1
|
Kojic F, Mandic D, Duric S. The effects of eccentric phase tempo in squats on hypertrophy, strength, and contractile properties of the quadriceps femoris muscle. Front Physiol 2025; 15:1531926. [PMID: 39850448 PMCID: PMC11754408 DOI: 10.3389/fphys.2024.1531926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction The aim of the present study was to investigate the effects of eccentric phase tempo in squats on hypertrophy, strength, and contractile properties of the quadriceps femoris (QF) muscle. Methods Eighteen participants (10 males and 8 females, age 24.0 ± 1.7 years) with no resistance training (RT) experience in the last 8 months were randomized into two groups, each following a 7 week squat resistance training (RT) protocol with either a fast eccentric (FE, 1 s eccentric/0 s isometric/1 s concentric/0 s isometric) or slow eccentric (SE, 4 s eccentric/0 s isometric/1 s concentric/0 s isometric) tempo. The training intensity (60%-70% RM), the number of sets (3-4), and the rest intervals (120 s) were consistent in both groups. The study measured changes in quadriceps cross-sectional area (CSA), one-repetition maximum (1RM) strength, and muscle contractile properties such as contraction time (Tc) and radial displacement (Dm), using tensiomyography (TMG). An ANCOVA model with baseline values as covariates was used to examine between-group differences. Results Results showed significant strength gains in both groups, with the SE group achieving greater 1RM increases (effect size [ES] = 1.60 vs 0.99, p < 0.05). CSA increased for all QF muscles; however, the SE group exhibited significantly higher hypertrophy in the vastus lateralis (ES = 1.74 vs. 1.37, p < 0.05). TMG analysis revealed decreased Dm in the rectus femoris for both groups (p < 0.05), while Tc significantly (ES = 1.33, p < 0.01) increased in the SE group. Discussion These findings suggest that slower eccentric tempo in RT may optimize vastus lateralis hypertrophy and enhance strength while promoting muscle fiber-type specificity, contributing to the understanding of eccentric training's role in muscle adaptation.
Collapse
Affiliation(s)
- Filip Kojic
- Faculty of Education, University of Belgrade, Belgrade, Serbia
| | - Danimir Mandic
- Faculty of Education, University of Belgrade, Belgrade, Serbia
| | - Sasa Duric
- Liberal Arts Department, American University of the Middle East, Egaila, Kuwait
| |
Collapse
|
2
|
Spudić D, Strojnik V, Štirn I, Pori P, Šarabon N. Effects of flywheel resistance training on countermovement jump performance and vastus lateralis muscle stiffness: A controlled study. J Sports Sci 2024; 42:2412-2423. [PMID: 39607327 DOI: 10.1080/02640414.2024.2434285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
This study aimed to investigate the effects of an 8-week resistance training using flywheel (FW) device on countermovement jump (CMJ) performance and resting stiffness of the vastus lateralis (VL) muscle. Physically active adults were randomly assigned to a training intervention group (T; n = 18) and a control group (C; n = 13), which received no intervention. Jump performance variables and ultrasound-assessed resting VL shear modulus were measured before and after the intervention. Analysis of covariance revealed statistically significant group differences in jump height (T = +9%; C = -3%), rate of force development (T = +32%; C = +4%), peak power (T = +9%; C = -1%), and peak force (T = +7%; C = -1%). Jump performance improved only in the training group (all CMJ variables p < 0.05). Conversely, no significant changes within groups were observed in the resting shear wave modulus results (p > 0.05). VL stiffness decreased in the training group (-4%) and increased in the control group (+6%). Our results suggest that resistance training using FW device with individually allocated high-load FW inertia induces significant improvements in jump performance, which are not underpinned by changes in VL muscle stiffness.
Collapse
Affiliation(s)
- Darjan Spudić
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Vojko Strojnik
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Štirn
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Pori
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Nejc Šarabon
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
- Human Health Department, InnoRenew CoE, Izola, Slovenia
- Laboratory for Motor Control and Motor Behavior, Science to Practice Ltd, Ljubljana, Slovenia
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria
| |
Collapse
|
3
|
Niknam A, Koushkie Jahromi M, Hemmatinafar M, Dehghani AR, Oviedo GR. Plyometric training with additional load improves jumping performance and isokinetic strength parameters of knee extensors and flexors in young male soccer players. J Sports Sci 2024; 42:1986-2004. [PMID: 39472577 DOI: 10.1080/02640414.2024.2421663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
This study investigated the effect of plyometric training with and without additional load on young male soccer players' jumping ability and isokinetic strength. Methods: In this randomized controlled trial, 39 U-17 male trained soccer players were randomly divided into plyometric training with additional load (PT+AL), plyometric training with just bodyweight (PTBW) and control (CON) groups. PT+AL and PTBW were performed for six weeks (2 days/week). Absolute peak torque (APT), relative peak torque (RPT), average peak torque (AvPT), time-to-peak torque (TPT), average rate of force development (AvRFD), vertical jump height (VJH), standing long jump (SLJ) and 15-second repeated jump tests (RJ15s) were assessed before and after the interventions. The findings showed that the performance of knee extensors in TPT-60°/s and AvRFD-60°/s, and knee flexors in APT-60°/s, RPT-60°/s, AvPT-60°/s, AvPT-120°/s, AvRFD-60°/s and AvRFD-120°/s significantly increased after PT+AL, compared to the CON (p < 0.05). Also, a significant improvement in jumping ability was observed in PT+AL compared to CON (p < 0.05). Additionally, PTBW also improved the performance of knee flexors in TPT-120°/s and AvRFD-120°/s, as well as RJ15s performance compared to the CON (p < 0.05). Furthermore, knee flexors AvRFD-60°/s increased significantly after PT+AL, compared to PTBW (p < 0.05). SO, plyometric training, with or without additional load, improved young male soccer players' strength and jumping ability. However, strength parameters - especially the rate of force development - showed a greater increase following PT + AL compared to PTBW.
Collapse
Affiliation(s)
- Alireza Niknam
- Department of Sport Sciences, School of education and Psychology, Shiraz University, Shiraz, Iran
| | - Maryam Koushkie Jahromi
- Department of Sport Sciences, School of education and Psychology, Shiraz University, Shiraz, Iran
| | - Mohammad Hemmatinafar
- Department of Sport Sciences, School of education and Psychology, Shiraz University, Shiraz, Iran
| | - Ahmad Reza Dehghani
- Department of Sport Sciences, School of education and Psychology, Shiraz University, Shiraz, Iran
| | - Guillermo R Oviedo
- Faculty of Psychology, Education Sciences and Sport Blanquerna, Barcelona, Spain
| |
Collapse
|
4
|
Cormier P, Freitas TT, Seaman K. A systematic review of resistance training methodologies for the development of lower body concentric mean power, peak power, and mean propulsive power in team-sport athletes. Sports Biomech 2024; 23:1229-1262. [PMID: 34346844 DOI: 10.1080/14763141.2021.1948601] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to systematically review training methods prescribed to develop lower-body power, determine their effectiveness for the development of lower-body mechanical power and their implementation in an annual training cycle amongst team-sport athletes. The absolute and relative outcome values of concentric mean power, peak power and mean propulsive power were extracted from 19 studies. Outcomes were assessed using baseline to post intervention percent change, effect sizes, and the level of evidence concerning the method's effectiveness. A thorough analysis of the literature indicated that, based on the high level of evidence, traditional (e.g., strength training alone) and combination training (e.g., complex and contrast) methods should be considered. Further, optimal load and velocity-based training can be implemented if coaches have access to the appropriate equipment to monitor movement velocity and mechanical power in every session. This is of particular importance in periods of the season where high volumes of technical-tactical training and congested fixture periods are present. Also, flywheel, eccentric overload and weightlifting methods have been shown to be effective although the level of evidence is low. Future research should expand on current training practices whilst adequately reporting actual training loads from sport-specific training and games alongside strength-power training protocols.
Collapse
Affiliation(s)
- Patrick Cormier
- Faculty of Kinesiology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Tomás T Freitas
- UCAM Research Center for High Performance Sport - Catholic University of Murcia, UCAM, Spain
- NAR - Nucleus of High Performance in Sport, São Paulo, Brazil
- Faculty of Sport Sciences, Catholic University of Murcia, UCAM, Murcia, Spain
| | - Kenneth Seaman
- Faculty of Kinesiology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
5
|
Yi B, Zhang L, Zhang C, Huang T, Wang Y, Zhao X, Yan B, Girard O. Effects of 6-Week Weighted-Jump-Squat Training With and Without Eccentric Load Reduction on Explosive Performance. Int J Sports Physiol Perform 2024; 19:1115-1121. [PMID: 39168459 DOI: 10.1123/ijspp.2024-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE To compare the effects of 6-week barbell weighted-jump-squat (WJS) training with and without eccentric load reduction on explosive performance. METHODS Twenty well-trained male athletes were randomly assigned to either an experimental group (n = 10) or a control group (n = 10). Participants completed 12 WJS training sessions (6 sets of 5 repetitions of barbell back squat at 30% of 1-repetition maximum [1RM]) twice a week over a 6-week period. While the control group used 0% eccentric loading (ie, traditional WJS), the experimental group utilized a 50% eccentric loading reduction with a mechanical braking unit (ie, eccentric load set at 15% of 1RM). Performance assessments, including countermovement jump, 20-m sprint, standing long jump, and 1RM barbell back squat, were conducted both before (pretests) and after (posttests) the intervention. RESULTS Both the experimental group and the control group demonstrated a significant increase in countermovement-jump height (+6.4% [4.0%] vs +4.9% [5.7%]; P < .001) and peak power output (+2.3% [2.7%] vs +1.9% [5.1%]; P = .017), faster 20-m sprint times (+9.4% [4.8%] vs +9.2% [5.5%]; P < .001), longer standing long jump (+3.1% [2.5%] vs +3.0% [3.3%]; P < .001), and higher 1RM back squat (+6.4% [4.0%] vs +4.9% [5.7%]; P < .001) from pretests to posttests. However, there was no significant condition × time interaction for any variable (all P ≥ .294). CONCLUSIONS Both WJS training methods, with and without load reduction in the eccentric phase, effectively enhance explosive performance. Nevertheless, athletes in later stages of injury rehabilitation or intense training may find reducing eccentric load a more tolerable strategy for achieving similar performance gains compared with traditional isoinertial loading.
Collapse
Affiliation(s)
- Baoyi Yi
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Department of Physical Education and Research, Yanzhou High School of Zhongshan, Zhongshan, China
| | - Liang Zhang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Conghui Zhang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Tian Huang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yang Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Xinrong Zhao
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Bing Yan
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Hu Z, Liu Y, Huang K, Huang H, Zhang Y, Yuan X. Effects of Inertial Flywheel Training vs. Accentuated Eccentric Loading Training on Strength, Power, and Speed in Well-Trained Male College Sprinters. Life (Basel) 2024; 14:1081. [PMID: 39337865 PMCID: PMC11433371 DOI: 10.3390/life14091081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to evaluate and compare the effects of inertial flywheel training and accentuated eccentric loading training on the neuromuscular performance of well-trained male college sprinters. Fourteen sprinters were recruited and randomly assigned to either the flywheel training (FWT, n = 7) group or the accentuated eccentric loading training (AELT, n = 7) group. The FWT group completed four sets of 2 + 7 repetitions of flywheel squats, whereas the AELT group performed four sets of seven repetitions of barbell squats (concentric/eccentric: 80%/120% 1RM). Both groups underwent an eight-week squat training program, with two sessions per week. A two-way repeated ANOVA analysis was used to find differences between the two groups and between the two testing times (pre-test vs. post-test). The results indicated significant improvements in all measured variables for the FWT group: 1RM (5.0%, ES = 1.28), CMJ (13.3%, ES = 5.42), SJ (6.0%, ES = 2.94), EUR (6.5%, ES = 4.42), SLJ (2.9%, ES = 1.77), and 30 m sprint (-3.4%, ES = -2.80); and for the AELT group: 1RM (6.3%, ES = 2.53), CMJ (7.4%, ES = 3.44), SJ (6.4%, ES = 2.21), SLJ (2.2%, ES = 1.20), and 30 m sprint (-3.0%, ES = -1.84), with the exception of EUR (0.9%, ES = 0.63, p = 0.134), showing no significant difference. In addition, no significant interaction effects between group and time were observed for 1RM back squat, SJ, SLJ, and 30 m sprint (p > 0.05). Conversely, a significant interaction effect between group and time was observed for both CMJ and EUR (p < 0.001); post hoc analysis revealed that the improvements in CMJ and EUR were significantly greater in the FWT group compared to the AELT group (p < 0.001). These findings indicate that both FWT and AELT are effective at enhancing lower-body strength, power, and speed in well-trained male college sprinters, with FWT being particularly more effective in promoting elastic energy storage and the full utilization of the stretch-shortening cycle.
