1
|
Madrid J, Agarwal P, Müller-Peltzer K, Benning L, Selig M, Rolauffs B, Diehl P, Kalbhenn J, Trummer G, Utzolino S, Wengenmayer T, Busch HJ, Stolz D, Rieg S, Panning M, Bamberg F, Schlett CL, Askani E. Cardioprotective effects of vaccination in hospitalized patients with COVID-19. Clin Exp Med 2024; 24:103. [PMID: 38758248 PMCID: PMC11101587 DOI: 10.1007/s10238-024-01367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
COVID-19 vaccination has been shown to prevent and reduce the severity of COVID-19 disease. The aim of this study was to explore the cardioprotective effect of COVID-19 vaccination in hospitalized COVID-19 patients. In this retrospective, single-center cohort study, we included hospitalized COVID-19 patients with confirmed vaccination status from July 2021 to February 2022. We assessed outcomes such as acute cardiac events and cardiac biomarker levels through clinical and laboratory data. Our analysis covered 167 patients (69% male, mean age 58 years, 42% being fully vaccinated). After adjustment for confounders, vaccinated hospitalized COVID-19 patients displayed a reduced relative risk for acute cardiac events (RR: 0.33, 95% CI [0.07; 0.75]) and showed diminished troponin T levels (Cohen's d: - 0.52, 95% CI [- 1.01; - 0.14]), compared to their non-vaccinated peers. Type 2 diabetes (OR: 2.99, 95% CI [1.22; 7.35]) and existing cardiac diseases (OR: 4.31, 95% CI [1.83; 10.74]) were identified as significant risk factors for the emergence of acute cardiac events. Our findings suggest that COVID-19 vaccination may confer both direct and indirect cardioprotective effects in hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Julian Madrid
- Department of Cardiology, Pneumology, Angiology, Acute Geriatrics and Intensive Care, Ortenau Klinikum, Klostenstraße 19, 77933, Lahr/Schwarzwald, Germany.
| | - Prerana Agarwal
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Katharina Müller-Peltzer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Leo Benning
- University Emergency Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology, Pneumology, Angiology, Acute Geriatrics and Intensive Care, Ortenau Klinikum, Klostenstraße 19, 77933, Lahr/Schwarzwald, Germany
| | - Johannes Kalbhenn
- Department of Anesthesiology and Intensive Care Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Utzolino
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Wengenmayer
- Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Jörg Busch
- University Emergency Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daiana Stolz
- Clinic of Respiratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Siegbert Rieg
- Division of Infectious Diseases, Department of Medicine II, Medical Center -University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Esther Askani
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
2
|
Tsai JJ, Liu LT, Chen CH, Chen LJ, Wang SI, Wei JCC. COVID-19 outcomes in patients with rheumatoid arthritis with biologic or targeted synthetic DMARDs. RMD Open 2023; 9:e003038. [PMID: 37479495 PMCID: PMC10364175 DOI: 10.1136/rmdopen-2023-003038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023] Open
Abstract
OBJECTIVES We aimed to investigate the role of rheumatoid arthritis (RA) with biologic or targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARD) exposure in COVID-19 outcomes. METHODS Our study retrieved data from the US Collaborative Network in TriNetX between 1 January 2018 and 31 December 2022. We investigated b/tsDMARD use for RA: interleukin 6 inhibitor (IL-6i), Janus-associated kinase inhibitors (JAKi) or tumour necrosis factor-alpha inhibitors (TNFi, reference group). The outcomes of COVID-19 were the incidence of infection and adverse outcomes (hospitalisation, critical care services, mechanical ventilation and mortality). The HR and 95% CI of the outcomes were calculated between propensity score-matched (PSM) patients with different b/tsDMARDs. RESULTS After PSM, 2676 JAKi vs 2676 TNFi users and 967 IL-6i vs 967 TNFi users were identified. As for COVID-19 incidence, JAKi users did not reach statistical significance (HR: 1.058, 95% CI: 0.895 to 1.250) than TNFi users. RA with JAKi users had a significant risk for hospitalisation (HR: 1.194, 95% CI: 1.003 to 1.423), mortality (HR: 1.440, 95% CI: 1.049 to 1.976) and composite adverse outcomes (HR: 1.242, 95% CI: 1.051 to 1.468) compared with TNFi users. Mortality risk tended to be significantly higher in the JAKi group without COVID-19 vaccination (HR: 1.511, 95% CI: 1.077 to 2.121). IL-6i users compared with TNFi users did not have the above findings. CONCLUSIONS RA with JAKi users had a significant risk for hospitalisation, mortality or composite adverse outcomes, especially higher mortality among those without COVID-19 vaccination. COVID-19 vaccination should be encouraged in these target cohorts. When using JAKi for patients with RA, clinicians should be vigilant about these adverse outcomes to prevent their occurrence or detect them early for early intervention.
