developing nanoparticles (NPs) that downregulate ROS and inflammatory mediators is a promising approach to treat AKI. However, such NPs would be affected by the glomerular filtration barrier (GFB). Typically, NPs are too large to penetrate the glomerular system and reach the renal tubules─the primary site of AKI injury. Herein, we report the development of ultrasmall carbon dots-gallic acid (CDs-GA) NPs (∼5 nm). These NPs exhibited outstanding biocompatibility and were shown not only to efficiently eliminate ROS and alleviate oxidative stress but also to suppress the activation of the NF-κB signaling pathway, leading to a reduction in the release of inflammatory factors. Importantly, CDs-GA NPs were shown to be able to rapidly accumulate rapidly in the renal tissues without the need for intricate targeting strategies. In vivo studies demonstrated that CDs-GA NPs significantly reduced the incidence of cisplatin (CDDP)-induced AKI in mice, surpassing the efficacy of the small molecular drug, N-acetylcysteine. This research provides an innovative strategy for the treatment of AKI.
Collapse
Affiliation(s)
- Hanchun Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Zhihui Zhu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyu Liu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Fangfang Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyu Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yilin Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| |
Collapse
|
7
|
Lyrio RMDC, Rocha BRA, Corrêa ALRM, Mascarenhas MGS, Santos FL, Maia RDH, Segundo LB, de Almeida PAA, Moreira CMO, Sassi RH. Chemotherapy-induced acute kidney injury: epidemiology, pathophysiology, and therapeutic approaches. FRONTIERS IN NEPHROLOGY 2024; 4:1436896. [PMID: 39185276 PMCID: PMC11341478 DOI: 10.3389/fneph.2024.1436896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Despite significant advancements in oncology, conventional chemotherapy remains the primary treatment for diverse malignancies. Acute kidney injury (AKI) stands out as one of the most prevalent and severe adverse effects associated with these cytotoxic agents. While platinum compounds are well-known for their nephrotoxic potential, other drugs including antimetabolites, alkylating agents, and antitumor antibiotics are also associated. The onset of AKI poses substantial risks, including heightened morbidity and mortality rates, prolonged hospital stays, treatment interruptions, and the need for renal replacement therapy, all of which impede optimal patient care. Various proactive measures, such as aggressive hydration and diuresis, have been identified as potential strategies to mitigate AKI; however, preventing its occurrence during chemotherapy remains challenging. Additionally, several factors, including intravascular volume depletion, sepsis, exposure to other nephrotoxic agents, tumor lysis syndrome, and direct damage from cancer's pathophysiology, frequently contribute to or exacerbate kidney injury. This article aims to comprehensively review the epidemiology, mechanisms of injury, diagnosis, treatment options, and prevention strategies for AKI induced by conventional chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Felipe Luz Santos
- Department of Medicine, Universidade Salvador (UNIFACS), Salvador, Brazil
| | | | | | | | | | - Rafael Hennemann Sassi
- Hematology Department, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
8
|
Pinard L, Adam JP, Chagnon M, Bollée G, Soulières D. Hypokalemia, hypomagnesemia, and hyponatremia are associated with acute kidney injury in patients treated with cisplatin. J Oncol Pharm Pract 2024:10781552241262248. [PMID: 39051634 DOI: 10.1177/10781552241262248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Cisplatin-associated acute kidney injury (C-AKI) is common. Predictive factors include age >60 years, hypertension, cisplatin dose, diabetes, and serum albumin < 3.5 g/L. The association between C-AKI and hypokalemia, hypomagnesemia or hyponatremia has not been well characterized. METHODS Data from a previous retrospective observational study was obtained. Patients were separated into three groups with similar cisplatin doses and schedules. Group A received cisplatin 60-100 mg/m2 every three weeks with laboratory assessments before treatment, group B received cisplatin 60-75 mg/m2 every three weeks with laboratory assessments before days 1 and 8 and group C had weekly cisplatin 40 mg/m2 with weekly laboratories assessments. The association between hypomagnesemia, hypokalemia, hyponatremia, and risk of AKI was determined using a counting process specification of Cox's regression models. RESULTS A total of 1301 patients were separated into groups A (n = 713), B (n = 204), and C (n = 384). The proportion of patients with at least one event of hypokalemia, hypomagnesemia, or hyponatremia was lower in group A (29.2%, 57.6%, 36.2%) compared to groups B (43.6%, 67.2%, 59.8%) and C (49.0%, 78.7%, 51.0%). The incidence of all grade C-AKI was 35.6% (group A), 46.6% (group B), and 18.2% (group C). In group A, the risk of AKI doubled with hyponatremia or hypomagnesemia and tripled with hypokalemia. This association was not seen with other groups. CONCLUSION Among patients with the highest doses of cisplatin, the presence of one electrolyte disorder was associated with an increased risk of C-AKI. Other studies are needed to characterize the presence of an electrolyte disorder as a predictive risk factor of C-AKI in this subpopulation.
Collapse
Affiliation(s)
- Louis Pinard
- Division of Nephrology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Jean-Philippe Adam
- Department of Pharmacy, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Miguel Chagnon
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
| | - Guillaume Bollée
- Division of Nephrology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Denis Soulières
- Axe cancer, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Division of Medical Oncology/Hematology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| |
Collapse
|
9
|
Chen Y, Xu J, Shi S, Ma W, Cui W, Yan R, Lin Y. A DNA nanostructure-Hif-1α inducer complex as novel nanotherapy against cisplatin-induced acute kidney injury. Cell Prolif 2024; 57:e13601. [PMID: 38221742 PMCID: PMC11150135 DOI: 10.1111/cpr.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
Since its discovery in 1978, cisplatin-based chemotherapy regimens have served a pivotal role in human cancer treatment, saving millions of lives. However, its high risk still poses a significant challenge for cisplatin-induced acute kidney injury (AKI), which occurs in 30% of cisplatin-treated patients. Unfortunately, no effective solution for preventing or managing this severe complication, which greatly impacts its clinical administration. Kidney is the main organ injured by cisplatin, and the injury is related to cisplatin-induced cell apoptosis and DNA injury. Therefore, to achieve the safe use of cisplatin in tumour treatment, the key lies in identifying a kidney treatment that can effectively minimize cisplatin nephrotoxicity. Here, we successfully synthesized and applied a DNA-nanostructure complex, named TFG, which contains tetrahedral framework nucleic acids (tFNAs) and FG-4592, a novel Hif-1α inducer. As cargo, TFG is composed entirely of DNA strands. It possesses low nephrotoxicity and renal aggregation properties while FG-4592 is able to relieve renal injury by downregulating the apoptosis signal pathways. And it can relieve cisplatin-induced renal injury when taken cisplatin treatment. This work aims to enhance chemotherapy protection in tumour patients by using TFG, a DNA-based nanomedicines to kidney. This work has the potential to revolutionize the treatment of renal diseases, particularly drug-induced kidney injury, leading to improved clinical outcomes.
Collapse
Affiliation(s)
- Yuanchong Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| | - Jiangshan Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| | - Ran Yan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Sichuan Provincial Engineering Research Center of Oral BiomaterialsChengduSichuanChina
| |
Collapse
|
10
|
Matsui M, Makimoto A, Chin M, Koh K, Tomotsune M, Kaneko T, Morikawa Y, Hamada R, Yuza Y. Magnesium supplementation therapy to prevent cisplatin-induced acute nephrotoxicity in pediatric cancer: a randomized phase-2 trial. Int J Clin Oncol 2024; 29:629-637. [PMID: 38564107 DOI: 10.1007/s10147-024-02489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The present study aimed to examine the effect of magnesium (Mg) supplementation on cisplatin-induced nephrotoxicity (CIN) in pediatric cancer patients. METHODS The present phase-2, open-label, multicenter, randomized controlled trial enrolled patients aged less than 20 years who were scheduled to receive cisplatin-containing chemotherapy and randomly allocated them at a ratio of 1:1 to a Mg supplementation arm with even-numbered chemotherapy courses (arm AB) or another arm with odd-numbered courses (arm BA). Analysis objects were reconstructed into two groups depending on whether the chemotherapy course had Mg supplementation (group B) or not (group A). The primary outcome was the proportion of chemotherapy courses resulting in elevated serum creatinine per chemotherapy course. The secondary outcomes included efficacies evaluated using other biomarkers and the safety of the Mg supplementation. RESULTS Twenty-eight patients were randomly allocated to either group (16 to arm AB and 12 to arm BA). The baseline characteristics of the groups were similar. There was no significant difference in the proportion of courses with increased serum creatinine between the groups (group A: 10% vs. group B: 6%; P = 0.465) nor was any significant difference observed in other biomarkers during any chemotherapy course. The Mg value during chemotherapy was significantly higher in group B than that in group A. No adverse events related to magnesium administration were observed. CONCLUSIONS The study design, which treated a single chemotherapy course as a study object, failed to detect a statistically significant benefit of Mg supplementation for preventing CIN in pediatric cancer patients. TRIAL REGISTRATION JRCT ( https://jrct.niph.go.jp/ ) Identifier UMIN000029215 jRCTs031180251. UMIN-CTR ( http://www.umin.ac.jp/icdr/index.html ) Identifier UMIN000029215.
Collapse
Affiliation(s)
- Motohiro Matsui
- Department of Pediatric Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan.
- Division of Molecular Epidemiology, Jikei University School of Medicine, Tokyo, Japan.
| | - Atsushi Makimoto
- Department of Pediatric Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Motoaki Chin
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Masako Tomotsune
- Clinical Research Support Center, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Tetsuji Kaneko
- Clinical Research Support Center, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yoshihiko Morikawa
- Clinical Research Support Center, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yuki Yuza
- Department of Pediatric Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| |
Collapse
|
11
|
Lee B, Kim YY, Jeong S, Lee SW, Lee SJ, Rho MC, Kim SH, Lee S. Oleanolic Acid Acetate Alleviates Cisplatin-Induced Nephrotoxicity via Inhibition of Apoptosis and Necroptosis In Vitro and In Vivo. TOXICS 2024; 12:301. [PMID: 38668524 PMCID: PMC11054587 DOI: 10.3390/toxics12040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Cisplatin is a widely used anti-cancer drug for treating solid tumors, but it is associated with severe side effects, including nephrotoxicity. Various studies have suggested that the nephrotoxicity of cisplatin could be overcome; nonetheless, an effective adjuvant drug has not yet been established. Oleanolic acid acetate (OAA), a triterpenoid isolated from Vigna angularis, is commonly used to treat inflammatory and allergic diseases. This study aimed to investigate the protective effects of OAA against cisplatin-induced apoptosis and necroptosis using TCMK-1 cells and a mouse model. In cisplatin-treated TCMK-1 cells, OAA treatment significantly reduced Bax and cleaved-caspase3 expression, whereas it increased Bcl-2 expression. Moreover, in a cisplatin-induced kidney injury mouse model, OAA treatment alleviated weight loss in the body and major organs and also relieved cisplatin-induced nephrotoxicity symptoms. RNA sequencing analysis of kidney tissues identified lipocalin-2 as the most upregulated gene by cisplatin. Additionally, necroptosis-related genes such as receptor-interacting protein kinase (RIPK) and mixed lineage kinase domain-like (MLKL) were identified. In an in vitro study, the phosphorylation of RIPKs and MLKL was reduced by OAA pretreatment in both cisplatin-treated cells and cells boosted via co-treatment with z-VAD-FMK. In conclusion, OAA could protect the kidney from cisplatin-induced nephrotoxicity and may serve as an anti-cancer adjuvant.