Collapse
Affiliation(s)
- Zhongzhong Hu
- School of Sports Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuhang Liu
- China Athletics College, Beijing Sport University, Beijing 100084, China
| | - Keke Huang
- School of Sports Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Hao Huang
- School of Sports Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Zhang
- School of Sports Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoyi Yuan
- China Athletics College, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
7
|
Su EYS, Carroll TJ, Farris DJ, Lichtwark G. Increased force and elastic energy storage are not the mechanisms that improve jump performance with accentuated eccentric loading during a constrained vertical jump. PLoS One 2024; 19:e0308226. [PMID: 39106275 DOI: 10.1371/journal.pone.0308226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/19/2024] [Indexed: 08/09/2024] Open
Abstract
Accentuated eccentric loading (AEL) involves higher load applied during the eccentric phase of a stretch-shortening cycle movement, followed by a sudden removal of load before the concentric phase. Previous studies suggest that AEL enhances human countermovement jump performance, however the mechanism is not fully understood. Here we explore whether isolating additional load during the countermovement is sufficient to increase ground reaction force, and hence elastic energy stored, at the start of the upward movement and whether this leads to increased jump height or power generation. We conducted a trunk-constrained vertical jump test on a custom-built device to isolate the effect of additional load while controlling for effects of squat depth, arm swing, and coordination. Twelve healthy, recreationally active adults (7 males, 5 females) performed maximal jumps without AEL, followed by randomised AEL conditions prescribed as a percentage of body mass (10%, 20%, and 30%), before repeating jumps without AEL. No significant changes in vertical ground reaction force at the turning point were observed. High load AEL conditions (20% and 30% body weight) led to slight reductions in jump height, primarily due to decreased hip joint and centre of mass work. AEL conditions did not alter peak or integrated activation levels of the knee extensor muscles. The constrained movement task used here, which excluded potential contributions of trunk motion, arm swing, rate of descent, squat depth, and point of load application, allows the conclusion that increased elastic energy return is not the primary mechanism for potentiating effects of AEL on jump performance.
Collapse
Affiliation(s)
- Eric Yung-Sheng Su
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Timothy J Carroll
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Dominic J Farris
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health and Life Sciences, Public Health and Sport Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Glen Lichtwark
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
8
|
Vicens-Bordas J, Sarand AP, Beato M, Buhmann R. Hamstring Injuries, From the Clinic to the Field: A Narrative Review Discussing Exercise Transfer. Int J Sports Physiol Perform 2024; 19:729-737. [PMID: 38917984 DOI: 10.1123/ijspp.2024-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE The optimal approach to hamstring training is heavily debated. Eccentric exercises reduce injury risk; however, it is argued that these exercises transfer poorly to improved hamstring function during sprinting. Some argue that other exercises, such as isometric exercises, result in better transfer to running gait and should be used when training to improve performance and reduce injury risk. Given the performance requirements of the hamstrings during the terminal swing phase, where they are exposed to high strain, exercises should aim to improve the torque production during this phase. This should improve the hamstrings' ability to resist overlengthening consequently, improving performance and limiting strain injury. Most hamstring training studies fail to assess running kinematics postintervention. Of the limited evidence available, only eccentric exercises demonstrate changes in swing-phase kinematics following training. Studies of other exercise modalities investigate effects on markers of performance and injury risk but do not investigate changes in running kinematics. CONCLUSIONS Despite being inconsistent with principles of transfer, current evidence suggests that eccentric exercises result in transfer to swing-phase kinematics. Other exercise modalities may be effective, but the effect of these exercises on running kinematics is unknown.
Collapse
Affiliation(s)
- Jordi Vicens-Bordas
- Sport Performance Analysis Research Group (SPARG) and Sport and Physical Activity Studies Center (CEEAF), University of Vic-Central University of Catalonia, Vic, Spain
| | - Ali Parvaneh Sarand
- Department of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| | - Marco Beato
- School of Health and Sports Sciences, University of Suffolk, Ipswich, United Kingdom
| | - Robert Buhmann
- School of Health and Behavioral Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
9
|
Hu Z, Liu Y, Huang K, Huang H, Li F, Yuan X. Comparing the Effect of Isoinertial Flywheel Training and Traditional Resistance Training on Maximal Strength and Muscle Power in Healthy People: A Systematic Review and Meta-Analysis. Life (Basel) 2024; 14:908. [PMID: 39063661 PMCID: PMC11277740 DOI: 10.3390/life14070908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND This systematic review and meta-analysis aimed to analyze whether isoinertial flywheel training (FWT) is superior to traditional resistance training (TRT) in enhancing maximal strength and muscle power in healthy individuals. METHODS Electronic searches were conducted in the Web of Science, PubMed, Cochrane Library, SPORTDiscus, and Scopus databases up to 21 April 2024. Outcomes were analyzed as continuous variables using either a random or fixed effects model to calculate the standardized mean difference (SMD) and 95% confidence intervals (CI). RESULTS A total of sixteen articles, involving 341 subjects, met the inclusion criteria and were included in the statistical analyses. The pooled results indicate no statistically significant differences between FWT and TRT in developing maximal strength in healthy individuals (SMD = 0.24, 95% CI [-0.26, 0.74], p = 0.35). Additionally, the pooled outcomes showed a small-sized effect in muscle power with FWT (SMD = 0.47, 95% CI [0.10, 0.84]), which was significantly higher than that with TRT (p = 0.01) in healthy individuals. Subgroup analysis revealed that when the total number of FWT sessions is between 12 and 18 (1-3 times per week), it significantly improves muscle power (SMD = 0.61, 95% CI [0.12, 1.09]). Significant effects favoring FWT for muscle power were observed in both well-trained (SMD = 0.58, 95% CI [0.04, 1.13]) and untrained individuals (SMD = 1.40, 95% CI [0.23, 2.57]). In terms of exercise, performing flywheel training with squat and lunge exercises significantly enhances muscle power (SMD = 0.43; 95% CI: 0.02-0.84, and p = 0.04). Interestingly, FWT was superior to weight stack resistance training (SMD = 0.61, 95% CI [0.21, 1.00]) in enhancing muscle power, while no significant differences were found compared to barbell free weights training (SMD = 0.36, 95% CI [-0.22, 0.94]). CONCLUSIONS This meta-analysis confirms the superiority of FWT compared to TRT in promoting muscle power in both healthy untrained and well-trained individuals. Squats and lunges for FWT are more suitable for improving lower limb explosive power. It is recommended that coaches and trainers implement FWT for six weeks, 2-3 times per week, with at least a 48 h interval between each session. Although FWT is not superior to free weights training, it is advisable to include FWT in sport periodization to diversify the training stimuli for healthy individuals.
Collapse
Affiliation(s)
- Zhongzhong Hu
- School of Sports Science, Wenzhou Medical University, Wenzhou 325035, China; (Z.H.); (K.H.); (H.H.); (F.L.)
| | - Yuhang Liu
- China Athletics College, Beijing Sport University, Beijing 100084, China;
| | - Keke Huang
- School of Sports Science, Wenzhou Medical University, Wenzhou 325035, China; (Z.H.); (K.H.); (H.H.); (F.L.)
| | - Hao Huang
- School of Sports Science, Wenzhou Medical University, Wenzhou 325035, China; (Z.H.); (K.H.); (H.H.); (F.L.)
| | - Feng Li
- School of Sports Science, Wenzhou Medical University, Wenzhou 325035, China; (Z.H.); (K.H.); (H.H.); (F.L.)
| | - Xiaoyi Yuan
- China Athletics College, Beijing Sport University, Beijing 100084, China;
| |
Collapse
|
10
|
Bright TE, Harry JR, Lake J, Mundy P, Theis N, Hughes JD. Methodological considerations in assessing countermovement jumps with handheld accentuated eccentric loading. Sports Biomech 2024:1-18. [PMID: 38990167 DOI: 10.1080/14763141.2024.2374884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
This study aimed to compare the agreement between three-dimensional motion capture and vertical ground reaction force (vGRF) in identifying the point of dumbbell (DB) release during a countermovement jump with accentuated eccentric loading (CMJAEL), and to examine the influence of the vGRF analysis method on the reliability and magnitude of CMJAEL variables. Twenty participants (10 male, 10 female) completed five maximal effort CMJAEL at 20% and 30% of body mass (CMJAEL20 and CMJAEL30, respectively) using DBs. There was large variability between methods in both loading conditions, as indicated by the wide limits of agreement (CMJAEL20 = -0.22 to 0.07 s; CMJAEL30 = -0.29 to 0.14 s). Variables were calculated from the vGRF data, and compared between four methods (forward integration (FI), backward integration (BI), FI adjusted at bottom position (BP), FI adjusted at DB release point (DR)). Greater absolute reliability was observed for variables from DR (CV% ≤ 7.28) compared to BP (CV% ≤ 13.74), although relative reliability was superior following the BP method (ICC ≥ 0.781 vs ≥ 0.606, respectively). The vGRF method shows promise in pinpointing the DB release point when only force platforms are accessible, and a combination of FI and BI analyses is advised to understand CMJAEL dynamics.
Collapse
Affiliation(s)
- Thomas E Bright
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
- School of Sport, Exercise and Rehabilitation, Plymouth Marjon University, Plymouth, UK
| | - John R Harry
- Human Performance & Biomechanics Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Jason Lake
- Institute of Sport, Nursing, and Allied Health, University of Chichester, Chichester, UK
| | - Peter Mundy
- Research and Development, Hawkin Dynamics, Inc, Westbrook, ME, USA
| | - Nicola Theis
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Jonathan D Hughes
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
11
|
Liu Y, Zhang J, Hu Z, Zhong Z, Yuan X. Acute effects of eccentric overload training with different loading doses in male sprinters. Heliyon 2024; 10:e32369. [PMID: 38947482 PMCID: PMC11214358 DOI: 10.1016/j.heliyon.2024.e32369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Objective The primary objective of this study was to investigate the immediate effects of two doses (Dose1 and Dose2,D1 and D2) of inertial Flywheel Eccentric Overload (FEOL), Eccentric Hook (EH), and High-intensity Half Squat (HHS) on muscle explosiveness in male sprinters. Methods Twenty-one sub-elite male sprinters were randomly assigned to three groups: the FEOL group (n=7), the EH group (n=7), and the HSS group (n=7),Measurements of athletes' explosive jumps (CMJ, SJ, SLJ) heights, relative peak power indices, and 30-m sprint times were collected before and 6 min after the intervention. Results At D1 loading dose, CMJ, SJ jump height, and relative peak power increased significantly (p < 0.05) after HHS training intervention, while there was no significant change in FEOL and EH training (p > 0.05). At D2 loading dose, CMJ, SJ jump height, and relative peak power increased significantly (p < 0.01) after FEOL and EH training intervention, but at D2HHS intervention, these indexes tended to decrease (p < 0.05). None of the three training protocols significantly improved SLJ performance (p > 0.05). CMJ vertical jump height and relative peak power were significantly higher after D2FEOL and D2EH interventions than after D1HHS (P < 0.05). Conclusion D1HHS, D2FEOL and D2EH3 intervention methods can all improve the performance of sub-elite athletes in the 30-m test, CMJ test and SJ test. in the CMJ test, FEOL training demonstrated a higher acute augmentation effect compared to EH training.
Collapse
Affiliation(s)
- Yuhang Liu
- China Athletics College, Beijing Sport University, Beijing, China
| | - Junjie Zhang
- Graduate School, Capital University of Physical Education and Sports, Beijing, China
| | - Zhongzhong Hu
- Department of Sports Science, Wenzhou Medical University, Zhejiang, China
| | - Zixuan Zhong
- Department of Sports and Physical Education, Macau Polytechnic University, China
| | - Xiaoyi Yuan
- China Athletics College, Beijing Sport University, Beijing, China
- State General Administration of Sport Key Laboratory of Sports Training, Beijing, China
| |
Collapse
|
12
|
Chae S, Long SA, Lis RP, McDowell KW, Wagle JP, Carroll KM, Mizuguchi S, Stone MH. Combined Accentuated Eccentric Loading and Rest Redistribution in High-Volume Back Squat: Acute Stimulus and Fatigue. J Strength Cond Res 2024; 38:648-655. [PMID: 38241478 DOI: 10.1519/jsc.0000000000004694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
ABSTRACT Chae, S, Long, SA, Lis, RP, McDowell, KW, Wagle, JP, Carroll, KM, Mizuguchi, S, and Stone, MH. Combined accentuated eccentric loading and rest redistribution in high-volume back squat: Acute stimulus and fatigue. J Strength Cond Res 38(4): 648-655, 2024-The purpose of this study was to examine acute stimulus and fatigue responses to combined accentuated eccentric loading and rest redistribution (AEL + RR). Resistance-trained men ( n = 12, 25.6 ± 4.4 years, 1.77 ± 0.06 m, and 81.7 ± 11.4 kg) completed a back squat (BS) 1 repetition maximum (1RM) and weight releaser familiarization session. Three BS exercise conditions (sets × repetitions × eccentric-concentric loading) consisted of (a) 3 × (5 × 2) × 110/60% (AEL + RR 5), (b) 3 × (2 × 5) × 110/60% (AEL + RR 2), and (c) 3 × 10 × 60/60% 1RM (traditional sets [TS]). Weight releasers (50% 1RM) were attached to every first repetition of each cluster set (every first, third, fifth, seventh, and ninth repetition in AEL + RR 5 and every first and sixth repetition in AEL + RR 2). The AEL + RR 5 resulted in greater total volume load (sets × repetitions × eccentric + concentric loading) (6,630 ± 1,210 kg) when compared with AEL + RR 2 (5,944 ± 1,085 kg) and TS (5,487 ± 1,002 kg). In addition, AEL + RR 5 led to significantly ( p < 0.05) greater rating of perceived exertion (RPE) after set 2 and set 3 and lower blood lactate (BL) after set 3 and 5, 15, and 25 minutes postexercise than AEL + RR 2 and TS. There was a main effect of condition for BL between AEL + RR 5 (5.11 ± 2.90 mmol·L -1 ), AEL + RR 2 (6.23 ± 3.22 mmol·L -1 ), and TS (6.15 ± 3.17 mmol·L -1 ). In summary, AEL + RR 5 results in unique stimulus and fatigue responses. Although it may increase perceived exertion, coaches could use AEL + RR 5 to achieve greater back squat total volume load while reducing BL accumulation.
