1
|
Saleem A, Khalid H, Akhtar MF, Zeb A. Appraisal of anti-arthritic potential of Coronopus didymus (L.) Sm. aqueous extract and its safety study in Wistar rats. Inflammopharmacology 2023; 31:3167-3182. [PMID: 37962695 DOI: 10.1007/s10787-023-01374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023]
Abstract
The current study aimed to find out the anti-arthritic activity and safety study of Coronopus didymus aqueous extract (CDAE) as well as its chemical characterization by HPLC-DAD. Safety study including acute and subacute toxicity studies of the plant aqueous extract was also performed. In complete Freund's adjuvant-induced arthritic model (CFA), 0.15 ml CFA was injected in the left hind paw at day 1 in all rats except normal rats. Treatment with CDAE at 200, 400, and 800 mg/kg and methotrexate (1 mg/kg) was administered at day 8 and continued till 28th day using oral gavage. The CDAE considerably (p < 0.05) reduced the paw swelling and arthritic score, and reinstated the body weight and blood parameters. The CDAE considerably modulated superoxide dismutase, catalase, reduced glutathione, and malondialdehyde level in liver homogenate in contrast to disease control. The CDAE at 400 mg/kg considerably reduced IL-6, IL -1β, COX-2, and NF-ĸβ, whereas elevated IL-10, IL-4, and I-kappa β as equated to disease and standard groups. The LD50 of CDAE > 2000 mg/kg. In subacute toxicity study, CDAE at 200-800 mg/kg did not exhibit clinical signs of toxicity, mortality, hematological, biochemical, and histological alteration in the liver heart, kidney, and lungs in contrast to the normal group. It was concluded that the presence of delphinidine-3-glucoside, diosmetin, 3-feruloyl-4,5-dicaffeoyl quinic acid, and gallic acid in CDAE might be accountable for its anti-arthritic activity and safe use for a long period.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Huma Khalid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 38000, Pakistan.
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
2
|
Dawoud T, Ameen F. Unveiling the bioactive potential of Pimpinella anisum L. leaf extracts: Chromatographic profiling, antimicrobial efficiency, and cytotoxicity analysis. Biomed Chromatogr 2023; 37:e5739. [PMID: 37674346 DOI: 10.1002/bmc.5739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
In various countries, Pimpinella has been used to cure several diseases for centuries. Therefore, we focus on one of its potent species in this research. The aim of this experimental study was to document the various extracts derived from Pimpinella anisum that can effectively eradicate oral pathogens. In addition, the presence of antioxidants, antimicrobials, and cytotoxicity was determined using chromatographic testing methods. The alkaloid range was from 22.34 ± 043 mg/g, and the saponin range was from 15.1 ± 1.07 mg/g. HPLC analysis showed that the samples contained eight identified phenolic compounds. The antibacterial activity of ethanolic extract exhibited the highest inhibition region against Streptococcus iniae (43 ± 0.6 mm) and the lowest inhibition region against Staphylococcus haemolyticus (19 ± 0.2 mm) in 200 mg/mL of leaf ethanolic extracts. The antifungal activity revealed that ethanol showed the maximum inhibition zone against Aspergillus luchuensis (42.5 ± 0.19 mm) and the minimum inhibition zone against Aspergillus kawachii (15 ± 0.13 mm) in 200 mg/mL. The current study suggested that, after the isolation of individual components, P. anisum be investigated for assessing biological activity. The mixture and various combinations of these compounds may indicate a truly potent agent that is novel in its ability to combat a wide range of bacteria and oral pathogens.
Collapse
Affiliation(s)
- Turki Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Jarensungnen C, Jetsrisuparb K, Phanthanawiboon S, Theerakulpisut S, Hiziroglu S, Knijnenburg JTN, Okhawilai M, Kasemsiri P. Development of eco-friendly antifungal and antibacterial adhesive derived from modified cassava starch waste/polyvinyl alcohol containing green synthesized nano-silver. Sci Rep 2023; 13:13355. [PMID: 37587152 PMCID: PMC10432455 DOI: 10.1038/s41598-023-40305-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
Environmentally friendly biopolymer-based wood adhesives are an inevitable trend of wood product development to replace the use of harmful formaldehyde-based adhesives. In this research, a new eco-friendly modified cassava starch waste-based adhesive via carboxymethylation (CMS), and blending with polyvinyl alcohol (PVA), tannic acid (TA) and green synthesized silver nanoparticles (AgNPs) was prepared. The effects of TA content on green synthesis of AgNPs (Ag-TA) and bio-adhesive nanocomposite properties were investigated. The use of 5 wt% TA for AgNPs synthesis (Ag-TA-5) resulted in a uniform particle size distribution. The plywood prepared with Ag-TA-5 provided the highest dry and wet shear strength at 1.95 ± 0.11 MPa and 1.38 ± 0.3 MPa, respectively. The water absorption and thickness swelling of this plywood remarkably decreased up to 10.99% and 6.79%, respectively. More importantly, the presence of Ag-TA in CMS/PVA adhesive successfully inhibited the invasion of mold and bacteria. Based on the cyclic delamination test, the adhesive bond durability of bio-adhesive containing Ag-TA-5 could meet the requirement of the AITC Test T110-2007 and was comparable to commercial adhesives. The added advantage of the prepared bio-adhesive was its synthesis from agro-waste products and possible economically viable production at industrial level.
