1
|
Petit P, Vuillerme N. Leveraging Administrative Health Databases to Address Health Challenges in Farming Populations: Scoping Review and Bibliometric Analysis (1975-2024). JMIR Public Health Surveill 2025; 11:e62939. [PMID: 39787587 DOI: 10.2196/62939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Although agricultural health has gained importance, to date, much of the existing research relies on traditional epidemiological approaches that often face limitations related to sample size, geographic scope, temporal coverage, and the range of health events examined. To address these challenges, a complementary approach involves leveraging and reusing data beyond its original purpose. Administrative health databases (AHDs) are increasingly reused in population-based research and digital public health, especially for populations such as farmers, who face distinct environmental risks. OBJECTIVE We aimed to explore the reuse of AHDs in addressing health issues within farming populations by summarizing the current landscape of AHD-based research and identifying key areas of interest, research gaps, and unmet needs. METHODS We conducted a scoping review and bibliometric analysis using PubMed and Web of Science. Building upon previous reviews of AHD-based public health research, we conducted a comprehensive literature search using 72 terms related to the farming population and AHDs. To identify research hot spots, directions, and gaps, we used keyword frequency, co-occurrence, and thematic mapping. We also explored the bibliometric profile of the farming exposome by mapping keyword co-occurrences between environmental factors and health outcomes. RESULTS Between 1975 and April 2024, 296 publications across 118 journals, predominantly from high-income countries, were identified. Nearly one-third of these publications were associated with well-established cohorts, such as Agriculture and Cancer and Agricultural Health Study. The most frequently used AHDs included disease registers (158/296, 53.4%), electronic health records (124/296, 41.9%), insurance claims (106/296, 35.8%), population registers (95/296, 32.1%), and hospital discharge databases (41/296, 13.9%). Fifty (16.9%) of 296 studies involved >1 million participants. Although a broad range of exposure proxies were used, most studies (254/296, 85.8%) relied on broad proxies, which failed to capture the specifics of farming tasks. Research on the farming exposome remains underexplored, with a predominant focus on the specific external exposome, particularly pesticide exposure. A limited range of health events have been examined, primarily cancer, mortality, and injuries. CONCLUSIONS The increasing use of AHDs holds major potential to advance public health research within farming populations. However, substantial research gaps persist, particularly in low-income regions and among underrepresented farming subgroups, such as women, children, and contingent workers. Emerging issues, including exposure to per- and polyfluoroalkyl substances, biological agents, microbiome, microplastics, and climate change, warrant further research. Major gaps also persist in understanding various health conditions, including cardiovascular, reproductive, ocular, sleep-related, age-related, and autoimmune diseases. Addressing these overlooked areas is essential for comprehending the health risks faced by farming communities and guiding public health policies. Within this context, promoting AHD-based research, in conjunction with other digital data sources (eg, mobile health, social health data, and wearables) and artificial intelligence approaches, represents a promising avenue for future exploration.
Collapse
Affiliation(s)
- Pascal Petit
- Laboratoire AGEIS, Université Grenoble Alpes, La Tronche Cedex, France
| | - Nicolas Vuillerme
- Laboratoire AGEIS, Université Grenoble Alpes, La Tronche Cedex, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
2
|
Wang H, Fu D, Liu X, Chang X, Guo S, Cheng X, Tian Y, Ran J, Zhang J, Yin S. Prenatal exposure to a mixture of organophosphate ester and organophosphorus pesticides in relation to child neurodevelopment in the Shanghai Birth Cohort. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117618. [PMID: 39742648 DOI: 10.1016/j.ecoenv.2024.117618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Neurotoxicity of organophosphate esters (OPEs) and organophosphorus pesticides (OPPs) has been documented in toxicological studies, though epidemiological evidence remains inconsistent. The developing fetal brain is susceptible to environmental exposures. Thus, we aim to investigate how prenatal exposure to OPEs and OPPs as mixture affects offspring neurodevelopment in preschool-aged children. In a study involving 530 mother-child dyads from the Shanghai Birth Cohort (SBC) with enrollment occurring between 2013 and 2016, 14 OPEs/OPPs metabolites were evaluated using high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS) in maternal urine collected during both the first and second trimester. Child neurodevelopment was evaluated using the parent-reported Behavior Rating Inventory of Executive Function-Preschool version (BRIEF-P) and the Strengths and Difficulties Questionnaire (SDQ). We utilized multivariable linear regression and Bayesian kernel machine regression (BKMR) to estimate associations with individual and mixture component, respectively. We also investigated whether these associations varied by child sex. Of the 14 OPEs/OPPs metabolites, 6 were quantifiable in over 75 % of the samples. Higher prenatal O,O-dimethyl phosphate (DMP) concentrations in the first and second trimesters, as well as O,O-dimethyl thiophosphate (DMTP) in the second trimester, were associated with more behavioral difficulties. When stratified by child sex, the statistically significant inverse associations were observed exclusively in girls. Results from BKMR showed that the overall effect of prenatal exposure to OPEs and OPPs mixtures was associated with some neurodevelopmental domains in girls. For example, holding the mixture at the 75th percentile compared to the 50th percentile during the first trimester was associated with a 0.65 increase in SDQ total scores (95 % confidence interval: 0.03-1.26). DMP and DMTP may be the dominant contributors. Our findings add to the literature on the effect of prenatal exposure to OPEs and OPPs on offspring neurodevelopment and suggest that the effect seems to be sex-specific. Additional research is required to validate our findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Hui Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Dezheng Fu
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoning Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaochen Chang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Siyu Guo
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaomeng Cheng
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinjun Ran
- Department of Epidemiology and Statistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Shengju Yin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
3
|
Wang Y, Hermetz K, Burt A, Lesseur C, Panuwet P, Fiedler N, Prapamontol T, Suttiwan P, Nimmapirat P, Sittiwang S, Naksen W, Yakimavets V, Barr DB, Hao K, Chen J, Marsit CJ. Prenatal exposure to pesticide mixtures and the placental transcriptome: Insights from trimester-specific, sex-specific and metabolite-scaled analyses in the SAWASDEE cohort. ENVIRONMENTAL RESEARCH 2024; 267:120637. [PMID: 39675449 DOI: 10.1016/j.envres.2024.120637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
We investigated the effect of exposure to pesticide mixtures during pregnancy on the placental transcriptome, to link these exposures and placental functions. The Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE) enrolled pregnant farmworkers from Thailand (n = 248), who were primarily exposed to organophosphate (OP) and pyrethroid pesticides. We measured maternal urinary levels of six non-specific OP metabolites expressed as three summary measures (dimethylalkylphosphates (DMAP), diethylalkylphosphates (DEAP), and dialkylphosphates (DAP) and three pyrethroid metabolites (3-phenoxybenzoic acid (3-PBA), cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA, trans-DCCA) during early, middle, and late pregnancy, and adjusted for urine dilution using creatinine. RNA-sequencing was used to profile the placental transcriptome from which 21 co-expression network modules were identified by Weighted Gene Co-expression Network Analysis. Quantile g-computation analysis identified a positive mixture exposure effect on the E2f Target Module (β = 0.013 per SD, p = 0.012) and a negative mixture exposure effect (β = -0.016 per SD, p = 0.008) on the Myogenesis Module. The pesticide metabolites driving the associations differed for each module on each module varied, highlighting differential susceptibilities within the placental transcriptome to various pesticides. The Myogenesis Module exhibited a consistently significant negative association in both the second trimester (β = -0.013 per SD, p = 0.015) and the third trimester (β = -0.012 per SD, p = 0.028). When stratifying by infant sex, the mixture exhibited a significant negative effect (β = -0.018 per SD, P = 0.016) on the Myogenesis Module only in females. Other modules, such as epithelial-mesenchymal transition, though not demonstrating an overall mixture effect, did demonstrate differential impacts of the mixture by sex. These findings underscore the importance of considering the prenatal environment more holistically, understanding the placenta's susceptibility to contaminants, and incorporating sex-specific analyses to understand differential impacts.
Collapse
Affiliation(s)
- Yewei Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Nancy Fiedler
- Rutgers University School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Tippawan Prapamontol
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Panrapee Suttiwan
- Life Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Pimjuta Nimmapirat
- Life Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Supattra Sittiwang
- Life Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Warangkana Naksen
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Volha Yakimavets
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Urquizu E, Paratusic S, Goyenechea J, Gómez-Canela C, Fumàs B, Pubill D, Raldúa D, Camarasa J, Escubedo E, López-Arnau R. Acute Paraoxon-Induced Neurotoxicity in a Mouse Survival Model: Oxidative Stress, Dopaminergic System Alterations and Memory Deficits. Int J Mol Sci 2024; 25:12248. [PMID: 39596313 PMCID: PMC11594717 DOI: 10.3390/ijms252212248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The secondary neurotoxicity induced by severe organophosphorus (OP) poisoning, including paraoxon (POX), is associated with cognitive impairments in survivors, who, despite receiving appropriate emergency treatments, may still experience lasting neurological deficits. Thus, the present study provides a survival mouse model of acute and severe POX poisoning to examine secondary neurotoxicity. Swiss CD-1 male mice were injected with POX (4 mg/kg, s.c.) followed by atropine (4 mg/kg, i.p.), pralidoxime (2-PAM; Pyridine-2-aldoxime methochloride) (25 mg/kg, i.p., twice, 1 h apart) and diazepam (5 mg/kg, i.p.), resulting in a survival rate >90% and Racine score of 5-6. Our results demonstrated that the model showed increased lipid peroxidation, downregulation of antioxidant enzymes and astrogliosis in the mouse hippocampus (HP) and prefrontal cortex (PFC), brain areas involved in cognitive functions. Moreover, dopamine (DA) levels were reduced in the hp, but increased in the PFC. Furthermore, the survival mouse model of acute POX intoxication did not exhibit phenotypic manifestations of depression, anxiety or motor incoordination. However, our results demonstrated long-term recognition memory impairments, which are in accordance with the molecular and neurochemical effects observed. In conclusion, this mouse model can aid in researching POX exposure's effects on memory and developing potential countermeasures against the secondary neurotoxicity induced by severe OP poisoning.
Collapse
Affiliation(s)
- Edurne Urquizu
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Selma Paratusic
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Berta Fumàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| |
Collapse
|
5
|
Alcala CS, Lane JM, Midya V, Eggers S, Wright RO, Rosa MJ. Exploring the link between the pediatric exposome, respiratory health, and executive function in children: a narrative review. Front Public Health 2024; 12:1383851. [PMID: 39478741 PMCID: PMC11521889 DOI: 10.3389/fpubh.2024.1383851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Asthma is a highly prevalent inflammatory condition, significantly affecting nearly six million U.S. children and impacting various facets of their developmental trajectories including neurodevelopment. Evidence supports a link between pediatric environmental exposures in two key areas: asthma and executive function (E.F.). E.F.s are a collective of higher-order cognitive processes facilitating goal-oriented behaviors. Studies also identify asthma-associated E.F. impairments in children. However, limited research has evaluated the inter-relationships among environmental exposures, asthma, and E.F. in children. This review explored relevant research to identify and connect the potential mechanisms and pathways underlying these dynamic associations. The review suggests that the role of the pediatric exposome may function through (1) several underlying biological pathways (i.e., the lung-brain axis, neuroendocrine system, and hypoxia), which could drive asthma and maladaptive E.F. in children and (2) the relationships between the exposome, asthma, and E.F. is a bidirectional linkage. The review reveals essential synergistic links between asthma and E.F. deficits, highlighting the potential role of the pediatric exposome.