Collapse
Affiliation(s)
- Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Teh Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Chun-Hong Chen
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Liang-Jen Chen
- Department of Family Medicine, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Shiow-Ing Wang
- Center for Health Data Science, Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Allergy Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Nursing, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Rosa IF, Peçanha APB, Carvalho TRB, Alexandre LS, Ferreira VG, Doretto LB, Souza BM, Nakajima RT, da Silva P, Barbosa AP, Gomes-de-Pontes L, Bomfim CG, Machado-Santelli GM, Condino-Neto A, Guzzo CR, Peron JPS, Andrade-Silva M, Câmara NOS, Garnique AMB, Medeiros RJ, Ferraris FK, Barcellos LJG, Correia-Junior JD, Galindo-Villegas J, Machado MFR, Castoldi A, Oliveira SL, Costa CC, Belo MAA, Galdino G, Sgro GG, Bueno NF, Eto SF, Veras FP, Fernandes BHV, Sanches PRS, Cilli EM, Malafaia G, Nóbrega RH, Garcez AS, Carrilho E, Charlie-Silva I. Photobiomodulation Reduces the Cytokine Storm Syndrome Associated with COVID-19 in the Zebrafish Model. Int J Mol Sci 2023; 24:ijms24076104. [PMID: 37047078 PMCID: PMC10094635 DOI: 10.3390/ijms24076104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
Although the exact mechanism of the pathogenesis of coronavirus SARS-CoV-2 (COVID-19) is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the level of inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red photobiomodulation (PBM) as an attractive therapy to downregulate the cytokine storm caused by COVID-19 in a zebrafish model. RT-qPCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that recombinant Spike protein (rSpike) was responsible for generating systemic inflammatory processes with significantly increased levels of pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a and coa1) mRNA markers, with a pattern similar to those observed in COVID-19 cases in humans. On the other hand, PBM treatment was able to decrease the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most-impacted metabolic pathways between PBM and the rSpike treated groups were related to steroid metabolism, immune system, and lipid metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19 and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials can commence.
Collapse
Affiliation(s)
- Ivana F Rosa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Ana P B Peçanha
- Department of Orthodontics, São Leopoldo Mandic College, Campinas 13045-755, Brazil
| | - Tábata R B Carvalho
- Department of Orthodontics, São Leopoldo Mandic College, Campinas 13045-755, Brazil
| | - Leonardo S Alexandre
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- The National Institute of Science and Technology in Bioanalyses, INCTBio, Campinas 13083-970, Brazil
| | - Vinícius G Ferreira
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- The National Institute of Science and Technology in Bioanalyses, INCTBio, Campinas 13083-970, Brazil
| | - Lucas B Doretto
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Beatriz M Souza
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Rafael T Nakajima
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Patrick da Silva
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-220, Brazil
| | - Ana P Barbosa
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-220, Brazil
| | - Leticia Gomes-de-Pontes
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-220, Brazil
| | - Camila G Bomfim
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-220, Brazil
| | | | - Antonio Condino-Neto
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-220, Brazil
| | - Cristiane R Guzzo
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-220, Brazil
| | - Jean P S Peron
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-220, Brazil
| | - Magaiver Andrade-Silva
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-220, Brazil
| | - Niels O S Câmara
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-220, Brazil
