1
|
Sellamuthu G, Chakraborty A, Vetukuri RR, Sarath S, Roy A. RNAi-biofungicides: a quantum leap for tree fungal pathogen management. Crit Rev Biotechnol 2024:1-28. [PMID: 39647992 DOI: 10.1080/07388551.2024.2430478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amrita Chakraborty
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saravanasakthi Sarath
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Ansari MM, Shin M, Kim M, Ghosh M, Kim SH, Son YO. Nano-enabled strategies in sustainable agriculture for enhanced crop productivity: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123420. [PMID: 39581009 DOI: 10.1016/j.jenvman.2024.123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The global food demand is increasing with the world population, burdening agriculture with unprecedented challenges. Agricultural techniques that ushered in the green revolution are now unsustainable, owing to population growth and climate change. The agri-tech revolution that promises a robust, efficient, and sustainable agricultural system while enhancing food security is expected to be greatly aided by advancements in nanotechnology, which have been reviewed here. Nanofertilizers and nanoinsecticides can benefit agricultural practices economically without major environment impact. Owing to their unique size and features, nano-agrochemicals provide enhanced delivery of active ingredients and increased bioavailability, and posing lesser environment hazard. Nano-agrochemicals should be improved for increased efficiency in the future. In this context, nanocomposites have drawn considerable interest with regard to food security. Nanocomposites can overcome the drawbacks of chemical fertilizers and improve plant output and nutrient bioavailability. Similarly, metallic and polymeric nanoparticles (NPs) can potentially improve sustainable agriculture via better plant development, increased nutrient uptake, and soil healing. Hence, they can be employed as nanofertilizers, nanopesticides, and nanoherbicides. Nanotechnology is also being used to enhance crop production via genetic modification of traits for efficient use of soil nutrients and higher yields. Furthermore, NPs can help plants overcome salinity stress-induced oxidative damage. We also review the fate of NPs in the soil system, plants, animals, and humans, highlight the shortcomings of previous research, and offer suggestions for toxicity studies that would aid regulatory bodies and benefit the agrochemical sector, consequently promoting efficient and sustainable use of nano-agrochemicals.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Myeongyeon Shin
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Minhye Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
3
|
Aguilar Perez KM, Nikolaeva V, Maiti B, Sharma V, Qutub S, Hassine MB, Ayach M, Alasmary FA, Khashab NM. Tailoring Core-Shell Metal Coordination for Smart Seed Coatings in Sustainable Agriculture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65255-65269. [PMID: 39340809 DOI: 10.1021/acsami.4c11981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
The international agriculture and food security sector is grappling with challenges like low crop yields, soil health deficiencies, and inefficient agrochemical use. The application of smart nanotechnology in agriculture, particularly surface functionalization, holds promise but has limited implementation. Engineered nanomaterials used as seed treatments, known as nanopriming, offer a simple technology to improve crop yield and stress tolerance. In this study, a multicomponent platform called Phelm (Phenolic network with a lipid core and metal coordinated shell) is proposed for encapsulating a commercial plant growth regulator, indole-3 acetic acid (IAA). Phelm comprises a hydrophobic solid lipid core, loaded with IAA, and an outer metal coordinated phenolic shell of tannic acid (TA) and Fe3+. The platform aims to treat seeds with encapsulated IAA, which can be controllably released, as well as protect the germination process at high salt concentrations. Phelm showed a remarkable increase in growth parameters of wheat seeds up to 58.6%, despite being irrigated with high concentrations of saltwater (100 mM). These findings suggest that nanopriming of seeds can effectively increase their efficacy even under abiotic stress conditions, which can drastically improve crop yields. Moreover, we envisage that the Phelm core/shell assembly can encapsulate a wide range of agrochemicals and biostimulants to promote sustainable and smart agricultural practices.
Collapse
Affiliation(s)
- Katya M Aguilar Perez
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Valeriia Nikolaeva
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bappa Maiti
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vivekanand Sharma
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Somayah Qutub
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | | - Maya Ayach
- KAUST Core Laboratories, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Shelar A, Singh AV, Chaure N, Jagtap P, Chaudhari P, Shinde M, Nile SH, Chaskar M, Patil R. Nanoprimers in sustainable seed treatment: Molecular insights into abiotic-biotic stress tolerance mechanisms for enhancing germination and improved crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175118. [PMID: 39097019 DOI: 10.1016/j.scitotenv.2024.175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Abiotic and biotic stresses during seed germination are typically managed with conventional agrochemicals, known to harm the environment and reduce crop yields. Seeking sustainable alternatives, nanotechnology-based agrochemicals leverage unique physical and chemical properties to boost seed health and alleviate stress during germination. Nanoprimers in seed priming treatment are advanced nanoscale materials designed to enhance seed germination, growth, and stress tolerance by delivering bioactive compounds and nutrients directly to seeds. Present review aims to explores the revolutionary potential of nanoprimers in sustainable seed treatment, focusing on their ability to enhance crop productivity by improving tolerance to abiotic and biotic stresses. Key objectives include understanding the mechanisms by which nanoprimers confer resistance to stresses such as drought, salinity, pests, and diseases, and assessing their impact on plant physiological and biochemical pathways. Key findings reveal that nanoprimers significantly enhance seedling vigor and stress resilience, leading to improved crop yields. These advancements are attributed to the precise delivery of nanomaterials that optimize plant growth conditions and activate stress tolerance mechanisms. However, the study also highlights the importance of comprehensive toxicity and risk assessments. Current review presents a novel contribution, highlighting both the advantages and potential risks of nanoprimers by offering a comprehensive overview of advancements in seed priming with metal and metal oxide nanomaterials, addressing a significant gap in the existing literature. By delivering advanced molecular insights, the study underscores the transformative potential of nanoprimers in fostering sustainable agricultural practices and responsibly meeting global food demands.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589 Berlin, Germany
| | - Nandu Chaure
- Department of Physics, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Pramod Jagtap
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Pramod Chaudhari
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Manish Shinde
- Centre for Materials for Electronics Technology (C-MET), Panchawati, Pune 411008, MH, India
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 140306, PB, India.
| | - Manohar Chaskar
- Swami Ramanand Teerth Marathwada University, Nanded 431606 (MS) India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MH, India.
| |
Collapse
|
5
|
Das I, Borah D. Microbial biosurfactant-mediated green synthesis of zinc oxide nanoparticles (ZnO NPs) and exploring their role in enhancing chickpea and rice seed germination. DISCOVER NANO 2024; 19:174. [PMID: 39487377 PMCID: PMC11530582 DOI: 10.1186/s11671-024-04134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Malnutrition is one of the greatest challenges faced by humanity, which may be addressed by improving crop productivity to ensure food security. However, extensive use of synthetic fertilizers can lead to soil fertility degradation. This study highlights the potential of combining nanotechnology with biotechnology to enhance the germination rates of commercially important crop seeds. Bacterial biosurfactant extracted from a newly isolated Klebsiella sp. strain RGUDBI03 was used as a reducing and capping agent for the synthesis of zinc oxide nanoparticles (ZnO NPs) through a simple method. Extensive characterization of ZnO NPs through electron microscopic analysis showed well-dispersed, homogeneous NPs with a size range of 2-10 nm. High-resolution transmission electron microscopy (HR-TEM) images also revealed molecular fringes of 0.26 nm in single crystal ZnO NPs, with approximately 50% of the NPs exhibiting a size range of 2-4 nm. X-ray diffraction (XRD) results of ZnO NPs indicated the presence of (100), (002), (101), (102), (200), and (112) planes, confirming their crystalline nature. The presence of C = C-H, C = C, C-H, and C = C groups in both the bacterial biosurfactant and ZnO NPs, as depicted by Fourier-transform infrared spectroscopy (FTIR) spectra, confirmed the function of the biosurfactant as a reducing and capping agent. The nano-primed chickpea (Cicer arietinum) and rice (Oryza sativa) seeds showed an increase in water uptake rate, 89% and 92% respectively, compared to the control (73% and 44%), leading to an enhanced germination rate of 98% and 76%, compared to their respective controls (80% and 30%) under optimized conditions. Additionally, the nano-primed seeds exhibited higher levels of α-amylase activity in both seeds (0.37 mg/g for chickpea and 2.49 mg/g for rice) compared to the control. Notably, the ZnO NP priming solution exhibited no cytotoxicity on red blood cells and earthworms (Eudrilus eugeniae), indicating their non-cytotoxic and eco-friendly nature for future field trials.
