1
|
Sung J, Kim JH. Association between ambient temperature and thyroid-stimulating hormone and free thyroxine levels in Korean euthyroid adults. ENVIRONMENTAL RESEARCH 2024; 262:119918. [PMID: 39237021 DOI: 10.1016/j.envres.2024.119918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Affiliation(s)
- Jisun Sung
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea.
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Jiang P, Cheng B, Wang Z, Zheng Z, Duan Q. Distinct effects of physical and functional ablation of brown adipose tissue on T3-dependent pathological cardiac remodeling. Biochem Biophys Res Commun 2024; 735:150844. [PMID: 39432923 DOI: 10.1016/j.bbrc.2024.150844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Heart failure tends to deteriorate in colder climates, heightening the risk of major adverse cardiovascular events. Brown adipose tissue (BAT) serves as both a thermogenic organ and an atypical site for triiodothyronine (T3) synthesis in response to cold. This study investigates the potential role of BAT in contributing to abdominal aortic constriction (AAC)-induced pathological cardiac remodeling during cold exposure. In this study, we developed a mouse model of pathological cardiac remodeling using AAC. Physical excision of interscapular BAT (iBATx) was performed during cold exposure, and T3 synthesis levels were measured. Additionally, the impact of uncoupling protein 1 (UCP1) knockout on thermogenic function and pathological cardiac remodeling was investigated. In vitro studies were conducted to assess the effect of T3 on cardiomyocyte hypertrophy induced by phenylephrine (PE). Physical removal of interscapular BAT during cold exposure decreased T3 synthesis and mitigated pathological cardiac remodeling. Conversely, UCP1 knockout eliminated thermogenic function during cold exposure, while preserving BAT integrity increased T3 synthesis and exacerbated pathological cardiac remodeling. In vitro, T3 further aggravated cardiomyocyte hypertrophy caused by PE. These findings underscore the distinct effects of physical and functional BAT ablation on pathological cardiac remodeling, primarily through altering T3 levels rather than thermogenesis in cold environments. This research provides new insights into the differential roles of BAT in cardiac health, particularly under cold exposure conditions.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Hypertension Research Institute, Nanchang, 330006, China; Medical College of Nanchang University, Nanchang, 330006, China
| | - Banghong Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Hypertension Research Institute, Nanchang, 330006, China; Department of Cardiology, Zhuzhou Central Hospital (Zhuzhou Hospital Affiliated to Xiangya School of Medicine), Zhuzhou, China
| | - Zhichao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Hypertension Research Institute, Nanchang, 330006, China; Medical College of Nanchang University, Nanchang, 330006, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Hypertension Research Institute, Nanchang, 330006, China; Medical College of Nanchang University, Nanchang, 330006, China.
| | - Qiong Duan
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Hypertension Research Institute, Nanchang, 330006, China; Medical College of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
3
|
Hochbaum DR, Hulshof L, Urke A, Wang W, Dubinsky AC, Farnsworth HC, Hakim R, Lin S, Kleinberg G, Robertson K, Park C, Solberg A, Yang Y, Baynard C, Nadaf NM, Beron CC, Girasole AE, Chantranupong L, Cortopassi MD, Prouty S, Geistlinger L, Banks AS, Scanlan TS, Datta SR, Greenberg ME, Boulting GL, Macosko EZ, Sabatini BL. Thyroid hormone remodels cortex to coordinate body-wide metabolism and exploration. Cell 2024; 187:5679-5697.e23. [PMID: 39178853 PMCID: PMC11455614 DOI: 10.1016/j.cell.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
Animals adapt to environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here, we find that thyroid hormone-a regulator of metabolism in many peripheral organs-directly activates cell-type-specific transcriptional programs in the frontal cortex of adult male mice. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulatory genes in both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread plasticity of cortical circuits. Indeed, whole-cell electrophysiology revealed that thyroid hormone alters excitatory and inhibitory synaptic transmission, an effect that requires thyroid hormone-induced gene regulatory programs in presynaptic neurons. Furthermore, thyroid hormone action in the frontal cortex regulates innate exploratory behaviors and causally promotes exploratory decision-making. Thus, thyroid hormone acts directly on the cerebral cortex in males to coordinate exploratory behaviors with whole-body metabolic state.