Collapse
Affiliation(s)
- Bori Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Yeon-Yong Kim
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Seungwon Jeong
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Seung Woong Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Seung-Jae Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Mun-Chual Rho
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Sang-Hyun Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Soyoung Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| |
Collapse
|
12
|
Li J, Wu Y, Chen C, Zhang W, Yue L, Liu T. A systematic review for prevention of cisplatin-induced nephrotoxicity using different hydration protocols and meta-analysis for magnesium hydrate supplementation. Clin Exp Nephrol 2024; 28:1-12. [PMID: 37530867 DOI: 10.1007/s10157-023-02386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Nephrotoxicity remains the most serious side effect of cisplatin therapy. Cisplatin-induced nephrotoxicity (CIN) limits the use of this drug and affects up to 20% of patients. Several possible interventions such as magnesium supplementation may prevent CIN. This study aimed to review different types of hydration protocols and we conducted a meta-analysis of magnesium supplementation to understand its effect in protecting against CIN. METHODS A search of the PubMed, Embase, and Cochrane databases was performed. Trials were eligible if they enrolled patients who received cisplatin and different hydration protocols to prevent CIN. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the efficacy of different protocols. RESULTS We initially identified 1113 different studies and included 33 of them which met the selection criteria. A meta-analysis of 11 retrospective studies that examined magnesium supplementation during hydration showed that this treatment provided significant protection against CIN (OR = 0.22, 95% CI = 0.14 to 0.35). CONCLUSION There has been uncertainty regarding the best method to prevent CIN. Our results highlight the potentially protective effect of magnesium supplementation during hydration. This study is registered in PROSPERO, CRD42020212682.
Collapse
Affiliation(s)
- Juanjuan Li
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 68 Gehu Road, Hutang Town, Wujin District, Changzhou, Jiangsu, China
| | - Yu Wu
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 68 Gehu Road, Hutang Town, Wujin District, Changzhou, Jiangsu, China
| | - Cheng Chen
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 68 Gehu Road, Hutang Town, Wujin District, Changzhou, Jiangsu, China
| | - Wanfen Zhang
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 68 Gehu Road, Hutang Town, Wujin District, Changzhou, Jiangsu, China
| | - Lili Yue
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 68 Gehu Road, Hutang Town, Wujin District, Changzhou, Jiangsu, China.
| | - Tongqiang Liu
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 68 Gehu Road, Hutang Town, Wujin District, Changzhou, Jiangsu, China.
| |
Collapse
|
13
|
Sun Z, Ning Y, Wu H, Guo S, Jiao X, Ji J, Ding X, Yu X. 14-3-3ζ targets β-catenin nuclear translocation to maintain mitochondrial homeostasis and promote the balance between proliferation and apoptosis in cisplatin-induced acute kidney injury. Cell Signal 2023; 111:110878. [PMID: 37657586 DOI: 10.1016/j.cellsig.2023.110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Cisplatin is a chemotherapeutic agent that is used extensively to treat solid tumors; however, its clinical application is limited by side effects, especially nephrotoxicity. Cisplatin-induced acute kidney injury (AKI) is characterized by DNA damage, cell-cycle arrest, and mitochondrial oxidative stress. Recent research demonstrated that 14-3-3ζ plays an important role in cancers, nerve disease, and kidney disease, although the regulatory mechanisms underlying cisplatin-induced AKI have yet to be fully elucidated. In the present study, we found that 14-3-3ζ mRNA was upregulated in human kidney organoids (GSE145085) when treated with cisplatin; subsequently, this was confirmed in experimental mice. The application of a protein interaction inhibitor for 14-3-3 (BV02) resulted in a decline in renal function, along with apoptosis, mitochondrial dysfunction, and oxidative stress in cisplatin-induced AKI. Accordingly, the knockdown of 14-3-3ζ in cisplatin-treated NRK-52E cells led to increased apoptosis, cell-cycle arrest, the production of reactive oxygen species (ROS), and lipid dysbolism. Furthermore, the blockade of 14-3-3ζ, both in vivo and in vitro, suppressed β-catenin and its nuclear translocation, thus downregulating expression of the downstream gene cyclin D1 in cisplatin-induced damage. In contrast, the overexpression of 14-3-3ζ alleviated the injury caused by cisplatin both in vivo and in vitro. Furthermore, a non-specific agonist of β-catenin, BIO, reversed the effects of 14-3-3ζ knockdown in terms of cisplatin-induced damage in NRK-52E cells by activating β-catenin. Next, we verified the direct interaction between 14 - 3-3ζ and β-catenin by CO-IP and immunofluorescence. Collectively, these findings indicate that 14-3-3ζ protects against cisplatin-induced AKI by improving mitochondrial function and the balance between proliferation and apoptosis by facilitating the nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Zhaoxing Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, China.
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Huan Wu
- Department of Nephrology, Zhongshan Hospital, Fudan University, China.
| | - Shulan Guo
- Department of Nephrology, Zhongshan Hospital, Fudan University, China.
| | - Xiaoyan Jiao
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Ji Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| |
Collapse
|
14
|
Chen XC, Huang LF, Tang JX, Wu D, An N, Ye ZN, Lan HY, Liu HF, Yang C. Asiatic acid alleviates cisplatin-induced renal fibrosis in tumor-bearing mice by improving the TFEB-mediated autophagy-lysosome pathway. Biomed Pharmacother 2023; 165:115122. [PMID: 37413899 DOI: 10.1016/j.biopha.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023] Open
Abstract
Nephrotoxicity is a major side effect of cisplatin treatment of solid tumors in the clinical setting. Long-term low-dose cisplatin administration causes renal fibrosis and inflammation. However, few specific medicines with clinical application value have been developed to reduce or treat the nephrotoxic side effects of cisplatin without affecting its tumor-killing effect. The present study analyzed the potential reno-protective effect and mechanism of asiatic acid (AA) in long-term cisplatin-treated nude mice suffering from tumors. AA treatment significantly attenuated renal injury, inflammation, and fibrosis induced by long-term cisplatin injection in tumor-bearing mice. AA administration notably suppressed tubular necroptosis and improved the autophagy-lysosome pathway disruption caused by chronic cisplatin treatment in tumor-transplanted nude mice and HK-2 cells. AA promoted transcription factor EB (TFEB)-mediated lysosome biogenesis and reduced the accumulation of damaged lysosomes, resulting in enhanced autophagy flux. Mechanistically, AA increased TFEB expression by rebalancing Smad7/Smad3, whereas siRNA inhibition of Smad7 or TFEB abolished the effect of AA on autophagy flux in HK-2 cells. In addition, AA treatment did not weaken, but actually enhanced the anti-tumor effect of cisplatin, as evidenced by the promoted tumor apoptosis and inhibited proliferation in nude mice. In summary, AA alleviates cisplatin-induced renal fibrosis in tumor-bearing mice by improving the TFEB-mediated autophagy-lysosome pathway.
Collapse
Affiliation(s)
- Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhen-Nan Ye
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
15
|
Lou P, Liu S, Wang Y, Lv K, Zhou X, Li L, Zhang Y, Chen Y, Cheng J, Lu Y, Liu J. Neonatal-Tissue-Derived Extracellular Vesicle Therapy (NEXT): A Potent Strategy for Precision Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300602. [PMID: 37148469 DOI: 10.1002/adma.202300602] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Indexed: 05/08/2023]
Abstract
Extracellular vesicle (EV)-based therapies have emerged as a promising means in regenerative medicine. However, the conventional EV therapy strategy displays some limitations, such as inefficient EV production and lack of tissue-specific repair effects. Here, it is reported that neonatal-tissue-derived EV therapy (NEXT) is a potent strategy for precision tissue repair. In brief, large amounts of EVs with higher yield/purity can be readily isolated from desired tissues with less production time/cost compared to the conventional cell-culture-based method. Moreover, source factors, such as age and tissue type, can affect the repair efficacy of such tissue-derived EVs in different tissue injury models (skin wounds and acute kidney injury), and neonatal-tissue-derived EVs show superior tissue repair potency compared with adult-tissue-derived EVs. Different age- or tissue-type-derived EVs have distinct composition (e.g., protein) signatures that are likely due to the diverse metabolic patterns of the donor tissues, which may contribute to the specific repair action modes of NEXT in different types of tissue injury. Furthermore, neonatal-tissue-derived EVs can be incorporated with bioactive materials for advanced tissue repair. This study highlights that the NEXT strategy may provide a new avenue for precision tissue repair in many types of tissue injury.
Collapse
Affiliation(s)
- Peng Lou
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuyun Liu
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yizhuo Wang
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Lv
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiyue Zhou
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lan Li
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Younan Chen
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiu Cheng
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanrong Lu
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingping Liu
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
16
|
Motwani SS, Kaur SS, Kitchlu A. Cisplatin Nephrotoxicity: Novel Insights Into Mechanisms and Preventative Strategies. Semin Nephrol 2023; 42:151341. [PMID: 37182407 DOI: 10.1016/j.semnephrol.2023.151341] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cisplatin is a highly effective chemotherapeutic agent that has been used for more than 50 years for a variety of cancers; however, its use is limited by toxicity, including nephrotoxicity. In this in-depth review, we discuss the incidence of cisplatin-associated acute kidney injury, as well as common risk factors for its development. Cisplatin accumulates in the kidney tubules and causes AKI through various mechanisms, including DNA damage, oxidative stress, and apoptosis. We also discuss the spectrum of nephrotoxicity, including acute and chronic impairment of kidney function, electrolyte disturbances, and thrombotic microangiopathy. We discuss the limited options for the diagnosis, prevention, and management of these complications, along with factors that may impact future therapy with or without cisplatin. We conclude with directions for future research in this expanding and important area.