Collapse
Affiliation(s)
- Sungwon Chae
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina
| | - S Alexander Long
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Ryan P Lis
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Kurt W McDowell
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - John P Wagle
- University of Notre Dame, Athletics, Sports Performance, Notre Dame, Indiana
| | - Kevin M Carroll
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Satoshi Mizuguchi
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Michael H Stone
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
13
|
Chae S, Long SA, Lis RP, McDowell KW, Wagle JP, Carroll KM, Mizuguchi S, Stone MH. Combined Accentuated Eccentric Loading and Rest Redistribution in High-Volume Back Squat: Acute Kinetics and Kinematics. J Strength Cond Res 2024; 38:640-647. [PMID: 38090980 DOI: 10.1519/jsc.0000000000004688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Chae, S, Long, SA, Lis, RP, McDowell, KW, Wagle, JP, Carroll, KM, Mizuguchi, S, and Stone, MH. Combined accentuated eccentric loading and rest redistribution in high-volume back squat: Acute kinetics and kinematics. J Strength Cond Res 38(4): 640-647, 2024-The purpose of this study was to explore acute kinetic and kinematic responses to combined accentuated eccentric loading and rest redistribution (AEL + RR). Resistance-trained men ( n = 12, 25.6 ± 4.4 years, 1.77 ± 0.06 m, and 81.7 ± 11.4 kg) completed a back squat (BS) 1 repetition maximum (1RM) and weight releaser familiarization session. Three BS exercise conditions (sets × repetitions × eccentric/concentric loading) consisted of (a) 3 × (5 × 2) × 110/60% (AEL + RR 5), (b) 3 × (2 × 5) × 110/60% (AEL + RR 2), and (c) 3 × 10 × 60/60% 1RM (traditional sets [TS]). Weight releasers (50% 1RM) were attached to every first repetition of each cluster set (every first, third, fifth, seventh, and ninth repetition in AEL + RR 5 and every first and sixth repetition in AEL + RR 2). The AEL + RR 5 resulted in significantly ( p < 0.05) greater concentric peak velocity (PV) (1.18 ± 0.17 m·s -1 ) and peak power (PP) (2,304 ± 499 W) compared with AEL + RR 2 (1.11 ± 0.19 m·s -1 and 2,148 ± 512 W) and TS (1.10 ± 0.14 m·s -1 and 2,079 ± 388 W). Furthermore, AEL + RR 5 resulted in significantly greater PV and PP across all 10 repetitions compared with TS. Although AEL + RR 5 resulted in significantly greater concentric mean force (MF) (1,706 ± 224 N) compared with AEL + RR 2 (1,697 ± 209 N) and TS (1,685 ± 211 N), no condition by set or repetition interactions existed. In conclusion, AEL + RR 5 increases PV and PP but has little effect on MF. Coaches might consider prescribing AEL + RR 5 to increase especially peak aspects of velocity and power outcomes.
Collapse
Affiliation(s)
- Sungwon Chae
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina; and
| | - S Alexander Long
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Ryan P Lis
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Kurt W McDowell
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - John P Wagle
- University of Notre Dame, Athletics, Sports Performance, Notre Dame, Indiana
| | - Kevin M Carroll
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Satoshi Mizuguchi
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Michael H Stone
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
14
|
Maroto-Izquierdo S, García-López D, Beato M, Bautista IJ, Hernández-Davó JL, Raya-González J, Martín-Rivera F. Force Production and Electromyographic Activity during Different Flywheel Deadlift Exercises. Sports (Basel) 2024; 12:95. [PMID: 38668563 PMCID: PMC11054580 DOI: 10.3390/sports12040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
This study aimed to characterize and compare force production and muscle activity during four flywheel deadlift exercises (bilateral [Bi] vs. unilateral [Uni]) with different loading conditions (vertical [Ver] vs. horizontal [Hor]). Twenty-three team-sport athletes underwent assessments for exercise kinetics (hand-grip force), along with surface electromyography (sEMG) of the proximal (BFProx) and medial biceps femoris (BFMed), semitendinosus (ST), and gluteus medius (GM). Mean and peak force were highest (p < 0.001) in Bi + Ver compared with Bi + Hor, Uni + Ver, and Uni + Hor. Although no significant differences were observed between Bi + Hor and Uni + Ver, both variants showed higher (p < 0.001) average force and peak eccentric force when compared with Uni + Hor. The presence of eccentric overload was only observed in the vertically loaded variants. Bi + Ver and Uni + Ver showed higher (p < 0.05) sEMG levels in BFProx and BFMed compared with the Uni + Hor variant. In addition, Uni + Ver registered the largest GM and ST sEMG values. In conclusion, the vertical variants of the flywheel deadlift exercise led to higher muscle force production and sEMG compared with their horizontal counterparts. Both Bi + Ver and Uni + Ver may be effective in promoting an increase in hamstring muscles activity and muscle force at long muscle length, while the Uni + Ver variant may be more effective in promoting GM and ST involvement.
Collapse
Affiliation(s)
- Sergio Maroto-Izquierdo
- i+HeALTH Strategic Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain
- Proporción A, Applied Sports Science Centre, 47015 Valladolid, Spain
| | - David García-López
- Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain
| | - Marco Beato
- School of Health and Sports Sciences, University of Suffolk, Ipswich IP4 1QJ, UK
- Institute of Health and Wellbeing, University of Suffolk, Ipswich IP4 1QJ, UK
| | - Iker J. Bautista
- Institute of Sport and Allied Health, University of Chichester, Chichester PO19 6PE, UK
| | | | | | - Fernando Martín-Rivera
- Prevention and Health in Exercise and Sport, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
15
|
Suchomel TJ, Cantwell CJ, Campbell BA, Schroeder ZS, Marshall LK, Taber CB. Braking and Propulsion Phase Characteristics of Traditional and Accentuated Eccentric Loaded Back Squats. J Hum Kinet 2024; 91:121-133. [PMID: 38689588 PMCID: PMC11057614 DOI: 10.5114/jhk/185726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/06/2024] [Indexed: 05/02/2024] Open
Abstract
The purpose of this study was to examine the differences in braking and propulsion force-time characteristics and barbell velocity between traditional (TRAD) and accentuated eccentric loaded (AEL) back squats using various load combinations. Sixteen resistance-trained men participated in four separate testing sessions which included a one repetition maximum (1RM) back squat during the first session and three squat testing sessions. During the squat testing sessions, participants either performed sets of three repetitions of TRAD back squats each with 50, 60, 70, and 80% 1RM or performed the same loads with the addition of weight releasers that increased the total eccentric weight of the first repetition of each set to either 100 (AEL-MAX) or 110% 1RM (AEL-SUPRA). Braking and propulsion mean force, duration, and impulse as well as mean and peak barbell velocity were compared between each condition and load. Significantly greater braking impulses were produced during the AEL-MAX and AEL-SUPRA conditions compared to TRAD (p < 0.03) with small-moderate effect sizes favoring AEL-SUPRA. No other significant differences existed among conditions for other braking, propulsion, or barbell velocity variables. AEL-MAX and AEL-SUPRA back squats may provide a greater braking stimulus compared to TRAD squats; however, the propulsion phase of the movement does not appear to be impacted. From a loading standpoint, larger and smaller load spreads may favor rapid and maximal force production characteristics, respectively. Further research on this topic is needed as a large portion of the braking stimulus experienced during AEL back squats may be influenced by relative strength.
Collapse
Affiliation(s)
- Timothy J. Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA
- Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
| | - Conor J. Cantwell
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA
- Department of Athletics, University of Wisconsin-Platteville, Platteville, WI, USA
| | - Brookelyn A. Campbell
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA
- Department of Athletics, University of Houston, Houston, TX, USA
| | - Zachary S. Schroeder
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA
- Department of Athletics, Morningside University, Sioux City, IA, USA
| | - Lauren K. Marshall
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA
- Department of Fitness, Movement Fitness Rockford, Rockford, IL, USA
| | | |
Collapse
|
16
|
McNeill C, Beaven CM, McMaster DT, Ward P, Gill N. Eccentric Force-Velocity-Load Relationship in Trained Rugby Union Athletes. J Strength Cond Res 2024; 38:549-555. [PMID: 38088926 DOI: 10.1519/jsc.0000000000004648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
ABSTRACT McNeill, C, Beaven, CM, McMaster, DT, Ward, P, and Gill, N. Eccentric force-velocity-load relationship in trained rugby union athletes. J Strength Cond Res 38(3): 549-555, 2024-The force-velocity relationship is traditionally believed to resemble a hyperbolic shape, known as the "force-velocity curve." However, there is less evidence regarding this relationship during eccentric muscle action in multijoint isotonic exercise, especially in applied settings. The purpose of this study was to investigate the force-velocity-load relationship in an incremental eccentric back squat test. In addition, 37 professional male rugby union athletes were recruited to participate. Separate generalized linear mixed models were used to analyze the effect of barbell load on relative eccentric peak force (REPF), relative eccentric mean force (REMF), eccentric peak velocity (EPV), and eccentric mean velocity (EMV). A significant effect of load ( p < 0.05) was observed for each of the eccentric variables tested. Each increase in barbell load tended to result in a linear increase in REMF and a decrease in EMV and EPV; however, we observed a plateauing effect for REPF as load increased. These results show that for "peak" variables lighter loads produced similar magnitudes of force, but generally moved at higher velocities than heavier loads. These observations suggest that the eccentric force-velocity-load relationship may vary depending on the parameters used. Quantifying rapid, multijoint eccentric performance is justified as it seems to provide valuable insight into individual athletic capability and training program design. Further research may investigate the responsiveness of the qualities to training and the causal nature of eccentric characteristics and athletic performance.
Collapse
Affiliation(s)
- Conor McNeill
- Te Huataki Waiora School of Health, Adams Centre for High Performance, The University of Waikato, Tauranga, New Zealand
- New Zealand Rugby Union, Wellington, New Zealand; and
| | - C Martyn Beaven
- Te Huataki Waiora School of Health, Adams Centre for High Performance, The University of Waikato, Tauranga, New Zealand
| | - Daniel T McMaster
- Te Huataki Waiora School of Health, Adams Centre for High Performance, The University of Waikato, Tauranga, New Zealand
- New Zealand Rugby Union, Wellington, New Zealand; and
| | | | - Nicholas Gill
- Te Huataki Waiora School of Health, Adams Centre for High Performance, The University of Waikato, Tauranga, New Zealand
- New Zealand Rugby Union, Wellington, New Zealand; and
| |
Collapse
|
17
|
Nuzzo JL, Nosaka K. Eccentric Muscle Actions Add Complexity to an Already Inconsistent Resistance Exercise Nomenclature. SPORTS MEDICINE - OPEN 2023; 9:118. [PMID: 38112984 PMCID: PMC10730477 DOI: 10.1186/s40798-023-00667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
An eccentric muscle action (or contraction) is defined as active muscle lengthening against resistance, which occurs when the force generated by the muscle is smaller than the resistance placed upon it. Eccentric resistance exercise, which involves multiple sessions of repeated eccentric muscle actions, improves muscle strength and other health outcomes. In response to this evidence, new exercise technologies have been developed to permit feasible completion of eccentric muscle actions outside of the laboratory. Consequently, participation in eccentric resistance exercise is projected to increase in the future, and communications about eccentric resistance exercise are likely to reach a wide audience, including students in the classroom, athletes in the weightroom, patients who receive telehealth services, and journalists who report on study findings. Previous research has documented inconsistencies in how resistance exercises are named, but the role of eccentric resistance exercises has not been considered. Here, we explain how eccentric resistance exercises add further complexity to an already inconsistent resistance exercise nomenclature. Specifically, action words in exercise names typically describe the movement that occurs in the concentric phase (e.g., "press", "raise", "curl", "pull", "row"). This naming bias likely stems from the fact that traditional resistance exercise equipment, such as free weights and weight stack machines, does not typically accommodate for greater eccentric than concentric strength and thus emphasizes the concentric over eccentric phase. This naming bias is likely to hinder communications about eccentric resistance exercise. Thus, we encourage researchers and practitioners to discuss ways in which resistance exercises can be named more clearly and consistently.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
18
|
Vila-Chã C, Bovolini A, Francisco C, Costa-Brito AR, Vaz C, Rua-Alonso M, de Paz JA, Vieira T, Mendonca GV. Acute effects of isotonic eccentric exercise on the neuromuscular function of knee extensors vary according to the motor task: impact on muscle strength profiles, proprioception and balance. Front Sports Act Living 2023; 5:1273152. [PMID: 38022776 PMCID: PMC10655025 DOI: 10.3389/fspor.2023.1273152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Eccentric exercise has often been reported to result in muscle damage, limiting the muscle potential to produce force. However, understanding whether these adverse consequences extend to a broader, functional level is of apparently less concern. In this study, we address this issue by investigating the acute and delayed effects of supramaximal isotonic eccentric exercise on neuromuscular function and motor performance of knee extensors during tasks involving a range of strength profiles, proprioception, and balance. Methods Fifteen healthy volunteers (23.2 ± 2.9 years old) performed a unilateral isotonic eccentric exercise of the knee extensors of their dominant lower limb (4 × 10 reps at 120% of one Repetition Maximum (1RM)). The maximum voluntary isometric contraction (MVC), rate of force development (RFD), force steadiness of the knee extensors, as well as knee joint position sense and mediolateral (MLI) and anteroposterior stability (API) of the dominant lower limb, were measured pre-, immediately, and 24 h after the eccentric exercise. The EMG amplitude of the vastus medialis (VM) and biceps femoris (BF) were concomitantly evaluated. Results MVC decreased by 17.9% immediately after exercise (P < 0.001) and remained reduced by 13.6% 24 h following exercise (P < 0.001). Maximum RFD decreased by 20.4% immediately after exercise (P < 0.001) and remained reduced by 15.5% at 24 h (P < 0.001). During the MVC, EMG amplitude of the VM increased immediately after exercise while decreasing during the RFD task. Both values returned to baseline 24 h after exercise. Compared to baseline, force steadiness during submaximal isometric tasks reduced immediately after exercise, and it was accompanied by an increase in the EMG amplitude of the VM. MLI and knee joint position sense were impaired immediately after isotonic eccentric exercise (P < 0.05). While MLI returned to baseline values 24 h later, the absolute error in the knee repositioning task did not. Discussion Impairments in force production tasks, particularly during fast contractions and in the knee joint position sense, persisted 24 h after maximal isotonic eccentric training, revealing that neuromuscular functional outputs were affected by muscle fatigue and muscle damage. Conversely, force fluctuation and stability during the balance tasks were only affected by muscle fatigue since fully recovered was observed 24 h following isotonic eccentric exercise.