Collapse
Affiliation(s)
- Cecilia S. Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jamil M. Lane
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shoshannah Eggers
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Abou Diwan M, Djekkoun N, Boucau MC, Corona A, Dehouck L, Biendo M, Gosselet F, Bach V, Candela P, Khorsi-Cauet H. Maternal exposure to pesticides induces perturbations in the gut microbiota and blood-brain barrier of dams and the progeny, prevented by a prebiotic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58957-58972. [PMID: 39325129 PMCID: PMC11513755 DOI: 10.1007/s11356-024-34969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Exposure to pesticide residues during the first 1000 days of life can disrupt body homeostasis and contribute to chronic metabolic diseases. Perinatal chlorpyrifos (CPF) exposure alters gut microbiota (GM) balance, potentially affecting offspring's health. Given the GM influence on brain function, the primary aim is to determine if pesticide-induced dysbiosis (microbial imbalance) affects indirectly other organs, such as the blood-brain barrier (BBB). The secondary objective is to evaluate the prebiotics protective effects, particularly inulin in promoting microbial balance (symbiosis), in both mothers and offspring. A total of 15 or more female rats were divided in 4 groups: control, oral CPF-exposed (1 mg/kg/day), exposed to inulin (10 g/L), and co-exposed to CPF and inulin from pre-gestation until weaning of pups. Samples from intestines, spleen, liver, and brain microvessels underwent microbiological and biomolecular analyses. Bacterial culture assessed GM composition of living bacteria and their translocation to non-intestinal organs. RT qPCR and Western blotting detected gene expression and protein levels of tight junction markers in brain microvessels. CPF exposure caused gut dysbiosis in offspring, with decreased Lactobacillus and Bifidobacterium and increased Escherichia coli (p < 0.01) leading to bacterial translocation to the spleen and liver. CPF also decreased tight junction's gene expression levels (50 to 60% decrease of CLDN3, p < 0.05). In contrast, inulin partially mitigated these adverse effects and restored gene expression to control levels. Our findings demonstrate a causal link between GM alterations and BBB integrity disruptions. The protective effects of inulin suggest potential therapeutic strategies to counteract pesticide-induced dysbiosis.
Collapse
Affiliation(s)
- Maria Abou Diwan
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300, Lens, France
| | - Narimane Djekkoun
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Marie-Christine Boucau
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300, Lens, France
| | - Aurélie Corona
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Lucie Dehouck
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300, Lens, France
| | - Maurice Biendo
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Fabien Gosselet
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300, Lens, France
| | - Véronique Bach
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Pietra Candela
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300, Lens, France
| | - Hafida Khorsi-Cauet
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, 80054, Amiens, France.
| |
Collapse
|
7
|
Petit P, Leroyer A, Chamot S, Fumery M, Bonneterre V. Farming Activities and Risk of Inflammatory Bowel Disease: A French Nationwide Population-based Cohort Study. J Crohns Colitis 2024; 18:1415-1429. [PMID: 38605515 PMCID: PMC11369074 DOI: 10.1093/ecco-jcc/jjae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND AIMS Epidemiological data regarding inflammatory bowel disease [IBD] are lacking, in particular for occupationally exposed populations. We investigated whether, among the entire French farm manager [FM] workforce, certain agricultural activities are more strongly associated with IBD than others. METHODS Nationwide, population-based, insurance claims and electronic health records from all FMs who worked at least once over the period 2002-2016 were used [n = 1 088 561, 69% males]. The outcome measure was the association between 26 farming activities and the risk of IBD, Crohn's disease [CD], and ulcerative colitis [UC], measured as hazard ratios [HRs], after adjusting for age, sex, pre-existing medical comorbidities, and farm location. The time to first chronic disease declaration was used as the underlying time scale. A model was generated for every activity and disease, using a reference group comprising all FMs who abstained from the specified activity from 2002 to 2016. RESULTS There were 1752 IBD cases, with 704 CD [40.2%] and 1048 UC [59.8%] cases, respectively. Elevated HRs were observed for fruit arboriculture [HR from 1.17 to 1.52] and dairy farming [HR from 1.22 to 1.46] for all IBD, in crop farming for CD only (HR = 1.26, 95% confidence interval [CI]: 1.06-1.49), and in shellfish farming [HR from 2.12 to 2.51] for both CD and IBD. CONCLUSIONS Further research regarding specific farming activities and exposures likely to modify the microbiota [eg, pesticides, pathogens] is required to identify potential occupational risk factors [agricultural exposome] for IBD. Exposure to Mycobacterium avium subspecies paratuberculosis, Cryptosporidium, environmental toxins, micro/nanoplastics, and pesticides represents promising research avenues.
Collapse
Affiliation(s)
- Pascal Petit
- Univ. Grenoble Alpes, AGEIS, Grenoble, France
- CHU Grenoble Alpes, Centre Régional de Pathologies Professionnelles et Environnementales, Grenoble, France
| | - Ariane Leroyer
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
| | - Sylvain Chamot
- Regional Center for Occupational and Environmental Diseases of Hauts-de-France, Amiens University Hospital, Amiens, France
- Péritox [UMR_I 01]; UPJV/INERIS; University of Picardy Jules Verne, Amiens, France
| | - Mathurin Fumery
- Péritox [UMR_I 01]; UPJV/INERIS; University of Picardy Jules Verne, Amiens, France
- Gastroenterology Department, CHU Amiens-Picardie, Amiens, France
| | - Vincent Bonneterre
- CHU Grenoble Alpes, Centre Régional de Pathologies Professionnelles et Environnementales, Grenoble, France
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
8
|
Tartaglione AM, Camoni L, Calamandrei G, Chiarotti F, Venerosi A. The contribution of environmental pollutants to the risk of autism and other neurodevelopmental disorders: A systematic review of case-control studies. Neurosci Biobehav Rev 2024; 164:105815. [PMID: 39053787 DOI: 10.1016/j.neubiorev.2024.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Exposure to environmental pollutants, such as metals, pesticides, and air pollutants during early life, is a risk factor for neurodevelopmental disorders (NDDs), including Autism Spectrum Disorder (ASD). Our systematic review aimed to select and summarize more recent case-control studies that examined the association between prenatal and early postnatal exposure to environmental pollutants and NDDs. We searched five databases (Web of Science, PubMed, Embase, Scopus, Ovid), screened 2261 records, and included 24 eligible case-control studies. Meta-analyses were conducted on subgroups of at least three studies that shared both the outcome and the exposure. A noteworthy discovery from this literature review is the existence of non-linear or non-monotonic dose-response relationships between the exposure to certain metals and the risk of ASD. The meta-analysis revealed a significant association between exposure to particular matter (PM)10 during the first year of life and the risk of ASD. Overall, studies included in our systematic review indicate that exposure to several pollutants within the first three years of life was significantly associated with the risk of NDDs.
Collapse
Affiliation(s)
- A M Tartaglione
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - L Camoni
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - G Calamandrei
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - F Chiarotti
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Venerosi
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
9
|
Tan MY, Wu S, Zhu SX, Jiang LH. Association between exposure to organophosphorus pesticide and suicidal ideation among U.S. adults: A population-based study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116572. [PMID: 38896903 DOI: 10.1016/j.ecoenv.2024.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE This study aims to investigate the potential link between exposure to organophosphorus pesticides (OPPs) and suicidal ideation (SI) among adults. METHODS This study encompassed four cycles of the National Health and Nutrition Examination Survey (NHANES), involving 5244 participants aged 20 and above. SI was assessed using the Patient Health Questionnaire-9. The levels of exposure to OPPs were estimated by analyzing concentrations of OPP metabolites in urine samples. Multivariate logistic regression models were used to explore the association between exposure to each OPP and SI. Stratified analyses and interaction tests were conducted across various groups, including pairwise combinations of gender and age, as well as body mass index, smoking status, hypertension, and diabetes. Weighted Quantile Sum (WQS) regression and Bayesian Kernel Machine Regression (BKMR) models were applied to assess the cumulative impact of exposure to the four OPPs on SI, along with their respective contributions. Additionally, the potential interactions among these four OPPs were evaluated. RESULTS Multivariate logistic regression revealed that only dimethylthiophosphate (DMTP) among OPPs demonstrated a statistically significant positive association with SI [OR: 1.18; 95 % CI: 1.02-1.37]. Stratified analyses indicated that the influence of OPPs on SI was particularly pronounced in young and older men. The WQS regression analysis revealed a statistically significant association between the mixed metabolites of OPPs and SI [OR = 1.10, 95 % CI: 1.04-1.16], with DMTP (weighted 0.63) contributing the most. Furthermore, the BKMR model supported a positive trend in the overall impact of these OPP metabolites on SI, displaying notable individual exposure-response relationships for DMTP (PIP: 0.77). CONCLUSIONS Our study suggests an association between exposure to DMTP and an increased risk of SI. Specifically, young adult males and older males appear particularly susceptible to the effects of OPP exposure.
Collapse
Affiliation(s)
- Mo-Yao Tan
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Shan Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Si-Xuan Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li-Hai Jiang
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Ommati MM, Nozhat Z, Sabouri S, Kong X, Retana-Márquez S, Eftekhari A, Ma Y, Evazzadeh F, Juárez-Rojas L, Heidari R, Wang HW. Pesticide-Induced Alterations in Locomotor Activity, Anxiety, and Depression-like Behavior Are Mediated through Oxidative Stress-Related Autophagy: A Persistent Developmental Study in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11205-11220. [PMID: 38708789 DOI: 10.1021/acs.jafc.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Zahra Nozhat
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Samira Sabouri
- College of Animal Science and Veterinary, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Fatemeh Evazzadeh
- Department of Psychology, Science & Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Lizbeth Juárez-Rojas
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| |
Collapse
|
11
|
Normann SS, Beck IH, Nielsen F, Andersen MS, Bilenberg N, Jensen TK, Andersen HR. Prenatal exposure to pyrethroids and chlorpyrifos and IQ in 7-year-old children from the Odense Child Cohort. Neurotoxicol Teratol 2024; 103:107352. [PMID: 38636567 DOI: 10.1016/j.ntt.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Organophosphates and pyrethroids are two major groups of insecticides used for crop protection worldwide. They are neurotoxicants and exposure during vulnerable windows of brain development may have long-term impact on human neurodevelopment. Only few longitudinal studies have investigated associations between prenatal exposure to these substances and intelligence quotient (IQ) at school age in populations with low, mainly dietary, exposure. OBJECTIVE To investigate associations between maternal urinary concentrations of insecticide metabolites at gestational week 28 and IQ in offspring at 7-years of age. MATERIALS AND METHODS Data was derived from the Odense Child Cohort (OCC). Metabolites of chlorpyrifos (TCPy) and pyrethroids (3-PBA, cis- and trans-DCCA, 4-F-3PBA, cis-DBCA) were measured in maternal urine collected at gestational week (GW) 28. An abbreviated version of the Danish Wechsler Intelligence Scale for Children fifth edition (WISC-V) consisting of four subtests to estimate full scale IQ (FSIQ) was administered by trained psychologists. Data were analyzed by use of multiple linear regression and adjusted for confounders. RESULTS 812 mother/child-pairs were included. Median concentrations were 0.21 μg/L for 3-PBA, 1.67 μg/L for TCPy and the mean IQ for children were 99.4. Null association between maternal 3-PBA and child IQ at 7 years was seen, but with trends suggesting an inverse association. There was a significant association for maternal TCPy and child IQ at mid-level exposure. Trans-DCCA above the level of detection (LOD) was also associated with slightly lower child IQ, but the association was also not statistically significant. CONCLUSIONS We found no significant associations between maternal 3-PBA metabolites and child IQ at 7 years, but with trends suggesting an inverse association. A non-significant trend between maternal TCPy exposure and child IQ in 7-year-children was seen even in this low exposed population. Given the widespread exposure and increasing use of insecticides, this should be elaborated in future studies.