Collapse
Affiliation(s)
- Shveta S Motwani
- Division of Nephrology, Lahey Hospital and Medical Center, Burlington, MA.
| | - Sharneet Sandhu Kaur
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Abhijat Kitchlu
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Bonilla M, Workeneh BT, Uppal NN. Hypomagnesemia in Patients With Cancer: The Forgotten Ion. Semin Nephrol 2023; 42:151347. [PMID: 37086496 DOI: 10.1016/j.semnephrol.2023.151347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Magnesium is crucial for various cellular and enzymatic processes, yet it often is overlooked or underappreciated. Hypomagnesemia, a deficiency of magnesium in the blood, is a frequent problem in cancer patients and can lead to severe symptoms and morbidity. In this review, we provide an in-depth analysis of the physiology and regulation of magnesium, and signs and symptoms of hypomagnesemia in cancer patients. We also examine the causes and mechanisms of magnesium imbalances in cancer patients, specifically focusing on cancer-specific therapies that can lead to hypomagnesemia. Finally, we provide updates on the management of hypomagnesemia, including oral and parenteral supplementation, as well as the role of drugs in cases that are resistant to treatment. This review aims to raise awareness among health care providers caring for cancer patients about the significance of monitoring magnesium levels in cancer patients and function as a guide. Future clinical studies should focus on magnesium monitoring, its impact on cancer progression, and its potential for preventing acute kidney injury.
Collapse
Affiliation(s)
- Marco Bonilla
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL
| | - Biruh T Workeneh
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nupur N Uppal
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, NY.
| |
Collapse
|
18
|
Murali R, Wanjari UR, Mukherjee AG, Gopalakrishnan AV, Kannampuzha S, Namachivayam A, Madhyastha H, Renu K, Ganesan R. Crosstalk between COVID-19 Infection and Kidney Diseases: A Review on the Metabolomic Approaches. Vaccines (Basel) 2023; 11:vaccines11020489. [PMID: 36851366 PMCID: PMC9959335 DOI: 10.3390/vaccines11020489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory disorder. Various organ injuries have been reported in response to this virus, including kidney injury and, in particular, kidney tubular injury. It has been discovered that infection with the virus does not only cause new kidney disease but also increases treatment difficulty and mortality rates in people with kidney diseases. In individuals hospitalized with COVID-19, urinary metabolites from several metabolic pathways are used to distinguish between patients with acute kidney injury (AKI) and those without. This review summarizes the pathogenesis, pathophysiology, treatment strategies, and role of metabolomics in relation to AKI in COVID-19 patients. Metabolomics is likely to play a greater role in predicting outcomes for patients with kidney disease and COVID-19 with varying levels of severity in the near future as data on metabolic profiles expand rapidly. Here, we also discuss the correlation between COVID-19 and kidney diseases and the available metabolomics approaches.
Collapse
Affiliation(s)
- Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence: (A.V.G.); (R.G.)
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kaviyarasi Renu
- Center of Molecular Medicine and Diagnostics (COMMAND), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (A.V.G.); (R.G.)
| |
Collapse
|
19
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
Altındağ F, Ergen H. Sinapic acid alleviates cisplatin-induced acute kidney injury by mitigating oxidative stress and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12402-12411. [PMID: 36107295 DOI: 10.1007/s11356-022-22940-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Cisplatin is an anticancer agent with many side effects such as nephrotoxicity, as well as being widely used in the treatment of many tumor types. Sinapic acid has antioxidant, anti-inflammatory, antihyperglycemic, and antiapoptotic effects. This study aimed to investigate the possible beneficial effects of sinapic acid against cisplatin-induced nephrotoxicity. Twenty-eight Wistar albino male rats were used. The groups are as follows: control, cisplatin, cisplatin + sinapic acid, and sinapic acid groups (n = 7). The control group received 1 ml of single-dose intraperitoneal saline on the first day of the study. The cisplatin group was given a single dose of 7 mg/kg cisplatin intraperitoneal. Animals in the cisplatin + sinapic acid group were given sinapic acid for 7 days 25 mg/kg, 3 days after oral gavage administration of 7 mg/kg cisplatin intraperitoneal. The sinapic acid group was given 25 mg/kg/day of sinapic acid by oral gavage for 7 days after the 3rd day of the study. The kidney of the rats was examined by stereological, immunohistochemical, histopathological, and biochemical methods. According to the stereological findings of the study, while the volume of the glomerulus cortex and filtration gap increased, the volume of the medulla decreased, and there was no significant difference in tubular volume in the CP group compared to the control group. The volume of the glomerulus, cortex, and filtration gap of the cisplatin + sinapic acid group was significantly reduced compared to the cisplatin group (p˂0.05). Histopathologically, it was observed the enlargement of the filtration gap, tubular dilatation, atrophy, renal fibrosis, deterioration of the microvilli, and necrosis in the tubular epithelial cells in the cisplatin group. In the cisplatin + sinapic acid group, these pathologies decreased compared to the cisplatin group. Compared to the control group, caspase-3 expression, urea, creatine, and malondialdehyde increased, while Bcl-2 and catalase decreased in the cisplatin group. However, caspase-3 expression, urea, creatine, and malondialdehyde were decreased, while Bcl-2 and catalase increased in the cisplatin + sinapic acid group compared to the cisplatin group. The results of our study showed that sinapic acid reduced the nephrotoxicity induced by cisplatin.
Collapse
Affiliation(s)
- Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey.
| | - Hidayet Ergen
- Department of Histology and Embryology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
21
|
Meng L, Feng J, Gao J, Zhang Y, Mo W, Zhao X, Wei H, Guo H. Reactive Oxygen Species- and Cell-Free DNA-Scavenging Mn 3O 4 Nanozymes for Acute Kidney Injury Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50649-50663. [PMID: 36334088 DOI: 10.1021/acsami.2c16305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) scavenging therapy toward acute kidney injury (AKI) is promising, but no effective ROS scavenging drug has been developed yet. Moreover, cell-free DNA (cfDNA) is also involved in AKI, but the corresponding therapies have not been well developed. To tackle these challenges, Mn3O4 nanoflowers (Nfs) possessing both ROS and cfDNA scavenging activities were developed for better AKI protection as follows. First, Mn3O4 Nfs could protect HK2 cells through cascade ROS scavenging (dismutating ·O2- into H2O2 by superoxide dismutase-like activity and then decomposing H2O2 by catalase-like activity). Second, Mn3O4 Nfs could efficiently adsorb cfDNA and then decrease the inflammation caused by cfDNA. Combined, remarkable therapeutic efficacy was achieved in both cisplatin-induced and ischemia-reperfusion AKI murine models. Furthermore, Mn3O4 Nfs could be used for the T1-MRI real-time imaging of AKI. This study not only offered a promising treatment for AKI but also showed the translational potential of nanozymes.
Collapse
Affiliation(s)
- Longxiyu Meng
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jiayuan Feng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yihong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wenjing Mo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023 China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
22
|
Dewaeles E, Carvalho K, Fellah S, Sim J, Boukrout N, Caillierez R, Ramakrishnan H, Van der Hauwaert C, Vijaya Shankara J, Martin N, Massri N, Launay A, Folger JK, de Schutter C, Larrue R, Loison I, Goujon M, Jung M, Le Gras S, Gomez-Murcia V, Faivre E, Lemaire J, Garat A, Beauval N, Maboudou P, Gnemmi V, Gibier JB, Buée L, Abbadie C, Glowacki F, Pottier N, Perrais M, Cunha RA, Annicotte JS, Laumet G, Blum D, Cauffiez C. Istradefylline protects from cisplatin-induced nephrotoxicity and peripheral neuropathy while preserving cisplatin antitumor effects. J Clin Invest 2022; 132:152924. [PMID: 36377661 PMCID: PMC9663157 DOI: 10.1172/jci152924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is a potent chemotherapeutic drug that is widely used in the treatment of various solid cancers. However, its clinical effectiveness is strongly limited by frequent severe adverse effects, in particular nephrotoxicity and chemotherapy-induced peripheral neuropathy. Thus, there is an urgent medical need to identify novel strategies that limit cisplatin-induced toxicity. In the present study, we show that the FDA-approved adenosine A2A receptor antagonist istradefylline (KW6002) protected from cisplatin-induced nephrotoxicity and neuropathic pain in mice with or without tumors. Moreover, we also demonstrate that the antitumoral properties of cisplatin were not altered by istradefylline in tumor-bearing mice and could even be potentiated. Altogether, our results support the use of istradefylline as a valuable preventive approach for the clinical management of patients undergoing cisplatin treatment.