Collapse
Affiliation(s)
- Daniel R Hochbaum
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Lauren Hulshof
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Urke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra C Dubinsky
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah C Farnsworth
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Hakim
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sherry Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Giona Kleinberg
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keiramarie Robertson
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Canaria Park
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alyssa Solberg
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yechan Yang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Baynard
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Naeem M Nadaf
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celia C Beron
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Allison E Girasole
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lynne Chantranupong
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Marissa D Cortopassi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shannon Prouty
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02215, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Thomas S Scanlan
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | - Gabriella L Boulting
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Evan Z Macosko
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Liu W, Liao SS, Bao MH, Huo DL, Cao J, Zhao ZJ. Lactating striped hamsters (Cricetulus barabensis) do not decrease the thermogenic capacity to cope with extreme cold temperature. ZOOLOGY 2024; 166:126195. [PMID: 39128254 DOI: 10.1016/j.zool.2024.126195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
For small non-hibernating mammals, a high thermogenic capacity is important to increase activity levels in the cold. It has been previously reported that lactating females decrease their thermogenic activity of brown adipose tissue (BAT), whereas their capacity to cope with extreme cold remains uncertain. In this study we examined food intake, body temperature and locomotor behavior, resting metabolic rate, non-shivering thermogenesis, and cytochrome c oxidase activity, and the rate of state 4 respiration of liver, skeletal muscle, and BAT in striped hamsters (Cricetulus barabensis) at peak lactation and non- breeding hamsters (controls). The lactating hamsters and non- breeding controls were acutely exposed to -15°C, and several markers indicative of thermogenic capacity were examined. In comparison to non-breeding females, lactating hamsters significantly increased food intake and body temperature, but decreased locomotor behavior, and the BAT mass, indicative of decreased BAT thermogenesis at peak lactation. Unexpectedly, lactating hamsters showed similar body temperature, resting metabolic rate, non-shivering thermogenesis with non-breeding females after acute exposure to -15°C. Furthermore, cytochrome c oxidase activity of liver, skeletal muscle and BAT, and serum thyroid hormone concentration, and BAT uncoupling protein 1 expression, in lactating hamsters were similar with that in non-breeding hamsters after acute extreme cold exposure. This suggests that lactating females have the same thermogenic capacity to survive cold temperatures compared to non-breeding animals. This is particularly important for females in the field to cope with cold environments during the period of reproduction. Our findings indicate that the females during lactation, one of the highest energy requirement periods, do not impair their thermogenic capacity in response to acute cold exposure.
Collapse
Affiliation(s)
- Wei Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Sha-Sha Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Meng-Huan Bao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Da-Liang Huo
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
5
|
Visconti LM, Palombo LJ, Givens AC, Turcotte LP, Kelly KR. Stress Response to Winter Warfare Training: Potential Impact of Location. Mil Med 2024; 189:196-204. [PMID: 39160861 DOI: 10.1093/milmed/usae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Winter warfare training (WWT) is a critical component of military training that trains warfighters to operate effectively in extreme environments impacted by snow and mountainous terrain. These environmental factors can exacerbate the disruption to the hormone milieu associated with operating in multi-stressor settings. To date, there is limited research on the physiological responses and adaptations that occur in elite military populations training in arduous environments. The purpose of this study was to quantify hormone responses and adaptations in operators throughout WWT. MATERIALS AND METHODS Participants engaged in baseline laboratory metrics at their home station, Fort Carson, located in Colorado (CO) prior to WWT, for one week in Montana (MT) and one week in Alaska (AK). WWT periods were separated by approximately one month. Blood was collected upon wake at baseline (CO) and on the first