Collapse
Affiliation(s)
- Stine Søgaard Normann
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Iben Have Beck
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Flemming Nielsen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | | | - Niels Bilenberg
- Department of Child and Adolescent Psychiatry, Mental Health Services in Region of Southern Denmark, University of Southern Denmark, Odense, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; OPEN Patient data Explorative Network, Odense, Denmark
| | - Helle Raun Andersen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Abdelhafez HEDH, Abdallah AA, Abdel-Razik RK, Hamed NA, Elshatory A, Awad W, Khalaf AAA, Mekkawy AM. Sex comparison of oxidative stress, mitochondrial dysfunction, and apoptosis triggers induced by single-dose Abamectin in albino rats. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105903. [PMID: 38685225 DOI: 10.1016/j.pestbp.2024.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Abamectin (AB) is widely used in agriculture and has been employed as an insecticide, nematicide, and livestock pest control agent. However, it may also pose a serious threat to mammals. The primary purpose of this research was to compare the sex variations between male and female rats during exposure and to assess the risk of toxicity of abamectin, which are still largely unknown. The twenty albino rats were divided randomly into four groups (n = 5): 1) the male control group; 2) the male treatment group treated with AB (1 mg/kg B.W.); 3) the female control group; and 4) the female treatment group treated with AB (1 mg/kg B.W.). AB administration caused a drop in body weight in females more than males with showing oxidative stress in both sexes of animals, as characterized by an increase in MDA content and a decrease in glutathione (GSH) content and superoxide dismutase (SOD) activity. Reported sex-specific effects suggested that females are more susceptible from males in brain tissues for alteration of antioxidant markers while females' liver and kidney tissues showed more level of lipid peroxidation than males. In addition, mitochondrial dysfunction was associated with a significant decrease in NADH dehydrogenase (Complex I) and a significant decrease in mitochondrial ATPase, which led to apoptosis and histopathological alterations in the targeted tissues, indicating that females are higher sensitive than males to these biological events. In brief, the results of this study led to female rats are generally more sensitive than male rats to neurobehavioral and hepatic complications associated with abamectin treatment. Further evaluation should be performed to determine the adverse outcome pathways involved and to determine the effects of sex on improving the risk assessment of abamectin in both sexes.
Collapse
Affiliation(s)
- Hossam El Din H Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box 12618, Dokki, Giza, Egypt.
| | - Amr A Abdallah
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box 12618, Dokki, Giza, Egypt
| | - Reda K Abdel-Razik
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box 12618, Dokki, Giza, Egypt
| | - Nadia A Hamed
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box 12618, Dokki, Giza, Egypt
| | - Ahmed Elshatory
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Egypt
| | - Walaa Awad
- Clinical Pharmacy Department, Abo El-Reesh Al Mounira Hospital, Cairo University, Cairo, Egypt
| | - Abdel Azeim A Khalaf
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Aya M Mekkawy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Berroug L, Laaroussi M, Essaidi O, Malqui H, Anarghou H, Chaoui AA, Najimi M, Chigr F. Sex-specific neurobehavioral and biochemical effects of developmental exposure to Malathion in offspring mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2215-2231. [PMID: 37804342 DOI: 10.1007/s00210-023-02749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Malathion is an organophosphate pesticide (OP) commonly used in agriculture, industry, and veterinary medicine. Sex is a crucial factor in responding to neurotoxicants, yet the sex-specific effects of OP exposure, particularly neurological impairments following chronic low-level exposure remains limited. Our study aims to evaluate the neurobehavioral and biochemical effects of developmental exposure to Malathion across sexes. Pregnant mice were exposed to a low oral dose of Malathion from gestation up to the weaning of the pups, which were individually gavaged with a similar dose regimen until postnatal day 70. Our results show that Malathion decreased body weight and food intake, reduced locomotor activity and recognition memory. Motor coordination and special memory were only altered in females, whereas we found a male-specific effect of Malathion on social behavior and marble burying. These alterations were accompanied by increased malondialdehyde (MDA), decreased brain acetylcholinesterase activity (AChE), and disrupted brain redox homeostasis. Our findings about the effects of Malathion exposure across sexes may, in part, contribute to understanding the dimorphic susceptibilities observed in neurological disorders.
Collapse
Affiliation(s)
- Laila Berroug
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Meriem Laaroussi
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Oumaima Essaidi
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hafsa Malqui
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hammou Anarghou
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Ahmed Ait Chaoui
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Mohamed Najimi
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco.
| |
Collapse
|
14
|
Petit P, Gondard E, Gandon G, Moreaud O, Sauvée M, Bonneterre V. Agricultural activities and risk of Alzheimer's disease: the TRACTOR project, a nationwide retrospective cohort study. Eur J Epidemiol 2024; 39:271-287. [PMID: 38195954 PMCID: PMC10995077 DOI: 10.1007/s10654-023-01079-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/02/2023] [Indexed: 01/11/2024]
Abstract
Data regarding Alzheimer's disease (AD) occurrence in farming populations is lacking. This study aimed to investigate whether, among the entire French farm manager (FM) workforce, certain agricultural activities are more strongly associated with AD than others, using nationwide data from the TRACTOR (Tracking and monitoring occupational risks in agriculture) project. Administrative health insurance data (digital electronic health/medical records and insurance claims) for the entire French agricultural workforce, over the period 2002-2016, on the entire mainland France were used to estimate the risk of AD for 26 agricultural activities with Cox proportional hazards model. For each analysis (one for each activity), the exposed group included all FMs that performed the activity of interest (e.g. crop farming), while the reference group included all FMs who did not carry out the activity of interest (e.g. FMs that never farmed crops between 2002 and 2016). There were 5067 cases among 1,036,069 FMs who worked at least one year between 2002 and 2016. Analyses showed higher risks of AD for crop farming (hazard ratio (HR) = 3.72 [3.47-3.98]), viticulture (HR = 1.29 [1.18-1.42]), and fruit arboriculture (HR = 1.36 [1.15-1.62]). By contrast, lower risks of AD were found for several animal farming types, in particular for poultry and rabbit farming (HR = 0.29 [0.20-0.44]), ovine and caprine farming (HR = 0.50 [0.41-0.61]), mixed dairy and cow farming (HR = 0.46 [0.37-0.57]), dairy farming (HR = 0.67 [0.61-0.73]), and pig farming (HR = 0.30 [0.18-0.52]). This study shed some light on the association between a wide range of agricultural activities and AD in the entire French FMs population.
Collapse
Affiliation(s)
- Pascal Petit
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France.
- Centre Régional de Pathologies Professionnelles et Environnementales, CHU Grenoble Alpes, 38000, Grenoble, France.
- AGEIS, Univ. Grenoble Alpes, 38000, Grenoble, France.
| | - Elise Gondard
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Gérald Gandon
- Centre Régional de Pathologies Professionnelles et Environnementales, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Olivier Moreaud
- Centre Mémoire de Ressources et de Recherche, CHU Grenoble Alpes, 38000, Grenoble, France
- Laboratoire de Psychologie et Neurocognition, UMR 5105, CNRS, LPNC, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, 38000, Grenoble, France
| | - Mathilde Sauvée
- Centre Mémoire de Ressources et de Recherche, CHU Grenoble Alpes, 38000, Grenoble, France
- Laboratoire de Psychologie et Neurocognition, UMR 5105, CNRS, LPNC, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, 38000, Grenoble, France
| | - Vincent Bonneterre
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France
- Centre Régional de Pathologies Professionnelles et Environnementales, CHU Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
15
|
Singh T, Ramakrishnan S, Wu X, Reddy DS. Sex Differences in Organophosphate Model of Benzodiazepine-Refractory Status Epilepticus and Neuronal Damage. J Pharmacol Exp Ther 2024; 388:313-324. [PMID: 37770202 PMCID: PMC10801723 DOI: 10.1124/jpet.123.001747] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Sex differences are common in human epilepsy. Although men are more susceptible to seizure than women, the mechanisms underlying sex-specific vulnerabilities to seizure are unclear. The organophosphate (OP) diisopropylfluorophosphate (DFP) is known to cause neurotoxicity and status epilepticus (SE), a serious neurologic condition that causes prolonged seizures and brain damage. Current therapies for OP poisoning and SE do not consider neuronal variations between male and female brains. Therefore, we investigated sex-dependent differences in electrographic seizure activity and neuronal injury using the DFP model of refractory SE in rats. Electroencephalogram recordings were used to monitor DFP-induced SE, and the extent of brain injury was determined using fluoro-jade-B staining to detect cellular necrosis. After DFP exposure, we observed striking sex-dependent differences in SE and seizure activity patterns as well as protective responses to midazolam treatment. Following acute DFP exposure, male animals displayed more severe SE with intense epileptiform spiking and greater mortality than females. In contrast, we observed significantly more injured cells and cellular necrosis in the hippocampus and other brain regions in females than in males. We also observed extensive neuronal injury in the somatosensory cortex of males. The anticonvulsant effect of midazolam against SE was limited in this model and found to be similar in males and females. However, unlike males, females exhibited substantially more protection against neuronal damage after midazolam treatment. Overall, these results demonstrate significant sex-dependent differences in DFP-induced refractory SE and neuronal damage patterns, suggesting that it may be possible to develop sex-specific neuroprotective strategies for OP intoxication and refractory SE. SIGNIFICANCE STATEMENT: Sex-dependent differences in neurotoxicity and status epilepticus (SE) are key biological variables after organophosphate (OP) exposure. Here, we investigated sex-dependent differences in SE and brain injury after acute diisopropylfluorophosphate exposure. Male rats had more severe SE and less survival than females, while females had more neuronal damage. Females had more neuroprotection to midazolam than males, while both sexes had similar but partial anticonvulsant effects. These findings suggest that a sex-specific therapeutic approach may prevent neurological complications of OP-induced SE.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics and Institute of Pharmacology and Neurotherapeutics, Texas A&M University School of Medicine, Bryan, Texas
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics and Institute of Pharmacology and Neurotherapeutics, Texas A&M University School of Medicine, Bryan, Texas
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics and Institute of Pharmacology and Neurotherapeutics, Texas A&M University School of Medicine, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics and Institute of Pharmacology and Neurotherapeutics, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
16
|
Palaniswamy S, Abass K, Rysä J, Grimalt JO, Odland JØ, Rautio A, Järvelin MR. Investigating the relationship between non-occupational pesticide exposure and metabolomic biomarkers. Front Public Health 2023; 11:1248609. [PMID: 37900012 PMCID: PMC10602903 DOI: 10.3389/fpubh.2023.1248609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
The relationship between pesticide exposures and metabolomics biomarkers is not well understood. We examined the changes in the serum metabolome (early biomarkers) and the metabolic pathways associated with various pesticide exposure scenarios (OPE: overall exposure, PEM: exposure in months, PEY: exposure in years, and PEU: reported specific pesticides use) using data from the Northern Finland Birth Cohort 1966 31-year cross-sectional examination. We utilized questionnaire data on pesticide exposures and serum samples for nuclear magnetic resonance (NMR)-based metabolomics analyses. For exposures and metabolites associations, participants size varied between 2,361 and 5,035. To investigate associations between metabolomics biomarkers and exposure to pesticide scenarios compared to those who reported no exposures multivariable regression analyses stratified by sex and adjustment with covariates (season of pesticide use, socioeconomic position (SEP), alcohol consumption, BMI, and latitude of residence) were performed. Multiple testing by Benjamini-Hochberg false discovery rate (FDR) correction applied. Pesticide exposures differed by sex, season of pesticide use, alcohol, SEP, latitude of residence. Our results showed that all pesticide exposure scenarios were negatively associated with decreased HDL concentrations across all lipoprotein subclasses in women. OPE, PEY, and PEU were associated with decreased branched-chain amino acid concentrations in men and decreased albumin concentrations in women. OPE, PEY and PEU were also associated with changes in glycolysis metabolites and ketone bodies in both sexes. Specific pesticides exposure was negatively associated with sphingolipids and inflammatory biomarkers in men. In women, OPE, PEM, and PEU were associated with decreased apolipoprotein A1 and increased apolipoprotein B/apolipoprotein A1 ratio. Our findings suggest that identification of early biomarkers of disease risk related to pesticide exposures can inform strategies to reduce exposure and investigate causal pathways. Women may be more susceptible to non-occupational pesticide exposures when compared to men, and future sex-specific studies are warranted.