Collapse
Affiliation(s)
- Carolina Vila-Chã
- Laboratory for the Assessment of Sports Performance, Physical Exercise and Health (Labmov), Polytechnic of Guarda, Guarda, Portugal
- Research Center in Sports Sciences, Health Sciences, and Human Development, Vila Real, Portugal
| | - Antonio Bovolini
- Laboratory for the Assessment of Sports Performance, Physical Exercise and Health (Labmov), Polytechnic of Guarda, Guarda, Portugal
- Research Center in Sports Sciences, Health Sciences, and Human Development, Vila Real, Portugal
| | - Cristiana Francisco
- Laboratory for the Assessment of Sports Performance, Physical Exercise and Health (Labmov), Polytechnic of Guarda, Guarda, Portugal
| | - Ana R. Costa-Brito
- Laboratory for the Assessment of Sports Performance, Physical Exercise and Health (Labmov), Polytechnic of Guarda, Guarda, Portugal
| | - Cláudia Vaz
- Laboratory for the Assessment of Sports Performance, Physical Exercise and Health (Labmov), Polytechnic of Guarda, Guarda, Portugal
| | - María Rua-Alonso
- Laboratory for the Assessment of Sports Performance, Physical Exercise and Health (Labmov), Polytechnic of Guarda, Guarda, Portugal
- Research Center in Sports Sciences, Health Sciences, and Human Development, Vila Real, Portugal
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| | | | - Taian Vieira
- Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Goncalo V. Mendonca
- Neuromuscular Research Laboratory, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
- Interdisciplinary Center for the Study of Human Performance (CIPER), Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Bettariga F, Bishop C, Taaffe DR, Galvão DA, Maestroni L, Newton RU. Time to consider the potential role of alternative resistance training methods in cancer management? JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:715-725. [PMID: 37399886 PMCID: PMC10658316 DOI: 10.1016/j.jshs.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Exercise has emerged as fundamental therapeutic medicine in the management of cancer. Exercise improves health-related outcomes, including quality of life, neuromuscular strength, physical function, and body composition, and it is associated with a lower risk of disease recurrence and increased survival. Moreover, exercise during or post cancer treatments is safe, can ameliorate treatment-related side effects, and may enhance the effectiveness of chemotherapy and radiation therapy. To date, traditional resistance training (RT) is the most used RT modality in exercise oncology. However, alternative training modes, such as eccentric, cluster set, and blood flow restriction are gaining increased attention. These training modalities have been extensively investigated in both athletic and clinical populations (e.g., age-related frailty, cardiovascular disease, type 2 diabetes), showing considerable benefits in terms of neuromuscular strength, hypertrophy, body composition, and physical function. However, these training modes have only been partially or not at all investigated in cancer populations. Thus, this study outlines the benefits of these alternative RT methods in patients with cancer. Where evidence in cancer populations is sparse, we provide a robust rationale for the possible implementation of certain RT methods that have shown positive results in other clinical populations. Finally, we provide clinical insights for research that may guide future RT investigations in patients with cancer and suggest clear practical applications for targeted cancer populations and related benefits.
Collapse
Affiliation(s)
- Francesco Bettariga
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Luca Maestroni
- London Sport Institute, School of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
20
|
Nuzzo JL, Pinto MD, Nosaka K. Overview of muscle fatigue differences between maximal eccentric and concentric resistance exercise. Scand J Med Sci Sports 2023; 33:1901-1915. [PMID: 37269142 DOI: 10.1111/sms.14419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Since the 1970s, researchers have studied a potential difference in muscle fatigue (acute strength loss) between maximal eccentric (ECCmax ) and concentric (CONmax ) resistance exercise. However, a clear answer to whether such a difference exists has not been established. Therefore, the aim of our paper was to overview methods and results of studies that compared acute changes in muscle strength after bouts of ECCmax and CONmax resistance exercise. We identified 30 relevant studies. Participants were typically healthy men aged 20-40 years. Exercise usually consisted of 40-100 isokinetic ECCmax and CONmax repetitions of the knee extensors or elbow flexors. Both ECCmax and CONmax exercise caused significant strength loss, which plateaued and rarely exceeded 60% of baseline, suggesting strength preservation. In upper-body muscles, strength loss at the end of ECCmax (31.4 ± 20.4%) and CONmax (33.6 ± 17.5%) exercise was similar, whereas in lower-body muscles, strength loss was less after ECCmax (13.3 ± 12.2%) than CONmax (39.7 ± 13.3%) exercise. Muscle architecture and daily use of lower-body muscles likely protects lower-body muscles from strength loss during ECCmax exercise. We also reviewed seven studies on muscle fatigue during coupled ECCmax -CONmax exercise and found similar strength loss in the ECC and CON phases. We also found evidence from three studies that more ECC than CON repetitions can be completed at equal relative loads. These results indicate that muscle fatigue may manifest differently between ECCmax and CONmax resistance exercise. An implication of the results is that prescriptions of ECC resistance exercise for lower-body muscles should account for greater fatigue resilience of these muscles compared to upper-body muscles.
Collapse
Affiliation(s)
- James L Nuzzo
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Matheus D Pinto
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
21
|
Nuzzo JL, Pinto MD, Nosaka K. Connective Adaptive Resistance Exercise (CARE) Machines for Accentuated Eccentric and Eccentric-Only Exercise: Introduction to an Emerging Concept. Sports Med 2023; 53:1287-1300. [PMID: 37097413 PMCID: PMC10127187 DOI: 10.1007/s40279-023-01842-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/26/2023]
Abstract
Eccentric resistance exercise emphasizes active muscle lengthening against resistance. In the past 15 years, researchers and practitioners have expressed considerable interest in accentuated eccentric (i.e., eccentric overload) and eccentric-only resistance exercise as strategies for enhancing performance and preventing and rehabilitating injuries. However, delivery of eccentric resistance exercise has been challenging because of equipment limitations. Previously, we briefly introduced the concept of connected adaptive resistance exercise (CARE)-the integration of software and hardware to provide a resistance that adjusts in real time and in response to the individual's volitional force within and between repetitions. The aim of the current paper is to expand this discussion and explain the potential for CARE technology to improve the delivery of eccentric resistance exercise in various settings. First, we overview existing resistance exercise equipment and highlight its limitations for delivering eccentric resistance exercise. Second, we describe CARE and explain how it can accomplish accentuated eccentric and eccentric-only resistance exercise in a new way. We supplement this discussion with preliminary data collected with CARE technology in laboratory and non-laboratory environments. Finally, we discuss the potential for CARE technology to deliver eccentric resistance exercise for various purposes, e.g., research studies, rehabilitation programs, and home-based or telehealth interventions. Overall, CARE technology appears to permit completion of eccentric resistance exercise feasibly in both laboratory and non-laboratory environments and thus has implications for researchers and practitioners in the fields of sports medicine, physiotherapy, exercise physiology, and strength and conditioning. Nevertheless, formal investigations into the impact of CARE technology on participation in eccentric resistance exercise and clinical outcomes are still required.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
22
|
Maroto-Izquierdo S, Martín-Rivera F, Nosaka K, Beato M, González-Gallego J, de Paz JA. Effects of submaximal and supramaximal accentuated eccentric loading on mass and function. Front Physiol 2023; 14:1176835. [PMID: 37449014 PMCID: PMC10337133 DOI: 10.3389/fphys.2023.1176835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Eccentric-overload (EO) resistance training emerges as an alternative to more optimally prescribe intensity relative to the force generation capabilities of the eccentric muscle contraction. Given the difficulties to individually prescribe absolute eccentric loads relative to each person's eccentric ability, setting the load relative to the concentric one-repetition maximum (1-RM) is the most used EO training approach. Therefore, we investigated the effects of submaximal and supramaximal (i.e., eccentric loads above 100% of 1-RM) accentuated eccentric training on changes in lean mass, anabolic hormonal responses and muscle function. Methods: Physically active university students (n = 27) were randomly assigned to two training groups. Participants in the training groups performed dominant leg isotonic training twice a week for 10 weeks (four sets of eight repetitions). Isotonic resistance was generated by an electric-motor device at two different percentages of 1-RM for the eccentric phase; 90% submaximal load, SUB group) and 120% (supramaximal load, SUPRA group). Concentric load was the same for both groups (30% of 1-RM). Changes in total thigh lean mass (TTLM), anabolic hormonal responses (growth hormone, IGF-1, IL-6, and total testosterone), unilateral leg-press 1-RM, maximal voluntary isometric contractions (MVIC), local muscle endurance (XRM), muscle power at 40 (PP40), 60 (PP60) and 80% (PP80) of the 1-RM, and unilateral vertical jump height before and after training were compared between groups. Results: After training, both SUB and SUPRA groups showed similar increases (p < 0.05) in MVIC (19.2% and 19.6%), XRM (53.8% and 23.8%), PP40 (16.2% and 15.7%), TTLM (2.5% and 4.2%), IGF-1 (10.0% and 14.1%) and IL-6 (58.6% and 28.6%). However, increases in 1-RM strength (16.3%) and unilateral vertical jump height (10.0%-13.4%) were observed for SUPRA only. Indeed, SUPRA was shown to be more favorable than SUB training for increasing 1-RM [ES = 0.77 (1.49-0.05)]. Unilateral muscle power at medium and high intensity (10.2% and 10.5%) also increased in SUB but without significant differences between groups. Discussion: Similar functional and structural effects were demonstrated after 10 weeks EO training with submaximal and supramaximal eccentric loads. Although supramaximal loading might be superior for increasing 1-RM, the use of this approach does not appear to be necessary in healthy, active individuals.
Collapse
Affiliation(s)
| | - Fernando Martín-Rivera
- Research Group in Prevention and Health in Exercise and Sport, University of Valencia, Valencia, Spain
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Marco Beato
- Institute of Health and Wellbeing, University of Suffolk, Ipswich, United Kingdom
| | | | - José A. de Paz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| |
Collapse
|
23
|
Bright TE, Handford MJ, Mundy P, Lake J, Theis N, Hughes JD. Building for the Future: A Systematic Review of the Effects of Eccentric Resistance Training on Measures of Physical Performance in Youth Athletes. Sports Med 2023; 53:1219-1254. [PMID: 37097414 PMCID: PMC10185653 DOI: 10.1007/s40279-023-01843-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Eccentric resistance training is recognised as an effective stimulus for enhancing measures of muscular strength and power in adult populations; however, its value in youth athletes is currently not well understood. OBJECTIVE The aim of this systematic review was to critically appraise the effects of eccentric resistance training on measures of physical performance (i.e. muscular strength, jump, sprint and change of direction) in youth athletes 18 years of age and under. METHODS Original journal articles published between 1950 and June 2022 were retrieved from electronic search engines of PubMed, SPORTDiscus and Google Scholar's advanced search option. Full journal articles investigating the acute and chronic effects of eccentric resistance training on measures of physical performance in youth athletes (i.e. a person 18 years of age or under who competes in sport) were included. The methodological quality and bias of each study were assessed prior to data extraction using a modified Downs and Black checklist. RESULTS The search yielded 749 studies, of which 436 were duplicates. Three-hundred studies were excluded based upon title and abstract review and a further 5 studies were removed following the modified Downs and Black checklist. An additional 14 studies were identified during backward screening. Accordingly, 22 studies were included in our systematic review. The Nordic hamstring exercise and flywheel inertial training were the most frequently used eccentric resistance training methods in youth athletes. Improvements in physical performance following the Nordic hamstring exercise are dependent upon an increase in the breakpoint angle, rather than training volume (sets and repetitions), and are further elevated with the addition of hip extension exercises or high-speed running. A minimum of 3 familiarisation trials is necessary to elicit meaningful adaptations following flywheel inertial training. Furthermore, an emphasis should be placed upon decelerating the rotating flywheel during the final one to two thirds of the eccentric phase, rather than gradually throughout the entire eccentric phase. CONCLUSIONS The findings of this systematic review support the inclusion of eccentric resistance training in youth athletes to improve measures of muscular strength, jump, sprint and change of direction performance. The current eccentric resistance training methods are predominantly limited to the Nordic hamstring exercise and flywheel inertial training; however, the efficacy of accentuated eccentric loading to improve jump performance warrants attention in future investigations.