Collapse
Affiliation(s)
- Chaloton Jarensungnen
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kaewta Jetsrisuparb
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supranee Phanthanawiboon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Salim Hiziroglu
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Manunya Okhawilai
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok, 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornnapa Kasemsiri
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Bai X, Chen T, Liu X, Liu Z, Ma R, Su R, Li X, Lü X, Xia X, Shi C. Antibacterial Activity and Possible Mechanism of Litsea cubeba Essential Oil Against Shigella sonnei and Its Application in Lettuce. Foodborne Pathog Dis 2023; 20:138-148. [PMID: 37010405 DOI: 10.1089/fpd.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Shigella sonnei, the causative agents of bacillary dysentery, remains a significant threat to public health. Litsea cubeba essential oil (LC-EO), one of the natural essential oils, exhibited promising biological activities. In this study, the antibacterial effects and possible mechanisms of LC-EO on S. sonnei and its application in lettuce medium were investigated. The minimum inhibitory concentration (MIC) of LC-EO against S. sonnei ATCC 25931 and CMCC 51592 was 4 and 6 μL/mL, respectively. The LC-EO could inhibit the growth of S. sonnei, and decreased S. sonnei to undetectable levels with 4 μL/mL for 1 h in Luria-Bertani broth. The antibacterial mechanism indicated that after the treatment of LC-EO, the production of reactive oxygen species and the activity of superoxide dismutase were significantly elevated in S. sonnei cells, and eventually led to the lipid oxidation product, the malondialdehyde content that significantly increased. Moreover, LC-EO at 2 MIC could destroy 96.51% of bacterial cell membrane integrity, and made S. sonnei cells to appear wrinkled with a rough surface, so that the intracellular adenosine triphosphate leakage was about 0.352-0.030 μmol/L. Finally, the results of application evaluation indicated that the addition of LC-EO at 4 μL/mL in lettuce leaves and 6 μL/mL in lettuce juice could decrease the number of S. sonnei to undetectable levels without remarkable influence on the lettuce leaf sensory quality. In summary, LC-EO exerted strong antibacterial activity and has the potential to control S. sonnei in food industry.
Collapse
Affiliation(s)
- Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tianxiao Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaoxiao Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Run Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Jiang S, Zhang S, Jiang X, Tian S. Analysis of the chemical composition and biological activity of secondary residues of Turkish Gall treated by semi-bionic technology. BIORESOUR BIOPROCESS 2023; 10:5. [PMID: 38647792 PMCID: PMC10991440 DOI: 10.1186/s40643-023-00624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023] Open
Abstract
In order to meet the contemporary concept of sustainable development, the reuse of biological waste has also been emphasized. Lots of papers nowadays study the extraction of primary residues. The disposal of secondary residues is often neglected. The chemical composition and biological activity of secondary residues of Turkish Gall (SRTG) were researched in this paper. We selected five methods to extract the SRTG, and the extraction conditions were water, hydrochloric acid buffer (pH = 2), artificial gastric juice (pH = 2), phosphate buffer (pH = 6.8), and artificial intestinal solution (pH = 6.8). The changes of phenolic components were determined by spectrophotometry and high-performance liquid chromatography. The acid-base environment did not affect total polyphenols contents and gallic acid ethyl ester contents in SRTG. But it affected the gallic acid contents in SRTG. The contents of gallic acid in the hydrochloric acid buffer extraction groups were 1.63 times that of the water extraction group. The SRTG were extracted by hydrochloric acid buffer also had better inhibition on Escherichia coli and Staphylococcus aureus. In addition, SRTG showed positive effects on 1,1-Diphenyl-2-picrylhydrazyl Free, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), ·OH radicals, and Ferric ion reducing antioxidant power. Some active components of SRTG can be effectively released through the digestion of simulated gastric juices in vitro. The change of active ingredients affects the antibacterial and antioxidant capacity. The results provide data support for the conversion of secondary residues into products, such as feed additives. The SRTG has certain contributes to the value of the circular economy.