Collapse
Affiliation(s)
- Saranya Palaniswamy
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Joan O. Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Jon Øyvind Odland
- The Norwegian University of Science and Technology, Trondheim, Norway
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Arja Rautio
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Thule Institute, University of Arctic, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
17
|
Wang A, Wan Y, Mahai G, Qian X, Li Y, Xu S, Xia W. Association of Prenatal Exposure to Organophosphate, Pyrethroid, and Neonicotinoid Insecticides with Child Neurodevelopment at 2 Years of Age: A Prospective Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107011. [PMID: 37856202 PMCID: PMC10586492 DOI: 10.1289/ehp12097] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Widespread insecticide exposure might be a risk factor for neurodevelopment of our children, but few studies examined the mixture effect of maternal coexposure to organophosphate insecticides (OPPs), pyrethroids (PYRs), and neonicotinoid insecticides (NNIs) during pregnancy on child neurodevelopment, and critical windows of exposure are unknown. OBJECTIVES We aimed to evaluate the association of prenatal exposure to multiple insecticides with children's neurodevelopment and to identify critical windows of the exposure. METHODS Pregnant women were recruited into a prospective birth cohort study in Wuhan, China, from 2014-2017. Eight metabolites of OPPs (mOPPs), three metabolites of PYRs (mPYRs), and nine metabolites of NNIs (mNNIs) were measured in 3,123 urine samples collected at their first, second, and third trimesters. Children's neurodevelopment [mental development index (MDI) and psychomotor development index (PDI)] was assessed using the Bayley Scales of Infant Development at 2 years of age (N = 1,041 ). Multivariate linear regression models, generalized estimating equation models, and weighted quantile sum (WQS) regression were used to estimate the association between the insecticide metabolites and Bayley scores. Potential sex-specific associations were also examined. RESULTS Single chemical analysis suggested higher urinary concentrations of some insecticide metabolites at the first trimester were significantly associated with lower MDI and PDI scores, and the associations were more prominent among boys. Each 1-unit increase in ln-transformed urinary concentrations of two mOPPs, 3,5,6-trichloro-2-pyridinol and 4-nitrophenol, was associated with a decrease of 3.16 points [95% confidence interval (CI): - 5.59 , - 0.74 ] and 3.06 points (95% CI: - 5.45 , - 0.68 ) respectively in boys' MDI scores. Each 1-unit increase in that of trans-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylic acid (trans-DCCA; an mPYR) was significantly associated with a decrease of 2.24 points (95% CI: - 3.89 , - 0.58 ) in boys' MDI scores and 1.90 points (95% CI: - 3.16 , - 0.64 ) in boys' PDI scores, respectively. Significantly positive associations of maternal urinary biomarker concentrations [e.g., dimethyl phosphate (a nonspecific mOPP) and desmethyl-clothianidin (a relatively specific mNNI)] with child neurodevelopment were also observed. Using repeated holdout validation, a 1-quartile increase in the WQS index of the insecticide mixture (in the negative direction) at the first trimester was significantly associated with a decrease of 3.02 points (95% CI: - 5.47 , - 0.57 ) in MDI scores among the boys, and trans-DCCA contributed the most to the association (18%). CONCLUSIONS Prenatal exposure to higher levels of certain insecticides and their mixture were associated with lower Bayley scores in children, particularly in boys. Early pregnancy may be a sensitive window for such an effect. Future studies are needed to confirm our findings. https://doi.org/10.1289/EHP12097.
Collapse
Affiliation(s)
- Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
18
|
Piel S, Janowska JI, Ward JL, McManus MJ, Aronowitz DI, Janowski PK, Starr J, Hook JN, Hefti MM, Clayman CL, Elmér E, Hansson MJ, Jang DH, Karlsson M, Ehinger JK, Kilbaugh TJ. Succinate prodrugs as treatment for acute metabolic crisis during fluoroacetate intoxication in the rat. Mol Cell Biochem 2023; 478:1231-1244. [PMID: 36282352 PMCID: PMC10540239 DOI: 10.1007/s11010-022-04589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
Abstract
Sodium fluoroacetate (FA) is a metabolic poison that systemically inhibits the tricarboxylic acid (TCA) cycle, causing energy deficiency and ultimately multi-organ failure. It poses a significant threat to society because of its high toxicity, potential use as a chemical weapon and lack of effective antidotal therapy. In this study, we investigated cell-permeable succinate prodrugs as potential treatment for acute FA intoxication. We hypothesized that succinate prodrugs would bypass FA-induced mitochondrial dysfunction, provide metabolic support, and prevent metabolic crisis during acute FA intoxication. To test this hypothesis, rats were exposed to FA (0.75 mg/kg) and treated with the succinate prodrug candidate NV354. Treatment efficacy was evaluated based on cardiac and cerebral mitochondrial respiration, mitochondrial content, metabolic profiles and tissue pathology. In the heart, FA increased concentrations of the TCA metabolite citrate (+ 4.2-fold, p < 0.01) and lowered ATP levels (- 1.9-fold, p < 0.001), confirming the inhibition of the TCA cycle by FA. High-resolution respirometry of cardiac mitochondria further revealed an impairment of mitochondrial complex V (CV)-linked metabolism, as evident by a reduced phosphorylation system control ratio (- 41%, p < 0.05). The inhibition of CV-linked metabolism is a novel mechanism of FA cardiac toxicity, which has implications for drug development and which NV354 was unable to counteract at the given dose. In the brain, FA induced the accumulation of β-hydroxybutyrate (+ 1.4-fold, p < 0.05) and the reduction of mitochondrial complex I (CI)-linked oxidative phosphorylation (OXPHOSCI) (- 20%, p < 0.01), the latter of which was successfully alleviated by NV354. This promising effect of NV354 warrants further investigations to determine its potential neuroprotective effects.
Collapse
Affiliation(s)
- Sarah Piel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA.
| | - Joanna I Janowska
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - J Laurenson Ward
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Meagan J McManus
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Danielle I Aronowitz
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Piotr K Janowski
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jonathan Starr
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jordan N Hook
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Carly L Clayman
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Eskil Elmér
- Abliva AB, Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Magnus J Hansson
- Abliva AB, Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - David H Jang
- Department of Emergency Medicine, Division of Medical Toxicology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | - Johannes K Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Todd J Kilbaugh
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
19
|
Yan T, Yang S, Zhou X, Zhang C, Zhu X, Ma W, Tang S, Li J. Neurologic symptoms among solar greenhouse workers and field workers in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31916-31922. [PMID: 36459314 DOI: 10.1007/s11356-022-24412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
It has been widely reported that the farmers were at increased risk of neurologic disorders, which probably be related with agricultural risk factors. The intensity of agricultural risk factors was rather high in the solar greenhouse than those in the agricultural farm, while the risk and prevalence of neurologic symptoms among solar greenhouse workers are unclear, which may provide evidence of neurologic dysfunction before clinically measurable signs are evident. This study aimed to evaluate the association among solar greenhouse working, field working, and neurologic symptoms. A cross-sectional study was conducted in China, and 986 Chinese Han population consisting 711 solar greenhouse workers (greenhouse worker group) and 275 field farmers (field worker group) were included. Participants provided information on demographic information, number of solar greenhouses owned (only solar greenhouse workers), working lifetime, and neurologic symptoms through an established questionnaire Q16 to assess the impact of occupational exposure to neurotoxicants, and the total scores were calculated. Multiple linear regression models were used to analyze the association among solar greenhouse working, field working, and neurologic symptoms. The total scales of the neurologic symptoms were higher in the solar greenhouse worker group (20.29 ± 4.79) than those in the field worker group (19.44 ± 4.22) (p < 0.05). Multivariate multiple linear regression showed that solar greenhouse working was positively associated with the scales of the neurologic symptoms (β = 0.248, 95% CI: (0.112, 0.383)). And the age, working lifetime, and current smoking were also positively associated with the scores of the neurologic symptoms, β = 0.007, 0.006 and 0.485 respectively (All p < 0.05). Solar greenhouse workers probably be at an increased risk of neurologic symptoms scores, and the age, working lifetime, and current smoking were also risk factors.
Collapse
Affiliation(s)
- Tenglong Yan
- Beijing Institute of Occupational Disease Prevention and Treatment, Beijing, 100093, China
| | - Siwen Yang
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing, 102308, China
| | - Xingfan Zhou
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Chuyi Zhang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing, 102308, China.
| | - Wenjun Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shichuan Tang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Jue Li
- Beijing Institute of Occupational Disease Prevention and Treatment, Beijing, 100093, China
| |
Collapse
|
20
|
Goodman CV, Bashash M, Green R, Song P, Peterson KE, Schnaas L, Mercado-García A, Martínez-Medina S, Hernández-Avila M, Martinez-Mier A, Téllez-Rojo MM, Hu H, Till C. Domain-specific effects of prenatal fluoride exposure on child IQ at 4, 5, and 6-12 years in the ELEMENT cohort. ENVIRONMENTAL RESEARCH 2022; 211:112993. [PMID: 35276192 PMCID: PMC9890727 DOI: 10.1016/j.envres.2022.112993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Prenatal exposure to fluoride has been associated with adverse neurodevelopmental outcomes. However, the neuropsychological profile of fluoride's developmental neurotoxicity at low levels and the stability of this relationship across childhood has not been characterized. We investigated the longitudinal and domain specific effect of prenatal fluoride exposure on IQ among children ages 4, 5, and 6-12 years in the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) cohort. METHODS We measured the average of maternal urinary fluoride at each trimester of pregnancy adjusted for creatinine (MUFCRE). Children were administered the McCarthy Scales of Children's Abilities at ages 4 (N = 386) and 5 (N = 308), and the Wechsler Abbreviated Scale of Intelligence at age 6-12 (N = 278). We used generalized estimating equation (GEE) models to estimate the population averaged effect of MUFCRE concentration on longitudinal General Cognitive Index (GCI)/Full-Scale IQ (FSIQ), Verbal IQ (VIQ), and Performance IQ (PIQ) scores (N = 348). We tested for possible interactions between MUFCRE and child sex as well as for MUFCRE and time point on children's IQ. All models controlled for relevant available covariates. RESULTS The mean/median MUFCRE concentration was 0.90/0.83 mg/L (SD = 0.39; IQR, 0.64-1.11 mg/L). A 0.5 mg/L increase in MUFCRE predicted an average 2.12-point decrease in GCI/FSIQ (95% CI: -3.49, -0.75) and 2.63-point decrease in PIQ (95% CI: -3.87, -1.40). MUFCRE was marginally associated with VIQ across time (B = -1.29, 95% CI: -2.60, 0.01). No interactions between MUFCRE and child sex or MUFCRE and time were observed. CONCLUSION The negative association between prenatal fluoride exposure and longitudinal IQ was driven by decrements in non-verbal intelligence (i.e. PIQ), suggesting that visual-spatial and perceptual reasoning abilities may be more impacted by prenatal fluoride exposure as compared to verbal abilities.