Collapse
Affiliation(s)
- Edmone Dewaeles
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France
| | - Kévin Carvalho
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Sandy Fellah
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Jaewon Sim
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA.,Cell and Molecular Biology Graduate program, Michigan State University, East Lansing, Michigan, USA
| | - Nihad Boukrout
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Raphaelle Caillierez
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | | | - Cynthia Van der Hauwaert
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,CHU Lille, Département de la Recherche en Santé, Lille, France
| | - Jhenkruthi Vijaya Shankara
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Nathalie Martin
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Noura Massri
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA.,Cell and Molecular Biology Graduate program, Michigan State University, East Lansing, Michigan, USA
| | - Agathe Launay
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Joseph K. Folger
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Clémentine de Schutter
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Romain Larrue
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,CHU Lille, Service de Toxicologie et Génopathies, Lille, France
| | - Ingrid Loison
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Marine Goujon
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Matthieu Jung
- University of Strasbourg, CNRS UMR 7104, INSERM U1258 – GenomEast Platform – IGBMC – Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Stéphanie Le Gras
- University of Strasbourg, CNRS UMR 7104, INSERM U1258 – GenomEast Platform – IGBMC – Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Victoria Gomez-Murcia
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Emilie Faivre
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Julie Lemaire
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Anne Garat
- CHU Lille, Service de Toxicologie et Génopathies, Lille, France.,University of Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPact de l’Environnement Chimique sur la Santé Humaine (IMPECS), Lille, France
| | - Nicolas Beauval
- CHU Lille, Service de Toxicologie et Génopathies, Lille, France.,University of Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPact de l’Environnement Chimique sur la Santé Humaine (IMPECS), Lille, France
| | - Patrice Maboudou
- CHU Lille, Service de Biochimie Automatisée, Protéines et Biologie Prédictive, Lille, France
| | - Viviane Gnemmi
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,CHU Lille, Service d’Anatomopathologie, Lille, France
| | - Jean-Baptiste Gibier
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,CHU Lille, Service d’Anatomopathologie, Lille, France
| | - Luc Buée
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Corinne Abbadie
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Francois Glowacki
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,CHU Lille, Service de Néphrologie, Lille, France
| | - Nicolas Pottier
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,CHU Lille, Service de Toxicologie et Génopathies, Lille, France
| | - Michael Perrais
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Rodrigo A. Cunha
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Jean-Sébastien Annicotte
- University of Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, INSERM U1283-UMR8199 – EGID, Lille, France.,University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - David Blum
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Christelle Cauffiez
- University of Lille, INSERM, CNRS, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
23
|
Xie D, Hu G, Chen C, Ahmadinejad F, Wang W, Li PL, Gewirtz DA, Li N. Loss of sphingosine kinase 2 protects against cisplatin-induced kidney injury. Am J Physiol Renal Physiol 2022; 323:F322-F334. [PMID: 35834271 PMCID: PMC9394771 DOI: 10.1152/ajprenal.00229.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 01/01/2023] Open
Abstract
Cisplatin is an established chemotherapeutic drug for treatment of solid-organ cancers and is the primary drug used in the treatment of head and neck cancer; however, cisplatin-induced nephrotoxicity largely limits its clinical use. Inhibition of sphingosine kinase 2 (SphK2) has been demonstrated to alleviate various kidney diseases. Therefore, we hypothesized that inhibition of SphK2 could also protect against cisplatin-induced nephrotoxicity. Results from the present study showed that the SphK2 inhibitor ABC294640 or knockdown of SphK2 by siRNA blocked the cisplatin-induced increase of cellular injury markers (neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, and cleaved caspase-3) by Western blot analysis in HK-2 cells, a human renal tubular cell line. In addition, SphK2 inhibition blocked cisplatin-induced activation of NF-κB by Western blot analysis and immunostaining analysis. Furthermore, SphK2 inhibition suppressed cisplatin-induced increases of proinflammatory markers (NLR family pyrin domain containing 3, interleukin-1β, and interleukin-6). Genetic deletion of the SphK2 gene in mice further confirmed that inhibition of SphK2 protected against cisplatin-induced kidney damage in vivo. Compared with wild-type mice, SphK2 knockout mice exhibited less renal dysfunction and reduced promotion of kidney injury markers, inflammatory factors, tubular morphology damage, and fibrotic staining. At the same time, the SphK2 inhibitor ABC294640 failed to interfere with the activity of cisplatin or radiation in two cell culture models of head and neck cancer. It is concluded that inhibition of Sphk2 protects against cisplatin-induced kidney injury. SphK2 may be used as a potential therapeutic target for the prevention or treatment of cisplatin-induced kidney injury.NEW & NOTEWORTHY The present study provides new findings that sphingosine kinase 2 (SphK2) is highly expressed in renal tubules, cisplatin treatment increases the expression of SphK2 in proximal tubular cells and kidneys, and inhibition of SphK2 alleviates cisplatin-induced kidney injury by suppressing the activation of NF-κB, production of inflammatory factors, and apoptosis. SphK2 may serve as a potential therapeutic target for the prevention or treatment of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dengpiao Xie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gaizun Hu
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Chaoling Chen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Fereshteh Ahmadinejad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Weili Wang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
24
|
Pang M, Duan S, Zhao M, Jiao Q, Bai Y, Yu L, Du B, Cheng G. Co-delivery of celastrol and lutein with pH sensitive nano micelles for treating acute kidney injury. Toxicol Appl Pharmacol 2022; 450:116155. [PMID: 35803437 DOI: 10.1016/j.taap.2022.116155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
To treat acute kidney injury with high efficiency and low toxicity, a novel nanoplatform was developed to remove excess reactive oxygen species (ROS). Lutein (LU) and celastrol (Cel) were loaded into low molecular weight chitosan (CS) to prepare Cel@LU-CA-CS nanomicelles. Renal tubular epithelial (HK-2) cell uptake experiments showed that the drugs could be internalized in renal tubular via the megalin receptor. In this study, the amide bond formed by the reaction of citraconic anhydride (CA) with an amino group of CS could be destroyed under acidic conditions. Therefore, the drugs were released in HK-2 cells due to the acidic environment of the lysosome. In vitro studies showed that the nanomicelles could reduce toxicity in non-target organs and enhance therapeutic efficacy in acute kidney injury (AKI). In addition, Cel@LU-CA-CS micelles had alleviated kidney oxidative stress disorder and stabilized the mitochondrial membrane potential quickly. Next, in vivo studies proved that Cel@LU-CA-CS micelles could inhibit the activation of the NF-κB p65 and p38 MAPK inflammatory signaling pathways. Therefore, the micelles further reduced the overexpression of related inflammatory factors. In conclusion, Cel@LU-CA-CS nanomicelles could treat AKI with high efficiency and low toxicity, and inhibit renal fibrosis.
Collapse
Affiliation(s)
- Mengxue Pang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Songchao Duan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Mengmeng Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Qingqing Jiao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Yimeng Bai
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Lili Yu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, 100 Science Road, Zhengzhou 450001, China.
| | - Genyang Cheng
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China.
| |
Collapse
|
25
|
Luo S, Yang M, Han Y, Zhao H, Jiang N, Li L, Chen W, Li C, Yang J, Liu Y, Liu C, Zhao C, Sun L. β-Hydroxybutyrate against Cisplatin-Induced acute kidney injury via inhibiting NLRP3 inflammasome and oxidative stress. Int Immunopharmacol 2022; 111:109101. [PMID: 35940076 DOI: 10.1016/j.intimp.2022.109101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Abstract
Cisplatin, as a commonly used anticancer drug, can easily lead to acute kidney injury (AKI), and has received more and more attention in clinical practice. β-hydroxybutyric acid (BHB) is a metabolite in the body and acts as an inhibitor of oxidative stress and NLRP3 inflammasome, reducing inflammatory responses and apoptosis. However, the role of BHB in cisplatin-induced AKI is currently not fully elucidated. In this study, C57BL/6 male mice were randomly divided into normal control group, cisplatin-induced AKI group and AKI with BHB treatment group. Compared to the control, cisplatin-treated mice exhibited high level of serum creatinine, blood urea nitrogen and severe tubular injury, which accompanied with significantly increased expression level of NLRP3, IL-1β, IL-18, BAX, cleaved-caspase 3, as well as aggravated oxidative stress and renal tubular cell apoptosis. However, these changes were significantly improved in that of BHB treatment. In vitro, our study showed that the expression of cleaved-caspase3, IL-1β and IL-18 were significantly increased in human proximal tubular epithelial cell line (HK-2) treated with cisplatin compared with the control group, while decreased in cells treated with BHB. Furthermore, a significantly increased expression of cGAS and STING in HK-2 cells treated with cisplatin were found, whereas notably decreased in cells treated with BHB. This data indicates that BHB protects against cisplatin-induced AKI and renal tubular damage mediated by NLRP3 inflammasome and cGAS-STING pathway.
Collapse
Affiliation(s)
- Shilu Luo
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Jinfei Yang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chanyue Zhao
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
26
|
Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int J Mol Sci 2022; 23:7227. [PMID: 35806229 PMCID: PMC9266867 DOI: 10.3390/ijms23137227] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic that has long since been effective against a variety of solid-cancers, substantially improving the five-year survival rates for cancer patients. Its use has also historically been limited by its adverse drug reactions, or cisplatin-induced toxicities (CITs). Of these reactions, cisplatin-induced nephrotoxicity (CIN), cisplatin-induced peripheral neuropathy (CIPN), and cisplatin-induced ototoxicity (CIO) are the three most common of several CITs recognised thus far. While the anti-cancer activity of cisplatin is well understood, the mechanisms driving its toxicities have only begun to be defined. Most of the literature pertains to damage caused by oxidative stress that occurs downstream of cisplatin treatment, but recent evidence suggests that the instigator of CIT development is inflammation. Cisplatin has been shown to induce pro-inflammatory signalling in CIN, CIPN, and CIO, all of which are associated with persisting markers of inflammation, particularly from the innate immune system. This review covered the hallmarks of inflammation common and distinct between different CITs, the role of innate immune components in development of CITs, as well as current treatments targeting pro-inflammatory signalling pathways to conserve the use of cisplatin in chemotherapy and improve long-term health outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (I.K.D.); (A.L.)
| |
Collapse
|
27
|
Li B, Lin F, Xia Y, Ye Z, Yan X, Song B, Yuan T, Li L, Zhou X, Yu W, Cheng F. The Intersection of Acute Kidney Injury and Non-Coding RNAs: Inflammation. Front Physiol 2022; 13:923239. [PMID: 35755446 PMCID: PMC9218900 DOI: 10.3389/fphys.2022.923239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Acute renal injury (AKI) is a complex clinical syndrome, involving a series of pathophysiological processes, in which inflammation plays a key role. Identification and verification of gene signatures associated with inflammatory onset and progression are imperative for understanding the molecular mechanisms involved in AKI pathogenesis. Non-coding RNAs (ncRNAs), involved in epigenetic modifications of inflammatory responses, are associated with the aberrant expression of inflammation-related genes in AKI. However, its regulatory role in gene expression involves precise transcriptional regulation mechanisms which have not been fully elucidated in the complex and volatile inflammatory response of AKI. In this study, we systematically review current research on the intrinsic molecular mechanisms of ncRNAs that regulate the inflammatory response in AKI. We aim to provide potential research directions and strategies for developing ncRNA-targeted gene therapies as an intervention for the inflammatory damage in AKI.
Collapse
Affiliation(s)
- Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinzhou Yan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baofeng Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianhui Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Yuan L, Yang J, Li Y, Yuan L, Liu F, Yuan Y, Tang X. Matrine alleviates cisplatin-induced acute kidney injury by inhibiting mitochondrial dysfunction and inflammation via SIRT3/OPA1 pathway. J Cell Mol Med 2022; 26:3702-3715. [PMID: 35650472 PMCID: PMC9258713 DOI: 10.1111/jcmm.17398] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
Cisplatin is extensively used to treat malignancies. However, its clinical use is always limited due to the serious side effects, especially the nephrotoxicity. Matrine (MAT), a tetracyclic quinolizine alkaloid found in sophora genus, exerts multiple pharmacological roles, including anti-oxidative stress, anti-inflammation and anti-apoptosis, but the role of MAT on acute kidney injury (AKI) has not been evaluated. Here, we found that MAT potently inhibited cell injury induced by cisplatin in HK2 cells in vitro, which was associated with the inhibition of oxidative injury and NF-κB-mediated inflammation. Moreover, MAT treatment could activate the SIRT3/OPA1 axis and subsequently suppress the mitochondrial fragmentation and improve mitochondrial function. More importantly, SIRT3 knockdown suppressed the deacetylation of OPA1, which blocked the protective role of MAT on cisplatin-induced cell injury. In vivo, MAT treatment alleviated renal dysfunction, histological damage and inflammation induced by cisplatin in mice. Furthermore, consistent with the founding in vitro, MAT also activated SIRT3-mediated deacetylation of OPA1 and alleviated mitochondrial dysfunction in AKI mice. Our study proved that MAT protected against cisplatin-induced AKI by synergic anti-oxidative stress and anti-inflammation actions via SIRT3/OPA1-mediated improvement of mitochondrial function, suggesting that MAT may be a novel and effective strategy for AKI.