Collapse
Affiliation(s)
- Shan Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Shangde North Road, Shuimogou District, Urumqi, 830054, China
| | - Sha Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Shangde North Road, Shuimogou District, Urumqi, 830054, China
| | - Xiangdong Jiang
- The Fifth Clinical Medical College, Xinjiang Medical University, Shangde North Road, Shuimogou District, Urumqi, 830054, China
| | - Shuge Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Shangde North Road, Shuimogou District, Urumqi, 830054, China.
| |
Collapse
|
6
|
Crane RA, Grubb ES, Coward LU, Gorman GS. In vitro metabolic biomodulation of irinotecan to increase potency and reduce dose-limiting toxicity by inhibition of SN-38 glucuronide formation. Drug Metab Pers Ther 2022; 37:295-303. [PMID: 35257538 DOI: 10.1515/dmpt-2021-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Colorectal cancer continues to have one of the highest incidents of occurrence with a rising rate of diagnosis among people under the age of 50. Chemotherapy with irinotecan results in severe gastrointestinal dose-limiting toxicity that is caused by the glucuronidated form of the active metabolite (SN-38G). This study evaluates herbal compounds and analogs to biomodulate the metabolism of IR to decrease dose-limiting toxicity while increasing the amount of the active metabolite. METHODS In vitro metabolism using human liver microsomes was conducted with white willow bark (WWB) extract, select specific components of WWB, and analogues to evaluate biomodulation of the IR metabolism. Samples were analyzed using liquid chromatography-tandem mass spectrometry to measure metabolites between reactions with and without herbals components. RESULTS WWB showed an optimal decrease (>80%) in SN-38G and a corresponding increase in SN-38 levels (128%) at a concentration of near 200 μg/mL. Tannic acid produced a 75% decrease in SN-38G with a 130% increase in SN-38 at 10 μg/mL, whereas the treatment with beta-pentagalloyl glucose and various analogues decreased SN-38G by 70% and increased SN-38 by 20% at 10 μg/mL. CONCLUSIONS These results suggest naturally occurring compounds from WWB may have the potential to increase potency by increasing the conversion of IR to SN-38 and decrease dose-limiting toxicity of IR chemotherapy by reducing glucuronidation of SN-38.
Collapse
Affiliation(s)
- Rachel A Crane
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| | - Emery S Grubb
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| | - Lori U Coward
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| | - Greg S Gorman
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| |
Collapse
|
7
|
Razmjoo F, Sadeghi E, Alizadeh Sani M, Noroozi R, Azizi‐lalabadi M. Fabrication and application of functional active packaging material based on carbohydrate biopolymers formulated with
Lemon verbena
/
Ferulago angulata
extracts for preservation of raw chicken meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fatemeh Razmjoo
- Research Center for Environmental Determinants of Health (RCEDH) Kermanshah University of Medical Sciences Kermanshah Iran
| | - Ehsan Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH) Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, School of Public Health Tehran University of Medical Sciences Tehran Iran
| | - Razieh Noroozi
- Research Center for Environmental Determinants of Health (RCEDH) Kermanshah University of Medical Sciences Kermanshah Iran
| | - Maryam Azizi‐lalabadi
- Research Center for Environmental Determinants of Health (RCEDH) Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
8
|
Karalija E, Dahija S, Demir A, Bešta-Gajević R, Zeljković SĆ, Tarkowski P. Exploring New Sources of Bioactive Phenolic Compounds from Western Balkan Mountains. PLANTS (BASEL, SWITZERLAND) 2022; 11:1002. [PMID: 35406980 PMCID: PMC9002936 DOI: 10.3390/plants11071002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
This study presents the first report on phenolic composition and bioactivity of ethanolic extracts of three plant species that grow in the western Balkan mountains and are used in traditional folk medicine: Valeriana montana, Salix retusa, and Campanula hercegovina. Phenolics were extracted from different aerial plant parts using 80% ethanol to assess the possibility of sustainable use of these plants as a source of bioactive compounds without disruption to the roots (for V. montana) or destruction of whole habitats (for S. retusa and C. hercegovina). The ethanolic extract of V. montana flower contained noticeable levels of apigenin and quercetin. The branches and bark of S. retusa were significantly rich in catechin, while rutin was the major phenolic found in the leaf extract of C. hercegovina. Furthermore, the flower extract of V. montana revealed the best antioxidant activity, which was comparable to 4-hydroxybenzoic acid and quercetin. Considering antimicrobial activity, the leaf extracts of V. montana and C. hercegovina demonstrated potent activity against all microbes tested, while the extracts of S. retusa were moderately effective. The presented results emphasize the potential of these plants as novel sources of bioactive compounds.