Collapse
Affiliation(s)
- Carly V Goodman
- Faculty of Health, York University, Toronto, Ontario, Canada
| | - Morteza Bashash
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Rivka Green
- Faculty of Health, York University, Toronto, Ontario, Canada
| | - Peter Song
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Karen E Peterson
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | - Howard Hu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christine Till
- Faculty of Health, York University, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Ribeiro AC, Hawkins E, Jahr FM, McClay JL, Deshpande LS. Repeated exposure to chlorpyrifos is associated with a dose-dependent chronic neurobehavioral deficit in adult rats. Neurotoxicology 2022; 90:172-183. [DOI: 10.1016/j.neuro.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
|
22
|
Li Y, Ritzel RM, Lei Z, Cao T, He J, Faden AI, Wu J. Sexual dimorphism in neurological function after SCI is associated with disrupted neuroinflammation in both injured spinal cord and brain. Brain Behav Immun 2022; 101:1-22. [PMID: 34954073 PMCID: PMC8885910 DOI: 10.1016/j.bbi.2021.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/29/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022] Open
Abstract
Whereas human spinal cord injury (SCI) is more common in men, the prevalence is growing in women. However, little is known about the effect of biological sex on brain dysfunction and injury mechanisms. To model the highest per capita rate of injury (ages between 16 and 30 years old) in humans, in the present study, young adult or a young/middle-aged male and female C57BL/6 mice were subjected to moderate contusion SCI. When mice were injured at 10-12-week-old, transcriptomic analysis of inflammation-related genes and flow cytometry revealed a more aggressive neuroinflammatory profile in male than females following 3 d SCI, ostensibly driven by sex-specific changes myeloid cell function rather than cell number. Female mice were generally more active at baseline, as evidenced by greater distance traveled in the open field. After SCI, female mice had more favorable locomotor function than male animals. At 13 weeks post-injury, male mice showed poor performance in cognitive and depressive-like behavioral tests, while injured female mice showed fewer deficits in these tasks. However, when injured at 6 months old followed by 8 months post-injury, male mice had considerably less inflammatory activation compared with female animals despite having similar or worse outcomes in affective, cognitive, and motor tasks. Collectively, these findings indicate that sex differences in functional outcome after SCI are associated with the age at onset of injury, as well as disrupted neuroinflammation not only at the site of injury but also in remote brain regions. Thus, biological sex should be considered when designing new therapeutic agents.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Rodney M. Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, 21201 USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
23
|
González EA, Calsbeek JJ, Tsai YH, Tang MY, Andrew P, Vu J, Berg EL, Saito NH, Harvey DJ, Supasai S, Gurkoff GG, Silverman JL, Lein PJ. Sex-specific acute and chronic neurotoxicity of acute diisopropylfluorophosphate (DFP)-intoxication in juvenile Sprague-Dawley rats. Curr Res Toxicol 2021; 2:341-356. [PMID: 34622217 PMCID: PMC8484742 DOI: 10.1016/j.crtox.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical efforts to improve medical countermeasures against organophosphate (OP) chemical threat agents have largely focused on adult male models. However, age and sex have been shown to influence the neurotoxicity of repeated low-level OP exposure. Therefore, to determine the influence of sex and age on outcomes associated with acute OP intoxication, postnatal day 28 Sprague-Dawley male and female rats were exposed to the OP diisopropylfluorophosphate (DFP; 3.4 mg/kg, s.c.) or an equal volume of vehicle (∼80 µL saline, s.c.) followed by atropine sulfate (0.1 mg/kg, i.m.) and pralidoxime (2-PAM; 25 mg/kg, i.m.). Seizure activity was assessed during the first 4 h post-exposure using behavioral criteria and electroencephalographic (EEG) recordings. At 1 d post-exposure, acetylcholinesterase (AChE) activity was measured in cortical tissue, and at 1, 7, and 28 d post-exposure, brains were collected for neuropathologic analyses. At 1 month post-DFP, animals were analyzed for motor ability, learning and memory, and hippocampal neurogenesis. Acute DFP intoxication triggered more severe seizure behavior in males than females, which was supported by EEG recordings. DFP caused significant neurodegeneration and persistent microglial activation in numerous brain regions of both sexes, but astrogliosis occurred earlier and was more severe in males compared to females. DFP males and females exhibited pronounced memory deficits relative to sex-matched controls. In contrast, acute DFP intoxication altered hippocampal neurogenesis in males, but not females. These findings demonstrate that acute DFP intoxication triggers seizures in juvenile rats of both sexes, but the seizure severity varies by sex. Some, but not all, chronic neurotoxic outcomes also varied by sex. The spatiotemporal patterns of neurological damage suggest that microglial activation may be a more important factor than astrogliosis or altered neurogenesis in the pathogenesis of cognitive deficits in juvenile rats acutely intoxicated with OPs.
Collapse
Key Words
- 2-PAM, pralidoxime
- AChE, acetylcholinesterase
- AS, atropine-sulfate
- BChE, butyrylcholinesterase
- CT, computed tomography
- ChE, cholinesterase
- Cognitive deficits
- DFP, diisopropylfluorophosphate
- EEG, electroencephalogram
- FJC, Fluoro-Jade C
- Neurodegeneration
- Neurogenesis
- Neuroinflammation
- OP, organophosphate
- PBS, phosphate-buffered saline
- ROI, region of interest
- SE, status epilepticus
- Seizures
- Sex differences
- T2w, T2-weighted
- VEH, vehicle
- i.m., intramuscular
- i.p., intraperitoneal
- s.c., subcutaneous
Collapse
Affiliation(s)
- Eduardo A. González
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Jonas J. Calsbeek
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Yi-Hua Tsai
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Mei-Yun Tang
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Peter Andrew
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Joan Vu
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Elizabeth L. Berg
- Department of Psychiatry, University of California, Davis, School of Medicine, 2230, Stockton Boulevard, Sacramento, CA 95817, USA
| | - Naomi H. Saito
- Department of Public Health Sciences, University of California, Davis, One Shields Avenue, School of Medicine, Davis, CA 95616, USA
| | - Danielle J. Harvey
- Department of Public Health Sciences, University of California, Davis, One Shields Avenue, School of Medicine, Davis, CA 95616, USA
| | - Suangsuda Supasai
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, University of California, Davis, School of Medicine, 4860 Y Street, Sacramento, CA 95817, USA
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Jill L. Silverman
- Department of Psychiatry, University of California, Davis, School of Medicine, 2230, Stockton Boulevard, Sacramento, CA 95817, USA
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| |
Collapse
|
24
|
Farmus L, Till C, Green R, Hornung R, Martinez Mier EA, Ayotte P, Muckle G, Lanphear BP, Flora DB. Critical windows of fluoride neurotoxicity in Canadian children. ENVIRONMENTAL RESEARCH 2021; 200:111315. [PMID: 34051202 PMCID: PMC9884092 DOI: 10.1016/j.envres.2021.111315] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Fluoride has been associated with IQ deficits during early brain development, but the period in which children are most sensitive is unknown. OBJECTIVE We assessed effects of fluoride on IQ scores across prenatal and postnatal exposure windows. METHODS We used repeated exposures from 596 mother-child pairs in the Maternal-Infant Research on Environmental Chemicals pregnancy and birth cohort. Fluoride was measured in urine (mg/L) collected from women during pregnancy and in their children between 1.9 and 4.4 years; urinary fluoride was adjusted for specific gravity. We estimated infant fluoride exposure (mg/day) using water fluoride concentration and duration of formula-feeding over the first year of life. Intelligence was assessed at 3-4 years using the Wechsler Preschool and Primary Scale of Intelligence-III. We used generalized estimating equations to examine the associations between fluoride exposures and IQ, adjusting for covariates. We report results based on standardized exposures given their varying units of measurement. RESULTS The association between fluoride and performance IQ (PIQ) significantly differed across prenatal, infancy, and childhood exposure windows collapsing across child sex (p = .001). The strongest association between fluoride and PIQ was during the prenatal window, B = -2.36, 95% CI: -3.63, -1.08; the association was also significant during infancy, B = -2.11, 95% CI: -3.45, -0.76, but weaker in childhood, B = -1.51, 95% CI: -2.90, -0.12. Within sex, the association between fluoride and PIQ significantly differed across the three exposure windows (boys: p = .01; girls: p = .01); among boys, the strongest association was during the prenatal window, B = -3.01, 95% CI: -4.60, -1.42, whereas among girls, the strongest association was during infancy, B = -2.71, 95% CI: -4.59, -0.83. Full-scale IQ estimates were weaker than PIQ estimates for every window. Fluoride was not significantly associated with Verbal IQ across any exposure window. CONCLUSION Associations between fluoride exposure and PIQ differed based on timing of exposure. The prenatal window may be critical for boys, whereas infancy may be a critical window for girls.
Collapse
Affiliation(s)
- Linda Farmus
- Faculty of Health, York University, Ontario, Canada
| | | | - Rivka Green
- Faculty of Health, York University, Ontario, Canada
| | - Richard Hornung
- Pediatrics and Environmental Health, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - E Angeles Martinez Mier
- Department of Cardiology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indiana, USA
| | - Pierre Ayotte
- Centre de Recherche Du CHU de Québec, Université Laval, Québec, Canada; Department of Social and Preventive Medicine, Laval University, Quebec, Canada
| | - Gina Muckle
- Centre de Recherche Du CHU de Québec, Université Laval, Québec, Canada; School of Psychology, Laval University, Quebec, Canada
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada; Child & Family Research Institute, BC Children's Hospital, University of British Columbia, British Columbia, Canada
| | | |
Collapse
|
25
|
Wang B, Tsakiridis EE, Zhang S, Llanos A, Desjardins EM, Yabut JM, Green AE, Day EA, Smith BK, Lally JSV, Wu J, Raphenya AR, Srinivasan KA, McArthur AG, Kajimura S, Patel JS, Wade MG, Morrison KM, Holloway AC, Steinberg GR. The pesticide chlorpyrifos promotes obesity by inhibiting diet-induced thermogenesis in brown adipose tissue. Nat Commun 2021; 12:5163. [PMID: 34453052 PMCID: PMC8397754 DOI: 10.1038/s41467-021-25384-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity results from a caloric imbalance between energy intake, absorption and expenditure. In both rodents and humans, diet-induced thermogenesis contributes to energy expenditure and involves the activation of brown adipose tissue (BAT). We hypothesize that environmental toxicants commonly used as food additives or pesticides might reduce BAT thermogenesis through suppression of uncoupling protein 1 (UCP1) and this may contribute to the development of obesity. Using a step-wise screening approach, we discover that the organophosphate insecticide chlorpyrifos suppresses UCP1 and mitochondrial respiration in BAT at concentrations as low as 1 pM. In mice housed at thermoneutrality and fed a high-fat diet, chlorpyrifos impairs BAT mitochondrial function and diet-induced thermogenesis, promoting greater obesity, non-alcoholic fatty liver disease (NAFLD) and insulin resistance. This is associated with reductions in cAMP; activation of p38MAPK and AMPK; protein kinases critical for maintaining UCP1 and mitophagy, respectively in BAT. These data indicate that the commonly used pesticide chlorpyrifos, suppresses diet-induced thermogenesis and the activation of BAT, suggesting its use may contribute to the obesity epidemic.