Collapse
Affiliation(s)
- Indukalpa Das
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035, India
| | - Debajit Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035, India.
| |
Collapse
|
6
|
Liu Y, Wu S, Qin X, Yu M, Shabala S, Zheng X, Hu C, Tan Q, Xu S, Sun X. Combined dynamic transcriptome and flavonoid metabolome reveal the role of Mo nanoparticles in the nodulation process in soybean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173733. [PMID: 38851347 DOI: 10.1016/j.scitotenv.2024.173733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Symbiotic nitrogen fixation can reduce the impact of agriculture on the environment by reducing fertilizer input. The rapid development of nanomaterials in agriculture provides a new prospect for us to improve the biological nitrogen fixation ability of leguminous crops. Molybdenum is an important component of nitrogenase, and the potential application of MoO3NPs in agriculture is largely unexplored. In this study, on the basis of verifying that MoO3NPs can improve the nitrogen fixation ability of soybean, the effects of MoO3NPs on the symbiotic nitrogen fixation process of soybean were investigated by using dynamic transcriptome and targeted metabolome techniques. Here we showed that compared with conventional molybdenum fertilizer, minute concentrations of MoO3NPs (0.01-0.1 mg kg-1) could promote soybean growth and nitrogen fixation efficiency. The nodules number, fresh nodule weight and nitrogenase activity of 0.1 mg kg-1 were increased by 17 %, 14 % and 27 %, and plant nitrogen accumulation increased by 17 %. Compared with conventional molybdenum fertilizer, MoO3NPs had a greater effect on apigenin, kaempferol and other flavonoid, and the expression of nodulation related genes such as ENOD93, F3'H. Based on WGCNA analysis, we identified a core gene GmCHS9 that was positively responsive to molybdenum and was highly expressed during MoO3NPs induced nodulation. MoO3NPs could improve the nitrogen fixation ability of soybean by promoting the secretion of flavonoids and the expression of key genes. This study provided a new perspective for the nano-strengthening strategy of nodules development and flavonoid biosynthesis by molybdenum.
Collapse
Affiliation(s)
- Yining Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoming Qin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
| | - Xiaomei Zheng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shoujun Xu
- Guangdong Agricultural Environment and Cultivated Land Quality Protection Center, Guangdong Agricultural and Rural Investment Project Center, Guangzhou 510500, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, PR China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, PR China.
| |
Collapse
|
7
|
Antunes DR, Forini MMLH, Coqueiro YA, Pontes MS, Lima PHC, Cavalcante LAF, Sanches AO, Caires ARL, Santiago EF, Grillo R. Effect of hyaluronic acid-stabilized silver nanoparticles on lettuce (Lactuca sativa L.) seed germination. CHEMOSPHERE 2024; 364:143080. [PMID: 39146989 DOI: 10.1016/j.chemosphere.2024.143080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Nanotechnology has brought significant advancements to agriculture through the development of engineered nanomaterials (ENPs). Silver nanoparticles (AgNPs) capped with polysaccharides have been applied in agricultural diagnostics, crop pest management, and seed priming. Hyaluronic acid (HA), a natural polysaccharide with bactericidal properties, has been considered a growth regulator for plant tissues and an inducer of systemic resistance against plant diseases. Additionally, HA has been employed as a stabilizing agent for AgNPs. This study investigated the synthesis and effects of hyaluronic acid-stabilized silver nanoparticles (HA-AgNPs) as a seed priming agent on lettuce (Lactuca sativa L.) seed germination. HA-AgNPs were characterized using several techniques, exhibiting spherical morphology and good colloidal stability. Germination assays conducted with 0.1, 0.04, and 0.02 g/L of HA-AgNPs showed a concentration-dependent reduction in seed germination. Conversely, lower concentrations of HA-AgNPs significantly increased germination rates, survival, tolerance indices, and seed water absorption compared to silver ions (Ag+). SEM/EDS indicated more significant potential for HA-AgNPs internalization compared to Ag+. Therefore, these findings are innovative and open new avenues for understanding the impact of Ag+ and HA-AgNPs on seed germination.
Collapse
Affiliation(s)
- Débora R Antunes
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Mariana M L H Forini
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Yasmin A Coqueiro
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Montcharles S Pontes
- Plant Resources Study Group, Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, MS, Brazil; Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Pedro H C Lima
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Luiz A F Cavalcante
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Alex O Sanches
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Anderson R L Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Etenaldo F Santiago
- Plant Resources Study Group, Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, MS, Brazil
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil.
| |
Collapse
|
8
|
Masood HA, Qi Y, Zahid MK, Li Z, Ahmad S, Lv JM, Shahid MS, Ali HE, Ondrasek G, Qi X. Recent advances in nano-enabled immunomodulation for enhancing plant resilience against phytopathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1445786. [PMID: 39170781 PMCID: PMC11336869 DOI: 10.3389/fpls.2024.1445786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Plant diseases caused by microbial pathogens pose a severe threat to global food security. Although genetic modifications can improve plant resistance; however, environmentally sustainable strategies are needed to manage plant diseases. Nano-enabled immunomodulation involves using engineered nanomaterials (ENMs) to modulate the innate immune system of plants and enhance their resilience against pathogens. This emerging approach provides unique opportunities through the ability of ENMs to act as nanocarriers for delivering immunomodulatory agents, nanoprobes for monitoring plant immunity, and nanoparticles (NPs) that directly interact with plant cells to trigger immune responses. Recent studies revealed that the application of ENMs as nanoscale agrochemicals can strengthen plant immunity against biotic stress by enhancing systemic resistance pathways, modulating antioxidant defense systems, activating defense-related genetic pathways and reshaping the plant-associated microbiomes. However, key challenges remain in unraveling the complex mechanisms through which ENMs influence plant molecular networks, assessing their long-term environmental impacts, developing biodegradable formulations, and optimizing targeted delivery methods. This review provides a comprehensive investigation of the latest research on nano-enabled immunomodulation strategies, potential mechanisms of action, and highlights future perspectives to overcome existing challenges for sustainable plant disease management.
Collapse
Affiliation(s)
- Hafiza Ayesha Masood
- Xianghu Laboratory, Hangzhou, China
- MEU Research Unit, Middle East University, Amman, Jordan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | | | | | | | - Salman Ahmad
- Department of Plant Pathology, Faculty of Agriculture, University of Sargodha, Sargodha, Pakistan
| | | | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Hamada E. Ali
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | | | | |
Collapse
|
9
|
Francis DV, Abdalla AK, Mahakham W, Sarmah AK, Ahmed ZFR. Interaction of plants and metal nanoparticles: Exploring its molecular mechanisms for sustainable agriculture and crop improvement. ENVIRONMENT INTERNATIONAL 2024; 190:108859. [PMID: 38970982 DOI: 10.1016/j.envint.2024.108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Metal nanoparticles offer promising prospects in agriculture, enhancing plant growth and ensuring food security. Silver, gold, copper, and zinc nanoparticles possess unique properties making them attractive for plant applications. Understanding molecular interactions between metal nanoparticles and plants is crucial for unlocking their potential to boost crop productivity and sustainability. This review explores metal nanoparticles in agriculture, emphasizing the need to understand these interactions. By elucidating mechanisms, it highlights the potential for enhancing crop productivity, stress tolerance, and nutrient-use efficiency, contributing to sustainable agriculture and food security. Quantifying benefits and risks reveal significant advantages. Metal nanoparticles enhance crop productivity by 20% on average and reduce disease incidence by up to 50% when used as antimicrobial agents. They also reduce nutrient leaching by 30% and enhance soil carbon sequestration by 15%, but concerns about toxicity, adverse effects on non-target organisms, and nanoparticle accumulation in the food chain must be addressed. Metal nanoparticles influence cellular processes including sensing, signaling, transcription, translation, and post-translational modifications. They act as signaling molecules, activate stress-responsive genes, enhance defense mechanisms, and improve nutrient uptake. The review explores their catalytic role in nutrient management, disease control, precision agriculture, nano-fertilizers, and nano-remediation. A bibliometric analysis offers insights into the current research landscape, highlighting trends, gaps, and future directions. In conclusion, metal nanoparticles hold potential for revolutionizing agriculture, enhancing productivity, mitigating environmental stressors, and promoting sustainability. Addressing risks and gaps is crucial for their safe integration into agricultural practices.