Collapse
Affiliation(s)
- Erna Karalija
- Laboratory for Plant Physiology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.); (A.D.)
| | - Sabina Dahija
- Laboratory for Plant Physiology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.); (A.D.)
| | - Arnela Demir
- Laboratory for Plant Physiology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.); (A.D.)
| | - Renata Bešta-Gajević
- Laboratory for Microbiology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina;
| | - Sanja Ćavar Zeljković
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - Petr Tarkowski
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| |
Collapse
|
9
|
Javed B, Farooq F, Ibrahim M, Abbas HAB, Jawwad H, Zehra SS, Ahmad HM, Sarwer A, Malik K, Nawaz K. Antibacterial and antifungal activity of methanolic extracts of Salix alba L. against various disease causing pathogens. BRAZ J BIOL 2021; 83:e243332. [PMID: 34730611 DOI: 10.1590/1519-6984.243332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/30/2021] [Indexed: 11/21/2022] Open
Abstract
The present study was aimed to manifest the antibacterial and antifungal activity of methanolic extracts of Salix alba L. against seven Gram-positive and Gram-negative bacterial pathogens e.g. Streptococcus pyogenes, Staphylococcus aureus (1), S. aureus (2), Shigella sonnei, Escherichia coli (1), E. coli (2) and Neisseria gonorrhoeae and three fungal isolates from the air such as Aspergillus terreus, A. ornatus, and Rhizopus stolonifer. Two different serotypes of S. aureus and E. coli were used. The agar well-diffusion method results showed the dose-dependent response of plant extracts against bacterial and fungal strains while some organisms were found resistant e.g. E. coli (1), S. sonnei, A. terreus and R. stolonifer. The highest antibacterial activity was recorded at 17.000±1.732 mm from 100 mg/mL of leaves methanolic extracts against S. pyogenes while the activity of most of the pathogens decreased after 24 h of incubation. The highest antifungal activity was reported at 11.833±1.0 mm against A. ornatus at 50 mg/mL after 48 h of the incubation period. These experimental findings endorse the use of S. alba in ethnopharmacological formulations and suggest the use of methanolic extracts of the said plant to develop drugs to control the proliferation of resistant disease causing pathogenic microbes.
Collapse
Affiliation(s)
- B Javed
- University of Gujrat, Institute of Chemical & Biological Sciences, Department of Botany, Gujrat, Punjab, Pakistan.,Technological University Dublin, College of Sciences and Health, School of Food Science and Environmental Health, Dublin, Ireland
| | - F Farooq
- Government College University Lahore, Institute of Industrial Bio-Technology, Punjab, Pakistan
| | - M Ibrahim
- Services Institute of Medical Sciences, Lahore, Punjab, Pakistan
| | - H A B Abbas
- Fatima Jinnah Medical University, Lahore, Punjab, Pakistan
| | - H Jawwad
- Ziauddin University, Ziauddin Medical College, Karachi, Sindh, Pakistan
| | - S S Zehra
- The Islamia University of Bahawalpur, Department of Botany, Bahawalpur, Punjab, Pakistan
| | - H M Ahmad
- PMAS-Arid Agriculture University, Department of Forestry and Range Management, Rawalpindi, Punjab, Pakistan
| | - A Sarwer
- University of Gujrat, Nawaz Sharif Medical College, Gujrat, Punjab, Pakistan
| | - K Malik
- jPMAS-Arid Agriculture University, Department of Botany, Rawalpindi, Punjab, Pakistan
| | - K Nawaz
- University of Gujrat, Institute of Chemical & Biological Sciences, Department of Botany, Gujrat, Punjab, Pakistan
| |
Collapse
|
10
|
Ikram M, Javed B, Hassan SWU, Satti SH, Sarwer A, Raja NI, Mashwani ZUR. Therapeutic potential of biogenic titanium dioxide nanoparticles: a review on mechanistic approaches. Nanomedicine (Lond) 2021; 16:1429-1446. [PMID: 34085534 DOI: 10.2217/nnm-2021-0020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biogenic titanium dioxide nanoparticles have unique size, shape and biochemical functional corona that embellish them with the potential to perform therapeutic actions such as anticancer, antimicrobial, antioxidant, larvicidal and photocatalysis by adopting various mechanistic or physiological approaches at the molecular level. We have provided a detailed overview of some of these physiological mechanisms, including disruption of the electron transport chain, DNA fragmentation, mitochondrial damage, induction of apoptosis, disorganization of the plasma membrane, inhibition of ATP synthase activity, suspension of cellular signaling pathways and inhibition of enzymatic activity. The biogenic synthesis of customized titanium dioxide nanoparticles has future application potentials to do breakthroughs in the pharmaceutical sectors to advance precision medicine and to better explain the disease prognosis and treatment strategies.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Syed Wajeeh Ul Hassan