Collapse
Affiliation(s)
- Thomas E. Bright
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
- School of Sport, Health and Wellbeing, Plymouth Marjon University, Derriford Rd, Plymouth, PL6 8BH UK
| | - Matthew J. Handford
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | | | - Jason Lake
- Department of Sport and Exercise Sciences, Chichester University, Chichester, UK
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia
| | - Nicola Theis
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Jonathan D. Hughes
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| |
Collapse
|
24
|
Nuzzo JL, Pinto MD, Nosaka K, Steele J. The Eccentric:Concentric Strength Ratio of Human Skeletal Muscle In Vivo: Meta-analysis of the Influences of Sex, Age, Joint Action, and Velocity. Sports Med 2023; 53:1125-1136. [PMID: 37129779 DOI: 10.1007/s40279-023-01851-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
For decades, researchers have observed that eccentric (ECC) muscle strength is greater than concentric (CON) muscle strength. However, knowledge of the ECC:CON strength ratio is incomplete and might inform resistance exercise prescriptions. Our purposes were to determine the magnitude of the ECC:CON ratio of human skeletal muscle in vivo and explore if sex, age, joint actions/exercises, and movement velocity impact it. A total of 340 studies were identified through searches. It was possible to analyse 1516 ECC:CON ratios, aggregated from 12,546 individuals who made up 564 groups in 335 of the identified studies. Approximately 98% of measurements occurred on isokinetic machines. Bayesian meta-analyses were performed using log-ratios as response variables then exponentiated back to raw ratios. The overall main model estimate for the ECC:CON ratio was 1.41 (95% credible interval [CI] 1.38-1.44). The ECC:CON ratio was slightly less in men (1.38 [CI 1.34-1.41]) than women (1.47 [CI 1.43-1.51]), and greater in older adults (1.62 [CI 1.57-1.68]) than younger adults (1.39 [CI 1.36-1.42]). The ratio was similar between grouped upper-body (1.42 [CI 1.38-1.46]) and lower-body joint actions/exercises (1.40 [CI 1.37-1.44]). However, heterogeneity in the ratio existed across joint actions/exercises, with point estimates ranging from 1.32 to 2.61. The ECC:CON ratio was most greatly impacted by movement velocity, with a 0.20% increase in the ratio for every 1°/s increase in velocity. The results show that ECC muscle strength is ~ 40% greater than CON muscle strength. However, the ECC:CON ratio is greatly affected by movement velocity and to lesser extents age and sex. Differences between joint actions/exercises likely exist, but more data are needed to provide more precise estimates.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - James Steele
- School of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| |
Collapse
|
25
|
Muscle strength and activity in men and women performing maximal effort biceps curl exercise on a new machine that automates eccentric overload and drop setting. Eur J Appl Physiol 2023; 123:1381-1396. [PMID: 36856799 DOI: 10.1007/s00421-023-05157-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE Connected adaptive resistance exercise (CARE) machines are new equipment purported to adjust resistances within and between repetitions to make eccentric (ECC) overload and drop sets more feasible. Here, we examined muscle strength, endurance, electromyographic activity (EMG), and perceptions of fatigue during unilateral bicep curl exercise with a CARE machine and dumbbells. We also tested for sex differences in muscle fatigability. METHODS Twelve men and nine women attempted 25 consecutive coupled maximal ECC-concentric (CON) repetitions (ECCmax-CONmax) on a CARE machine. Participants also completed a CON one repetition maximum (1RM) and repetitions-to-failure tests with 60 and 80% 1RM dumbbells. RESULTS Maximal strength on the CARE machine was greater during the ECC than CON phase, illustrating ECC overload (men: 27.1 ± 6.8, 14.7 ± 2.0 kg; women: 16.7 ± 4.7, 7.6 ± 1.4 kg). These maximal resistances demanded large neural drive. Biceps brachii EMG amplitude relative to CON dumbbell 1RM EMG was 140.1 ± 40.2% (ECC) and 96.7 ± 25.0% (CON) for men and 165.1 ± 61.1% (ECC) and 89.4 ± 20.4% (CON) for women. The machine's drop setting algorithm permitted 25 consecutive maximal effort repetitions without stopping. By comparison, participants completed fewer repetitions-to-failure with the submaximal dumbbells (e.g., 60%1RM-men: 12.3 ± 4.4; women: 15.6 ± 4.7 repetitions). By the 25th CARE repetition, participants reported heightened biceps fatigue (~ 8 of 10) and exhibited large decreases in ECC strength (men: 63.5 ± 11.6%; women: 44.1 ± 8.0%), CON strength (men: 77.5 ± 6.5%; women: 62.5 ± 12.8%), ECC EMG (men: 38.6 ± 20.4%; women: 26.2 ± 18.3%), and CON EMG (men: 36.8 ± 20.4%; women: 23.1 ± 18.4%). CONCLUSION ECC overload and drop sets occurred automatically and feasibly with CARE technology and caused greater strength and EMG loss in men than women.
Collapse
|
26
|
Maroto-Izquierdo S, Nosaka K, Alarcón-Gómez J, Martín-Rivera F. Validity and Reliability of Inertial Measurement System for Linear Movement Velocity in Flywheel Squat Exercise. SENSORS (BASEL, SWITZERLAND) 2023; 23:2193. [PMID: 36850788 PMCID: PMC9958668 DOI: 10.3390/s23042193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to examine the validity and reliability of an Inertial Measurement System integrated into a secondary pulley (IMS) for determining linear velocity during flywheel squat exercises. Thirty-one male participants who were highly experienced in a flywheel resistance exercise training performed flywheel squat exercises with three incremental loads, and mean velocity (MV), mean propulsive velocity (MPV) and max velocity (Vmax) of the exercises were simultaneously recorded with a validated linear encoder and the IMS, in two different sessions. Validity was analyzed using ordinary least products regression (OLP), Lin's concordance correlation coefficient (CCC), and Hedge's g for the values from the linear encoder and the IMS. Test-retest reliability was determined by coefficient of variation (CV), Intraclass correlation coefficient (ICC), and standard error of measurement (SEM). Results showed a high degree of validity (OLP intercept = -0.09-0.00, OLP slope = 0.95-1.04, CCC = 0.96-0.99, Hedge's g < 0.192, SEM = 0.04-0.08) and reliability (CV < 0.21%, ICC > 0.88, SEM < 0.08). These results confirm that the IMS provides valid and reliable measures of movement velocity during flywheel squat exercises.
Collapse
Affiliation(s)
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Jesús Alarcón-Gómez
- Research Group in Prevention and Health in Exercise and Sport, University of Valencia, 46010 Valencia, Spain
| | - Fernando Martín-Rivera
- Research Group in Prevention and Health in Exercise and Sport, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
27
|
Nuzzo JL, Pinto MD, Nosaka K. Muscle fatigue during maximal eccentric-only, concentric-only, and eccentric-concentric bicep curl exercise with automated drop setting. Scand J Med Sci Sports 2023; 33:857-871. [PMID: 36752667 DOI: 10.1111/sms.14330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Connected adaptive resistance exercise (CARE) machines are new technology purported to adjust resistance exercise loads in response to muscle fatigue. The present study examined muscle fatigue (strength loss, fatigue perceptions) during maximal eccentric-only (ECCmax -only), concentric-only (CONmax -only), and coupled ECC-CON (ECCmax -CONmax ) bicep curl exercise on a CARE machine. Eleven men and nine women completed the three protocols in separate sessions and in random order. All protocols included 4 sets of 20 maximal effort muscle contractions. Strength loss was calculated as Set 4 set end load minus Set 1 highest load. The CARE machine's algorithm adjusted resistances automatically, permitting continued maximal effort repetitions without stopping. Consequently, all protocols caused substantial fatigue. Women were most susceptible to strength loss from exercise that included maximal efforts in the ECC phase, whereas men were most susceptible to strength loss from exercise that included maximal efforts in the CON phase. With ECCmax -only exercise, ECC strength loss (mean ± SD) was similar between men (55.9 ± 14.1%) and women (56.4 ± 10.8%). However, with CONmax -only exercise, men and women experienced 55.6 ± 6.2% and 35.3 ± 8.7% CON strength loss, respectively. With ECCmax -CONmax exercise, men experienced greater ECC (62.9 ± 7.7%) and CON (77.0 ± 5.3%) strength loss than women (ECC: 48.5 ± 15.7%, CON: 66.2 ± 12.1%). Heightened perceptions of fatigue and pain of the exercised limb were reported after all protocols. Women generally reported more biceps pain than men. The results illustrate CARE technology delivers ECC-only and accentuated ECC exercise feasibly. Acute responses to repeated maximal effort bicep curl exercise with such technology might differ between men and women depending on muscle contraction type.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
28
|
Su EYS, Carroll TJ, Farris DJ, Lichtwark GA. Musculoskeletal simulations to examine the effects of accentuated eccentric loading (AEL) on jump height. PeerJ 2023; 11:e14687. [PMID: 36710857 PMCID: PMC9879160 DOI: 10.7717/peerj.14687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/13/2022] [Indexed: 01/25/2023] Open
Abstract
Background During counter movement jumps, adding weight in the eccentric phase and then suddenly releasing this weight during the concentric phase, known as accentuated eccentric loading (AEL), has been suggested to immediately improve jumping performance. The level of evidence for the positive effects of AEL remains weak, with conflicting evidence over the effectiveness in enhancing performance. Therefore, we proposed to theoretically explore the influence of implementing AEL during constrained vertical jumping using computer modelling and simulation and examined whether the proposed mechanism of enhanced power, increased elastic energy storage and return, could enhance work and power. Methods We used a simplified model, consisting of a ball-shaped body (head, arm, and trunk), two lower limb segments (thigh and shank), and four muscles, to simulate the mechanisms of AEL. We adjusted the key activation parameters of the muscles to influence the performance outcome of the model. Numerical optimization was applied to search the optimal solution for the model. We implemented AEL and non-AEL conditions in the model to compare the simulated data between conditions. Results Our model predicted that the optimal jumping performance was achieved when the model utilized the whole joint range. However, there was no difference in jumping performance in AEL and non-AEL conditions because the model began its push-off at the similar state (posture, fiber length, fiber velocity, fiber force, tendon length, and the same activation level). Therefore, the optimal solution predicted by the model was primarily driven by intrinsic muscle dynamics (force-length-velocity relationship), and this coupled with the similar model state at the start of the push-off, resulting in similar push-off performance across all conditions. There was also no evidence of additional tendon-loading effect in AEL conditions compared to non-AEL condition. Discussion Our simplified simulations did not show improved jump performance with AEL, contrasting with experimental studies. The reduced model demonstrates that increased energy storage from the additional mass alone is not sufficient to induce increased performance and that other factors like differences in activation strategies or movement paths are more likely to contribute to enhanced performance.
Collapse
Affiliation(s)
- Eric Yung-Sheng Su
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Timothy J. Carroll
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Dominic J. Farris
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia,Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Glen A. Lichtwark
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
29
|
Concentric Phase Assistance Enhances Eccentric Peak Power During Flywheel Squats: Intersession Reliability and the Linear Relationship Between Concentric and Eccentric Phases. Int J Sports Physiol Perform 2023; 18:428-434. [PMID: 36863353 DOI: 10.1123/ijspp.2022-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 03/04/2023]
Abstract
BACKGROUND It remains unknown if flywheel-assisted squats can be reliably utilized to increase power outputs and if such outputs are related. OBJECTIVES To compare assisted and unassisted flywheel squat peak power outputs, determine their reliability, and analyze the relationship of the delta difference between peak power outputs during the squats. METHODS Twenty male athletes attended the laboratory 6 times-performing 3 sets of 8 repetitions of assisted and unassisted squats during 2 familiarization sessions and then 3 sets of 8 repetitions during experimental sessions 3 to 6 (2 sessions for unassisted and assisted squat in randomized order, respectively). RESULTS Concentric and eccentric peak power were significantly greater during assisted squats (both P < .001, d = 1.59, d = 1.57, respectively). Rating of perceived exertion (P = .23) and eccentric:concentric ratio (P = .094) did not differ between squat conditions. Peak power measures obtained excellent reliability, while rating of perceived exertion and eccentric:concentric ratio estimates were rated as acceptable to good, with greater uncertainty. A large to very large correlation (r = .77) was found between concentric and eccentric peak power delta difference of assisted and unassisted squats. CONCLUSIONS Greater concentric outputs during assisted squats induce greater eccentric outputs and obtain greater mechanical load. Peak power is a reliable metric for monitoring flywheel training, whereas the eccentric:concentric ratio should be used with caution. Eccentric and concentric peak power are strongly related during flywheel squats, evidencing the need to maximize the concentric output to enhance the eccentric output.