Collapse
Affiliation(s)
- Dali V Francis
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Abdelmoneim K Abdalla
- Food Science and Technology Department, College of Agriculture, South Valley University, Qena 83523, Egypt
| | - Wuttipong Mahakham
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Zienab F R Ahmed
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
10
|
Yadav N, Bora S, Devi B, Upadhyay C, Singh P. Nanoparticle-mediated defense priming: A review of strategies for enhancing plant resilience against biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108796. [PMID: 38901229 DOI: 10.1016/j.plaphy.2024.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Nanotechnology has emerged as a promising field with the potential to revolutionize agriculture, particularly in enhancing plant defense mechanisms. Nanoparticles (NPs) are instrumental in plant defense priming, where plants are pre-exposed to controlled levels of stress to heighten their alertness and responsiveness to subsequent stressors. This process improves overall plant performance by enabling quicker and more effective responses to secondary stimuli. This review explores the application of NPs as priming agents, utilizing their unique physicochemical properties to bolster plants' innate defense mechanisms. It discusses key findings in NP-based plant defense priming, including various NP types such as metallic, metal oxide, and carbon-based NPs. The review also investigates the intricate mechanisms by which NPs interact with plants, including uptake, translocation, and their effects on plant physiology, morphology, and molecular processes. Additionally, the review examines how NPs can enhance plant responses to a range of stressors, from pathogen attacks and herbivore infestations to environmental stresses. It also discusses NPs' ability to improve plants' tolerance to abiotic stresses like drought, salinity, and heavy metals. Safety and regulatory aspects of NP use in agriculture are thoroughly addressed, emphasizing responsible and ethical deployment for environmental and human health safety. By harnessing the potential of NPs, this approach shows promise in reducing crop losses, increasing yields, and enhancing global food security while minimizing the environmental impact of traditional agricultural practices. The review concludes by emphasizing the importance of ongoing research to optimize NP formulations, dosages, and delivery methods for practical application in diverse agricultural settings.
Collapse
Affiliation(s)
- Nidhi Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Sunayana Bora
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Bandana Devi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Chandan Upadhyay
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Prashant Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
11
|
Hayat A, Jilani G, Jalil S, Iqbal T, Rasheed M, Chaudhry AN, Ali Z, Zulfiqar F, Ali HM, Yong JWH. Combining Urea with Chemical and Biological Amendments Differentially Influences Nitrogen Dynamics in Soil and Wheat Growth. ACS OMEGA 2024; 9:32617-32627. [PMID: 39100295 PMCID: PMC11292837 DOI: 10.1021/acsomega.4c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
Nitrogen (N) losses from fertilized fields pose a major concern in modern agriculture due to environmental implications. Urease inhibitors, such as N-(n-butyl) thiophosphoric triamide (NBPT), nitrification inhibitors (NI), like dicyandiamide (DCD), and sulfur-oxidizing bacteria (SOB) could have potential in reducing N losses. For evaluating their effectiveness, investigations were undertaken through incubation and greenhouse experiments by mixing a urea fertilizer with sole NBPT, DCD, and SOB, as well as combined, on ammonia volatilization losses from silt loam soil. An incubation experiment was conducted in 1 L airtight plastic jars with adequate aeration and constant temperature at 25 °C for 10 days. Three replications of each treatment were conducted using a completely randomized designed. The ammonia emission rate gradually increased until the highest (17.21 mg NH3 m-2 h-1) value on the third day with sole urea and some other treatments except NBPT alone, which prolonged the hydrolysis peak until the fifth day with the lowest ammonia emission rate (12.1 mg NH3 m-2 h-1). Although the DCD and SOB treatments reduced ammonia emission, their difference with urea was nonsignificant. Additionally, mixing NBPT with urea exhibited the highest population of nitrifying bacteria in soil, indicating its potential role in promoting the nitrification process. In a greenhouse experiment, 10 treatments, i.e., T1 = control, T2 = N120 (urea fertilizer equivalent to 120 kg N ha-1), T3 = N90 (90 kg N ha-1), T4 = N90 + NBPT, T5 = N90 + DCD, T6 = N90 + SOB, T7 = N90 + NBPT + DCD, T8 = N90 + NBPT + SOB, T9 = N90 + DCD + SOB, and T10 = N90 + NBPT + DCD + SOB, were applied to investigate the wheat yield and N uptake efficiency. The highest N recovery efficiency (31.51%) was recorded in T5 where DCD was combined with urea at 90 kg ha-1.
Collapse
Affiliation(s)
- Asim Hayat
- Institute
of Soil & Environmental Sciences, PMAS
Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
- LRRI, National
Agricultural Research Centre, Islamabad 44000, Pakistan
| | - Ghulam Jilani
- Institute
of Soil & Environmental Sciences, PMAS
Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Sanaullah Jalil
- Department
of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tanveer Iqbal
- Institute
of Soil & Environmental Sciences, PMAS
Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Muhammad Rasheed
- Department
of Agronomy, PMAS Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Arshad Nawaz Chaudhry
- Institute
of Soil & Environmental Sciences, PMAS
Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Zeshan Ali
- Ecotoxicology
Research Program, Institute of Plant and Environmental Protection, National Agricultural Research Centre, Park Road, P.O.
45500, Islamabad 44000,Pakistan
| | - Faisal Zulfiqar
- Department
of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hayssam M. Ali
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jean Wan Hong Yong
- Department
of Biosystems and Technology, Swedish University
of Agricultural Sciences, Alnarp 23456, Sweden
| |
Collapse
|
12
|
Feng P, Liu J, Bao LJ, Zeng EY, Ma C, Wang L, Zhang G, Gong X. Adaptive Escape of Pseudomonas aeruginosa by Application of Low-Amplitude Electric Pulses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14281-14290. [PMID: 38967331 DOI: 10.1021/acs.langmuir.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Marine antibiofouling using low-amplitude electric pulses (EP) is an energy-efficient and eco-friendly approach, but potential mechanisms for preventing biofouling remain unclear. In the present study, the 3D adhesion dynamics of a model microorganism─Pseudomonas aeruginosa (PAO1)─under low-amplitude cathodic EP were examined as a function of applying voltage and its duration (td). The results demonstrated that adhered bacteria escaped from the electrode surface even when EP was removed. The escaped bacteria ratio, induction period of escape, and duration of the detachment were influenced profoundly by EP amplitude but slightly by td when td ≥ 5 min. The acceleration of escaped PAO1 from the surface indicated that their flagellar motor was powered by EP. Particularly, EP enabled swimming bacteria to have adaptive motions that were sustainable and regulated by the gene rsmA. As a result, they had less accumulation near the surface. The propulsion of adhered bacteria and adaptive escape of swimming bacteria were enhanced in response to low-amplitude EP. Hence, low-amplitude and short-duration EP is promising for sustainable antibiofouling applications.