Collapse
Affiliation(s)
- Lu Yuan
- The First People's Hospital of Shuangliu District, Airport Hospital of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Jingchao Yang
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Li
- The First People's Hospital of Shuangliu District, Airport Hospital of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Longhui Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaochi Tang
- The First People's Hospital of Shuangliu District, Airport Hospital of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Rachman A, Wafa S, Nugroho P, Koesnoe S. The effect of mannitol addition to hydration on acute kidney injury event after high dose cisplatin chemotherapy: an ambispective cohort study. BMC Cancer 2022; 22:395. [PMID: 35413808 PMCID: PMC9004063 DOI: 10.1186/s12885-022-09456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Background Saline hydration with addition of mannitol have commonly been the strategy to avoid cisplatin induced acute kidney injury (AKI). While the initial reports demonstrated that mannitol diuresis decreased cisplatin induced renal injury, others have shown renal injury to be worsened. Objective To compare the risk of AKI in cancer patients receiving high dose cisplatin with and without addition of mannitol. Method This was an ambispective cohort study based on consecutive sampling at Cipto Mangunkusumo General Hospital (CMGH) and Mochtar Riady Comprehensive Cancer Centre (MRCCC) Siloam Hospitals. The data was obtained from September 2017 to February 2018. The choice of mannitol administration based on attending physician clinical judgement. The primary outcome was increase of serum creatinine more than 0.3 mg/dL or 1.5 times from baseline. Analysis was done by using univariate, bivariate and multivariate logistic regression to obtain crude risk ratio and adjusted risk ratio of cisplatin induced AKI probability caused by mannitol addition on top of usual saline hydration protocol. Result Data from 110 patients (57.3% male) with a median age of 44.5 years (range 19 to 60 years) were collected; 63 received saline with the addition of mannitol and 47 received saline only. Incidence of AKI were higher in mannitol vs saline only group. Bivariate analysis showed higher probability of post chemotherapy AKI in mannitol group, however it was statistically insignificant (RR 2.168; 95% CI 0.839–5.6; p = 0.094). On multivariate analysis the age adjusted RR was 2.852 (95% CI 0.68–11.96; p = 0.152). Conclusion The addition of mannitol to hydration did not reduce the risk of cisplatin induced AKI as compared with saline hydration only. It was also found that risk for acute kidney injury were higher in population ≥ 40 years old.
Collapse
Affiliation(s)
- Andhika Rachman
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Dr. Cipto Mangunkusumo General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Pangeran Diponegoro No.71, RW.5, Kec. Senen, Central Jakarta, Jakarta, 10430, Indonesia.
| | - Syahidatul Wafa
- Department of Internal Medicine, Dr. Cipto Mangunkusumo General Hospital - Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Pringgodigdo Nugroho
- Department of Internal Medicine, Division of Nephrology and Hypertension, Dr. Cipto Mangunkusumo General Hospital - Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sukamto Koesnoe
- Department of Internal Medicine, Division of Allergy and Immunology, Dr. Cipto Mangunkusumo General Hospital - Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
30
|
Lin F, Han S, Yu W, Rao T, Ruan Y, Yuan R, Li H, Ning J, Xia Y, Xie J, Qi Y, Zhou X, Cheng F. microRNA‐486‐5p is implicated in the cisplatin‐induced apoptosis and acute inflammation response of renal tubular epithelial cells by targeting HAT1. J Biochem Mol Toxicol 2022; 36:e23039. [PMID: 35279909 DOI: 10.1002/jbt.23039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Fang‐You Lin
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Shang‐Ting Han
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Wei‐Min Yu
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Ting Rao
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yuan Ruan
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Run Yuan
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Hao‐Yong Li
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Jin‐Zhuo Ning
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yu‐Qi Xia
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Jin‐Na Xie
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yu‐Cheng Qi
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Xiang‐Jun Zhou
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Fan Cheng
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| |
Collapse
|
31
|
Kim HR, Park JH, Lee SH, Kwack SJ, Lee J, Kim S, Yoon S, Kim KB, Lee BM, Kacew S, Kim HS. Using intracellular metabolic profiling to identify novel biomarkers of cisplatin-induced acute kidney injury in NRK-52E cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:29-42. [PMID: 34445936 DOI: 10.1080/15287394.2021.1969305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to investigate changes in the intracellular metabolism resulting from cisplatin (CDDP)-induced nephrotoxicity in normal kidney tubular epithelial NRK-52E cells. Cytotoxicity, cell cycle analysis, and apoptotic cell death were all evaluated in NRK-52E cells treated with CDDP. Subsequently, proton nuclear magnetic resonance (1H-NMR) spectroscopy was used to investigate cellular metabolic profiles. CDDP-induced nephrotoxicity was determined in vivo model. Cytotoxicity in the NRK-52E cells significantly rose following treatment with CDDP and these increases were found to be concentration-dependent. Both p53 and Bax protein expression was increased in CDDP-treated NRK-52E cells, correlating with enhanced cellular apoptosis. In addition, a number of metabolites were altered in both media and cell lysates in these cells. In cell lysates, citrate, creatinine, and acetate levels were dramatically reduced following treatment with 20 µM CDDP concentrations, while glutamate level was elevated. Lactate and acetate levels were significantly increased in culture media but citrate concentrations were reduced following high 20 µM CDDP concentrations incubation. In addition, excretion of clusterin, calbindin, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), selenium binding protein 1 (SBP1), and pyruvate kinase M2 (PKM2) into the culture media was significantly increased in CDDP-treated cells while expression of acetyl CoA synthetase 1 (AceCS1) was markedly reduced in these cells. These findings suggest that acetate-dependent metabolic pathway may be a reliable and useful biomarker for detecting CDDP-induced nephrotoxicity. Taken together, data demonstrate that the discovery of novel biomarkers by metabolite profiling in target cells may contribute to the detection of nephrotoxicity and new drug development.
Collapse
Affiliation(s)
- Hae Ri Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hyeon Park
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Song Hee Lee
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung Jun Kwack
- Department of Biochemistry and Health Science, Changwon National University, Gyeongnam, Republic of Korea
| | - Jaewon Lee
- Department of Neuroscience, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Sungpil Yoon
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyu-Bong Kim
- Department of Toxicology, College of Pharmacy, Dankook University, Chungnam, Republic of Korea
| | - Byung Mu Lee
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sam Kacew
- Department of Cellular and Molecular Medicine, McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
32
|
Taguchi K, Suzuki Y, Tsutsuura M, Hiraoka K, Watabe Y, Enoki Y, Otagiri M, Sakai H, Matsumoto K. Liposomal Artificial Red Blood Cell-Based Carbon Monoxide Donor Is a Potent Renoprotectant against Cisplatin-Induced Acute Kidney Injury. Pharmaceutics 2021; 14:pharmaceutics14010057. [PMID: 35056952 PMCID: PMC8780666 DOI: 10.3390/pharmaceutics14010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
Cisplatin (CDDP) is an essential anti-tumor agent for chemotherapeutic regimens against various types of cancer. However, the progression of nephrotoxicity, which is the main adverse effect of CDDP, leads to discontinuation of CDDP chemotherapy. Therefore, development of a renoprotectant against CDDP-induced nephrotoxicity is crucial. Here, the potential of a carbon monoxide (CO)-loaded hemoglobin-vesicle (CO-HbV) as a renoprotectant for CDDP-induced nephrotoxicity was evaluated for its renoprotective effects against CDDP-induced nephrotoxicity, inhibitory effects on the anti-tumor activity of CDDP, and anti-tumor activity. In healthy mice, after pretreatment with either saline, HbV, or CO-HbV prior to CDDP administration, only the CO-HbV pretreatment group ameliorated the progression of CDDP-induced nephrotoxicity by suppressing apoptosis via caspase-3. In experiments using B16-F10 melanoma cells, the half-maximal inhibitory concentration of CDDP decreased with co-incubation with CO-HbV, owing to the anti-tumor activity of CO. CO-HbV pretreatment had no impact on the anti-tumor activity of CDDP in B16-F10 melanoma cell-bearing mice, which was consistent with the results of the cell experiment. Furthermore, CO-HbV pretreatment improved body growth and survival rates. In conclusion, CO-HbV pretreatment is a potent renoprotectant for CDDP-induced nephrotoxicity, allowing treatment with CDDP to be conducted without failure of cancer treatment.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
- Correspondence:
| | - Yuto Suzuki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
| | - Moeko Tsutsuura
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
| | - Kana Hiraoka
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
| | - Yuki Watabe
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
| | - Yuki Enoki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan;
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Shijo-cho 840, Kashihara 634-8521, Japan;
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (Y.S.); (M.T.); (K.H.); (Y.W.); (Y.E.); (K.M.)
| |
Collapse
|
33
|
Gilbar PJ, Pokharel K. Severe cisplatin-induced renal toxicity in a patient with xeroderma pigmentosum. J Oncol Pharm Pract 2021; 28:466-470. [PMID: 34647821 DOI: 10.1177/10781552211038246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Xeroderma pigmentosum is a rare genetic disorder of DNA repair, defined by extreme sensitivity to sunlight, leading to sunburn, skin pigmentation and increased incidence of skin cancers. Cisplatin acts by interfering with DNA repair mechanisms to cause DNA damage and apoptosis. It has indications in many malignancies including bladder, head and neck and lung cancers. Acute kidney injury is a well-known complication of cisplatin. CASE REPORT We report a 42-year-old male with a long history of Xeroderma pigmentosum treated with adjuvant cisplatin (40 mg/m2) in combination with radiotherapy for cutaneous squamous cell carcinoma of the neck. He presented to clinic prior to his second weekly dose of cisplatin with a severe acute kidney injury and a creatine level of 813 mmol/L and eGFR of 7 mL/min. No myelosuppression was present. MANAGEMENT AND OUTCOME Treatment consisted of aggressive electrolyte and fluid management. Creatinine levels slowly improved with conservative management without the need for dialysis. Radiation was completed without further cisplatin. DISCUSSION Three cases of severe adverse effects from cisplatin administration in patients with Xeroderma pigmentosum have been reported, with all fatal. Xeroderma pigmentosum complementation group C plays an important role in the DNA repair process with the recognition and repair of damage to normal cells following cisplatin. Patients with Xeroderma pigmentosum can be carriers of defective Xeroderma pigmentosum complementation group C and if the degree of Xeroderma pigmentosum complementation group C inactivity is significant, fatalities could occur. Physicians should be aware of this rare but potentially lethal toxicity when considering systemic therapy for squamous cell carcinoma in patients diagnosed with Xeroderma pigmentosum.
Collapse
Affiliation(s)
- Peter J Gilbar
- Cancer Care Services, Toowoomba Hospital, Australia.,Rural Clinical School, Faculty of Medicine, The University of Queensland, Australia
| | - Khageshwor Pokharel
- Cancer Care Services, Toowoomba Hospital, Australia.,Rural Clinical School, Faculty of Medicine, The University of Queensland, Australia
| |
Collapse
|
34
|
Perše M. Cisplatin Mouse Models: Treatment, Toxicity and Translatability. Biomedicines 2021; 9:biomedicines9101406. [PMID: 34680523 PMCID: PMC8533586 DOI: 10.3390/biomedicines9101406] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is one of the most widely used chemotherapeutic drugs in the treatment of a wide range of pediatric and adult malignances. However, it has various side effects which limit its use. Cisplatin mouse models are widely used in studies investigating cisplatin therapeutic and toxic effects. However, despite numerous promising results, no significant improvement in treatment outcome has been achieved in humans. There are many drawbacks in the currently used cisplatin protocols in mice. In the paper, the most characterized cisplatin protocols are summarized together with weaknesses that need to be improved in future studies, including hydration and supportive care. As demonstrated, mice respond to cisplatin treatment in similar ways to humans. The paper thus aims to illustrate the complexity of cisplatin side effects (nephrotoxicity, gastrointestinal toxicity, neurotoxicity, ototoxicity and myelotoxicity) and the interconnectedness and interdependence of pathomechanisms among tissues and organs in a dose- and time-dependent manner. The paper offers knowledge that can help design future studies more efficiently and interpret study outcomes more critically. If we want to understand molecular mechanisms and find therapeutic agents that would have a potential benefit in clinics, we need to change our approach and start to treat animals as patients and not as tools.