Collapse
|
30
|
Lincoln MA, Sapstead GW, Moore KN, Weldon A. Exercise Technique: The Landmine Row. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Training Specificity for Athletes: Emphasis on Strength-Power Training: A Narrative Review. J Funct Morphol Kinesiol 2022; 7:jfmk7040102. [PMID: 36412764 PMCID: PMC9680266 DOI: 10.3390/jfmk7040102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Specificity has two major components: A strength-endurance continuum (S-EC) and adherence to principles of Dynamic Correspondence. Available evidence indicates the existence of the S-EC continuum from two aspects. Indeed, the S-EC exists, particularly if work is equated as a high load low repetition scheme at one end (strength stimulus) and high volume (HIEE stimulus) at the other. Furthermore, some evidence also indicates that the continuum as a repetition paradigm with high-load, low repetition at one end (strength stimulus) and a high repetition, low load at the other end. The second paradigm is most apparent under three conditions: (1) ecological validity-in the real world, work is not equated, (2) use of absolute loads in testing and (3) a substantial difference in the repetitions used in training (for example 2-5 repetitions versus ≥10 repetitions). Additionally, adherence to the principles and criteria of dynamic correspondence allows for greater "transfer of training" to performance measures. Typically, and logically, in order to optimize transfer, training athletes requires a reasonable development of capacities (i.e., structure, metabolism, neural aspects, etc.) before more specific training takes place.
Collapse
|
32
|
Lloyd RS, Howard SW, Pedley JS, Read PJ, Gould ZI, Oliver JL. The Acute Effects of Accentuated Eccentric Loading on Drop Jump Kinetics in Adolescent Athletes. J Strength Cond Res 2022; 36:2381-2386. [DOI: 10.1519/jsc.0000000000003911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Martín-Rivera F, Beato M, Alepuz-Moner V, Maroto-Izquierdo S. Use of concentric linear velocity to monitor flywheel exercise load. Front Physiol 2022; 13:961572. [PMID: 36035469 PMCID: PMC9412162 DOI: 10.3389/fphys.2022.961572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: To propose the concentric linear velocity measurement as a valid method to quantify load and individualise the prescription of flywheel training, we investigated the relationship between inertial load and mean concentric linear velocity (MCLV) during the flywheel squat exercise in a wide spectrum of intensities. In addition, we compared MCLV and subjective rating of perceived exertion (RPE) after each load. Methods: Twenty-five physically active men volunteered for this study (26.5 ± 2.9 years, 179.5 ± 4.2 cm, 81.6 ± 8.6 kg). After familiarization, all participants performed two inertial progressive load tests on separated days to determine the flywheel load-velocity profile and its reliability. Each participant performed 5 set of 6 repetitions of the flywheel squat exercise with different inertial loads (0.047, 0.104, 0.161, 0.245, 0.321 kg m2) selected in a counterbalanced and randomized order for each testing day. Average MCLV and RPE for each load were compared. Results: The inter-session intraclass correlation coefficient (ICC) showed values above 0.9 in all the included outcomes (MCLV: ICC = 0.91; RPE: ICC = 0.93). A significant correlation (p < 0.01, R2 = 0.80) between inertial load and MCLV was found. Similarly, significant correlation models (p < 0.01) were observed between RPE and load (R2 = 0.87) and (R2 = 0.71) between RPE and MCLV. Conclusion: The control of MCLV during flywheel exercise can be proposed as a valid method to quantify load and to individualize the prescription of flywheel training. In addition, RPE responses have demonstrated significant correlations with load and velocity. Therefore, RPE has been proposed as a valid and reliable alternative to control flywheel training.
Collapse
Affiliation(s)
- Fernando Martín-Rivera
- Research Group in Prevention and Health in Exercise and Sport, University of Valencia, Valencia, Spain
- *Correspondence: Fernando Martín-Rivera,
| | - Marco Beato
- School of Health and Sports Sciences, University of Suffolk, Ipswich, United Kingdom
- Institute of Health and Wellbeing, University of Suffolk, Ipswich, United Kingdom
| | | | - Sergio Maroto-Izquierdo
- Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
- Proporción A, Applied Sports Science Centre, Valladolid, Spain
| |
Collapse
|
34
|
Chaabene H, Markov A, Prieske O, Moran J, Behrens M, Negra Y, Ramirez-Campillo R, Koch U, Mkaouer B. Effect of Flywheel versus Traditional Resistance Training on Change of Direction Performance in Male Athletes: A Systematic Review with Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7061. [PMID: 35742311 PMCID: PMC9223129 DOI: 10.3390/ijerph19127061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Objective: This study aimed to systematically review and meta-analyze the effect of flywheel resistance training (FRT) versus traditional resistance training (TRT) on change of direction (CoD) performance in male athletes. Methods: Five databases were screened up to December 2021. Results: Seven studies were included. The results indicated a significantly larger effect of FRT compared with TRT (standardized mean difference [SMD] = 0.64). A within-group comparison indicated a significant large effect of FRT on CoD performance (SMD = 1.63). For TRT, a significant moderate effect was observed (SMD = 0.62). FRT of ≤2 sessions/week resulted in a significant large effect (SMD = 1.33), whereas no significant effect was noted for >2 sessions/week. Additionally, a significant large effect of ≤12 FRT sessions (SMD = 1.83) was observed, with no effect of >12 sessions. Regarding TRT, no significant effects of any of the training factors were detected (p > 0.05). Conclusions: FRT appears to be more effective than TRT in improving CoD performance in male athletes. Independently computed single training factor analyses for FRT indicated that ≤2 sessions/week resulted in a larger effect on CoD performance than >2 sessions/week. Additionally, a total of ≤12 FRT sessions induced a larger effect than >12 training sessions. Practitioners in sports, in which accelerative and decelerative actions occur in quick succession to change direction, should regularly implement FRT.
Collapse
Affiliation(s)
- Helmi Chaabene
- Department of Sports and Health Sciences, Faculty of Human Sciences, University of Potsdam, 14469 Potsdam, Germany
- High Institute of Sports and Physical Education of Kef, University of Jendouba, Jendouba 8189, Tunisia
| | - Adrian Markov
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, 14469 Potsdam, Germany; (A.M.); (U.K.)
| | - Olaf Prieske
- Division of Exercise and Movement, University of Applied Sciences for Sports and Management Potsdam, 14471 Potsdam, Germany;
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester CO4 3SQ, UK;
| | - Martin Behrens
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, 39104 Magdeburg, Germany;
- Department of Orthopedics, University Medicine Rostock, Doberaner Straße 142, 18055 Rostock, Germany
| | - Yassine Negra
- Research Unit (UR17JS01) Sport Performance, Health & Society, Higher Institute of Sport and Physical Education of Ksar Saïd, University of Manouba, Manouba 2010, Tunisia;
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile;
| | - Ulrike Koch
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, 14469 Potsdam, Germany; (A.M.); (U.K.)
| | - Bessem Mkaouer
- Department of Individual Sports, Higher Institute of Sport and Physical Education of Ksar Said, University of Manouba, Manouba 2010, Tunisia;
| |
Collapse
|
35
|
Handford MJ, Bright TE, Mundy P, Lake J, Theis N, Hughes JD. The Need for Eccentric Speed: A Narrative Review of the Effects of Accelerated Eccentric Actions During Resistance-Based Training. Sports Med 2022; 52:2061-2083. [PMID: 35536450 DOI: 10.1007/s40279-022-01686-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Eccentric training as a method to enhance athletic performance is a topic of increasing interest to both practitioners and researchers. However, data regarding the effects of performing the eccentric actions of an exercise at increased velocities are limited. This narrative review aimed to provide greater clarity for eccentric methods and classification with regard to temporal phases of exercises. Between March and April 2021, we used key terms to search the PubMed, SPORTDiscus, and Google Scholar databases within the years 1950-2021. Search terms included 'fast eccentric', 'fast velocity eccentric', 'dynamic eccentric', 'accentuated eccentric loading', and 'isokinetic eccentric', analysing both the acute and the chronic effects of accelerated eccentric training in human participants. Review of the 26 studies that met the inclusion criteria identified that completing eccentric tempos of < 2 s increased subsequent concentric one repetition maximum performance, velocity, and power compared with > 4 s tempos. Tempos of > 4 s duration increased time under tension (TUT), whereas reduced tempos allowed for greater volume to be completed. Greater TUT led to larger accumulation of blood lactate, growth hormone, and testosterone when volume was matched to that of the reduced tempos. Overall, evidence supports eccentric actions of < 2 s duration to improve subsequent concentric performance. There is no clear difference between using eccentric tempos of 2-6 s if the aim is to increase hypertrophic response and strength. Future research should analyse the performance of eccentric actions at greater velocities or reduced time durations to determine more factors such as strength response. Tempo studies should aim to complete the same TUT for protocols to determine measures for hypertrophic response.
Collapse
Affiliation(s)
- Matthew J Handford
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK.
| | - Thomas E Bright
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
- School of Sport, Health and Wellbeing, Plymouth Marjon University, Plymouth, UK
| | - Peter Mundy
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Jason Lake
- Chichester Institute of Sport, Nursing, and Allied Health, University of Chichester, Chichester, UK
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Nicola Theis
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Jonathan D Hughes
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| |
Collapse
|
36
|
Post-activation Performance Enhancement after a Bout of Accentuated Eccentric Loading in Collegiate Male Volleyball Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413110. [PMID: 34948721 PMCID: PMC8701043 DOI: 10.3390/ijerph182413110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/10/2023]
Abstract
The purpose of this study was to investigate the benefit of post-activation performance enhancement (PAPE) after accentuated eccentric loading (AEL) compared to traditional resistance loading (TR). Sixteen male volleyball athletes were divided in AEL and TR group. AEL group performed 3 sets of 4 repetitions (eccentric: 105% of concentric 1RM, concentric: 80% of concentric 1RM) of half squat, and TR group performed 3 sets of 5 repetitions (eccentric & concentric: 85% of 1RM). Countermovement jump (CMJ), spike jump (SPJ), isometric mid-thigh pull (IMTP), and muscle soreness test were administered before (Pre) exercise, and 10 min (10-min), 24 h (24-h), and 48 h (48-h) after exercise. A two-way repeated measures analysis of variance was used to analyze the data. Peak force and rate of development (RFD) of IMTP in AEL group were significantly greater (p < 0.05) than TR group. The height, peak velocity, and RFD of CMJ, height of SPJ, and muscle soreness showed no interaction effects (p > 0.05) groups x time. AEL seemed capable to maintain force production in IMTP, but not in CMJ and SPJ. It is recommended the use of accentuated eccentric loading protocols to overcome the fatigue.
Collapse
|
37
|
Maroto-Izquierdo S, Nosaka K, Blazevich AJ, González-Gallego J, de Paz JA. Cross-education effects of unilateral accentuated eccentric isoinertial resistance training on lean mass and function. Scand J Med Sci Sports 2021; 32:672-684. [PMID: 34851533 DOI: 10.1111/sms.14108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE We investigated the effects of three different unilateral isoinertial resistance training protocols with eccentric overload on changes in lean mass and muscle function of trained (TL) and contralateral non-trained (NTL) legs. METHODS Physically active university students were randomly assigned to one of three training groups or a control group (n = 10/group). Participants in the training groups performed dominant leg isoinertial squat training twice a week for 6 weeks (4 sets of 7 repetitions) using either an electric-motor device with an eccentric phase velocity of 100% (EM100) or 150% (EM150) of concentric phase velocity or a conventional flywheel device (FW) with the same relative inertial load. Changes in thigh lean mass, unilateral leg-press one-repetition maximum (1-RM), muscle power at 40-80% 1-RM, and unilateral vertical jump height before and after training were compared between the groups and between TL and NTL. RESULTS No changes in any variable were found for the control group. In TL, all training groups showed similar increases (p < 0.05) in 1-RM strength (22.4-30.2%), lean tissue mass (2.5-5.8%), muscle power (8.8-21.7%), and vertical jump height (9.1-32.9%). In NTL, 1-RM strength increased 22.0-27.8% without significant differences between groups; however, increases in lean mass (p < 0.001) were observed for EM150 (3.5%) and FW (3.8%) only. Unilateral vertical jump height (6.0-32.9%) and muscle power (6.8-17.5%) also increased in NTL without significant differences between training groups. CONCLUSION The three eccentric-overload resistance training modalities produced similar neuromuscular changes in both the trained and non-trained legs, suggesting that strong cross-education effects were induced by the eccentric-overload training.