Collapse
Affiliation(s)
- Pu Feng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Jun Liu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lingling Wang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Micrology, Academy of Sciences, Guangdong 510070, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
13
|
Kurniawan TA, Mohyuddin A, Othman MHD, Goh HH, Zhang D, Anouzla A, Aziz F, Casila JC, Ali I, Pasaribu B. Beyond surface: Unveiling ecological and economic ramifications of microplastic pollution in the oceans. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11070. [PMID: 39005104 DOI: 10.1002/wer.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Every year, the global production of plastic waste reaches a staggering 400 million metric tons (Mt), precipitating adverse consequences for the environment, food safety, and biodiversity as it degrades into microplastics (MPs). The multifaceted nature of MP pollution, coupled with its intricate physiological impacts, underscores the pressing need for comprehensive policies and legislative frameworks. Such measures, alongside advancements in technology, hold promise in averting ecological catastrophe in the oceans. Mandated legislation represents a pivotal step towards restoring oceanic health and securing the well-being of the planet. This work offers an overview of the policy hurdles, legislative initiatives, and prospective strategies for addressing global pollution due to MP. Additionally, this work explores innovative approaches that yield fresh insights into combating plastic pollution across various sectors. Emphasizing the importance of a global plastics treaty, the article underscores its potential to galvanize collaborative efforts in mitigating MP pollution's deleterious effects on marine ecosystems. Successful implementation of such a treaty could revolutionize the plastics economy, steering it towards a circular, less polluting model operating within planetary boundaries. Failure to act decisively risks exacerbating the scourge of MP pollution and its attendant repercussions on both humanity and the environment. Central to this endeavor are the formulation, content, and execution of the treaty itself, which demand careful consideration. While recognizing that a global plastics treaty is not a panacea, it serves as a mechanism for enhancing plastics governance and elevating global ambitions towards achieving zero plastic pollution by 2040. Adopting a life cycle approach to plastic management allows for a nuanced understanding of possible trade-offs between environmental impact and economic growth, guiding the selection of optimal solutions with socio-economic implications in mind. By embracing a comprehensive strategy that integrates legislative measures and technological innovations, we can substantially reduce the influx of marine plastic litter at its sources, safeguarding the oceans for future generations.
Collapse
Affiliation(s)
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Dongdong Zhang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity and Climate Changes, Semlalia Faculty of Sciences, B.P. 2390, Cadi Ayyad University, Marrakech, Morocco
| | - Joan C Casila
- Land and Water Resources Engineering Division, Institute of Agricultural and Biosystems Engineering, College of Engineering and Agro-industrial Technology, University of the Philippines-Los Baños, Los Baños, Philippines
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Buntora Pasaribu
- Department of Marine Science, Faculty of Fisheries and Marine Science, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
14
|
Wang J, Wu H, Wang Y, Ye W, Kong X, Yin Z. Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1274-1294. [PMID: 38578151 DOI: 10.1111/jipb.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
By 2050, the global population is projected to reach 9 billion, underscoring the imperative for innovative solutions to increase grain yield and enhance food security. Nanotechnology has emerged as a powerful tool, providing unique solutions to this challenge. Nanoparticles (NPs) can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties. Moreover, they can be used to monitor crop health status and augment plant resilience against abiotic stresses (such as salinity, drought, heavy metals, and extreme temperatures) that endanger global agriculture. Application of NPs can enhance stress tolerance mechanisms in plants, minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality. This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers, policymakers, and agricultural practitioners. With thoughtful stewardship, nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.
Collapse
Affiliation(s)
- Jie Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Honghong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wang
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| |
Collapse
|
15
|
Elzein B. Nano Revolution: "Tiny tech, big impact: How nanotechnology is driving SDGs progress". Heliyon 2024; 10:e31393. [PMID: 38818162 PMCID: PMC11137564 DOI: 10.1016/j.heliyon.2024.e31393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Nanotechnology has emerged as a powerful tool in addressing global challenges and advancing sustainable development. By manipulating materials at the nanoscale, researchers have unlocked new possibilities in various fields, including energy, healthcare, agriculture, construction, transportation, and environmental conservation. This paper explores the potential of nanotechnology and nanostructures in contributing to the achievement of the United Nations (UN) Sustainable Development Goals (SDGs) by improving energy efficiency and energy conversion, leading to a more sustainable and clean energy future, improving water purification processes, enabling access to clean drinking water for communities, enabling targeted drug delivery systems, early disease detection, and personalized medicine, thus revolutionizing healthcare, improving crop yields, efficient nutrient delivery systems, pest control mechanisms, and many other areas, therefore addressing food security issues. It also highlights the potential of nanomaterials in environmental remediation and pollution control. Therefore, by understanding and harnessing nanotechnology's potential, policymakers, researchers, and stakeholders can work together toward a more sustainable future by achieving the 17 UN SDGs.
Collapse
Affiliation(s)
- Basma Elzein
- Electrical Engineering Department, College of Engineering, University of Business and Technology, Jeddah, 21451, Saudi Arabia
- Sustainable Development Department, Global Council for Tolerance and Peace, Valetta, Malta
| |
Collapse
|
16
|
Shangguan W, Huang Q, Chen H, Zheng Y, Zhao P, Cao C, Yu M, Cao Y, Cao L. Making the Complicated Simple: A Minimizing Carrier Strategy on Innovative Nanopesticides. NANO-MICRO LETTERS 2024; 16:193. [PMID: 38743342 PMCID: PMC11093950 DOI: 10.1007/s40820-024-01413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/07/2024] [Indexed: 05/16/2024]
Abstract
The flourishing progress in nanotechnology offers boundless opportunities for agriculture, particularly in the realm of nanopesticides research and development. However, concerns have been raised regarding the human and environmental safety issues stemming from the unrestrained use of non-therapeutic nanomaterials in nanopesticides. It is also important to consider whether the current development strategy of nanopesticides based on nanocarriers can strike a balance between investment and return, and if the complex material composition genuinely improves the efficiency, safety, and circularity of nanopesticides. Herein, we introduced the concept of nanopesticides with minimizing carriers (NMC) prepared through prodrug design and molecular self-assembly emerging as practical tools to address the current limitations, and compared it with nanopesticides employing non-therapeutic nanomaterials as carriers (NNC). We further summarized the current development strategy of NMC and examined potential challenges in its preparation, performance, and production. Overall, we asserted that the development of NMC systems can serve as the innovative driving force catalyzing a green and efficient revolution in nanopesticides, offering a way out of the current predicament.
Collapse
Affiliation(s)
- Wenjie Shangguan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Qiliang Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Huiping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yingying Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- State Key Laboratory of Element-Organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Pengyue Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Manli Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Lidong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
17
|
Jadoon L, Gul A, Fatima H, Babar MM. Nano-elicitation and hydroponics: a synergism to enhance plant productivity and secondary metabolism. PLANTA 2024; 259:80. [PMID: 38436711 DOI: 10.1007/s00425-024-04353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
MAIN CONCLUSION This review has explored the importance of using a synergistic approach of nano-elicitation and hydroponics to improve plant growth and metabolite production. Furthermore, it emphasizes the significance of green nanotechnology and eco-friendly practices while utilizing this approach to promote the development of a sustainable agriculture system. Nano-elicitation stimulates metabolic processes in plants using nanoparticles (NPs) as elicitors. The stimulation of these biochemical processes can enhance plant yield and productivity, along with the production of secondary metabolites. Nanoparticles have garnered the attention of scientific community because of their unique characteristics, such as incredibly small size and large surface-to-volume ratio, which make them effective elicitors. Hydroponic systems, which optimize growing conditions to increase plant production, are typically used to study the effect of elicitors. By integrating these two approaches, the qualitative and quantitative output of plants can be increased while employing minimal resources. As the global demand for high-quality crops and bioactive compounds surges, embracing this synergistic approach alongside sustainable farming practices can pave the way for resilient agricultural systems, ensuring food security and fostering an eco-friendly environment.