and last day of WWT at each location (MT and AK). Plasma was analyzed for stress, metabolic, and growth-related hormones via enzyme-linked immunoassay (ELISA). Sleep quality was assessed via the Pittsburg Sleep Quality Index (PSQI) at baseline (CO) and on the first day of training in MT and AK. Cognitive function was evaluated using the Defense Automated Neurobehavioral Assessment (DANA) at baseline (CO) and on the first and last day of WWT in both MT and AK. RESULTS Fourteen US Army operators in 10th Special Forces Group (SFG) Operational Detachment participated in winter warfare training (WWT; age: 31.5 years; 95%CI[28.1, 34.3]; height: 180.6 cm; 95%CI[177.3, 183.4]; weight: 87.4 kg.; 95%CI[80.6, 97.7]; body fat: 18.9%; 95%CI[13.7, 23.1]; male: n=13; female: n=1). Plasma adrenocorticotropic hormone (ACTH) levels increased from baseline (19.9 pg/mL; 95%CI[8.6, 24.2]) to pre-WWT (26.9 pg/mL; 95%CI [16.2, 37]; p=0.004), decreased from pre- (26.9 pg/mL; 95%CI [16.2, 37]) to post-WWT in MT (22.3 pg/mL; 95% CI [8, 23.7]; p=0.004;), and increased from pre- (25 pg/mL; 95%CI[ 28.4) to post-WWT (36.6 pg/mL; 95%CI [17.9, 48.9]) in AK (p=0.005). Plasma cortisol levels decreased from pre- (174 ng/mL; 95%CI[106.2, 233.6]) to post-WWT (94.5 ng/mL; 95%CI[54.8, 101.7]) in MT (p=0.001) and, conversely, increased from pre- (123.1 ng/mL; 95%CI[97.5, 143.9]) to post-WWT (162.8 ng/mL; 95%CI[128, 216.7]) in AK (p<0.001). Alterations in growth-related hormones (insulin-like growth factor 1 [IGF-1], insulin-like growth factor binding protein 3 [IGFBP-3], and sex hormone binding globulin [SHBG]) were observed throughout WWT (p<0.05). The Total Testosterone / Cortisol ratio (TT / CORT; molar ratio) was lower pre-WWT in MT (0.04; 95%CI[0.01,0.04) compared to baseline in CO (0.07; 95%CI[0.04, 0.07]; p=0.042). Triiodothyronine (T3) levels increased from pre- (101.7 ng/dL; 95%CI[93.7, 110.4]) to post-WWT (117.8 ng/dL; 95%CI[105.1, 129.4]) in MT (p=0.042). No differences in sleep quality were reported between locations (CO, MT, and AK). Alterations in cognitive function were exhibited between locations and during WWT in both MT and AK (p<0.05). CONCLUSIONS Over the course of WWT, elite operators experienced alterations in stress, metabolic, and growth-related hormones, as well as cognitive performance. The increase in stress hormones (i.e., ACTH and cortisol) and reduction in cognitive performance following training in AK are suggestive of heightened physiological strain, despite similarities in physical workload, self-reported sleep quality, and access to nutrition. The variation in hormone levels documented between MT and AK may stem from differences in environmental factors, such as lower temperatures and harsh terrain. Further research is warranted to provide more information on the combined effects of military training in extreme environments on operator health and performance.
Collapse
Affiliation(s)
- Lauren M Visconti
- Warfighter Performance Department, Naval Health Research Center, San Diego, CA 92101, USA
- Warfighter Performance, Leidos Inc., San Diego, CA 92121, USA
- Human and Evolutionary Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Laura J Palombo
- Warfighter Performance Department, Naval Health Research Center, San Diego, CA 92101, USA
- Warfighter Performance, Leidos Inc., San Diego, CA 92121, USA
| | - Andrea C Givens
- Warfighter Performance Department, Naval Health Research Center, San Diego, CA 92101, USA
- Warfighter Performance, Leidos Inc., San Diego, CA 92121, USA
| | - Lorraine P Turcotte
- Human and Evolutionary Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Karen R Kelly
- Warfighter Performance Department, Naval Health Research Center, San Diego, CA 92101, USA
- Human and Evolutionary Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Zhao Q, Song D, Ju H, Xing W, Ma J, Xiao P. Mass spectrometry in measurement of thyroid biomarkers. Clin Chim Acta 2024; 562:119872. [PMID: 39013525 DOI: 10.1016/j.cca.2024.119872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
In 2022, the number of patients with thyroid disease in China exceeded 200 million (10 million with hyperthyroidism, 90 million with hypothyroidism, and 100 million with other thyroid disease such as goiter, thyroid nodules, and thyroid cancer). Well-established markers include FT3, FT4, TT3, TT4, and TSH tested by a number of immunoassay methods. This approach is based on the primary binding of antigen with antibody and a subsequent secondary chemical reaction that provides an indirect measure. The use of traceable standards for quantitation remains an important factor to ensure inter-assay reliability and precision. Recently, mass spectrometry (MS) has received considerable attention as an analytic tool due to high resolution and quantitative accuracy. In addition, MS allows for sensitive determination of low-abundance markers making it ideal for development of traceable standards. Furthermore, this technology will allow for the development of highly accurate thyroid biomarker assays to facilitate diagnosis, enable early treatment and improve outcomes. Herein, we provide a systematic review and summary of MS in enhancing the analysis of thyroid biomarkers.