Collapse
Affiliation(s)
- Bo Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Shuman Zhang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrea Llanos
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Eric M Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Julian M Yabut
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexander E Green
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Brennan K Smith
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - James S V Lally
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jianhan Wu
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amogelang R Raphenya
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Krishna A Srinivasan
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew G McArthur
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Shingo Kajimura
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
26
|
Vernet C, Johnson M, Kogut K, Hyland C, Deardorff J, Bradman A, Eskenazi B. Organophosphate pesticide exposure during pregnancy and childhood and onset of juvenile delinquency by age 16 years: The CHAMACOS cohort. ENVIRONMENTAL RESEARCH 2021; 197:111055. [PMID: 33766567 PMCID: PMC8191343 DOI: 10.1016/j.envres.2021.111055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Though prenatal organophosphate pesticide (OP) exposure has been associated with lower intellectual quotient and behavioral disorders in childhood, factors related to later delinquency, no research has directly evaluated the impact of OPs on delinquency. OBJECTIVE To evaluate the association between prenatal and childhood OP exposure and juvenile delinquency in Mexican-American youth in the Center for Health Assessment of Mothers and Children of Salinas (CHAMACOS). METHODS We measured dialkyl phosphate (DAPs) urinary metabolites of OPs in two prenatal maternal samples and in five child samples collected between six months and five years of age. Youth completed delinquency questionnaires at 16 years. We examined associations of prenatal and childhood DAPs with several delinquency outcomes (n = 313) using survival and generalized linear models. RESULTS Almost 60% of youth reported delinquent acts (mostly minor), and 8% reported a police arrest. We observed largely null results of prenatal or childhood DAP concentrations and delinquency outcomes, with some isolated associations. A ten-fold increase in maternal dimethylphosphate (DM) concentrations measured after 20 weeks gestation was associated with an earlier age of first delinquent act (Hazard Ratio = 1.38, 95% CI: 1.01, 1.88) and an increased Odds Ratio (OR) of having committed 1-3 or ≥4 delinquent acts, compared to the no delinquency reference group (OR = 1.77, 95% CI: 1.01-3.08 and 2.17, 95% CI: 1.13-4.17, respectively). Higher childhood diethylphosphate (DE) concentrations were associated with a later age of first delinquent act (HR: 0.67; 95% CI: 0.46-0.97). DISCUSSION We did not find strong evidence of association between prenatal or childhood OP exposure and juvenile delinquency in the present cohort. There is an increasing literature that relates OP exposure to neurobehavioral impairments in childhood, and there is a need to understand long-term potential neurodevelopmental effects of early-life OP exposure.
Collapse
Affiliation(s)
- Celine Vernet
- School of Public Health, University of California, Berkeley, CA, 94704, USA; UMRESTTE, Univ Lyon, Univ Gustave Eiffel, IFSTTAR, Bron, France
| | - Megan Johnson
- School of Public Health, University of California, Berkeley, CA, 94704, USA
| | - Katherine Kogut
- School of Public Health, University of California, Berkeley, CA, 94704, USA
| | - Carly Hyland
- School of Public Health, University of California, Berkeley, CA, 94704, USA
| | - Julianna Deardorff
- School of Public Health, University of California, Berkeley, CA, 94704, USA
| | - Asa Bradman
- School of Public Health, University of California, Berkeley, CA, 94704, USA
| | - Brenda Eskenazi
- School of Public Health, University of California, Berkeley, CA, 94704, USA.
| |
Collapse
|
27
|
Kesse-Guyot E, Rebouillat P, Payrastre L, Allès B, Fezeu LK, Druesne-Pecollo N, Srour B, Bao W, Touvier M, Galan P, Hercberg S, Lairon D, Baudry J. Prospective association between organic food consumption and the risk of type 2 diabetes: findings from the NutriNet-Santé cohort study. Int J Behav Nutr Phys Act 2020; 17:136. [PMID: 33167995 PMCID: PMC7653706 DOI: 10.1186/s12966-020-01038-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/16/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Organic food (OF) consumption has substantially increased in high income countries, mostly driven by environmental concerns and health beliefs. Lower exposure to synthetic pesticides has been systematically documented among consumers of organic products compared to non-consumers. While experimental studies suggest that pesticides currently used in food production may be associated with type 2 diabetes (T2D), no well-conducted prospective studies have investigated the potential association between consumption of organic products and the risk of T2D, controlling for potential confounding factors. The objective of this prospective study was to estimate the association between OF consumption and the risk of T2D. METHODS A total of 33,256 participants (76% women, mean (SD) age: 53 years (14)) of the French NutriNet-Santé prospective cohort study who completed the organic food frequency questionnaire were included (2014-2019). The proportion of OF in the diet (as weight without drinking water) was computed. The associations between the proportion of OF in the diet (as 5% increment and as quintiles) and the risk of T2D were estimated using multivariable Hazard Ratio (HR) and 95% confidence interval (95% CI) derived from proportional hazards models adjusted for confounders (sociodemographic, anthropometric, lifestyle, medical and nutritional factors). RESULTS During follow-up (mean = 4.05 y, SD = 1.03 y, 134,990 person-years), 293 incident cases of T2D were identified. After adjustment for confounders including lifestyle (physical activity, smoking status, alcohol consumption) and nutritional quality of the diet assessed by the adherence to the French food-based dietary guidelines, OF consumption was associated with a lower risk of T2D. Participants with the highest quintile of OF consumption, compared with those with the lowest quintile, had 35% lower risk of T2D (95% CI = 0.43-0.97). Each increment of 5% in the proportion of OF in the diet was associated with 3% lower risk of T2D (HR 0.97, 95% CI = 0.95-0.99). CONCLUSIONS In this large prospective cohort study, OF consumption was inversely associated with the risk of T2D. Further experimental and prospective studies should be conducted to confirm these observations. CLINICAL TRIAL REGISTRY The study was registered at ClinicalTrials.gov ( NCT03335644 ).
Collapse
Affiliation(s)
- Emmanuelle Kesse-Guyot
- Sorbonne Paris Nord University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), F- 93017, Bobigny, France.
| | - Pauline Rebouillat
- Sorbonne Paris Nord University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), F- 93017, Bobigny, France
| | - Laurence Payrastre
- Toxalim (Research Center in Food Toxicology), University of Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Benjamin Allès
- Sorbonne Paris Nord University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), F- 93017, Bobigny, France
| | - Léopold K Fezeu
- Sorbonne Paris Nord University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), F- 93017, Bobigny, France
| | - Nathalie Druesne-Pecollo
- Sorbonne Paris Nord University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), F- 93017, Bobigny, France
| | - Bernard Srour
- Sorbonne Paris Nord University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), F- 93017, Bobigny, France
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, 52246, USA
| | - Mathilde Touvier
- Sorbonne Paris Nord University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), F- 93017, Bobigny, France
| | - Pilar Galan
- Sorbonne Paris Nord University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), F- 93017, Bobigny, France
| | - Serge Hercberg
- Sorbonne Paris Nord University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), F- 93017, Bobigny, France
- Département de Santé Publique, Hôpital Avicenne, F-93017, Bobigny, France
| | - Denis Lairon
- Aix Marseille Université, INSERM, INRA, C2VN, Marseille, France
| | - Julia Baudry
- Sorbonne Paris Nord University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), F- 93017, Bobigny, France
| |
Collapse
|
28
|
Sun H, Sun ML, Barr DB. Exposure to organophosphorus insecticides and increased risks of health and cancer in US women. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103474. [PMID: 32828957 PMCID: PMC7808295 DOI: 10.1016/j.etap.2020.103474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 05/04/2023]
Abstract
Results of this paper provide evidence that chronic long-term exposure to organophosphorus insecticides poses a significantly higher health risk for US women than for men, based on dialkylphosphate biomarker data from NHANES cycles 2003-2012. The risk of cardiovascular disease for female non-smokers aged 60-85 years in the highest dimethylthiophosphate (DMTP) urinary concentration quartile is 3.0 (odds ratio, OD = 3.0, 95%CI 1.4-6.4) times higher than that in the lowest quartile. Women with higher urinary DMTP concentrations also have significantly higher risk of asthma at the ages 6-39 years and an apparently higher risk of chronic bronchitis at the ages 60-85. Overall cancer risk is significantly higher for female non-smokers aged 60-85 years in the higher urinary DMTP quartiles (OD = 2.7, 95% CI 1.3-5.9). Increasing risks of breast cancer for female smokers and prostate cancer for male smokers aged 60-85 years with higher exposure to organophosphorus insecticides in the US are also significant.
Collapse
Affiliation(s)
- Hongbing Sun
- GEMS Department, Health Studies Institute, Rider University, 2083 Lawrenceville Road, Lawrenceville, NJ 08648, United States.