Collapse
Affiliation(s)
- Linta Jadoon
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Hunaiza Fatima
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, 44000, Pakistan.
| |
Collapse
|
18
|
Tighe-Neira R, Reyes-Díaz M, Nunes-Nesi A, Lana-Costa J, Recio G, Carmona ER, Acevedo P, Rengel Z, Inostroza-Blancheteau C. Physiological and agronomical traits effects of titanium dioxide nanoparticles in seedlings of Solanum lycopersicum L. BMC PLANT BIOLOGY 2024; 24:146. [PMID: 38413850 PMCID: PMC10900795 DOI: 10.1186/s12870-024-04763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Titanium dioxide nanoparticles (TiO2 NPs) have been reported to have contrasting effects on plant physiology, while their effects on sugar, protein, and amino acid metabolism are poorly understood. In this work, we evaluated the effects of TiO2 NPs on physiological and agronomical traits of tomato (Solanum lycopersicum L.) seedlings. Tomato seeds were treated with TiO2 NPs (1000 and 2000 mg L- 1), TiO2 microparticles (µPs, 2000 mg L- 1) as the size control, and ultrapure water as negative control. RESULTS The dry matter of stems (DMs), leaves (DMl) and total dry matter (DMt) decreased as particle concentration increased. This trend was also observed in the maximum quantum yield of light-adapted photosystem II (PSII) (Fv´/Fm´), the effective quantum yield of PSII (ΦPSII), and net photosynthesis (Pn). The concentrations of sugars, total soluble proteins, and total free amino acids were unaffected, but there were differences in the daily dynamics of these compounds among the treatments. CONCLUSION Our results suggest that treating tomato seeds with TiO2 might affect PSII performance, net photosynthesis and decrease biomass production, associated with a concentration- and size-related effect of TiO2 particles.
Collapse
Affiliation(s)
- Ricardo Tighe-Neira
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Jaciara Lana-Costa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Gonzalo Recio
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción, Chile
| | - Erico R Carmona
- Laboratorio de Bio-nanomateriales, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Av. Arturo Prat s/n Campus Huayquique, Iquique, Chile
| | - Patricio Acevedo
- Departamento de Ciencias Físicas, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Center for Optics and Photonics, Universidad de Concepcion, Casilla, Concepción, 4012, Chile
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| | - Claudio Inostroza-Blancheteau
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile.
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile.
| |
Collapse
|
19
|
Perner J, Matoušek J, Auer malinská H. Cold plasma treatment influences the physiological parameters of millet. PHOTOSYNTHETICA 2024; 62:126-137. [PMID: 39650629 PMCID: PMC11609773 DOI: 10.32615/ps.2024.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 12/11/2024]
Abstract
In recent years, cold plasma treatment has emerged as a promising method to positively impact early seed growth. This study aimed to investigate the effects of cold plasma treatment on millet seeds with ambient air plasma discharge at pressures of 100 Pa and power ranging from 40 to 250 W. Results indicated that cold plasma treatment significantly increased radicle length by up to 112.5% (250 W) after 48 h and up to 57% (120 W) after 72 h compared to nontreated plants. The study also found that cold plasma treatment influenced electron transport during the primary phase of photosynthesis, with the effect varying with the power of discharge. However, high levels of discharge resulted in a significantly higher chlorophyll synthesis. These results suggest that cold plasma treatment may be used to reduce plant stress and improve growing properties.
Collapse
Affiliation(s)
- J. Perner
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic
| | - J. Matoušek
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic
| | - H. Auer malinská
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
20
|
Singh AV, Shelar A, Rai M, Laux P, Thakur M, Dosnkyi I, Santomauro G, Singh AK, Luch A, Patil R, Bill J. Harmonization Risks and Rewards: Nano-QSAR for Agricultural Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2835-2852. [PMID: 38315814 DOI: 10.1021/acs.jafc.3c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This comprehensive review explores the emerging landscape of Nano-QSAR (quantitative structure-activity relationship) for assessing the risk and potency of nanomaterials in agricultural settings. The paper begins with an introduction to Nano-QSAR, providing background and rationale, and explicitly states the hypotheses guiding the review. The study navigates through various dimensions of nanomaterial applications in agriculture, encompassing their diverse properties, types, and associated challenges. Delving into the principles of QSAR in nanotoxicology, this article elucidates its application in evaluating the safety of nanomaterials, while addressing the unique limitations posed by these materials. The narrative then transitions to the progression of Nano-QSAR in the context of agricultural nanomaterials, exemplified by insightful case studies that highlight both the strengths and the limitations inherent in this methodology. Emerging prospects and hurdles tied to Nano-QSAR in agriculture are rigorously examined, casting light on important pathways forward, existing constraints, and avenues for research enhancement. Culminating in a synthesis of key insights, the review underscores the significance of Nano-QSAR in shaping the future of nanoenabled agriculture. It provides strategic guidance to steer forthcoming research endeavors in this dynamic field.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Mansi Rai
- Department of Microbiology, Central University of Rajasthan NH-8, Bandar Sindri, Dist-Ajmer-305817, Rajasthan, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Manali Thakur
- Uniklinik Köln, Kerpener Strasse 62, 50937 Köln Germany
| | - Ievgen Dosnkyi
- Institute of Chemistry and Biochemistry Department of Organic ChemistryFreie Universität Berlin Takustr. 3 14195 Berlin, Germany
| | - Giulia Santomauro
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| | - Alok Kumar Singh
- Department of Plant Molecular Biology & Genetic Engineering, ANDUA&T, Ayodhya 224229, Uttar Pradesh, India
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Joachim Bill
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
21
|
Zhao L, Zhou X, Kang Z, Peralta-Videa JR, Zhu YG. Nano-enabled seed treatment: A new and sustainable approach to engineering climate-resilient crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168640. [PMID: 37989394 DOI: 10.1016/j.scitotenv.2023.168640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Under a changing climate, keeping the food supply steady for an ever-increasing population will require crop plants adapted to environmental fluctuations. Genetic engineering and genome-editing approaches have been used for developing climate-resilient crops. However, genetically modified crops have yet to be widely accepted, especially for small-scale farmers in low-income countries and some societies. Nano-priming (seed exposure to nanoparticles, NPs) has appeared as an alternative to the abovementioned techniques. This technique improves seed germination speed, promotes seedlings' vigor, and enhances plant tolerance to adverse conditions such as drought, salinity, temperature, and flooding, which may occur under extreme weather conditions. Moreover, nano-enabled seed treatment can increase the disease resistance of crops by boosting immunity, which will reduce the use of pesticides. This unsophisticated, farmer-available, cost-effective, and environment-friendly seed treatment approach may help crop plants fight climate change challenges. This review discusses the previous information about nano-enabled seed treatment for enhancing plant tolerance to abiotic stresses and increasing disease resistance. Current knowledge about the mechanisms underlying nanomaterial-seed interactions is discussed. To conclude, the review includes research questions to address before this technique reaches its full potential.