| | - Anali M B Garnique
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-220, Brazil
| | | | | | - Leonardo J G Barcellos
- Laboratório de Fisiologia de Peixes, Programa de Pós-Graduação em Bioexperimentação, Escola de Ciências Agrárias, Inovação e Negócios, Universidade de Passo Fundo, Passo Fundo 99052-900, Brazil
| | - Jose D Correia-Junior
- Institute of Biomedical Sciences, Federal University Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Jorge Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Mônica F R Machado
- Biological Sciences Special Academic Unit, Federal University of Jatai, Jatai 75804-020, Brazil
| | - Angela Castoldi
- Keizo Asami Institute, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Susana L Oliveira
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil
| | - Camila C Costa
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil
| | - Marco A A Belo
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil
| | - Giovane Galdino
- Institute of Motricity Sciences, Department of Physical Therapy, Federal University of Alfenas, Alfenas 37133-840, Brazil
| | - Germán G Sgro
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo 14040-900, Brazil
| | - Natalia F Bueno
- Integrated Structural Biology Platform, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba 81310-020, Brazil
| | - Silas F Eto
- Center of Innovation and Development, Laboratory of Development and Innovation Butantan Institute, São Paulo 69310-000, Brazil
| | - Flávio P Veras
- Faculty of Medicine, University of São Paulo (USP), Ribeirão Preto 14040-900, Brazil
| | - Bianca H V Fernandes
- Laboratory of Genetic and Sanitary Control, Technical Board of Support for Teaching and Research, Faculty of Medicine, University of Sao Paulo, São Paulo 01246-903, Brazil
| | - Paulo R S Sanches
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, Brazil
| | - Eduardo M Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí Campus, Urutaí 75790-000, Brazil
| | - Rafael H Nóbrega
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Aguinaldo S Garcez
- Department of Orthodontics, São Leopoldo Mandic College, Campinas 13045-755, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- The National Institute of Science and Technology in Bioanalyses, INCTBio, Campinas 13083-970, Brazil
| | - Ives Charlie-Silva
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, Brazil
| |
Collapse
|
4
|
Mohd Zawawi Z, Kalyanasundram J, Mohd Zain R, Thayan R, Basri DF, Yap WB. Prospective Roles of Tumor Necrosis Factor-Alpha (TNF-α) in COVID-19: Prognosis, Therapeutic and Management. Int J Mol Sci 2023; 24:ijms24076142. [PMID: 37047115 PMCID: PMC10094668 DOI: 10.3390/ijms24076142] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) became a worldwide concern at the beginning of 2020 and has affected millions. Several previous studies revealed the impact of the imbalanced innate immune response on the progression of COVID-19 and its disease outcomes. High levels of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukins are produced readily by innate immune cells to fight Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infections. Nonetheless, cytokine-mediated inflammatory events are also linked to detrimental lung injury and respiratory failure, which can result in deaths among COVID-19 patients. TNF-α is amongst the early cytokines produced to mediate proinflammatory responses and enhance immune cell infiltration in response to SARS-CoV-2 infections. In COVID-19, TNF-α-mediated inflammation can cause detrimental tissue damage and gradually promotes lung fibrosis, which later results in pneumonia, pulmonary edema, and acute respiratory distress syndrome. This review, therefore, aims to deliberate the immunomodulatory roles of TNF-α in promoting inflammation and its relation with COVID-19 morbidity and mortality. In addition, this review also proposes the potential of TNF-α as a biomarker for the prognosis of severe COVID-19 and its related complications and as a molecular target for anti-TNF-α therapy.