Collapse
Affiliation(s)
- Martina Perše
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Acute kidney injury in cancer patients. Clin Exp Nephrol 2021; 26:103-112. [PMID: 34499266 DOI: 10.1007/s10157-021-02131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We want to know the causes of AKI in oncology patients, including disease-related complications and the nephrotoxicity of chemotherapy drugs, in order to provide more useful clinical information. METHODS In this review, an electronic search of the English language literature was performed in the database PubMed, with the results enriched by manual searches and citation mining, factors investigated in the selected articles included acute kidney injury, oncology, chemotherapy, anticancer drug, antitumor drug. RESULTS According to the searched articles, we summarized the causes (including pre-renal, intrinsic renal, and post-renal lesion) of AKI in cancer patients and the corresponding management measures. Among the pre-renal factors we mainly described hypercalcemia, hematopoietic cell transplantation, post-renal factors we mainly described hemorrhagic cystitis, and intrinsic renal factors we mainly described thrombotic microangiopathy, chemotherapeutics, tumor lysis syndrome, cast nephropathy, in which the emphasis was on chemotherapy drug associated AKI and its treatment. CONCLUSIONS AKI is not uncommon in cancer patients, and has diverse causes and negative outcomes. Both nephrologists and oncologists need to be aware of the unique reasons of AKI in this population and its optimal management.
Collapse
|
36
|
Gupta S, Portales-Castillo I, Daher A, Kitchlu A. Conventional Chemotherapy Nephrotoxicity. Adv Chronic Kidney Dis 2021; 28:402-414.e1. [PMID: 35190107 DOI: 10.1053/j.ackd.2021.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Conventional chemotherapies remain the mainstay of treatment for many malignancies. Kidney complications of these therapies are not infrequent and may have serious implications for future kidney function, cancer treatment options, eligibility for clinical trials, and overall survival. Kidney adverse effects may include acute kidney injury (via tubular injury, tubulointerstitial nephritis, glomerular disease and thrombotic microangiopathy), long-term kidney function loss and CKD, and electrolyte disturbances. In this review, we summarize the kidney complications of conventional forms of chemotherapy and, where possible, provide estimates of incidence, and identify risk factors and strategies for kidney risk mitigation. In addition, we provide recommendations regarding kidney dose modifications, recognizing that these adjustments may be limited by available supporting pharmacokinetic and clinical outcomes data. We discuss management strategies for kidney adverse effects associated with these therapies with drug-specific recommendations. We focus on frequently used anticancer agents with established kidney complications, including platinum-based chemotherapies (cisplatin, carboplatin, oxaliplatin), cyclophosphamide, gemcitabine, ifosfamide, methotrexate and pemetrexed, among others.
Collapse
|
37
|
Mapuskar KA, Steinbach EJ, Zaher A, Riley DP, Beardsley RA, Keene JL, Holmlund JT, Anderson CM, Zepeda-Orozco D, Buatti JM, Spitz DR, Allen BG. Mitochondrial Superoxide Dismutase in Cisplatin-Induced Kidney Injury. Antioxidants (Basel) 2021; 10:antiox10091329. [PMID: 34572961 PMCID: PMC8469643 DOI: 10.3390/antiox10091329] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is a chemotherapy agent commonly used to treat a wide variety of cancers. Despite the potential for both severe acute and chronic side effects, it remains a preferred therapeutic option for many malignancies due to its potent anti-tumor activity. Common cisplatin-associated side-effects include acute kidney injury (AKI) and chronic kidney disease (CKD). These renal injuries may cause delays and potentially cessation of cisplatin therapy and have long-term effects on renal function reserve. Thus, developing mechanism-based interventional strategies that minimize cisplatin-associated kidney injury without reducing efficacy would be of great benefit. In addition to its action of cross-linking DNA, cisplatin has been shown to affect mitochondrial metabolism, resulting in mitochondrially derived reactive oxygen species (ROS). Increased ROS formation in renal proximal convoluted tubule cells is associated with cisplatin-induced AKI and CKD. We review the mechanisms by which cisplatin may induce AKI and CKD and discuss the potential of mitochondrial superoxide dismutase mimetics to prevent platinum-associated nephrotoxicity.
Collapse
Affiliation(s)
- Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Emily J. Steinbach
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Amira Zaher
- Biomedical Science Program, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA;
| | - Dennis P. Riley
- Galera Therapeutics, Inc., Malvern, PA 19355, USA; (D.P.R.); (R.A.B.); (J.L.K.); (J.T.H.)
| | - Robert A. Beardsley
- Galera Therapeutics, Inc., Malvern, PA 19355, USA; (D.P.R.); (R.A.B.); (J.L.K.); (J.T.H.)
| | - Jeffery L. Keene
- Galera Therapeutics, Inc., Malvern, PA 19355, USA; (D.P.R.); (R.A.B.); (J.L.K.); (J.T.H.)
| | - Jon T. Holmlund
- Galera Therapeutics, Inc., Malvern, PA 19355, USA; (D.P.R.); (R.A.B.); (J.L.K.); (J.T.H.)
| | - Carryn M. Anderson
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Diana Zepeda-Orozco
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Nephrology, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - John M. Buatti
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; (K.A.M.); (E.J.S.); (C.M.A.); (J.M.B.); (D.R.S.)
- Correspondence: ; Tel.: +1-319-335-8019; Fax: +1-319-335-8039
| |
Collapse
|
38
|
Kundal SV, Lai Shum J, Emeasoba EU, Marcelin M, Shetty VS, Huang T. Seizure and delirium secondary to carboplatin and pantoprazole therapy-induced hypomagnesemia in a cancer patient. Clin Case Rep 2021; 9:e04572. [PMID: 34466238 PMCID: PMC8382599 DOI: 10.1002/ccr3.4572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 11/11/2022] Open
Abstract
Active surveillance and treatment of hypomagnesemia along with strict avoidance of concurrent offending agents is essential to prevent its grave clinical consequences among patients on carboplatin therapy.
Collapse
Affiliation(s)
- Sanchit V. Kundal
- Department of Internal MedicineMaimonides Medical CenterBrooklynNYUSA
| | - Janet Lai Shum
- Department of Internal MedicineMaimonides Medical CenterBrooklynNYUSA
| | | | - Michael Marcelin
- Department of Internal MedicineMaimonides Medical CenterBrooklynNYUSA
| | - Vijay S. Shetty
- Department of Internal MedicineMaimonides Medical CenterBrooklynNYUSA
| | | |
Collapse
|
39
|
Al Za'abi M, Ali H, Al Sabahi M, Ali BH. The salutary action of melatonin and betaine, given singly or concomitantly, on cisplatin-induced nephrotoxicity in mice. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1693-1701. [PMID: 34003327 DOI: 10.1007/s00210-021-02097-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Cisplatin (CP) is commonly used in the treatment of various solid tumors. Its use, however, is hampered by nephrotoxicity. In this study, we compared the effect of betaine and melatonin given singly, with that of a combination of these two agents on CP-induced nephrotoxicity in mice. CP (20 mg/kg, given intraperitoneally on the 8th day of 12 days of the experiment) showed the typical physiological, biochemical, and histologic features of nephrotoxicity. CP-treated mice showed a significant reduction in food intake, body weight, and urine and fecal output. It also induced significant increases in the plasma concentrations of urea, creatinine, uric acid, phosphorous, adiponectin, interleukin-1β, interleukin-6, transforming growth factor -β1, tumor necrosis factor-α, and cystatin C. All these effects were significantly reduced by daily administration of betaine or melatonin at oral doses of 200 mg/kg and 10 mg/kg, respectively. Furthermore, using the two agents in combination caused further significant reductions in the above parameters. These findings suggest that betaine and melatonin concomitant use is likely to provide greater protection against CP-induced nephrotoxicity than when they are given singly, rendering them potentially suitable and safe agents to use in clinical trials to assess their possible beneficial actions in cancer patients receiving CP.
Collapse
Affiliation(s)
- Mohammed Al Za'abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, P. O. Box 35, Muscat, Postal code 123, Oman.
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Postal code 123, Oman
| | - Mohammed Al Sabahi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, P. O. Box 35, Muscat, Postal code 123, Oman
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, P. O. Box 35, Muscat, Postal code 123, Oman
| |
Collapse
|
40
|
Money ME, Hamroun A, Shu Y, Matthews C, Ahmed Eltayeb S, Ciarimboli G, Metz CN. Case Report and Supporting Documentation: Acute Kidney Injury Manifested as Oliguria Is Reduced by Intravenous Magnesium Before Cisplatin. Front Oncol 2021; 11:607574. [PMID: 33718160 PMCID: PMC7952862 DOI: 10.3389/fonc.2021.607574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
After more than four decades of post-approval, cisplatin is still an important treatment for numerous cancers. However, acute kidney injury (AKI), defined as significant impairment of renal filtration as discussed below, is the major limiting side effect of cisplatin, occurring in approximately 30% of patients (25–33% after the first course). Cisplatin also damages the kidneys’ ability to reabsorb magnesium in 40–100% of patients, with collateral health risks due to subsequent hypomagnesemia. Multiple methods and drugs have been proposed for preventing cisplatin-induced AKI, including saline infusion with or without mannitol, which has not always prevented AKI and has been found to activate a cellular stress response in renal tubular cells. While numerous reports and trials, as well as the National Comprehensive Cancer Network (NCCN), support premedication with magnesium and hydration, this practice has not been universally accepted. Many clinics administer intravenous magnesium (IV) only after identification of hypomagnesemia post-cisplatin treatment, thus placing patients at risk for AKI and chronic renal loss of magnesium. We present the following case report and additional supporting evidence identifying the immediate effect of IV magnesium prior to intraperitoneal cisplatin for cycle 4 because of documented hypomagnesemia resulting in normalization of oliguria, which had been experienced for the first three cycles. The patient subsequently requested and received IV magnesium before cisplatin for the next two cycles with continuation of normal urinary output. The effect of pretreatment with IV magnesium on urine output following cisplatin has not been previously reported and further supports pre-cisplatin administration. In addition, two recent meta-analyses of clinical trials and pre-clinical research are reviewed that demonstrate effectiveness of magnesium pretreatment to preventing AKI without reducing its chemotherapeutic efficacy. This case report with additional evidence supports the adoption of administration of 1–3 g IV magnesium before cisplatin as best practice to prevent cisplatin induced AKI and hypomagnesemia regardless of patient baseline serum magnesium levels.