Collapse
Affiliation(s)
- Qiang Zhao
- National Institute of Metrology, Beijing 100029, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing 100029, China; Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Dan Song
- National Institute of Metrology, Beijing 100029, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing 100029, China
| | - Huanyu Ju
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Wenjing Xing
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Jian Ma
- Department of Immunology, Harbin Medical University, Harbin 150081, China.
| | - Peng Xiao
- National Institute of Metrology, Beijing 100029, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing 100029, China.
| |
Collapse
|
7
|
Pasciu V, Nieddu M, Sotgiu FD, Baralla E, Berlinguer F. Fecal thyroid hormone metabolites in wild ungulates: a mini-review. Front Vet Sci 2024; 11:1407479. [PMID: 38840625 PMCID: PMC11150844 DOI: 10.3389/fvets.2024.1407479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
This review aims to analyse the fluctuations of fecal thyroid hormone metabolites (FTMs) related to environmental and individual variables in different species of wild ungulates and provide a collection of assay methods. The great advantage of fecal sampling is being completely non-invasive. A systemic search was conducted from 2019 to 2024, using data sources PubMed, Scopus, Web of Science, and the World Wide Web, and ten studies were found on this topic. Three studies used the radioimmunoassay method for FTMs analysis, while the others used a less expensive enzyme-linked immunosorbent assay. Most of these papers validated the method for the species-specific matrix. Related to the studied variables, some authors analysed FTM fluctuations only concerning individual variables, and others in response to both. Temperature and fecal cortisol metabolites (FCMs) were the most studied environmental and individual variables, respectively. Since FTMs are an integrative measure of plasma thyroid hormones, the information obtained from a non-invasive-assay method regarding wild ungulate physiology is becoming of great interest to the scientific community.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | |
Collapse
|
8
|
Kuzmenko NV, Galagudza MM. Hormonal basis of seasonal metabolic changes in mammalian species. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:131-161. [PMID: 39059984 DOI: 10.1016/bs.apcsb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Seasonal changes in external conditions (photoperiod, meteorological conditions, diet) cause adaptive changes in both energy and substrate metabolism in the animals of mammalian species. In summer, long days and a rich diet contribute to relative elevation in the levels of thyroid hormones (TH), but warmer weather lowers their levels. In winter, short days and a poor diet inhibit TH synthesis, but low temperatures increase their secretion. In addition, the results of our meta-analyses revealed a significant role of atmospheric pressure in circannual fluctuations of metabolic parameters in humans. The changes in photoperiod are generally viewed as a major factor contributing to seasonal rhythm regulation However, numerous data show that season-dependent metabolic changes in mammals could be also accounted for by meteorological factors and diet.