Collapse
Affiliation(s)
- Zarina Mohd Zawawi
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Bandar Setia Alam, Shah Alam 40170, Malaysia
- Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Jeevanathan Kalyanasundram
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Bandar Setia Alam, Shah Alam 40170, Malaysia
| | - Rozainanee Mohd Zain
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Bandar Setia Alam, Shah Alam 40170, Malaysia
| | - Ravindran Thayan
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Bandar Setia Alam, Shah Alam 40170, Malaysia
| | - Dayang Fredalina Basri
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Wei Boon Yap
- Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
5
|
Abstract
INTRODUCTION As the third year of the SARS-CoV-2 pandemic approaches, COVID-19 continues to cause substantial morbidity and mortality due to waning vaccine efficacy and the emergence of new, highly contagious subvariants and better therapies are urgently needed. AREAS COVERED Hospitalized patients who develop hypoxia due to SARS-CoV-2 infection are typically treated with an antiviral agent, remdesivir, as well as an immunomodulator, dexamethasone, but mortality rates for severe COVID-19 remain unacceptably high. Mounting evidence suggests a second immunomodulator added to the standard of care may benefit some hospitalized patients; however, the optimal treatment remains controversial. EXPERT OPINION On 2 June 2022, the United States National Institutes of Health reported results from a large, randomized placebo-controlled clinical trial known as ACTIV-1. The study found a mortality benefit and substantially improved clinical status for adults hospitalized with COVID-19 who were treated with infliximab, a chimeric monoclonal antibody that binds to and inhibits TNF-α, and is widely used to treat a variety of autoimmune conditions, including rheumatoid arthritis, Crohn's disease, and ulcerative colitis. This manuscript reviews what is known about infliximab as an immunomodulator for patients with COVID-19 and explores how this agent may be used in the future to address the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Matthew P Velez
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
6
|
Vitali L, Merlini A, Galvagno F, Proment A, Sangiolo D. Biological and Exploitable Crossroads for the Immune Response in Cancer and COVID-19. Biomedicines 2022; 10:2628. [PMID: 36289890 PMCID: PMC9599827 DOI: 10.3390/biomedicines10102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
The outbreak of novel coronavirus disease 2019 (COVID-19) has exacted a disproportionate toll on cancer patients. The effects of anticancer treatments and cancer patients' characteristics shared significant responsibilities for this dismal outcome; however, the underlying immunopathological mechanisms are far from being completely understood. Indeed, despite their different etiologies, SARS-CoV-2 infection and cancer unexpectedly share relevant immunobiological connections. In the pathogenesis and natural history of both conditions, there emerges the centrality of the immune response, orchestrating the timed appearance, functional and dysfunctional roles of multiple effectors in acute and chronic phases. A significant number (more than 600) of observational and interventional studies have explored the interconnections between COVID-19 and cancer, focusing on aspects as diverse as psychological implications and prognostic factors, with more than 4000 manuscripts published so far. In this review, we reported and discussed the dynamic behavior of the main cytokines and immune system signaling pathways involved in acute vs. early, and chronic vs. advanced stages of SARS-CoV-2 infection and cancer. We highlighted the biological similarities and active connections within these dynamic disease scenarios, exploring and speculating on possible therapeutic crossroads from one setting to the other.
Collapse
Affiliation(s)
- Letizia Vitali
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alessandra Merlini
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Federica Galvagno
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alessia Proment
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| |
Collapse
|
7
|
Taguchi YH, Turki T. Adapted tensor decomposition and PCA based unsupervised feature extraction select more biologically reasonable differentially expressed genes than conventional methods. Sci Rep 2022; 12:17438. [PMID: 36261574 PMCID: PMC9580456 DOI: 10.1038/s41598-022-21474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/27/2022] [Indexed: 01/12/2023] Open
Abstract
Tensor decomposition- and principal component analysis-based unsupervised feature extraction were proposed almost 5 and 10 years ago, respectively; although these methods have been successfully applied to a wide range of genome analyses, including drug repositioning, biomarker identification, and disease-causing genes' identification, some fundamental problems have been identified: the number of genes identified was too small to assume that there were no false negatives, and the histogram of P values derived was not fully coincident with the null hypothesis that principal component and singular value vectors follow the Gaussian distribution. Optimizing the standard deviation such that the histogram of P values is as much as possible coincident with the null hypothesis results in an increase in the number and biological reliability of the selected genes. Our contribution was that we improved these methods so as to be able to select biologically more reasonable differentially expressed genes than the state of art methods that must empirically assume negative binomial distributions and dispersion relation, which is required for the selecting more expressed genes than less expressed ones, which can be achieved by the proposed methods that do not have to assume these.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
8
|