| | - Michael Leo Sun
- Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, United States
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, United States
| |
Collapse
|
29
|
Sharma A, Shukla A, Attri K, Kumar M, Kumar P, Suttee A, Singh G, Barnwal RP, Singla N. Global trends in pesticides: A looming threat and viable alternatives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110812. [PMID: 32512419 DOI: 10.1016/j.ecoenv.2020.110812] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Pesticides are widely used chemical compounds in agriculture to destroy insects, pests and weeds. In modern era, they form an indispensable part of agricultural and health practices. Globally, nearly 3 billion kg of pesticides are used every year with a budget of ~40 billion USD. This extensive usage has increased the crop yield as well as led to significant reduction in harvest losses and thereby, enhanced food availability. On the other hand, indiscriminate usage of these chemicals has led to several environmental implications and caused adverse effects on human health. Epidemiological evidences have revealed the harmful effects of pesticides exposure on various organs including liver, brain, lungs and colon. Recent investigations have shown that pesticides can also lead to fatal consequences such as cancer among individuals. These chemicals enter ecosystem, thus hampering the sensitive environmental equilibrium through bio-accumulation. Due to their non-biodegradable nature, they can persist in nature for years and are regarded as potent biohazard. Worldwide, very few surveillance methods have been considered, which can bring awareness among the individuals, therefore the present review is an attempt to delineate consequences induced by various types of pesticide exposure on the environment. Further, the prospective of biopesticides use could facilitate the increase of crop production without compromising human health.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; UIPS, Panjab University, Chandigarh, 160014, India
| | - Ananya Shukla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Kriti Attri
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; Biological Sciences, Indian Institute of Science Education and Research, Mohali, 140306, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151001, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Gurpal Singh
- UIPS, Panjab University, Chandigarh, 160014, India
| | | | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
30
|
Binter AC, Bannier E, Saint-Amour D, Simon G, Barillot C, Monfort C, Cordier S, Pelé F, Chevrier C. Exposure of pregnant women to organophosphate insecticides and child motor inhibition at the age of 10-12 years evaluated by fMRI. ENVIRONMENTAL RESEARCH 2020; 188:109859. [PMID: 32846645 DOI: 10.1016/j.envres.2020.109859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Organophosphate pesticides (OP) are widely used for both agricultural and domestic purposes. Epidemiological studies suggest neurotoxicity in children after exposure to organophosphates pesticides (OP) at low levels but possible mechanism is still unclear. OBJECTIVES We aimed at investigating the effects of prenatal exposure to OPs on inhibitory control of 10-12 year-old-children assessed by a motor inhibition task during functional magnetic resonance imaging (fMRI). METHODS Ninety-five children from the PELAGIE cohort (Brittany-France, from 2002) underwent a fMRI examination during which inhibition was assessed by a Go/No-Go task. Task performance was assessed by average response latency, commission rate and composite performance score (PS). Whole brain activation was estimated by modeling the hemodynamic response related to inhibition demand and successful inhibition. OP exposure was assessed by measuring six dialkylphosphate (DAP) metabolites in the urine of women in early pregnancy (<19 WG). Concentrations were summed to obtain overall levels of diethylphosphate (DE), dimethylphosphate (DM) and total non-specific metabolites (DAP), standardized to homogenize sampling conditions and categorized into levels of exposure: low (reference), moderate or high. Regression models were adjusted for potential cofounders considered by restriction and statistical criteria. RESULTS Moderate levels of DAP were associated with a decreased commission rate (β = -6.65%, p = 0.04), indicating improved performance. Increasing levels of DM and DE were associated with decreased brain activity in the left inferior and bilateral superior frontal regions during successful inhibition. We did not observe any differential activation related to inhibitory demands. DISCUSSION These results suggest that prenatal OPs may be associated with altered pattern of brain activity in regions related to inhibition among children and need to be confirmed by additional studies.
Collapse
Affiliation(s)
- A C Binter
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| | - E Bannier
- Univ Rennes, CHU Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn, ERL U 1228, F-35000, Rennes, France
| | - D Saint-Amour
- Department of Psychology, Université Du Québec à Montréal, Montréal, Canada
| | - G Simon
- ISTS EA 7466, University of Caen Normandie, Caen, France
| | - C Barillot
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn, ERL U 1228, F-35000, Rennes, France
| | - C Monfort
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - S Cordier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - F Pelé
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France; Univ Rennes, Inserm, CIC 1414, Rennes, France
| | - C Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| |
Collapse
|
31
|
Huynh LM, Liang K, Osman MM, El-Khatib FM, Dianatnejad S, Towe M, Roberts NH, Yafi FA. Organic Diet and Intermittent Fasting are Associated With Improved Erectile Function. Urology 2020; 144:147-151. [PMID: 32717247 DOI: 10.1016/j.urology.2020.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 07/09/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To explore associations between dietary habits and erectile dysfunction (ED) in a cohort of patients presenting to a high-volume men's health clinic. MATERIALS AND METHODS All patients presenting to a high-volume men's health clinic between July 2018 and May 2019 were evaluated for their dietary habits and screened with the International Index of Erectile Function-5 (IIEF-5) and Androgen Deficiency in Aging Males (ADAM). The primary outcome measure was the impact of dietary habits on ED, defined as IIEF-5 <22. Stepwise logistic regressions were used to control for patient characteristics and relevant comorbidities. RESULTS Two hundred seventy-one patients were included. Primary reasons for visit were ED (110, 40.6%), hypogonadism (39, 14.4%), benign prostatic hyperplasia/lower urinary tract symptoms (80, 29.5%), and Peyronie's Disease (30, 11.1%). 176 (64.9%) followed no diet, while 11 (4.1%), 11 (4.1%), 8 (2.9%), and 11 (4.1%) were whole food only, low-carb/keto, vegetarian/pescatarian, and low-fat, respectively. Additionally, 105 (38.7%) reported organic foods consumption, while 51 (18.8%) had no processed food consumption, and 77 (28.4%) performed intermittent fasting. Patients reporting ED were more likely to be over the age of 65, had higher body mass index, more comorbidities, and less likely to report an organic diet or intermittent fasting. There were no correlations between diet and ADAM score. In adjusted analysis, patients reporting organic diet or intermittent fasting were significantly less likely to have ED. CONCLUSION This is the first study suggesting organic diet and intermittent fasting to be protective against ED. These results are hypothesis-generating and warrant further exploration.
Collapse
Affiliation(s)
- Linda M Huynh
- Department of Urology, University of California, Irvine Health, Orange, CA
| | - Karren Liang
- Department of Urology, University of California, Irvine Health, Orange, CA
| | - Mohamad M Osman
- Department of Urology, University of California, Irvine Health, Orange, CA
| | - Farouk M El-Khatib
- Department of Urology, University of California, Irvine Health, Orange, CA
| | | | - Maxwell Towe
- Department of Urology, University of California, Irvine Health, Orange, CA
| | | | - Faysal A Yafi
- Department of Urology, University of California, Irvine Health, Orange, CA.
| |
Collapse
|
32
|
Saint-Amour D, Muckle G, Gagnon-Chauvin A, Rouget F, Monfort C, Michineau L, Thomé JP, Kadhel P, Multigner L, Cordier S. Visual contrast sensitivity in school-age Guadeloupean children exposed to chlordecone. Neurotoxicology 2020; 78:195-201. [DOI: 10.1016/j.neuro.2020.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
|
33
|
Zinszer K, Caprara A, Lima A, Degroote S, Zahreddine M, Abreu K, Carabali M, Charland K, Dantas MA, Wellington J, Parra B, Fournet F, Bonnet E, Pérez D, Robert E, Dagenais C, Benmarhnia T, Andersson N, Ridde V. Sustainable, healthy cities: protocol of a mixed methods evaluation of a cluster randomized controlled trial for Aedes control in Brazil using a community mobilization approach. Trials 2020; 21:182. [PMID: 32059693 PMCID: PMC7023806 DOI: 10.1186/s13063-019-3714-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Background Dengue is increasing in its global presence with an estimated 4 billion people at-risk of infection in at least 128 countries. Despite the promising results of EcoHealth and community mobilization approaches to Aedes reduction, more evidence of their efficacy on reducing dengue risk is needed. The principal research question is to determine if interventions based upon community mobilization reduce the risk of dengue virus infection among children 3 to 9 years old compared to usual dengue control practice in Fortaleza, Brazil. Methods The present study will follow a pragmatic cluster randomized controlled trial (cRCT) design with randomization at the census tract level with equal allocation to the two arms. In each arm, there will be 34 clusters of 86 children between 3 to 9 years old for an expected total of 5848 children enrolled in the study, assuming a risk reduction of 29.5% based upon findings from a previous multi-site cRCT. The primary outcomes are rates of anti-dengue Immunoglobulin G (IgG) seroconversion and adult female Aedes density. The intervention is based upon a participatory health research approach, Socializing Evidence for Participatory Action (SEPA), where the research evidence is used to foster community engagement and ownership of the health issue and solution. Following allocation, intervention communities will develop and implement their own solutions that will likely include a wide variety of collective events and media approaches. Data collection activities over a period of 3 years include household visits for blood collection, household surveys, and entomological surveys; and qualitative activities including focus groups, in-depth interviews, and document analysis to evaluate the process, acceptability, fidelity, and sustainability of the intervention. Study participants will be aware of their assignment and all research staff will be blinded although the intervention assignment will likely be revealed to field staff through interaction with participants. Discussion The results of our study will provide evidence on community mobilization as an intervention for dengue control. We anticipate that if community mobilization is effective in Fortaleza, the results of this study will help develop evidence-based vector control programs in Brazil, and also in other countries struggling with Aedes-transmitted diseases. Trial registration ISRCTN66131315, registration date: 1 October 2018.
Collapse
Affiliation(s)
- Kate Zinszer
- School of Public Health, University of Montreal, Montréal, Québec, Canada. .,Québec Public Health Research Centre, Montréal, Canada. .,Québec Population Health Research Network, Montréal, Canada.
| | - Andrea Caprara
- Québec Population Health Research Network, Montréal, Canada
| | - Antonio Lima
- Fortaleza Municipal Health Secretariat, Fortaleza, Brazil.,University of Fortaleza, Fortaleza, Brazil
| | | | - Monica Zahreddine
- School of Public Health, University of Montreal, Montréal, Québec, Canada
| | | | | | - Katia Charland
- School of Public Health, University of Montreal, Montréal, Québec, Canada
| | | | | | | | - Florence Fournet
- French Institute for Research on Sustainable Development, Paris, France
| | - Emmanuel Bonnet
- French Institute for Research on Sustainable Development, Paris, France
| | - Denis Pérez
- School of Public Health, University of Montreal, Montréal, Québec, Canada.,Pedro Kourí Tropical Medicine Institute, Havana, Cuba
| | | | - Christian Dagenais
- School of Public Health, University of Montreal, Montréal, Québec, Canada
| | | | - Neil Andersson
- McGill University, Montréal, Canada.,Universidad Autonomy De Guerrero, Acapulco, Mexico
| | - Valéry Ridde
- French Institute for Research on Sustainable Development, Paris, France
| |
Collapse
|
34
|
Tanner EM, Hallerbäck MU, Wikström S, Lindh C, Kiviranta H, Gennings C, Bornehag CG. Early prenatal exposure to suspected endocrine disruptor mixtures is associated with lower IQ at age seven. ENVIRONMENT INTERNATIONAL 2020; 134:105185. [PMID: 31668669 DOI: 10.1016/j.envint.2019.105185] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/16/2019] [Accepted: 09/12/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are xenobiotics with the ability to interfere with hormone action, even at low levels. Prior environmental epidemiology studies link numerous suspected EDCs, including phthalates and bisphenol A (BPA), to adverse neurodevelopmental outcomes. However, results for some chemicals were inconsistent and most assessed one chemical at a time. OBJECTIVES To evaluate the overall impact of prenatal exposure to an EDC mixture on neurodevelopment in school-aged children, and identify chemicals of concern while accounting for co-exposures. METHODS Among 718 mother-child pairs from the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy study (SELMA) study, we used Weighted Quantile Sum (WQS) regression to assess the association between 26 EDCs measured in 1st trimester urine or blood, with Wechsler Intelligence Scale for Children (IV) Intelligence Quotient (IQ) scores at age 7 years. Models were adjusted for child sex, gestational age, mother's education, mother's IQ (RAVEN), weight, and smoking status. To evaluate generalizability, we conducted repeated holdout validation, a machine learning technique. RESULTS Using repeated holdout validation, IQ scores were 1.9-points (CI = -3.6, -0.2) lower among boys for an inter-quartile-range (IQR) change in the WQS index. BPF made the largest contribution to the index with a weight of 14%. Other chemicals of concern and their weights included PBA (9%), TCP (9%), MEP (6%), MBzP (4%), PFOA (6%), PFOS (5%), PFHxS (4%), Triclosan (5%), and BPA (4%). While we did observe an inverse association between EDCs and IQ among all children when training and testing the WQS index estimate on the full dataset, these results were not robust to repeated holdout validation. CONCLUSION Among boys, early prenatal exposure to EDCs was associated with lower intellectual functioning at age 7. We identified bisphenol F as the primary chemical of concern, suggesting that the BPA replacement compound may not be any safer for children. Future studies are needed to confirm the potential neurotoxicity of replacement analogues.