Collapse
Affiliation(s)
- Mary Elizabeth Money
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Medicine, Meritus Medical Center, Hagerstown, MD, United States
| | - Aghiles Hamroun
- Lille University, Lille University Hospital Center, Nephrology Department, Lille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Clinical Epidemiology Team, CESP, Villejuif, France
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, United States
| | | | | | | | - Christine Noel Metz
- Institute of Molecular Medicine, Feinstein Institutes, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| |
Collapse
|
41
|
Ye L, Pang W, Huang Y, Wu H, Huang X, Liu J, Wang S, Yang C, Pan Q, Liu H. Lansoprazole promotes cisplatin-induced acute kidney injury via enhancing tubular necroptosis. J Cell Mol Med 2021; 25:2703-2713. [PMID: 33605079 PMCID: PMC7933939 DOI: 10.1111/jcmm.16302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/10/2020] [Accepted: 01/03/2021] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) is the main obstacle that limits the use of cisplatin in cancer treatment. Proton pump inhibitors (PPIs), the most commonly used class of medications for gastrointestinal complications in cancer patients, have been reported to cause adverse renal events. However, the effect of PPIs on cisplatin-induced AKI remains unclear. Herein, the effect and mechanism of lansoprazole (LPZ), one of the most frequently prescribed PPIs, on cisplatin-induced AKI were investigated in vivo and in vitro. C57BL/6 mice received a single intraperitoneal (i.p.) injection of cisplatin (18 mg/kg) to induce AKI, and LPZ (12.5 or 25 mg/kg) was administered 2 hours prior to cisplatin administration and then once daily for another 2 days via i.p. injection. The results showed that LPZ significantly aggravated the tubular damage and further increased the elevated levels of serum creatinine and blood urea nitrogen induced by cisplatin. However, LPZ did not enhance cisplatin-induced tubular apoptosis, as evidenced by a lack of significant change in mRNA and protein expression of Bax/Bcl-2 ratio and TUNEL staining. Notably, LPZ increased the number of necrotic renal tubular cells compared to that by cisplatin treatment alone, which was further confirmed by the elevated necroptosis-associated protein expression of RIPK1, p-RIPK3 and p-MLKL. Furthermore, LPZ deteriorated cisplatin-induced inflammation, as revealed by the increased mRNA expression of pro-inflammatory factors including, NLRP3, IL-1β, TNF-α and caspase 1, as well as neutrophil infiltration. Consistently, in in vitro study, LPZ increased HK-2 cell death and enhanced inflammation, compared with cisplatin treatment alone. Collectively, our results demonstrate that LPZ aggravates cisplatin-induced AKI, and necroptosis may be involved in the exacerbation of kidney damage.
Collapse
Affiliation(s)
- Lin Ye
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wanxia Pang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Nephrology, Maoming People's Hospital, Maoming, China
| | - Yanheng Huang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hongluan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Huang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jianxing Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
42
|
Casanova AG, Prieto M, Colino CI, Gutiérrez-Millán C, Ruszkowska-Ciastek B, de Paz E, Martín Á, Morales AI, López-Hernández FJ. A Micellar Formulation of Quercetin Prevents Cisplatin Nephrotoxicity. Int J Mol Sci 2021; 22:E729. [PMID: 33450917 PMCID: PMC7828436 DOI: 10.3390/ijms22020729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
The antioxidant flavonoid quercetin has been shown to prevent nephrotoxicity in animal models and in a clinical study and is thus a very promising prophylactic candidate under development. Quercetin solubility is very low, which handicaps clinical application. The aim of this work was to study, in rats, the bioavailability and nephroprotective efficacy of a micellar formulation of Pluronic F127-encapsulated quercetin (P-quercetin), with improved hydrosolubility. Intraperitoneal administration of P-quercetin leads to an increased plasma concentration and bioavailability of quercetin compared to the equimolar administration of natural quercetin. Moreover, P-quercetin retains overall nephroprotective properties, and even slightly improves some renal function parameters, when compared to natural quercetin. Specifically, P-quercetin reduced the increment in plasma creatinine (from 3.4 ± 0.5 to 1.2 ± 0.3 mg/dL) and urea (from 490.9 ± 43.8 to 184.1 ± 50.1 mg/dL) and the decrease in creatinine clearance (from 0.08 ± 0.02 to 0.58 ± 0.19 mL/min) induced by the nephrotoxic chemotherapeutic drug cisplatin, and it ameliorated histological evidence of tubular damage. This new formulation with enhanced kinetic and biopharmaceutical properties will allow for further exploration of quercetin as a candidate nephroprotector at lower dosages and by administration routes oriented towards its clinical use.
Collapse
Affiliation(s)
- Alfredo G. Casanova
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.G.C.); (M.P.); (C.I.C.); (C.G.-M.)
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Toxicology Unit, University of Salamanca, 37007 Salamanca, Spain
| | - Marta Prieto
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.G.C.); (M.P.); (C.I.C.); (C.G.-M.)
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Toxicology Unit, University of Salamanca, 37007 Salamanca, Spain
| | - Clara I. Colino
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.G.C.); (M.P.); (C.I.C.); (C.G.-M.)
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Carmen Gutiérrez-Millán
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.G.C.); (M.P.); (C.I.C.); (C.G.-M.)
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-796 Bydgoszcz, Poland;
| | - Esther de Paz
- High Pressure Processes Group, BioEcoUVa, Bioeconomy Research Institute, Department of Chemical Engineering and Environmental Technology, University of Valladolid, 47011 Valladolid, Spain; (E.d.P.); (Á.M.)
| | - Ángel Martín
- High Pressure Processes Group, BioEcoUVa, Bioeconomy Research Institute, Department of Chemical Engineering and Environmental Technology, University of Valladolid, 47011 Valladolid, Spain; (E.d.P.); (Á.M.)
| | - Ana I. Morales
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.G.C.); (M.P.); (C.I.C.); (C.G.-M.)
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Toxicology Unit, University of Salamanca, 37007 Salamanca, Spain
| | - Francisco J. López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.G.C.); (M.P.); (C.I.C.); (C.G.-M.)
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
43
|
HIF in Nephrotoxicity during Cisplatin Chemotherapy: Regulation, Function and Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13020180. [PMID: 33430279 PMCID: PMC7825709 DOI: 10.3390/cancers13020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cisplatin is a widely used chemotherapy drug, but its use and efficacy are limited by its nephrotoxicity. HIF has protective effects against kidney injury during cisplatin chemotherapy, but it may attenuate the anti-cancer effect of cisplatin. In this review, we describe the role and regulation of HIF in cisplatin-induced nephrotoxicity and highlight the therapeutic potential of targeting HIF in chemotherapy. Abstract Cisplatin is a highly effective, broad-spectrum chemotherapeutic drug, yet its clinical use and efficacy are limited by its side effects. Particularly, cancer patients receiving cisplatin chemotherapy have high incidence of kidney problems. Hypoxia-inducible factor (HIF) is the “master” transcription factor that is induced under hypoxia to trans-activate various genes for adaptation to the low oxygen condition. Numerous studies have reported that HIF activation protects against AKI and promotes kidney recovery in experimental models of cisplatin-induced acute kidney injury (AKI). In contrast, little is known about the effects of HIF on chronic kidney problems following cisplatin chemotherapy. Prolyl hydroxylase (PHD) inhibitors are potent HIF inducers that recently entered clinical use. By inducing HIF, PHD inhibitors may protect kidneys during cisplatin chemotherapy. However, HIF activation by PHD inhibitors may reduce the anti-cancer effect of cisplatin in tumors. Future studies should test PHD inhibitors in tumor-bearing animal models to verify their effects in kidneys and tumors.
Collapse
|
44
|
Tang CF, Ding H, Jiao RQ, Wu XX, Kong LD. Possibility of magnesium supplementation for supportive treatment in patients with COVID-19. Eur J Pharmacol 2020; 886:173546. [PMID: 32931782 PMCID: PMC7486870 DOI: 10.1016/j.ejphar.2020.173546] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/30/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Magnesium as an enzymatic activator is essential for various physiological functions such as cell cycle, metabolic regulation, muscle contraction, and vasomotor tone. A growing body of evidence supports that magnesium supplementation (mainly magnesium sulfate and magnesium oxide) prevents or treats various types of disorders or diseases related to respiratory system, reproductive system, nervous system, digestive system, and cardiovascular system as well as kidney injury, diabetes and cancer. The ongoing pandemic coronavirus disease 19 (COVID-19) characterized by respiratory tract symptoms with different degrees of important organ and tissue damages has attracted global attention. Particularly, effective drugs are still lacking in the COVID-19 therapy. In this review, we find and summarize the effectiveness of magnesium supplementation on the disorders or diseases, and provide a reference to the possibility of magnesium supplementation for supportive treatment in patients with COVID-19.
Collapse
Affiliation(s)
- Chuan-Feng Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hong Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xing-Xin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
45
|
Song Y, Hu T, Gao H, Zhai J, Gong J, Zhang Y, Tao L, Sun J, Li Z, Qu X. Altered metabolic profiles and biomarkers associated with astragaloside IV-mediated protection against cisplatin-induced acute kidney injury in rats: An HPLC-TOF/MS-based untargeted metabolomics study. Biochem Pharmacol 2020; 183:114299. [PMID: 33148504 DOI: 10.1016/j.bcp.2020.114299] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CDDP)-induced acute kidney injury (AKI) limits the therapeutic use of CDDP, which urgently needs to be addressed. Our previous study demonstrated that astragaloside IV (AS IV), an active compound of the traditional Chinese herb Astragalus membranaceus, alleviated CDDP-induced AKI. To explore the mechanism, we performed a metabolomics study to explore the altered metabolic pathways and screen for sensitive biomarkers. Twenty-four rats were randomly divided into three groups, which were treated with vehicle solutions (Control), intraperitoneally injected CDDP, and intraperitoneally injected CDDP plus oral AS IV, respectively. Metabolic profiles of serum, urine, and kidney samples were analyzed by high-performance liquid chromatography-time of flight mass spectrometry. There were 38 key metabolites in the urine samples, 20 in the serum samples, and 16 in the kidney samples that were significantly altered due to AS IV-mediated protection against CDDP-induced AKI relative to CDDP-only treatment. CDDP + AS IV co-treatment significantly altered two pathways in the blood (biosynthesis of unsaturated fatty acids and alanine, aspartate, and glutamate metabolism), five pathways in the urine (phenylalanine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis; arginine biosynthesis; arginine and proline metabolism; and histidine metabolism), and five pathways in the kidneys (glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; arginine and proline metabolism; and D-glutamine and D-glutamate metabolism). The metabolic pathways were mainly associated with improvements in inflammatory responses, oxidative stress, and energy metabolism. Adrenic acid in serum and L-histidine and L-methionine in urine were identified as sensitive biomarkers. This study provides new insights to understand the mechanism of AS IV-mediated protection against CDDP-induced AKI and has identified three candidate biomarkers to evaluate preventative treatment and assess therapeutic effectiveness.