Evangelatos G, Bamias G, Kitas GD, Kollias G, Sfikakis PP. The second decade of anti-TNF-a therapy in clinical practice: new lessons and future directions in the COVID-19 era. Rheumatol Int 2022; 42:1493-1511. [PMID: 35503130 PMCID: PMC9063259 DOI: 10.1007/s00296-022-05136-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Since the late 1990s, tumor necrosis factor alpha (TNF-α) inhibitors (anti-TNFs) have revolutionized the therapy of immune-mediated inflammatory diseases (IMIDs) affecting the gut, joints, skin and eyes. Although the therapeutic armamentarium in IMIDs is being constantly expanded, anti-TNFs remain the cornerstone of their treatment. During the second decade of their application in clinical practice, a large body of additional knowledge has accumulated regarding various aspects of anti-TNF-α therapy, whereas new indications have been added. Recent experimental studies have shown that anti-TNFs exert their beneficial effects not only by restoring aberrant TNF-mediated immune mechanisms, but also by de-activating pathogenic fibroblast-like mesenchymal cells. Real-world data on millions of patients further confirmed the remarkable efficacy of anti-TNFs. It is now clear that anti-TNFs alter the physical course of inflammatory arthritis and inflammatory bowel disease, leading to inhibition of local and systemic bone loss and to a decline in the number of surgeries for disease-related complications, while anti-TNFs improve morbidity and mortality, acting beneficially also on cardiovascular comorbidities. On the other hand, no new safety signals emerged, whereas anti-TNF-α safety in pregnancy and amid the COVID-19 pandemic was confirmed. The use of biosimilars was associated with cost reductions making anti-TNFs more widely available. Moreover, the current implementation of the "treat-to-target" approach and treatment de-escalation strategies of IMIDs were based on anti-TNFs. An intensive search to discover biomarkers to optimize response to anti-TNF-α treatment is currently ongoing. Finally, selective targeting of TNF-α receptors, new forms of anti-TNFs and combinations with other agents, are being tested in clinical trials and will probably expand the spectrum of TNF-α inhibition as a therapeutic strategy for IMIDs.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Giorgos Bamias
- Gastrointestinal Unit, Third Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George D Kitas
- Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley, UK
- Arthritis Research UK Centre for Epidemiology, University of Manchester, Manchester, UK
| | - George Kollias
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Rasmi Y, Hatamkhani S, Naderi R, Shokati A, Nayeb Zadeh V, Hosseinzadeh F, Farnamian Y, Jalali L. Molecular signaling pathways, pathophysiological features in various organs, and treatment strategies in SARS-CoV2 infection. Acta Histochem 2022; 124:151908. [PMID: 35662001 PMCID: PMC9130726 DOI: 10.1016/j.acthis.2022.151908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Cytokine storms and extra-activated cytokine signaling pathways can lead to severe tissue damage and patient death. Activation of inflammatory signaling pathways during Cytokine storms are an important factor in the development of acute respiratory syndrome (SARS-CoV-2), which is the major health problem today, causing systemic and local inflammation. Cytokine storms attract many inflammatory cells that attack the lungs and other organs and cause tissue damage. Angiotensin-converting enzyme 2 (ACE2) are expressed in a different type of tissues. inhibition of ACE2 activity impairs renin-angiotensin (RAS) function, which is related to the severity of symptoms and mortality rate in COVID-19 patients. Different signaling cascades are activated, affecting various organs during SARS-CoV-2 infection. Nowadays, there is no specific treatment for COVID-19, but scientists have recognized and proposed several treatment alternatives, including applying cytokine inhibitors, immunomodulators, and plasma therapy. Herein, we have provided the detailed mechanism of SARS-CoV-2 induced cytokine signaling and its connection with pathophysiological features in different organs. Possible treatment options to cope with the severe clinical manifestations of COVID-19 are also discussed.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center,Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Faezeh Hosseinzadeh
- Department of Tissue Engineering, Qom University of Medical Sciences, Qom, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center,Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Qui M, Le Bert N, Chan WPW, Tan M, Hang SK, Hariharaputran S, Sim JXY, Low JGH, Ng W, Wan WY, Ang TL, Bertoletti A, Salazar E. Favorable vaccine-induced SARS-CoV-2-specific T cell response profile in patients undergoing immune-modifying therapies. J Clin Invest 2022; 132:e159500. [PMID: 35536644 PMCID: PMC9197512 DOI: 10.1172/jci159500] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUNDPatients undergoing immune-modifying therapies demonstrate a reduced humoral response after COVID-19 vaccination, but we lack a proper evaluation of the effect of such therapies on vaccine-induced T cell responses.METHODSWe longitudinally characterized humoral and spike-specific T cell responses in patients with inflammatory bowel disease (IBD), who were on antimetabolite therapy (azathioprine or methotrexate), TNF inhibitors, and/or other biologic treatment (anti-integrin or anti-p40) for up to 6 months after completing 2-dose COVID-19 mRNA vaccination.RESULTSWe demonstrate that a spike-specific T cell response was not only induced in treated patients with IBD at levels similar to those of healthy individuals, but also sustained at higher magnitude for up to 6 months after vaccination, particularly in those treated with TNF inhibitor therapy. Furthermore, the spike-specific T cell response in these patients was mainly preserved against mutations present in SARS-CoV-2 B.1.1.529 (Omicron) and characterized by a Th1/IL-10 cytokine profile.CONCLUSIONDespite the humoral response defects, patients under immune-modifying therapies demonstrated a favorable profile of vaccine-induced T cell responses that might still provide a layer of COVID-19 protection.FUNDINGThis study was funded by the National Centre for Infectious Diseases (NCID) Catalyst Grant (FY2021ES) and the National Research Fund Competitive Research Programme (NRF-CRP25-2020-0003).