Collapse
Affiliation(s)
- Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Xiaoding Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Kang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jose R Peralta-Videa
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
22
|
Gohari G, Jiang M, Manganaris GA, Zhou J, Fotopoulos V. Next generation chemical priming: with a little help from our nanocarrier friends. TRENDS IN PLANT SCIENCE 2024; 29:150-166. [PMID: 38233253 DOI: 10.1016/j.tplants.2023.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Plants are exposed to multiple threats linked to climate change which can cause critical yield losses. Therefore, designing novel crop management tools is crucial. Chemical priming has recently emerged as an effective technology for improving tolerance to stress factors. Several compounds such as phytohormones, reactive species, and synthetic chimeras have been identified as promising priming agents. Following remarkable developments in nanotechnology, several unique nanocarriers (NCs) have been engineered that can act as smart delivery systems. These provide an eco-friendly, next-generation method for chemical priming, leading to increased efficiency and reduced overall chemical usage. We review novel engineered NCs (NENCs) as vehicles for chemical agents in advanced priming strategies, and address challenges and opportunities to be met towards achieving sustainable agriculture.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus; Department of Horticulture, Faculty of Horticulture, University of Maragheh, Maragheh, Iran
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, PR China
| | - George A Manganaris
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Jie Zhou
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, PR China; Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, PR China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus.
| |
Collapse
|
23
|
Botha NL, Cloete KJ, Šmit Ž, Isaković K, Akbari M, Morad R, Madiba I, David OM, Santos LPM, Dube A, Pelicon P, Maaza M. Ionome mapping and amino acid metabolome profiling of Phaseolus vulgaris L. seeds imbibed with computationally informed phytoengineered copper sulphide nanoparticles. DISCOVER NANO 2024; 19:8. [PMID: 38175418 PMCID: PMC10767113 DOI: 10.1186/s11671-023-03953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
This study reports the effects of a computationally informed and avocado-seed mediated Phyto engineered CuS nanoparticles as fertilizing agent on the ionome and amino acid metabolome of Pinto bean seeds using both bench top and ion beam analytical techniques. Physico-chemical analysis of the Phyto engineered nanoparticles with scanning-electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier Transform Infrared Spectroscopy confirmed the presence of CuS nanoparticles. Molecular dynamics simulations to investigate the interaction of some active phytocompounds in avocado seeds that act as reducing agents with the nano-digenite further showed that 4-hydroxybenzoic acid had a higher affinity for interacting with the nanoparticle's surface than other active compounds. Seeds treated with the digenite nanoparticles exhibited a unique ionome distribution pattern as determined with external beam proton-induced X-ray emission, with hotspots of Cu and S appearing in the hilum and micropyle area that indicated a possible uptake mechanism via the seed coat. The nano-digenite also triggered a plant stress response by slightly altering seed amino acid metabolism. Ultimately, the nano-digenite may have important implications as a seed protective or nutritive agent as advised by its unique distribution pattern and effect on amino acid metabolism.
Collapse
Affiliation(s)
- Nandipha L Botha
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0003, South Africa.
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, PO Box 722, Somerset West, Western Cape Province, 7129, South Africa.
| | - Karen J Cloete
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0003, South Africa.
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, PO Box 722, Somerset West, Western Cape Province, 7129, South Africa.
| | - Žiga Šmit
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia
- Jožef Stefan Institute, Jamova 39, 1001, Ljubljana, Slovenia
| | | | - Mahmood Akbari
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0003, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, PO Box 722, Somerset West, Western Cape Province, 7129, South Africa
| | - Razieh Morad
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0003, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, PO Box 722, Somerset West, Western Cape Province, 7129, South Africa
| | - Itani Madiba
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0003, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, PO Box 722, Somerset West, Western Cape Province, 7129, South Africa
| | | | - Luis P M Santos
- Graduate Program in Materials Science and Engineering, Federal University of Ceará, Campus of PICI, Fortaleza, CE, 60440-900, Brazil
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Bellville, 7535, South Africa
| | - Primoz Pelicon
- Jožef Stefan Institute, Jamova 39, 1001, Ljubljana, Slovenia
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0003, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, PO Box 722, Somerset West, Western Cape Province, 7129, South Africa
| |
Collapse
|
24
|
Sharma K, Sharma R, Kumari S, Kumari A. Enhancing wheat crop production with eco-friendly chitosan encapsulated nickel oxide nanocomposites: A safe and sustainable solution for higher yield. Int J Biol Macromol 2023; 253:127413. [PMID: 37858657 DOI: 10.1016/j.ijbiomac.2023.127413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
In this work, we looked at using nickel oxide (NiO) nanocomposites with chitosan encapsulation as a nano-primer to improve wheat crop output. A straightforward green precipitation procedure was used to create the nanocomposites, and they were then characterized using several methods. According to the findings, the chitosan-encapsulated NiO nanocomposites possessed a large surface area and were resilient to changes in pH. Following this, wheat seeds were primed with the nanocomposites, and under greenhouse circumstances, the impact on crop growth was assessed. The findings demonstrated that, in comparison to the control group, nanocomposites priming considerably enhanced wheat growth and germination rate up to 99 %. In comparison to untreated plants, the wheat plants treated with the nanocomposites primer had greater plant height i.e. shoot length (11.4 cm) and root length (10.3 cm), leaf area, and biomass accumulation. Further research into the mechanism underlying the priming effect of nanocomposites on wheat growth revealed that the nanocomposites enhanced nutrient absorption, photosynthesis, and stress tolerance in wheat plants. In conclusion, our research shows that chitosan-encapsulated NiO nanocomposites have the potential to improve wheat crop productivity in an environmentally benign and long-term manner, offering a viable strategy for sustainable farming.
Collapse
Affiliation(s)
- Kashama Sharma
- Department of Chemistry, Career Point University Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre of Nano Science & Technology, Career Point University, Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India
| | - Rahul Sharma
- Department of Chemistry, Career Point University Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre of Nano Science & Technology, Career Point University, Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India
| | - Seema Kumari
- Department of Chemistry, Career Point University Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre of Nano Science & Technology, Career Point University, Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India
| | - Asha Kumari
- Department of Chemistry, Career Point University Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre of Nano Science & Technology, Career Point University, Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India.
| |
Collapse
|
25
|
Zahmanova G, Aljabali AAA, Takova K, Minkov G, Tambuwala MM, Minkov I, Lomonossoff GP. Green Biologics: Harnessing the Power of Plants to Produce Pharmaceuticals. Int J Mol Sci 2023; 24:17575. [PMID: 38139405 PMCID: PMC10743837 DOI: 10.3390/ijms242417575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Plants are increasingly used for the production of high-quality biological molecules for use as pharmaceuticals and biomaterials in industry. Plants have proved that they can produce life-saving therapeutic proteins (Elelyso™-Gaucher's disease treatment, ZMapp™-anti-Ebola monoclonal antibodies, seasonal flu vaccine, Covifenz™-SARS-CoV-2 virus-like particle vaccine); however, some of these therapeutic proteins are difficult to bring to market, which leads to serious difficulties for the manufacturing companies. The closure of one of the leading companies in the sector (the Canadian biotech company Medicago Inc., producer of Covifenz) as a result of the withdrawal of investments from the parent company has led to the serious question: What is hindering the exploitation of plant-made biologics to improve health outcomes? Exploring the vast potential of plants as biological factories, this review provides an updated perspective on plant-derived biologics (PDB). A key focus is placed on the advancements in plant-based expression systems and highlighting cutting-edge technologies that streamline the production of complex protein-based biologics. The versatility of plant-derived biologics across diverse fields, such as human and animal health, industry, and agriculture, is emphasized. This review also meticulously examines regulatory considerations specific to plant-derived biologics, shedding light on the disparities faced compared to biologics produced in other systems.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
| | - George Minkov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK;
| | - Ivan Minkov
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | | |
Collapse
|
26
|
Samadi S, Saharkhiz MJ, Azizi M, Samiei L, Ghorbanpour M. Exposure to single-walled carbon nanotubes differentially affect in vitro germination, biochemical and antioxidant properties of Thymus daenensis celak. seedlings. BMC PLANT BIOLOGY 2023; 23:579. [PMID: 37981681 PMCID: PMC10658928 DOI: 10.1186/s12870-023-04599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) offer a new possibility for phyto-nanotechnology and biotechnology to improve the quality and quantity of secondary metabolites in vitro. The current study aimed to determine the SWCNTs effects on Thyme (Thymus daenensis celak.) seed germination. The seedlings were further assessed in terms of morphological and phytochemical properties. Sterile seeds were cultured in vitro and treated with various concentrations of SWCNTs. Biochemical analyses were designed on seedling sample extracts for measuring antioxidant activities (AA), total flavonoids (TFC) and phenolic contents, and the main enzymes involved in oxidative reactions under experimental treatments. The results indicated that an increase in SWCNTs concentration can enhance the total percentage of seed germination. The improvement was observed in samples that received SWCNTs levels of up to 125 µg ml-1, even though seedling height and biomass accumulation decreased. Seedling growth parameters in the control samples were higher than those of grown in SWCNT-fortified media. This may have happened because of more oxidative damage as well as a rise in POD and PPO activities in tissues. Additionally, secondary metabolites and relevant enzyme activities showed that maximum amounts of TPC, TFC, AA and the highest PAL enzyme activity were detected in samples exposed to 62.5 µg ml-1 SWCNTs. Our findings reveal that SWCNTs in a concentration-dependent manner has different effects on T. daenensis morphological and phytochemical properties. Microscopic images analysis revealed that SWCNTs pierce cell walls, enter the plant cells and agglomerate in the cellular cytoplasm and cell walls. The findings provide insights into the regulatory mechanisms of SWCNTs on T. daenensis growth, germination and secondary metabolites production.