Collapse
Affiliation(s)
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - José A de Paz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| |
Collapse
|
38
|
The Potentiating Response to Accentuated Eccentric Loading in Professional Football Players. Sports (Basel) 2021; 9:sports9120160. [PMID: 34941798 PMCID: PMC8707222 DOI: 10.3390/sports9120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to assess the acute effect of Accentuated Eccentric Loading (AEL) on countermovement jump (CMJ) height, peak power output (PPO) and peak velocity in male professional footballers using loads of 20% or 40% of body mass (AEL20 or AEL40, respectively). Twenty-three male professional football players (age 24 ± 4.5 years, range 18–34 years; body mass 80.21 ± 8.4 kg; height 178.26 ± 7.62 cm) took part in a randomised, cross-over design to test the potentiating responses of two AEL conditions (AEL20 and AEL40) versus a body weight control group (CON). Mean loads for the two conditions were 15.84 ± 1.70 kg (AEL20) and 31.67 ± 3.40 kg (AEL40). There was no significant difference between the three conditions for jump height (p = 0.507, η2G = 0.022). There were significant differences in peak power between the groups (p = 0.001, η2G = 0.154). Post hoc analysis with Bonferroni adjustment showed significantly higher peak power for both AEL conditions compared to the control group, but no significant differences between AEL conditions (CON vs. AEL20, p = 0.029, 95% CI −1016.735, −41.815, Cohen’s d = −0.56; CON vs. AEL40, p = 0.001, 95% CI −1244.995, −270.075, Cohen’s d = −0.81; AEL20 vs. AEL40, p = 0.75, 95% CI −715.720, 259.201, Cohen’s d = −0.24). There was no significant difference between the three conditions for peak velocity (p = 0.269, η2G = 0.046). AEL using either 20% or 40% of body mass may be used to increase peak power in the countermovement jump in well-trained professional football players.
Collapse
|
39
|
Wehrstein M, Schöffel A, Weiberg N, Gwechenberger T, Betz T, Rittweg M, Parstorfer M, Pilz M, Friedmann-Bette B. Eccentric Overload during Resistance Exercise: A Stimulus for Enhanced Satellite Cell Activation. Med Sci Sports Exerc 2021; 54:388-398. [PMID: 34690286 DOI: 10.1249/mss.0000000000002818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Satellite cells (SC) are of importance for muscular adaptation to various forms of exercise. A single bout of high-force eccentric exercise has been shown to induce SC activation and, for electrically stimulated exercise, SC differentiation. PURPOSE This study aimed to assess if one bout of concentric/eccentric exercise with damaging eccentric overload (CON/ECC+) provides a sufficient stimulus to induce SC activation, proliferation and differentiation. METHODS Biopsies from the vastus lateralis muscle of recreationally active males were obtained in the rested condition and again from the contralateral leg seven days after exhaustive concentric/eccentric (CON/ECC, n = 15) or CON/ECC+ (n = 15) leg extension exercise and in a non-exercising control group (CG, n = 10). Total SC number (Pax7+), activated (Pax7+/MyoD+), and differentiating (myogenin+) SCs, fiber type distribution, and myofibers expressing neonatal myosin heavy chain (MHCneo) were determined immunohistochemically. Creatine kinase (CK) and myoglobin were measured in venous blood. Isokinetic strength tests were repeatedly conducted. RESULTS Significant increases in CK and myoglobin (p = 0.001) indicated myofiber damage while maximal strength was not impaired. Only after CON/ECC+, SC content (p = 0.019) and SC related to type II fibers (p = 0.011) were significantly increased. A significant increase in the proportion of activated SCs occurred after CON/ECC+ only (p = 0.003), the increase being significantly (p < 0.05) different from the changes after CON/ECC and in CG. The number of differentiating SC and MHCneo remained unchanged. CONCLUSION Eccentric overload during leg extension exercise induced significant SC activation, increases in SC content and in SC number related to type II myofibers. However, there were no signs of increased SC differentiation or formation of new myofibers.
Collapse
Affiliation(s)
- Michaela Wehrstein
- Department of Sports Medicine, Medical Clinic, University Hospital Heidelberg, Germany Department of Cardiology, Angiology and Pneumonology, Medical Clinic, University Hospital Heidelberg, Germany Olympic Training Center Heidelberg, Germany Institute of Medical Biometry and Informatics, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Handford MJ, Rivera FM, Maroto-Izquierdo S, Hughes JD. Plyo-Accentuated Eccentric Loading Methods to Enhance Lower Limb Muscle Power. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Hernández-Davó JL, Sabido R, Blazevich AJ. High-speed stretch-shortening cycle exercises as a strategy to provide eccentric overload during resistance training. Scand J Med Sci Sports 2021; 31:2211-2220. [PMID: 34536969 DOI: 10.1111/sms.14055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
Resistance exercises eliciting eccentric overload (EO) are considered to strongly promote muscular hypertrophy and broad neuromuscular adaptations but typically require specialized equipment. The aims of these experiments were to assess whether EO is achieved during common high-speed stretch-shortening cycle (SSC) exercises (rebound bench press throw [RBPT] and squat jump [SJ]), and to test the effect of the external load on the EO achieved. Twenty-nine under 18 handball players and fifteen physically active males (24.9 ± 3.2 years) took part in the experiments. Testing consisted of a single set of 6 repetitions with light (25%-30% 1-RM), moderate (50% 1-RM), and heavy (70%-75% 1-RM) loads. Eccentric and concentric force near the zero-velocity point (50-200 ms) as well as eccentric-concentric force ratio (EO; %) were calculated. In RBPT, higher EO values were found at 50% 1-RM than 70% 1-RM in the time interval 50 ms before and after the zero-velocity point. Higher EO values were also found at 50% 1-RM than both 30% 1-RM and 70% 1-RM 100 ms before and after the zero-velocity point. For the SJ, higher EO values were found at 50% 1-RM and 75% 1-RM than 25% 1-RM 100 ms before and after the zero-velocity point. Higher EO values were found at 50% 1-RM than 25% 1-RM 200 ms before and after the zero-velocity point. However, the higher EO values in the SJ were found far from the zero-velocity point. High-speed SSC resistance training provides similar EO to other methods and thus should promote muscle hypertrophy and other neuromuscular adaptations.
Collapse
Affiliation(s)
| | - Rafael Sabido
- Department of Sport Sciences, Miguel Hernández University, Elche, Spain
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
42
|
Murton J, Eager R, Drury B. Comparison of flywheel versus traditional resistance training in elite academy male Rugby union players. Res Sports Med 2021; 31:214-227. [PMID: 34293975 DOI: 10.1080/15438627.2021.1954518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study investigated the effects of flywheel inertia training (FIT) vs traditional resistance training (TRT) over four weeks in academy male rugby union (RU) players. Sixteen elite male academy RU players (age = 18.0 ± 1.0 years, body mass = 93.0 ± 13.1 kg) were allocated into either FIT (n = 8) or TRT (n = 8) groups. Pre and post measures of countermovement jump (CMJ), squat jump (SJ) and drop jump (DJ) were completed. Relative peak force (PF), relative peak power (PP) and jump height (H) were measured for CMJ and SJ with reactive strength index measured for the DJ. Both groups showed improvements in all measures, except for SJ peak power, following TRT. Within-group analysis showed significant increases following TRT in CMJ-H (2.79 cm, 90% CI = -0.70, 4.89 cm; p = 0.002; ES = 0.51) and SJ-H (3.68 cm, 90% CI = 1.25, 6.11 cm; p = 0.002; ES = 0.88) with a significant improvement following FIT for CMJ-PP (1.96Wkg-1, 90% CI = -0.89, 4.80 Wkg-1; p = 0.022; ES = 0.55). No significant between-group differences (p > 0.05) were evident. These findings suggest both FIT and TRT are effective for developing lower-body strength and power qualities in male academy RU players.
Collapse
Affiliation(s)
| | - Robin Eager
- Rugby Football Union, Twickenham Stadium, Twickenham, UK
| | - Ben Drury
- Department of Applied Sport Sciences, Hartpury University, Gloucestershire, UK
| |
Collapse
|
43
|
Beato M, Stiff A, Coratella G. Effects of Postactivation Potentiation After an Eccentric Overload Bout on Countermovement Jump and Lower-Limb Muscle Strength. J Strength Cond Res 2021; 35:1825-1832. [PMID: 30615009 DOI: 10.1519/jsc.0000000000003005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ABSTRACT Beato, M, Stiff, A, and Coratella, G. Effects of postactivation potentiation after an eccentric overload bout on countermovement jump and lower-limb muscle strength. J Strength Cond Res 35(7): 1825-1832, 2021-This study aimed to evaluate the postactivation potentiation (PAP) effects of an eccentric overload (EOL) exercise on countermovement jump (CMJ) performance and isokinetic lower-limb muscle strength. Eighteen active men (mean ± SD, age 20.2 ± 1.4 years, body mass 71.6 ± 8 kg, and height 178 ± 7 cm) were involved in a randomized, crossover study. The subjects performed 3 sets per 6 repetitions of EOL half squats at maximal power using a flywheel ergometer. Postactivation potentiation using an EOL exercise was compared with a control condition (10-minute cycling at 1 W·kg-1). Countermovement jump height, peak power, impulse, and force were recorded at 15 seconds, 1, 3, 5, 7, and 9 minutes after an EOL exercise or control. Furthermore, quadriceps and hamstrings isokinetic strength were performed. Postactivation potentiation vs. control reported a meaningful difference for CMJ height after 3 minutes (effect size [ES] = 0.68, p = 0.002), 5 minutes (ES = 0.58, p = 0.008), 7 minutes (ES = 0.57, p = 0.022), and 9 minutes (ES = 0.61, p = 0.002), peak power after 1 minute (ES = 0.22, p = 0.040), 3 minutes (ES = 0.44, p = 0.009), 5 minutes (ES = 0.40, p = 0.002), 7 minutes (ES = 0.29, p = 0.011), and 9 minutes (ES = 0.30, p = 0.008), as well as quadriceps concentric, hamstrings concentric, and hamstrings eccentric peak torque (ES = 0.13, p = 0.001, ES = 0.24, p = 0.003, and ES = 0.22, p = 003, respectively) after 3-9 minutes of rest. In conclusion, the present outcomes highlight that PAP using an EOL bout improves height, peak power, impulse, and peak force during CMJ, as well as quadriceps and hamstrings isokinetic strength in male athletes. Moreover, the optimal time window for the PAP was found from 3 to 9 minutes.
Collapse
Affiliation(s)
- Marco Beato
- School of Science, Technology and Engineering, University of Suffolk, Ipswich, United Kingdom; and
| | - Adam Stiff
- School of Science, Technology and Engineering, University of Suffolk, Ipswich, United Kingdom; and
| | - Giuseppe Coratella
- Department of Biomedical Sciences for Health, University of Milan, Italy
| |
Collapse
|
44
|
Suchomel TJ, Nimphius S, Bellon CR, Hornsby WG, Stone MH. Training for Muscular Strength: Methods for Monitoring and Adjusting Training Intensity. Sports Med 2021; 51:2051-2066. [PMID: 34101157 DOI: 10.1007/s40279-021-01488-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 01/21/2023]
Abstract
Linear loading, the two-for-two rule, percent of one repetition maximum (1RM), RM zones, rate of perceived exertion (RPE), repetitions in reserve, set-repetition best, autoregulatory progressive resistance exercise (APRE), and velocity-based training (VBT) are all methods of adjusting resistance training intensity. Each method has advantages and disadvantages that strength and conditioning practitioners should be aware of when measuring and monitoring strength characteristics. The linear loading and 2-for-2 methods may be beneficial for novice athletes; however, they may be limited in their capacity to provide athletes with variation and detrimental if used exclusively for long periods of time. The percent of 1RM and RM zone methods may provide athletes with more variation and greater potential for strength-power adaptations; however, they fail to account for daily changes in athlete's performance capabilities. An athlete's daily readiness can be addressed to various extents by both subjective (e.g., RPE, repetitions in reserve, set-repetition best, and APRE) and objective (e.g., VBT) load adjustment methods. Future resistance training monitoring may aim to include a combination of measures that quantify outcome (e.g., velocity, load, time, etc.) with process (e.g., variability, coordination, efficiency, etc.) relevant to the stage of learning or the task being performed. Load adjustment and monitoring methods should be used to supplement and guide the practitioner, quantify what the practitioner 'sees', and provide longitudinal data to assist in reviewing athlete development and providing baselines for the rate of expected development in resistance training when an athlete returns to sport from injury or large training load reductions.
Collapse
Affiliation(s)
- Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, 53186, USA.
| | - Sophia Nimphius
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Christopher R Bellon
- Department of Health and Human Performance, The Citadel-The Military College of South Carolina, Charleston, SC, 29409, USA
| | - W Guy Hornsby
- Department of Coaching and Teaching Studies, West Virginia University, Morgantown, WV, 26505, USA
| | - Michael H Stone
- Center of Excellence for Sport Science and Coach Education, Department of Exercise and Sport Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| |
Collapse
|
45
|
Peng HT, Song CY, Chen ZR, Lai CT, Gu CY, Wang LI. Effects of attaching elastic bands to the waist and heels on drop jumps. Eur J Sport Sci 2021; 22:808-816. [PMID: 33832386 DOI: 10.1080/17461391.2021.1915390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study aimed to investigate the effects of the external load of elastic bands attached to the waist and heels to enhance the pre-activation of leg extensor muscles on drop jumps (DJs). Twelve male college athletes volunteered for this study. Eight cameras and two force platforms were used to collect data. Each subject performed DJs with elastic band loads of 0% and 20% body weight (BW) attached to the waist and heels during the airborne and landing phases from 40- and 50-cm drop heights. Repeated measures of two-way analysis of variance were performed with two loads of the elastic bands and two heights of the platform for each dependent biomechanical variable. Jump height, reactive strength index, leg stiffness, hip, knee flexion, and ankle plantarflexion angles at the initial foot contact and ankle dorsiflexion range of motion (ROM) significantly increased with 20% BW loads. The peak ground reaction force of impact, eccentric work, and hip flexion range of motion significantly decreased with 20% BW loads. The use of the elastic bands as accentuated loading during the airborne and landing phases of DJs can induce pre-activation of the joint extensors of the lower extremity to achieve stretch-shortening cycle benefits and performance and reduce the ground impact for the lower extremity. HighlightsAttaching elastic bands to the waist and heels enables the following during drop jumps.The joint extensors of the lower extremities act as a counterbalance to the pull from the elastic bands.The performance of the drop jump was improved.The ground impact was reduced.