- Department of General Medicine, Faisalabad Medical University, Faisalabad, Punjab 38000, Pakistan
| | - Seema Hassan Satti
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Abdullah Sarwer
- Department of Internal Medicine, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Punjab 50700, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|
11
|
Javed B, Ikram M, Farooq F, Sultana T, Mashwani ZUR, Raja NI. Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: a mechanistic overview. Appl Microbiol Biotechnol 2021; 105:2261-2275. [PMID: 33591386 DOI: 10.1007/s00253-021-11171-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
Green synthesis of silver nanoparticles (SNPs) by harnessing the natural abilities of plant secondary metabolites has advantages over routine physical and chemical synthetic approaches due to their one-step experimental setup to reduce and stabilize the bulk silver into SNPs, biocompatible nature, and therapeutic significance. The unique size, shape, and biochemical functional corona of SNPs embellish them with the potential to perform therapeutic actions by adopting various mechanistic approaches including but not limited to the disruption of the electron transport chain, mitochondrial damage, DNA fragmentation, inhibition of ATP synthase activity, disorganization of the cell membrane, suspension of cellular signaling pathways, induction of apoptosis, and inhibition of enzymes activity. This review elaborates the biogenic synthesis of SNPs in redox chemical reactions by using plant secondary metabolites found in plant extracts. In addition, it explains the synergistic influence of physicochemical reaction parameters such as the temperature, pH, the concentration of the AgNO3, and the ratio of reactants to affect the reaction kinetics, molecular mechanics, enzymatic catalysis, and protein conformations that aid to affect the size, shape, and potential biochemical corona of nanoparticles. This review also provides up-to-date information on the mechanistic actions that embellish the plant-based SNPs, an anticancer, cytotoxic, antidiabetic, antimicrobial, and antioxidant potential. The mechanistic understanding of the therapeutic actions of SNPs will help in precision medicine to develop customized treatment and healthcare approaches for the welfare of the human population. KEY POINTS: • Significance of the biogenic nanoparticles • Biomedical application potential of the plant-based silver nanoparticles • Mechanism of the anticancer, antidiabetic, and antimicrobial actions of the plant-based silver nanoparticles.
Collapse
Affiliation(s)
- Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan.
| | - Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| | - Fatima Farooq
- Institute of Industrial Biotechnology, Government College University, Lahore, Punjab, 54000, Pakistan
| | - Tahira Sultana
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| |
Collapse
|
12
|
Javed B, Nadhman A, Mashwani ZUR. Optimization, characterization and antimicrobial activity of silver nanoparticles against plant bacterial pathogens phyto-synthesized by Mentha longifolia. MATERIALS RESEARCH EXPRESS 2020; 7:085406. [DOI: 10.1088/2053-1591/abaf19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Abstract
The present study involves the Phyto-synthesis of the colloidal silver nanoparticles (AgNPs) and their applications to biologically control plant bacterial pathogens. The synthesis of AgNPs was monitored by measuring the absorbance and a characteristic surface plasmon resonance (SPR) band was observed at 450 nm. The different reaction conditions such as the temperature, incubation period, the concentration of the silver salt and the pH were optimized using the factorial design of the experiment for the better yield and the synthesis of AgNPs. The microscopic results showed that the AgNPs are anisotropic and nearly spherical and exist in the size range of ∼20–100 nm while the EDX analysis confirmed the presence of the elemental Ag. The x-ray diffraction pattern confirmed that the AgNPs are crystalline. The hydrodynamic diameter of AgNPs has measured in the range of ∼13–35 nm and the average size of a single particle was 15.55 nm. The ability of the AgNPs to biologically control the plant bacterial pathogens was measured in terms of antibacterial activity against gram-negative pathogenic bacterial strains; Pectobacterium carotovorum, Xanthomonas oryzae, Xanthomonas vesicatoria and Ralstonia solanacearum and potential antimicrobial activity were observed between 2–12 μg ml−1. The biocompatibility studies revealed that the AgNPs are highly biocompatible (LD100 208 μg ml−1) against RBCs. These findings endorse the applications of AgNPs to biological control the plant bacterial pathogens and the consumption of the plants treated with NPs is biocompatible for the humans.
Collapse
|