Collapse
Affiliation(s)
- Saba Samadi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Azizi
- Department of Horticulture, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Leila Samiei
- Department of Ornamental Plants, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
27
|
Kurniawan TA, Haider A, Mohyuddin A, Fatima R, Salman M, Shaheen A, Ahmad HM, Al-Hazmi HE, Othman MHD, Aziz F, Anouzla A, Ali I. Tackling microplastics pollution in global environment through integration of applied technology, policy instruments, and legislation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118971. [PMID: 37729832 DOI: 10.1016/j.jenvman.2023.118971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Microplastic pollution is a serious environmental problem that affects both aquatic and terrestrial ecosystems. Small particles with size of less than 5 mm, known as microplastics (MPs), persist in the environment and pose serious threats to various species from micro-organisms to humans. However, terrestrial environment has received less attention than the aquatic environment, despite being a major source of MPs that eventually reaches water body. To reflect its novelty, this work aims at providing a comprehensive overview of the current state of MPs pollution in the global environment and various solutions to address MP pollution by integrating applied technology, policy instruments, and legislation. This review critically evaluates and compares the existing technologies for MPs detection, removal, and degradation, and a variety of policy instruments and legislation that can support the prevention and management of MPs pollution scientifically. Furthermore, this review identifies the gaps and challenges in addressing the complex and diverse nature of MPs and calls for joint actions and collaboration from stakeholders to contain MPs. As water pollution by MPs is complex, managing it effectively requires their responses through the utilization of technology, policy instruments, and legislation. It is evident from a literature survey of 228 published articles (1961-2023) that existing water technologies are promising to remove MPs pollution. Membrane bioreactors and ultrafiltration achieved 90% of MPs removal, while magnetic separation was effective at extracting 88% of target MPs from wastewater. In biological process, one kg of wax worms could consume about 80 g of plastic/day. This means that 100 kg of wax worms can eat about 8 kg of plastic daily, or about 2.9 tons of plastic annually. Overall, the integration of technology, policy instrument, and legislation is crucial to deal with the MPs issues.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Rida Fatima
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Salman
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Anila Shaheen
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan; Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
28
|
Ahmed T, Noman M, Gardea-Torresdey JL, White JC, Li B. Dynamic interplay between nano-enabled agrochemicals and the plant-associated microbiome. TRENDS IN PLANT SCIENCE 2023; 28:1310-1325. [PMID: 37453924 DOI: 10.1016/j.tplants.2023.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
The plant-associated microbiome is known to be a critical component for crop growth, nutrient acquisition, resistance to pathogens, and abiotic stress tolerance. Conventional approaches have been attempted to manipulate the plant-soil microbiome to improve plant performance; however, several issues have arisen, such as collateral negative impacts on microbiota composition. The lack of reliability and robustness of conventional techniques warrants efforts to develop novel alternative strategies. Nano-enabled approaches have emerged as promising platforms for enhancing agricultural sustainability and global food security. Specifically, the use of engineered nanomaterials (ENMs) as nanoscale agrochemicals has great potential to modulate the plant-associated microbiome. We review the dynamic interplay between nano-agrochemicals and the plant-associated microbiome for the safe development and use of nano-enabled microbiome engineering.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jorge L Gardea-Torresdey
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA.
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Eevera T, Kumaran S, Djanaguiraman M, Thirumaran T, Le QH, Pugazhendhi A. Unleashing the potential of nanoparticles on seed treatment and enhancement for sustainable farming. ENVIRONMENTAL RESEARCH 2023; 236:116849. [PMID: 37558116 DOI: 10.1016/j.envres.2023.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
The foremost challenge in farming is the storage of seeds after harvest and maintaining seed quality during storage. In agriculture, studies showed positive impacts of nanotechnology on plant development, seed storage, endurance under various types of stress, detection of seed damages, and seed quality. Seed's response varies with different types of nanoparticles depending on its physical and biochemical properties and plant species. Herein, we aim to cover the impact of nanoparticles on seed coating, dormancy, germination, seedling, nutrition, plant growth, stress conditions protection, and storage. Although the seed treatment by nanopriming has been shown to improve seed germination, seedling development, stress tolerance, and seedling growth, their full potential was not realized at the field level. Sustainable nano-agrochemicals and technology could provide good seed quality with less environmental toxicity. The present review critically discusses eco-friendly strategies that can be employed for the nanomaterial seed treatment and seed enhancement process to increase seedling vigor under different conditions. Also, an integrated approach involving four innovative concepts, namely green co-priming, nano-recycling of agricultural wastes, nano-pairing, and customized nanocontainer storage, has been proposed to acclimatize nanotechnology in farming.
Collapse
Affiliation(s)
- Tamilmani Eevera
- Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Shanmugam Kumaran
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Vallam, Thanjavur, 613 403, Tamil Nadu, India
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Thanabalu Thirumaran
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
30
|
Bhagat D, Manzoor A, Mahajan A, Sanjeev UK, Sharma B, Krishnamoorthy P, Samuel DK, Sushil S. Nature to Nurture: Chitosan nanopowder a natural carbohydrate polymer choice of egg parasitoid, Trichogramma Japonicum Ashmead. Heliyon 2023; 9:e20724. [PMID: 37867881 PMCID: PMC10585235 DOI: 10.1016/j.heliyon.2023.e20724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Chitosan is a naturally occurring linear biopolymer made of partially deacetylated acetyl and N-acetyl glucosamine. Its biocompatible physiochemical and biochemical properties are unmatched. Chitosan is transformed to nanopowder for use in agriculture and associated industries as nanocarriers for existing agrochemicals, ensuring the delayed release of chemicals with better solubility. Chitosan nanopowder applied to leaves or soil can activate a plant's natural defences against insects and pathogens. These studies were carried out because there is a potential for toxicological risk linked with products created utilizing nanotechnology, such as chitosan nanopowder, and therefore researchers felt the need to investigate this. The egg parasitoides Trichogramma Japonicum Ashmead was used as a low-cost biomarker to determine the potential toxicity of chitosan nanopowder. This study looked into the possibility that the adult stage of the egg parasitoids, Trichogramma Japonicum Ashmead might be negatively impacted by chitosan nanopowder (80-100 nm). Unpaired t-test statistical analysis has been carried out. According to the statistical analysis, host eggs exposed to chitosan nanopowder showed noticeably greater parasitization than the control group. As a natural supply of carbohydrate polymers chitosan nanopowder promotes the parasitization of T. Japonicum. The findings showed that T. Japonicum favoured chitosan nanopowder. Through Y dual choice, eight-arm multiple choice, and no-choice olfactometer experiments, as well as images from a stereozoom microscope and a scanning electron microscope (SEM), the data was thoroughly supported. Future agricultural applications of chitosan nanopowder will benefit from a deeper understanding of our findings.