Collapse
Affiliation(s)
- Hsien-Te Peng
- Department of Physical Education, Chinese Culture University, Taipei, Taiwan
| | - Chen-Yi Song
- Department of Long-Term Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Zong-Rong Chen
- Department of Athletic Performance, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Chien-Ting Lai
- Department of Physical Education and Kinesiology, National Dong Hwa University, Hualien, Taiwan
| | - Chin-Yi Gu
- Department of Education and Human Potentials Development, National Dong Hwa University, Hualien, Taiwan
| | - Li-I Wang
- Department of Physical Education and Kinesiology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
46
|
Ipsilateral Lower-to-Upper Limb Cross-Transfer Effect on Muscle Strength, Mechanical Power, and Lean Tissue Mass after Accentuated Eccentric Loading. ACTA ACUST UNITED AC 2021; 57:medicina57050445. [PMID: 34064370 PMCID: PMC8147780 DOI: 10.3390/medicina57050445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023]
Abstract
Background and Objectives: To investigate the effects of unilateral accentuated eccentric loading (AEL) on changes in lean mass and function of leg trained (TL) and ipsilateral non-trained arm (NTA) in young men and women. Materials and Methods: In a prospective trial, 69 Physically active university students (20.2 ± 2.2 years) were randomly placed into a training group (n = 46; 27 men, 19 women) or a control group without training (n = 23; 13 men, 10 women). Participants in the training group performed unilateral AEL in the leg press exercise of the dominant leg twice a week for 10 weeks. An electric motor device-generated isotonic resistance at different intensities for both concentric (30% of 1-RM) and eccentric contractions (105% of 1-RM). Changes in thigh and arm lean tissue mass, unilateral leg press and unilateral elbow flexion maximal concentric (1-RM) and isometric strength (MVIC), and unilateral muscle power at 40, 60, and 80% 1-RM for both leg press and elbow flexion exercises before and after intervention were compared between groups, between sexes and between TL and NTA. Results: Both men and women in the training group showed increases (p < 0.05) in lean tissue mass, 1-RM, MVIC, and muscle power for TL. In NTA, 1-RM, MVIC, and muscle power increased without significant differences between sexes, but neither in men nor women changes in lean tissue mass were observed. In addition, men showed greater changes in TL, but changes in NTA were similar between sexes. No gains in any variable were found for the control group. Conclusions: AEL protocol produced similar neuromuscular changes in TL and ipsilateral NTA, which suggests that strong ipsilateral lower-to-upper limb cross-transfer effects were induced by the eccentric-overload training. However, early ipsilateral increases in muscle force and power were not associated with lean mass gains. Both men and women experienced similar changes in NTA; however, men showed greater changes in TL.
Collapse
|
47
|
Merrigan JJ, Tufano JJ, Jones MT. Potentiating Effects of Accentuated Eccentric Loading Are Dependent Upon Relative Strength. J Strength Cond Res 2021; 35:1208-1216. [PMID: 33651736 DOI: 10.1519/jsc.0000000000004010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Merrigan, JJ, Tufano, JJ, and Jones, MT. Potentiating effects of accentuated eccentric loading are dependent upon relative strength. J Strength Cond Res 35(5): 1208-1216, 2021-The purpose was to evaluate the acute effects of accentuated eccentric loading (AEL) on bench press velocity and subsequent perceived effort (ratings of perceived exertion [RPE]) and soreness. Resistance-trained men (n = 8) and women (n = 2) completed 4 sets of 5 bench press repetitions with AEL and traditional loading (TL) using concentric loads of 50% (AEL50, TL50) and 65% (AEL65, TL65) 1-repetition maximum (1RM). Throughout each TL set, the eccentric load remained identical to the concentric. Variable resistance during the first repetition of AEL equaled 120% 1RM. Hierarchical Linear Modeling was used to evaluate differences between AEL and TL (p < 0.05). For the first repetition, AEL50 and AEL65 resulted in slower eccentric and concentric velocities. The increasing slope of eccentric and concentric velocity across repetitions was greater during AEL50 and AEL65 compared with TL50 and TL65, respectively (p < 0.05). As an individual's strength increased, AEL50 resulted in slower eccentric velocity and faster concentric velocity than TL50. The AEL65 resulted in faster concentric velocity than TL65 (p < 0.05). Mean protocol comparisons revealed trivial to small effects between AEL and TL. There were no differences in RPE or soreness between protocols with soreness ratings remaining unchanged from baseline (1.80 ± 0.20 AU; p < 0.05). Overall, AEL was not effective for increasing concentric velocity during the bench press with current loading protocols. Yet, stronger individuals may exhibit increases in concentric velocity from AEL, which may be a result of different pacing strategies employed during the eccentric phase. Furthermore, when using the current AEL protocols, eccentric intensities were increased with no greater RPE or soreness.
Collapse
Affiliation(s)
- Justin J Merrigan
- Human Performance Innovation Center, Rockefellar Neuroscience Institute, West Virginia University, Morgantown, West Virginia
- School of Kinesiology, George Mason University, Manassas, Virginia
- Patriot Performance Laboratory, Frank Pettrone Center for Sports Performance, George Mason University, Fairfax, Virginia
| | - James J Tufano
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic ; and
| | - Margaret T Jones
- Patriot Performance Laboratory, Frank Pettrone Center for Sports Performance, George Mason University, Fairfax, Virginia
- School of Sport, Recreation, and Tourism Management, George Mason University, Fairfax, Virginia
| |
Collapse
|
48
|
Accentuated Eccentric Loading in the Bench Press: Considerations for Eccentric and Concentric Loading. Sports (Basel) 2021; 9:sports9050054. [PMID: 33925494 PMCID: PMC8145519 DOI: 10.3390/sports9050054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
This study examined the effects of accentuated eccentric loading (AEL) on bench press velocities across a spectrum of concentric and eccentric loads. Ten strength trained men (bench press one-repetition maximum (1-RM): 124.3 ± 19.4 kg; relative strength ratio: 1.5 ± 0.2 kg∙body mass-1) participated. Subjects completed bench press repetitions using concentric loads from 30% to 80% 1-RM in 10% increments in each experimental session. The AEL protocols were implemented using 100% (AEL100) and 110% 1-RM (AEL110) loads during the eccentric action, while the eccentric load remained the same as the concentric for traditional loading (TRAD). Multilevel models analyzed the effects of each AEL protocol on concentric velocities across concentric loads (p < 0.05). Faster concentric velocities were observed at 30% 1-RM and 80% 1-RM with AEL100 compared to TRAD (p ≤ 0.05) but this effect was reduced for individuals moving the barbell through a greater displacement. Additionally, AEL110 presented a greater change in velocity from 30% to 80% 1-RM than TRAD (p ≤ 0.05). The AEL100 protocol resulted in faster concentric velocities throughout concentric loads of 30-80% 1-RM, but AEL110 may have been too great to elicit consistent performance enhancements. Thus, the efficacy of AEL at various concentric loads is dependent on the eccentric loading and barbell displacement.
Collapse
|
49
|
Wagle JP, Cunanan AJ, Carroll KM, Sams ML, Wetmore A, Bingham GE, Taber CB, DeWeese BH, Sato K, Stuart CA, Stone MH. Accentuated Eccentric Loading and Cluster Set Configurations in the Back Squat: A Kinetic and Kinematic Analysis. J Strength Cond Res 2021; 35:420-427. [PMID: 29927889 DOI: 10.1519/jsc.0000000000002677] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Wagle, JP, Cunanan, AJ, Carroll, KM, Sams, ML, Wetmore, A, Bingham, GE, Taber, CB, DeWeese, BH, Sato, K, Stuart, CA, and Stone, MH. Accentuated eccentric loading and cluster set configurations in the back squat: a kinetic and kinematic analysis. J Strength Cond Res 35(2): 420-427, 2021-This study examined the kinetic and kinematic differences between accentuated eccentric loading (AEL) and cluster sets in trained male subjects (age = 26.1 ± 4.1 years, height = 183.5 ± 4.3 cm, body mass = 92.5 ± 10.5 kg, and back squat to body mass ratio = 1.8 ± 0.3). Four load condition sessions consisted of traditionally loaded (TL) "straight sets," TL cluster (TLC) sets, AEL cluster (AEC) sets, and AEL "straight sets" where only the first repetition had eccentric overload (AEL1). An interrepetition rest interval of 30 seconds was prescribed for both TLC and AEC. Concentric intensity for all load conditions was 80% 1 repetition maximum (1RM). Accentuated eccentric loading was applied to repetitions using weight releasers with total eccentric load equivalent to 105% of concentric 1RM. Traditionally loaded cluster had statistically greater concentric outputs than TL. Furthermore, statistically greater eccentric and concentric outputs were observed during AEC compared with TL with the exception of peak power. Statistically greater concentric characteristics were observed in TLC compared with AEL1, but statistically greater eccentric outputs were observed in AEL1. In the 2 cluster set conditions, statistically greater concentric rate of force development (RFDCON) (d = 0.470, p < 0.001) and average velocity (vavg) (d = 0.560, p < 0.001) in TLC compared with AEC were observed. However, statistically greater eccentric work (WECC) (d = 2.096, p < 0.001) and eccentric RFD (RFDECC) (d = 0.424, p < 0.001) were observed in AEC compared with TLC. Overall, eccentric overload demonstrated efficacy as a means of increasing eccentric work and RFD, but not as a means of potentiating concentric output. Finally, interrepetition rest seems to have the largest influence on concentric power output and RFD.
Collapse
Affiliation(s)
- John P Wagle
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Aaron J Cunanan
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Kevin M Carroll
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Matt L Sams
- Department of Exercise Science and Health Education, LaGrange College, LaGrange, Georgia
| | - Alexander Wetmore
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Garett E Bingham
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Christopher B Taber
- Department of Physical Therapy and Human Movement Science, Sacred Heart University, Fairfield, Connecticut; and
| | - Brad H DeWeese
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Kimitake Sato
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Charles A Stuart
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, City, Tennessee
| | - Michael H Stone
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
50
|
Merrigan JJ, Jones MT. Acute Inflammatory, Cortisol, and Soreness Responses to Supramaximal Accentuated Eccentric Loading. J Strength Cond Res 2021; 35:S107-S113. [PMID: 33666595 DOI: 10.1519/jsc.0000000000003764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Merrigan, JJ and Jones, MT. Acute inflammatory, cortisol, and soreness responses to supramaximal accentuated eccentric loading. J Strength Cond Res 35(2S): S107-S113, 2021-The purpose was to determine differences in time under tension, cortisol, inflammation, and perceived soreness between accentuated eccentric (AEL) and traditional loading (TRA) resistance exercise protocols. Resistance-trained men (n = 21) completed the AEL and TRA protocols in a random order, separated by 48 hours (sets × reps at eccentric/concentric) as follows: AEL65, 3 × 5 at 120/65% 1 repetition maximum (RM); AEL80, 3 × 3 at 120/80% 1RM; TRA65, 3 × 5 at 65/65% 1RM; and TRA80, 3 × 3 at 80/80% 1RM. Four linear position transducers measured eccentric time under tension (ETUT) and total time under tension (TTUT). Ultrasonography measured vastus lateralis muscle thickness and echo intensity at baseline and immediately post-exercise. Salivary cortisol was assessed at baseline, 0-, 15-, 30-, and 60-minute post-exercise. Perceived soreness was assessed at baseline, 24-, and 48-hours post-exercise. During rep 1, AEL65 and AEL80 had longer ETUT and TTUT than TRA65 (p ≤ 0.002) and TRA80 (p ≤ 0.008), respectively. However, AEL65 had shorter ETUT (reps 3-5) and TTUT (reps 3-5) than TRA65 (p ≤ 0.043). Similarly, ETUT (reps 2-3) and TTUT (rep 3) was shorter in AEL80 than TRA80 (p ≤ 0.045). However, there was no protocol effect for ETUT and TTUT (p > 0.05). Muscle thickness changes were trivial after each protocol (AEL80, d = 0.19; TRA80, d = 0.15; AEL65, d = 0.24; TRA65, d = 0.23), but changes in echo intensity were moderate (AEL80, d = 0.61; TRA80, d = 0.61; AEL65, d = 0.61; TRA65, d = 0.76). Salivary cortisol decreased below baseline at 30- and 60-minute post-exercise (p ≤ 0.006). Perceived soreness elevated from baseline to 24 hours for AEL80 (p = 0.006). The inflammatory, cortisol, and soreness responses after AEL were either low or similar to TRA, indicating similar recovery patterns between protocols.
Collapse
|