Collapse
Affiliation(s)
- Eva M Tanner
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Sverre Wikström
- Karlstad University, Karlstad, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Christian Lindh
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- National Institute for Health and Welfare, Helsinki, Finland
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carl-Gustaf Bornehag
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; Karlstad University, Karlstad, Sweden.
| |
Collapse
|
35
|
Tarazona S, Bernabeu E, Carmona H, Gómez-Giménez B, García-Planells J, Leonards PEG, Jung S, Conesa A, Felipo V, Llansola M. A Multiomics Study To Unravel the Effects of Developmental Exposure to Endosulfan in Rats: Molecular Explanation for Sex-Dependent Effects. ACS Chem Neurosci 2019; 10:4264-4279. [PMID: 31464424 DOI: 10.1021/acschemneuro.9b00304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to low levels of environmental contaminants, including pesticides, induces neurodevelopmental toxicity. Environmental and food contaminants can reach the brain of the fetus, affecting brain development and leading to neurological dysfunction. The pesticide endosulfan is a persistent pollutant, and significant levels still remain detectable in the environment although its use is banned in some countries. In rats, endosulfan exposure during brain development alters motor activity, coordination, learning, and memory, even several months after uptake, and does so in a sex-dependent way. However, the molecular mechanisms driving these effects have not been studied in detail. In this work, we performed a multiomics study in cerebellum from rats exposed to endosulfan during embryonic development. Pregnant rats were orally exposed to a low dose (0.5 mg/kg) of endosulfan, daily, from gestational day 7 to postnatal day 21. The progeny was evaluated for cognitive and motor functions at adulthood. Expression of messenger RNA and microRNA genes, as well as protein and metabolite levels, were measured on cerebellar samples from males and females. An integrative analysis was conducted to identify altered processes under endosulfan effect. Effects between males and females were compared. Pathways significantly altered by endosulfan exposure included the phosphatidylinositol signaling system, calcium signaling, the cGMP-PKG pathway, the inflammatory and immune system, protein processing in the endoplasmic reticulum, and GABA and taurine metabolism. Sex-dependent effects of endosulfan in the omics results that matched sex differences in cognitive and motor tests were found. These results shed light on the molecular basis of impaired neurodevelopment and contribute to the identification of new biomarkers of neurotoxicity.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Elena Bernabeu
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Héctor Carmona
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Belén Gómez-Giménez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Javier García-Planells
- IMEGEN, Instituto de Medicina Genómica, S.L. Parc Científic de la Universitat de València, 46980 Paterna, Spain
| | - Pim E. G. Leonards
- Department of Environment & Health, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Stephan Jung
- Proteome Sciences R&D GmbH & Co. KG, 60438 Frankfurt, Germany
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32603, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32603, United States
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
36
|
Sapbamrer R, Hongsibsong S. Effects of prenatal and postnatal exposure to organophosphate pesticides on child neurodevelopment in different age groups: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18267-18290. [PMID: 31041704 DOI: 10.1007/s11356-019-05126-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/08/2019] [Indexed: 05/28/2023]
Abstract
Exposure to pesticides is a major factor in the cause of dysfunction in the nervous system and neurodevelopment disorders in children at critical periods of great vulnerability. The aim of this study was to review scientific evidence published on neurodevelopmental effects of prenatal and postnatal exposure to organophosphate pesticides (OPs) in different stages, including neonates, infants, toddlers, preschool children, and school-age children. Full-text articles published in PubMed, Scopus, and ISI databases between 1973 and 2019 were reviewed and the scientific evidence was evaluated. Results: Fifty studies were eligible for inclusion in this quantitative synthesis. Fifteen of these papers evaluated the effects on neonates and infants, 18 on the effects on toddlers and preschool children, and 24 the effects on school-age children. Considerable evidence suggests that prenatal exposure to OPs contributes to child neurodevelopment disorders in all stages, whereas data about the effects of postnatal exposure are limited. Therefore, the available evidence supports the theory that sensitive time-windows occur prenatally rather than postnatally. Although 45 out of the total 50 selected articles found an association between OP exposure and child neurodevelopment, some of the evidence is controversial. A standardized methodology is needed to enable the comparison of the results in several studies, and further research studies are needed to warrant firmer conclusions. A systematic review of this evidence should be performed continuously to update the state of knowledge regarding neurodevelopmental effects associated with OP exposure.
Collapse
Affiliation(s)
- Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, 110 Intavaroros Road, Sriphum Subdistrict, Muang District, Chiang Mai, 50200, Thailand.
| | - Surat Hongsibsong
- Environment and Health Research Unit, Research Institute for Health Sciences, Chiang Mai University, 110 Intavaroros Road, Sriphum Subdistrict, Muang District, Chiang Mai, 50200, Thailand
| |
Collapse
|
37
|
Kamai EM, McElrath TF, Ferguson KK. Fetal growth in environmental epidemiology: mechanisms, limitations, and a review of associations with biomarkers of non-persistent chemical exposures during pregnancy. Environ Health 2019; 18:43. [PMID: 31068204 PMCID: PMC6505101 DOI: 10.1186/s12940-019-0480-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-persistent chemicals, such as phthalates, environmental phenols, organophosphate pesticides, and others, are challenging to study because of their ubiquity in the environment, diverse exposure routes, and high temporal variability of biomarkers. Nonetheless, there is interest in understanding how gestational exposure to these chemicals may affect fetal growth, as perturbations to normal fetal growth are related to a plethora of adverse health outcomes in childhood and adulthood. METHODS The purpose of this review is to describe the state of the science on this topic. We searched PubMed for studies that included both 1) biomarkers of non-persistent chemicals collected during pregnancy and 2) fetal growth outcomes measured at birth (e.g., birth weight) or by ultrasound in utero (e.g., estimated fetal weight). RESULTS The bulk of the literature we found uses biomarkers measured at a single time point in pregnancy and birth weight as the primary measure of fetal growth. There is a small, but growing, body of research that uses ultrasound measures to assess fetal growth during pregnancy. In addition to summarizing the findings of the publications we identified, we describe inconsistencies in methodology, areas for improvement, and gaps in existing knowledge that can be targeted for improvement in future work. This literature is characterized by variability in methodology, likely contributing to the inconsistency of results reported. We further discuss maternal, placental, and fetal pathways by which these classes of chemicals may affect fetal growth. CONCLUSIONS To improve understanding of how everyday chemical exposures affect fetal growth, and ultimately lifelong health outcomes, mechanisms of toxicant action should be considered alongside improved study designs for future hypothesis-driven research.
Collapse
Affiliation(s)
- Elizabeth M. Kamai
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
| | - Thomas F. McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Kelly K. Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
38
|
Impaired innate and conditioned social behavior in adult C57Bl6/J mice prenatally exposed to chlorpyrifos. Behav Brain Funct 2019; 15:2. [PMID: 30823929 PMCID: PMC6397466 DOI: 10.1186/s12993-019-0153-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/19/2019] [Indexed: 01/15/2023] Open
Abstract
Background Signs of pervasive developmental disorder and social deficits were reported in toddlers and children whose mothers were exposed to organophosphate pesticides during pregnancy. Deficits in social preference were reported in adult male mice exposed to chlorpyrifos on gestational days 12–15. This study aimed (a) to test the hypothesis that adult female and male mice that were exposed prenatally to subtoxic doses of chlorpyrifos would be impaired in social behavior and (b) to determine if prenatal chlorpyrifos altered the expression of transcripts for oxytocin in the hypothalamus. Pregnant mice were treated by gavage with corn oil vehicle or 2.5 mg/kg or 5 mg/kg of CPF on gestational days 12–15. Social preference, social and non-social conditioned place preference tasks were tested in adults. Expression of oxytocin transcripts in hypothalamus was measured by qPCR. Results Chlorpyrifos (5 mg/kg on GD 12–15) reduced the innate preference for a conspecific in a dose and sex dependent manner. Adult males exposed prenatally to 5 mg/kg CPF showed a reduction in social preference. Socially conditioned place preference was impaired in offspring of dams treated with either dose of CPF. Non-social appetitive place conditioning was impaired in offspring of dams exposed to 2.5 mg/kg, but not to 5 mg/kg chlorpyrifos. Prenatal chlorpyrifos treatment did not alter the expression of the oxytocin mRNA in the hypothalamus, although expression was significantly lower in females. Conclusions Prenatal chlorpyrifos induced innate and learned social deficits and non-specific conditioning deficits in adult mice in a sex-dependent manner. Males showed specific social deficits following the higher dose whereas both males and females showed a more generalized conditioning deficit following the intermediate dose.
Collapse
|
39
|
Torres-Rojas C, Jones BC. Sex Differences in Neurotoxicogenetics. Front Genet 2018; 9:196. [PMID: 29922331 PMCID: PMC5996082 DOI: 10.3389/fgene.2018.00196] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/15/2018] [Indexed: 12/02/2022] Open
Abstract
A major development in biomedical research is the recognition that the sex of an individual plays a key role in susceptibility, treatment, and outcomes of most diseases. In this contribution, we present evidence that sex is also important in the toxicity of many environmental toxicants and contributes to the effect of genetics. Thus, individual differences in response to toxicants includes genetic makeup, the environment and sex; in fact, sex differences may be considered a part of genetic constitution. In this review, we present evidence for sex contribution to susceptibility for a number of toxicants.
Collapse
Affiliation(s)
- Carolina Torres-Rojas
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Byron C Jones
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
40
|
Sethi S, Keil KP, Lein PJ. Species and Sex Differences in the Morphogenic Response of Primary Rodent Neurons to 3,3'-Dichlorobiphenyl (PCB 11). TOXICS 2017; 6:toxics6010004. [PMID: 29295518 PMCID: PMC5874777 DOI: 10.3390/toxics6010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
PCB 11 is an emerging global pollutant that we recently showed promotes axonal and dendritic growth in primary rat neuronal cell cultures. Here, we address the influence of sex and species on neuronal responses to PCB 11. Neuronal morphology was quantified in sex-specific primary hippocampal and cortical neuron-glia co-cultures derived from neonatal C57BL/6J mice and Sprague Dawley rats exposed for 48 h to vehicle (0.1% DMSO) or PCB 11 at concentrations ranging from 1 fM to 1 nM. Total axonal length was quantified in tau-1 immunoreactive neurons at day in vitro (DIV) 2; dendritic arborization was assessed by Sholl analysis at DIV 9 in neurons transfected with MAP2B-FusRed. In mouse cultures, PCB 11 enhanced dendritic arborization in female, but not male, hippocampal neurons and male, but not female, cortical neurons. In rat cultures, PCB 11 promoted dendritic arborization in male and female hippocampal and cortical neurons. PCB 11 also increased axonal growth in mouse and rat neurons of both sexes and neuronal cell types. These data demonstrate that PCB 11 exerts sex-specific effects on neuronal morphogenesis that vary depending on species, neurite type, and neuronal cell type. These findings have significant implications for risk assessment of this emerging developmental neurotoxicant.
Collapse
Affiliation(s)
- Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | - Kimberly P Keil
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|