Collapse
Affiliation(s)
- N V Kuzmenko
- Department for Experimental Physiology and Pharmacology, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - M M Galagudza
- Department for Experimental Physiology and Pharmacology, Almazov National Medical Research Centre, St. Petersburg, Russia
| |
Collapse
|
9
|
Voronkov NS, Popov SV, Naryzhnaya NV, Prasad NR, Petrov IM, Kolpakov VV, Tomilova EA, Sapozhenkova EV, Maslov LN. Effect of Cold Adaptation on the State of Cardiovascular System and Cardiac Tolerance to Ischemia/Reperfusion Injury. IRANIAN BIOMEDICAL JOURNAL 2024; 28:59-70. [PMID: 38770843 PMCID: PMC11186613 DOI: 10.61186/ibj.3872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/08/2023] [Indexed: 05/22/2024]
Abstract
Despite the unconditional success achieved in the treatment and prevention of AMI over the past 40 years, mortality in this disease remains high. Hence, it is necessary to develop novel drugs with mechanism of action different from those currently used in clinical practices. Studying the molecular mechanisms involved in the cardioprotective effect of adapting to cold could contribute to the development of drugs that increase cardiac tolerance to the impact of ischemia/reperfusion. An analysis of the published data shows that the long-term human stay in the Far North contributes to the occurrence of cardiovascular diseases. At the same time, chronic and continuous exposure to cold increases tolerance of the rat heart to ischemia/ reperfusion. It has been demonstrated that the cardioprotective effect of cold adaptation depends on the activation of ROS production, stimulation of the β2-adrenergic receptor and protein kinase C, MPT pore closing, and KATP channel.
Collapse
Affiliation(s)
- Nikita S. Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
- Department of Physiology, Tomsk State University, Tomsk, Russia
| | - Sergey V. Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | | | | | | | | | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
10
|
Sarais F, Metzger K, Hadlich F, Kalbe C, Ponsuksili S. Transcriptomic Response of Differentiating Porcine Myotubes to Thermal Stress and Donor Piglet Age. Int J Mol Sci 2023; 24:13599. [PMID: 37686405 PMCID: PMC10487455 DOI: 10.3390/ijms241713599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Climate change is a current concern that directly and indirectly affects agriculture, especially the livestock sector. Neonatal piglets have a limited thermoregulatory capacity and are particularly stressed by ambient temperatures outside their optimal physiological range, which has a major impact on their survival rate. In this study, we focused on the effects of thermal stress (35 °C, 39 °C, and 41 °C compared to 37 °C) on differentiating myotubes derived from the satellite cells of Musculus rhomboideus, isolated from two different developmental stages of thermolabile 5-day-old (p5) and thermostable 20-day-old piglets (p20). Analysis revealed statistically significant differential expression genes (DEGs) between the different cultivation temperatures, with a higher number of genes responding to cold treatment. These DEGs were involved in the macromolecule degradation and actin kinase cytoskeleton categories and were observed at lower temperatures (35 °C), whereas at higher temperatures (39 °C and 41 °C), the protein transport system, endoplasmic reticulum system, and ATP activity were more pronounced. Gene expression profiling of HSP and RBM gene families, which are commonly associated with cold and heat responses, exhibited a pattern dependent on temperature variability. Moreover, thermal stress exhibited an inhibitory effect on cell cycle, with a more pronounced downregulation during cold stress driven by ADGR genes. Additionally, our analysis revealed DEGs from donors with an undeveloped thermoregulation capacity (p5) and those with a fully developed thermoregulation capacity (p20) under various cultivation temperature. The highest number of DEGs and significant GO terms was observed under temperatures of 35 °C and 37 °C. In particular, under 35 °C, the DEGs were enriched in insulin, thyroid hormone, and calcium signaling pathways. This result suggests that the different thermoregulatory capacities of the donor piglets determined the ability of the primary muscle cell culture to differentiate into myotubes at different temperatures. This work sheds new light on the underlying molecular mechanisms that govern piglet differentiating myotube response to thermal stress and can be leveraged to develop effective thermal management strategies to enhance skeletal muscle growth.
Collapse
Affiliation(s)
- Fabio Sarais
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany; (F.S.); (F.H.)
| | - Katharina Metzger
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196 Dummerstorf, Germany; (K.M.); (C.K.)
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany; (F.S.); (F.H.)
| | - Claudia Kalbe
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196 Dummerstorf, Germany; (K.M.); (C.K.)