Collapse
Affiliation(s)
- Martin Qui
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | - Malcolm Tan
- Department of Gastroenterology and Hepatology
| | - Shou Kit Hang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | | | - Jenny Guek Hong Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Infectious Disease, and
| | - Weiling Ng
- Department of Microbiology, Singapore General Hospital, Singapore
| | - Wei Yee Wan
- Department of Microbiology, Singapore General Hospital, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Singapore Immunology Network, A*STAR; Singapore
| | | |
Collapse
|
11
|
Kirillova A, Lado A, Blatt N. Application of Monoclonal Antibody Drugs in Treatment of COVID-19: a Review. BIONANOSCIENCE 2022; 12:1436-1454. [PMID: 35729973 PMCID: PMC9198616 DOI: 10.1007/s12668-022-00997-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus infection can have various degrees of severity and outcomes. In some cases, it causes excessive production of pro-inflammatory cytokines, a so-called cytokine storm, leading to acute respiratory distress syndrome. Unfortunately, the exact pathophysiology and treatment, especially for severe cases of COVID-19, are still uncertain. Results of preliminary studies showed that immunosuppressive therapy, such as interleukin (IL)-6, IL-1, and TNF-α antagonists commonly used in rheumatology, can be considered as treatment options for COVID-19, especially in severe cases. The review focused on the most common and currently studied monoclonal antibody drugs, as well as up-to-date data on the pathogenesis of COVID-19, host immune response against SARS-CoV-2 and its association with cytokine storm. It also covered effects of interleukin (IL)-6, IL-1, and TNF-α blockers on the course of coronavirus infection and outcome in patients treated for the main autoimmune disease and subsequently infected with COVID-19.
Collapse
Affiliation(s)
- Aleksandra Kirillova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Anna Lado
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Nataliya Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
12
|
Efficacy and safety of ultra-low dose inhaled melphalan in the treatment of hospitalized patients with COVID-19. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.2.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. One of the most important components of COVID-19 therapy is the suppression of the hyperergic immune response. There is an urgent need of creating the optimal tactics of efficient and safe anti-inflammatory therapy. A new method of treatment of COVID-19 with inhalation of ultra-low (non-cytotoxic) doses of the alkylating drug melphalan is proposed, based on previous experimental, preclinical, and clinical data on its use in severe bronchial asthma.The aim. To evaluate the efficacy and safety of inhalation of ultra-low doses of melphalan in hospitalized patients with COVID-19-associated lung damage.Materials and methods. A prospective, open, controlled, blind for the central expert study was conducted. Sixty adult patients were included, 30 patients were consecutively admitted to the hospital and received nebulized inhalations of 0.1 mg of melphalan for 7 days. Thirty patients of the control group were selected by an independent expert retrospectively using the computer algorithm for selecting «close» patients based on the «case-control» principle. The primary endpoints were the dynamics on the WHO Clinical Improvement Scale and the dynamics of dyspnea according to the modified Borg scale, secondary – assessment of adverse events, dynamics of indicators of clinical, biochemical blood tests, lungs computed tomography data from the beginning of inhalations in the melphalan group and from the corresponding day in the control group.Results. Inhalations of melphalan led to a significant improvement in the clinical condition of patients according to the WHO scale, decrease in the intensity of dyspnea on day 7 of treatment and by the time of discharge, a significant anti-inflammatory effect. Adverse events and dynamics of laboratory parameters did not differ from the control group.Conclusion. The method of treatment of COVID-19 by inhalation of ultra-low doses of the alkylating drug melphalan is safe and leads to a significant clinical improvement of hospitalized patients with COVID-19-associated lung damage.