Collapse
Affiliation(s)
- Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Tingting Hu
- Department of Technical Center, Changchun Customs District, Changchun 130062, China
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinghui Zhai
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiawei Gong
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Yueming Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Lina Tao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jingmeng Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhiyuan Li
- AB Sciex Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Xiaoyu Qu
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
46
|
Calcium dobesilate prevents cisplatin-induced nephrotoxicity by modulating oxidative and histopathological changes in mice. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:515-521. [PMID: 33057778 DOI: 10.1007/s00210-020-01990-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Cisplatin is one of the synthetic cancer medicines with nephrotoxicity being one of its major side effects. Past research shows that calcium dobesilate (CaD), as a vascular protective agent in diabetic retinopathy, has antioxidant properties. Thus, this study aims to evaluate the protective effects of CaD in cisplatin-induced nephrotoxicity in mice. A many as 28 mice, in the present experimental research, were randomly distributed into four groups, including control, cisplatin (the intraperitoneal administration of 20 mg/kg cisplatin only on the first day of the experiment), cisplatin + CaD 50 (cisplatin with the oral administration of 50 mg/kg CaD), and cisplatin + CaD 100 (cisplatin with the oral administration of 100 mg/kg CaD). The treated groups received CaD by oral gavage for 4 constitutive days. On the fifth day, the mice were sacrificed, and some biochemical (serum levels of Cr and BUN, renal tissue levels of MDA, and renal activities of SOD and GPx) and pathological parameters were evaluated. Based on the results, there was a significant decrease in the renal SOD and GPx activities; in contrast, there was a significant increase in the BUN, Cr, and renal MDA levels following administering cisplatin. However, the CaD treatment (100 mg/kg) significantly attenuated these alterations. In addition, the kidney's histological examination of kidneys confirmed the nephroprotective effects of CaD. The findings proved the protective impact of CaD on cisplatin-induced nephrotoxicity by an improvement in the oxidative stress factors.
Collapse
|
47
|
Ali BH, Abdelrahman A, Al Suleimani Y, Manoj P, Ali H, Nemmar A, Al Za'abi M. Effect of concomitant treatment of curcumin and melatonin on cisplatin-induced nephrotoxicity in rats. Biomed Pharmacother 2020; 131:110761. [PMID: 33152924 DOI: 10.1016/j.biopha.2020.110761] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Cisplatin (CP) is a potent anticancer drug used to treat solid tumors. Its use, however, is dose-limited by its nephrotoxicity. We aimed to compare the effect of melatonin and curcumin given singly, with that of a combination of these two agents on CP-induced nephrotoxicity in rats. CP (6 mg/kg, given once intraperitoneally) induced nephrotoxicity as evidenced by several significant adverse physiological, biochemical and histopathological actions that included a reduction in body weight, increased urine production, and significant alterations in some conventional and novel renal damage indices in plasma, urine and kidneys. CP also elevated several pro-inflammatory cytokines and caused renal oxidative/nitrosative stress. Supplementation with either curcumin (200 mg/kg) or melatonin (10 mg /kg) given singly by oral gavage for eight consecutive days prior to CP injection and four days thereafter, significantly mitigated the adverse renal effects of CP, by attenuating the pro-inflammatory and apoptotic mediators and improving antioxidant competence in renal tissues of CP- treated rats. When curcumin and melatonin were given together, the ameliorative effect was augmented in some of the measured indices e.g. tumor necrosis factor alpha, cystatin C, uric acid, phosphorus in plasma and, urine creatinine and creatinine clearance. Renal platinum concertation was reduced more with curcumin than that with melatonin, while the reduction was maximized when both melatonin and curcumin were given. Pending further pharmacological and toxicological studies, a combination of these two agents is likely to be mor effective in mitigating the adverse renal effects of CP administered to cancer patients.
Collapse
Affiliation(s)
- Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P. O. Box 35 Al Khoud, 123, Oman
| | - Aly Abdelrahman
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P. O. Box 35 Al Khoud, 123, Oman
| | - Yousuf Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P. O. Box 35 Al Khoud, 123, Oman
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P. O. Box 35 Al Khoud, 123, Oman
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, 123, Oman
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Mohammed Al Za'abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P. O. Box 35 Al Khoud, 123, Oman.
| |
Collapse
|
48
|
Shen D, Wang Y, Xu J, Li Y, Chen X, Guo M, Geng X, Ding X, Xu X. The Effect of Admission Serum Magnesium on the Acute Kidney Injury Among Patients with Malignancy. Cancer Manag Res 2020; 12:7199-7207. [PMID: 32848472 PMCID: PMC7431168 DOI: 10.2147/cmar.s262674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose This study aimed to explore the relationship between serum magnesium (Mg) levels and incidence of acute kidney injury (AKI) in patients with malignancy. Patients and Methods Hospitalized patients with malignancy between October 1, 2014 and September 30, 2015 in Zhongshan Hospital were recruited. All relevant data were extracted from the electronic database. Results All 99,845 patients were enrolled and 16,082 eligible patients were divided into three groups according to admission serum Mg levels in this study. Among them, 2383 (14.8%) cases were diagnosed as AKI. The incidence of AKI showed a V trend with the increase of serum Mg level. The effect of low serum Mg level on the onset of AKI seems to be greater than high serum Mg level. Patients with low serum Mg level spent a longer time in the hospital than those with normal serum Mg level and high serum Mg level. Further, multivariate logistic regression model was used to assess the importance of serum Mg level to influence AKI incidence. There was a higher AKI incidence in patients with magnesium level 0.66mmol/L or less (aOR=2.438, 95% CI=1.696, 3.505). Conclusion Low serum Mg level might be a independent risk factor for AKI in patients with malignancy. Appropriate clinical intervention for serum Mg disorder may contribute to decreasing the incidence of AKI and the possibility of poor outcomes in cancer patients.
Collapse
Affiliation(s)
- Daoqi Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Yimei Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Jiarui Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Yang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Xiaohong Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Man Guo
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Xuemei Geng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, People's Republic of China
| |
Collapse
|
49
|
Gao J, Liu Y, Jiang B, Cao W, Kan Y, Chen W, Ding M, Zhang G, Zhang B, Xi K, Jia X, Zhao X, Guo H. Phenylenediamine-Based Carbon Nanodots Alleviate Acute Kidney Injury via Preferential Renal Accumulation and Antioxidant Capacity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31745-31756. [PMID: 32571010 DOI: 10.1021/acsami.0c05041] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a reactive oxygen species (ROS)-promoted disease, acute kidney injury (AKI) is associated with high mortality and morbidity, but no effective pharmacological treatment is available. Kidney-targeted and ROS-reactive antioxidants are in urgent demand for AKI treatment. A promising nanotechnology-based strategy for targeting renal tubules offers new perspectives for AKI treatment but remains challenging because of the glomerular filtration barrier, which requires ultrasmall-sized therapeutics for penetration and filtration. Here, we fabricated four potential antioxidative carbon nanodots (CNDs) with ultrasmall size. After balancing the antioxidant properties and biocompatibility, m-phenylenediamine-based CNDs (PDA-CNDs) were chosen for further research. PDA-CNDs demonstrated remarkable antioxidant properties for scavenging multiple toxic free radicals, enabling efficient protection of cells under various oxidative stresses in vitro. Moreover, fluorescence imaging revealed that PDA-CNDs preferentially accumulated in the injured kidney of mice with ischemia-reperfusion (IR)-induced AKI. Blood renal function tests and kidney tissue staining revealed the therapeutic efficacy of PDA-CNDs for AKI in both the murine IR-induced AKI model and cisplatin-induced AKI model. Collectively, this is the first study revealing that specific rationally designed CNDs could be a promising pharmacological treatment for AKI induced by ROS.
Collapse
Affiliation(s)
- Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yanfeng Liu
- School of Chemistry & Chemical Engineering, Nanjing University, No. 163 Xianlin Road, Nanjing 210008, Jiangsu, China
| | - Bo Jiang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yansheng Kan
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Guiyang Zhang
- School of Chemistry & Chemical Engineering, Nanjing University, No. 163 Xianlin Road, Nanjing 210008, Jiangsu, China
| | - Bowen Zhang
- School of Chemistry & Chemical Engineering, Nanjing University, No. 163 Xianlin Road, Nanjing 210008, Jiangsu, China
| | - Kai Xi
- School of Chemistry & Chemical Engineering, Nanjing University, No. 163 Xianlin Road, Nanjing 210008, Jiangsu, China
| | - Xudong Jia
- School of Chemistry & Chemical Engineering, Nanjing University, No. 163 Xianlin Road, Nanjing 210008, Jiangsu, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| |
Collapse
|
50
|
Gao H, Wang X, Qu X, Zhai J, Tao L, Zhang Y, Song Y, Zhang W. Omeprazole attenuates cisplatin-induced kidney injury through suppression of the TLR4/NF-κB/NLRP3 signaling pathway. Toxicology 2020; 440:152487. [PMID: 32418911 DOI: 10.1016/j.tox.2020.152487] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/01/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022]
Abstract
Renal toxicity is the primary factor that limits clinical use of cisplatin (CP). A previous study showed that omeprazole (OME) protected against CP-induced toxicity in human renal tubular HK-2 cells and rat kidneys. However, the protective mechanisms of OME have not been characterized. We evaluated the ability of OME to inhibit CP-induced inflammation, and characterized the pathways responsible for this effect. Rats were randomly divided into five groups (n = 10/group). The OME groups were intraperitoneally injected with 1.8 or 3.6 mg OME /kg body weight once daily for 5 days. One hour after final administration of vehicle or OME, all rats (except those in control group and OME alone group) were intraperitoneally injected with 15 mg/kg CP. Twenty-four hours after CP injection, the surgery was applied. The time points and dosing of OME and CP were calculated based on previous studies and the therapeutic dose for patients. Omeprazole attenuated CP-induced apoptosis and damage in vivo and in vitro, as evidenced by increased cell viability and prevention of structural damage. Omeprazole ameliorated CP-induced renal injury through inhibition of NF-κB activation and IκBα degradation, and down-regulation of toll-like receptor 4 (TLR4) and Nod-like receptor protein 3 (NLRP3). Lipopolysaccharide, a TLR4 agonist, was used to verify this mechanism. The results indicated that OME inhibited CP-induced expression of inflammatory proteins, and this effect was blunted by co-treatment with LPS in HK-2 cells. These findings suggested that the protective effects of OME against CP-induced kidney damage may occur through inhibition of the TLR4/NF-κB/NLRP3 signaling pathway. This study provided evidence that OME may be a promising agent to inhibit CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Huan Gao
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Xiangfeng Wang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Xiaoyu Qu
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Jinghui Zhai
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Lina Tao
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Yueming Zhang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Yanqing Song
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China.
| | - Wenrui Zhang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|