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany; (F.S.); (F.H.)
| |
Collapse
|
11
|
Burtscher J, Hohenauer E, Burtscher M, Millet GP, Egg M. Environmental and behavioral regulation of HIF-mitochondria crosstalk. Free Radic Biol Med 2023; 206:63-73. [PMID: 37385566 DOI: 10.1016/j.freeradbiomed.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Reduced oxygen availability (hypoxia) can lead to cell and organ damage. Therefore, aerobic species depend on efficient mechanisms to counteract detrimental consequences of hypoxia. Hypoxia inducible factors (HIFs) and mitochondria are integral components of the cellular response to hypoxia and coordinate both distinct and highly intertwined adaptations. This leads to reduced dependence on oxygen, improved oxygen supply, maintained energy provision by metabolic remodeling and tapping into alternative pathways and increased resilience to hypoxic injuries. On one hand, many pathologies are associated with hypoxia and hypoxia can drive disease progression, for example in many cancer and neurological diseases. But on the other hand, controlled induction of hypoxia responses via HIFs and mitochondria can elicit profound health benefits and increase resilience. To tackle pathological hypoxia conditions or to apply health-promoting hypoxia exposures efficiently, cellular and systemic responses to hypoxia need to be well understood. Here we first summarize the well-established link between HIFs and mitochondria in orchestrating hypoxia-induced adaptations and then outline major environmental and behavioral modulators of their interaction that remain poorly understood.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; International University of Applied Sciences THIM, Landquart, Switzerland; Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland; Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Hochbaum DR, Dubinsky AC, Farnsworth HC, Hulshof L, Kleinberg G, Urke A, Wang W, Hakim R, Robertson K, Park C, Solberg A, Yang Y, Baynard C, Nadaf NM, Beron CC, Girasole AE, Chantranupong L, Cortopassi M, Prouty S, Geistlinger L, Banks A, Scanlan T, Greenberg ME, Boulting GL, Macosko EZ, Sabatini BL. Thyroid hormone rewires cortical circuits to coordinate body-wide metabolism and exploratory drive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552874. [PMID: 37609206 PMCID: PMC10441422 DOI: 10.1101/2023.08.10.552874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Animals adapt to varying environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here we find that thyroid hormone- a prominent regulator of metabolism in many peripheral organs- activates cell-type specific transcriptional programs in anterior regions of cortex of adult mice via direct activation of thyroid hormone receptors. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulators across both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread remodeling of cortical circuits. Indeed, whole-cell electrophysiology recordings revealed that thyroid hormone induces local transcriptional programs that rewire cortical neural circuits via pre-synaptic mechanisms, resulting in increased excitatory drive with a concomitant sensitization of recruited inhibition. We find that thyroid hormone bidirectionally regulates innate exploratory behaviors and that the transcriptionally mediated circuit changes in anterior cortex causally promote exploratory decision-making. Thus, thyroid hormone acts directly on adult cerebral cortex to coordinate exploratory behaviors with whole-body metabolic state.