Collapse
|
13
|
Guo Y, Hu K, Li Y, Lu C, Ling K, Cai C, Wang W, Ye D. Targeting TNF-α for COVID-19: Recent Advanced and Controversies. Front Public Health 2022; 10:833967. [PMID: 35223745 PMCID: PMC8873570 DOI: 10.3389/fpubh.2022.833967] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the pathophysiologic understanding of coronavirus disease 2019 (COVID-19) suggests that cytokine release syndrome (CRS) has an association with the severity of disease, which is characterized by increased tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-2, IL-7, and IL-10. Hence, managing CRS has been recommended for rescuing severe COVID-19 patients. TNF-α, one of the pro-inflammatory cytokines commonly upregulated in acute lung injury, triggers CRS and facilitates SARS-CoV-2 interaction with angiotensin-converting enzyme 2 (ACE2). TNF-α inhibitors, therefore, may serve as an effective therapeutic strategy for attenuating disease progression in severe SARS-CoV-2 infection. Below, we review the possibilities and challenges of targeting the TNF-α pathway in COVID-19 treatment.
Collapse
Affiliation(s)
- Yi Guo
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjun Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ken Ling
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weici Wang
| | - Dawei Ye
- Department of Pancreatic-Biliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Dawei Ye
| |
Collapse
|
14
|
Blocking TNF signaling may save lives in COVID-19 infection. Mol Biol Rep 2022; 49:2303-2309. [PMID: 35076845 PMCID: PMC8787182 DOI: 10.1007/s11033-022-07166-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
Global vaccination effort and better understanding of treatment strategies provided a ray of hope for improvement in COVID-19 pandemic, however, in many countries, the disease continues to collect its death toll. The major pathogenic mechanism behind severe cases associated with high mortality is the burst of pro-inflammatory cytokines TNF, IL-6, IFNγ and others, resulting in multiple organ failure. Although the exact contribution of each cytokine is not clear, we provide an evidence that the central mediator of cytokine storm and its devastating consequences may be TNF. This cytokine is known to be involved in activated blood clotting, lung damage, insulin resistance, heart failure, and other conditions. A number of currently available pharmaceutical agents such as monoclonal antibodies and soluble TNF receptors can effectively prevent TNF from binding to its receptor(s). Other drugs are known to block NFkB, the major signal transducer molecule used in TNF signaling, or to block kinases involved in downstream activation cascades. Some of these medicines have already been selected for clinical trials, but more work is needed. A simple, rapid, and inexpensive method of directly monitoring TNF levels may be a valuable tool for a timely selection of COVID-19 patients for anti-TNF therapy.
Collapse
|
15
|
Yildiz C, Karabulut D, Erdal G, Hergünsel G, Karabulut U, Binboğa E, Isiksacan N. NOTCH and tumor necrosis factor-alpha converting enzyme levels could be used in COVID-19 for risk stratification. INDIAN JOURNAL OF MEDICAL SPECIALITIES 2022. [DOI: 10.4103/injms.injms_52_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Khan N, Kumar N, Geiger JD. Possible therapeutic targets for SARS-CoV-2 infection and COVID-19. JOURNAL OF ALLERGY AND INFECTIOUS DISEASES 2021; 2:75-83. [PMID: 37564275 PMCID: PMC10414779 DOI: 10.46439/allergy.2.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
SARS-CoV-2 infection causes COVID-19, which has emerged as a health emergency worldwide. SARS-CoV-2 infects cells by binding to ACE2 receptors and enters into the cytoplasm following its escape from endolysosomes. Once in the cytoplasm, the virus replicates and eventually causes various pathological conditions including acute respiratory distress syndrome (ARDS) that is caused by pro-inflammatory cytokine storms. Thus, endolysosomes and cytokine storms are important therapeutic targets to suppress SARS-CoV-2 infection and COVID-19. Here, we discuss therapeutic targets of SARS-CoV-2 infection and available drugs that could be helpful in the suppression of the SARS-CoV-2 infection and pathological condition COVID-19. The urgency of the COVID-19 pandemic precludes the development of new drugs and increased focus on drug repurposing might provide the quickest way to finding effective medicines.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | - Nirmal Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| |
Collapse
|