Collapse
Affiliation(s)
- Deepa Bhagat
- Indian Council of Agricultural Research - National Bureau of Agricultural Insect Resources, P.B. No. 2491, H & A Farm Post, Bellary Road, Bengaluru, 560024, Karnataka, India
| | - Aamina Manzoor
- Indian Council of Agricultural Research - National Bureau of Agricultural Insect Resources, P.B. No. 2491, H & A Farm Post, Bellary Road, Bengaluru, 560024, Karnataka, India
- Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Chatha, 180009, Jammu and Kashmir, India
| | - Akanksha Mahajan
- Indian Council of Agricultural Research - National Bureau of Agricultural Insect Resources, P.B. No. 2491, H & A Farm Post, Bellary Road, Bengaluru, 560024, Karnataka, India
- Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Chatha, 180009, Jammu and Kashmir, India
| | - Umesh Kumar Sanjeev
- Indian Council of Agricultural Research - National Bureau of Agricultural Insect Resources, P.B. No. 2491, H & A Farm Post, Bellary Road, Bengaluru, 560024, Karnataka, India
| | - B.C. Sharma
- Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Chatha, 180009, Jammu and Kashmir, India
| | - Paramanandham Krishnamoorthy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Ramagondanahalli, P.B. No.6450, Yelahanka, 5600064, Bengaluru, Karnataka, India
| | - Duleep Kumar Samuel
- ICAR-Indian Institute of Horticultural Research, Haserghatta Lake Post, IIHR Main Road, Ivar, Kandapura, 560089, Bengaluru, Karnataka, India
| | - S.N. Sushil
- Indian Council of Agricultural Research - National Bureau of Agricultural Insect Resources, P.B. No. 2491, H & A Farm Post, Bellary Road, Bengaluru, 560024, Karnataka, India
| |
Collapse
|
31
|
Chelliah R, Wei S, Vijayalakshmi S, Barathikannan K, Sultan G, Liu S, Oh DH. A Comprehensive Mini-Review on Lignin-Based Nanomaterials for Food Applications: Systemic Advancement and Future Trends. Molecules 2023; 28:6470. [DOI: https:/doi.10.3390/molecules28186470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90–100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging’s mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin’s antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, SIMATS University, Kanchipuram 600124, India
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ghazala Sultan
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
32
|
Chelliah R, Wei S, Vijayalakshmi S, Barathikannan K, Sultan G, Liu S, Oh DH. A Comprehensive Mini-Review on Lignin-Based Nanomaterials for Food Applications: Systemic Advancement and Future Trends. Molecules 2023; 28:6470. [PMID: 37764246 PMCID: PMC10535768 DOI: 10.3390/molecules28186470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90-100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging's mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin's antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, SIMATS University, Kanchipuram 600124, India
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
| | - Ghazala Sultan
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India;
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
33
|
Singh AV, Bansod G, Mahajan M, Dietrich P, Singh SP, Rav K, Thissen A, Bharde AM, Rothenstein D, Kulkarni S, Bill J. Digital Transformation in Toxicology: Improving Communication and Efficiency in Risk Assessment. ACS OMEGA 2023; 8:21377-21390. [PMID: 37360489 PMCID: PMC10286258 DOI: 10.1021/acsomega.3c00596] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Toxicology is undergoing a digital revolution, with mobile apps, sensors, artificial intelligence (AI), and machine learning enabling better record-keeping, data analysis, and risk assessment. Additionally, computational toxicology and digital risk assessment have led to more accurate predictions of chemical hazards, reducing the burden of laboratory studies. Blockchain technology is emerging as a promising approach to increase transparency, particularly in the management and processing of genomic data related with food safety. Robotics, smart agriculture, and smart food and feedstock offer new opportunities for collecting, analyzing, and evaluating data, while wearable devices can predict toxicity and monitor health-related issues. The review article focuses on the potential of digital technologies to improve risk assessment and public health in the field of toxicology. By examining key topics such as blockchain technology, smoking toxicology, wearable sensors, and food security, this article provides an overview of how digitalization is influencing toxicology. As well as highlighting future directions for research, this article demonstrates how emerging technologies can enhance risk assessment communication and efficiency. The integration of digital technologies has revolutionized toxicology and has great potential for improving risk assessment and promoting public health.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Girija Bansod
- Rajiv
Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (deemed to be) University, Pune 411045, India
| | - Mihir Mahajan
- Department
of Informatics, Technical University of
Munich, 85758 Garching, Germany
| | - Paul Dietrich
- SPECS
Surface Nano Analysis GmbH, Voltastrasse 5, 13355 Berlin, Germany
| | - Shivam Pratap Singh
- School
of Computer and Mathematical Sciences, University
of Greenwich, London SE10 9LS, U.K.
| | - Kranti Rav
- Delta
Biopharmaceutical, Andhra Pradesh 524126, India
| | - Andreas Thissen
- SPECS
Surface Nano Analysis GmbH, Voltastrasse 5, 13355 Berlin, Germany
| | - Aadya Mandar Bharde
- Guru
Nanak Khalsa College of Arts Science and Commerce, Mumbai 400 037, India
| | - Dirk Rothenstein
- Institute
for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569 Stuttgart, Germany
| | - Shilpa Kulkarni
- Seeta
Nursing Home, Shivaji
Nagar, Nashik, Maharashtra 422002, India
| | - Joachim Bill
- Institute
for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
34
|
Krumova S, Petrova A, Petrova N, Stoichev S, Ilkov D, Tsonev T, Petrov P, Koleva D, Velikova V. Seed Priming with Single-Walled Carbon Nanotubes Grafted with Pluronic P85 Preserves the Functional and Structural Characteristics of Pea Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1332. [PMID: 37110917 PMCID: PMC10143637 DOI: 10.3390/nano13081332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The engineering of carbon nanotubes in the last decades resulted in a variety of applications in electronics, electrochemistry, and biomedicine. A number of reports also evidenced their valuable application in agriculture as plant growth regulators and nanocarriers. In this work, we explored the effect of seed priming with single-walled carbon nanotubes grafted with Pluronic P85 polymer (denoted P85-SWCNT) on Pisum sativum (var. RAN-1) seed germination, early stages of plant development, leaf anatomy, and photosynthetic efficiency. We evaluated the observed effects in relation to hydro- (control) and P85-primed seeds. Our data clearly revealed that seed priming with P85-SWCNT is safe for the plant since it does not impair the seed germination, plant development, leaf anatomy, biomass, and photosynthetic activity, and even increases the amount of photochemically active photosystem II centers in a concentration-dependent manner. Only 300 mg/L concentration exerts an adverse effect on those parameters. The P85 polymer, however, was found to exhibit a number of negative effects on plant growth (i.e., root length, leaf anatomy, biomass accumulation and photoprotection capability), most probably related to the unfavorable interaction of P85 unimers with plant membranes. Our findings substantiate the future exploration and exploitation of P85-SWCNT as nanocarriers of specific substances promoting not only plant growth at optimal conditions but also better plant performance under a variety of environmental stresses.
Collapse
Affiliation(s)
- Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (S.K.); (N.P.); (S.S.); (T.T.)
| | - Asya Petrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (A.P.); (D.I.)
| | - Nia Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (S.K.); (N.P.); (S.S.); (T.T.)
- Institute of Plant Biology, Biological Research Centre, Temesváry krt. 62, 6726 Szeged, Hungary
| | - Svetozar Stoichev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (S.K.); (N.P.); (S.S.); (T.T.)
| | - Daniel Ilkov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (A.P.); (D.I.)
| | - Tsonko Tsonev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (S.K.); (N.P.); (S.S.); (T.T.)
| | - Petar Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 103, 1113 Sofia, Bulgaria;
| | - Dimitrina Koleva
- Faculty of Biology, Sofia University, “St. Kliment Ohridsky”, 1000 Sofia, Bulgaria;
| | - Violeta Velikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (S.K.); (N.P.); (S.S.); (T.T.)
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (A.P.); (D.I.)
| |
Collapse
|