Collapse
|
13
|
Qiu W, He H, Fan L, Feng X, Li M, Dong C, Li Z, Liu W, Liang R, Zhang Y, Zhang Y, Gu P, Wang B, Chen W. Ambient temperature exposure causes lung function impairment: The evidence from Controlled Temperature Study in Healthy Subjects (CTSHS). Int J Hyg Environ Health 2023; 252:114214. [PMID: 37392524 DOI: 10.1016/j.ijheh.2023.114214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND The effect of non-optimal ambient temperatures (low and high temperatures) on lung function and the underlying mechanisms remains unclear. METHODS Forty-three (20 males, 23 females) healthy non-obese volunteers with an average of 23.9 years participated in the controlled temperature study. All volunteers underwent three temperature exposures in a sequence (moderate [18 °C], low [6 °C], and high [30 °C] temperatures) lasting 12 h with air pollutants controlled. lung function parameters (forced vital capacity [FVC], forced expiratory volume in 1 s [FEV1], and peak expiratory flow [PEF]) were determined in each exposure. Blood and urine samples were collected after each exposure and assayed for inflammatory markers [C-reactive protein (CRP), procalcitonin (PCT), platelet-lymphocyte ratio (PLR), and neutrophil-lymphocyte ratio (NLR)] and oxidative damage markers [protein carbonylation (PCO), 4-hydroxy-2-nominal-mercapturic acid (HNE-MA), 8-iso-prostaglandin-F2α (8-isoPGF2α), and 8-hydroxy-2-deoxyguanosine (8-OHdG)]. Mixed-effects models were constructed to assess the changes of the above indexes under low or high temperatures relative to moderate temperature, and then the repeated measures correlation analyses were performed. RESULTS Compared with moderate temperature, a 2.20% and 2.59% net decrease in FVC, FEV1, and a 5.68% net increase for PEF were observed under low-temperature exposure, while a 1.59% net decrease in FVC and a 7.29% net increase in PEF under high-temperature exposure were found (all P < 0.05). In addition, low temperature elevated inflammatory markers (PCT, PLR, and NLR) and oxidative damage markers (8-isoPGF2α, 8-OHdG), and high temperature elevated HNE-MA. Repeated measures correlation analyses revealed that PCT (r = -0.33) and NLR (r = -0.31) were negatively correlated with FVC and HNE-MA (r = -0.35) and 8-OHdG (r = -0.31) were negatively correlated with the FEV1 under low-temperature exposure (all P < 0.05). CONCLUSION Non-optimal ambient temperatures exposure alters lung function, inflammation, and oxidative damage. Inflammation and oxidative damage might be involved in low temperature-related lung function reduction.
Collapse
Affiliation(s)
- Weihong Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Heng He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaobing Feng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Minjing Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chaoqian Dong
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenzhen Li
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ruyi Liang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yongfang Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
14
|
Moraes MM, Mendes TT, Borges L, Marques AL, Núñez-Espinosa C, Gonçalves DAP, Simões CB, Vieira TS, Ladeira RVP, Lourenço TGB, Ribeiro DV, Hatanaka E, Heller D, Arantes RME. A 7-Week Summer Camp in Antarctica Induces Fluctuations on Human Oral Microbiome, Pro-Inflammatory Markers and Metabolic Hormones Profile. Microorganisms 2023; 11:microorganisms11020339. [PMID: 36838304 PMCID: PMC9960157 DOI: 10.3390/microorganisms11020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/31/2023] Open
Abstract
Antarctic camps pose psychophysiological challenges related to isolated, confined, and extreme (ICE) conditions, including meals composed of sealed food. ICE conditions can influence the microbiome and inflammatory responses. Seven expeditioners took part in a 7-week Antarctic summer camp (Nelson Island) and were evaluated at Pre-Camp (i.e., at the beginning of the ship travel), Camp-Initial (i.e., 4th and 5th day in camp), Camp-Middle (i.e., 19th-20th, and 33rd-34th days), Camp-Final (i.e., 45th-46th day), and at the Post-Camp (on the ship). At the Pre-Camp, Camp-Initial, and Camp-Final, we assessed microbiome and inflammatory markers. Catecholamines were accessed Pre- and Post-Camp. Heart rate variability (HRV), leptin, thyroid stimulating hormone (TSH), and thyroxine (T4) were accessed at all time points. Students' t-tests or repeated-measures analysis of variance (one or two-way ANOVA) followed by Student-Newman-Keuls (post hoc) were used for parametric analysis. Kruskal-Wallis test was applied for non-parametric analysis. Microbiome analysis showed a predominance of Pseudomonadota (34.01%), Bacillota (29.82%), and Bacteroidota (18.54%), followed by Actinomycetota (5.85%), and Fusobacteria (5.74%). Staying in a long-term Antarctic camp resulted in microbiome fluctuations with a reduction in Pseudomonadota-a "microbial signature" of disease. However, the pro-inflammatory marker leptin and IL-8 tended to increase, and the angiogenic factor VEGF was reduced during camp. These results suggest that distinct Antarctic natural environments and behavioral factors modulate oral microbiome and inflammation.
Collapse
Affiliation(s)
- Michele M. Moraes
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Center for Newborn Screening and Genetics Diagnosis, Faculty of Medicine, Universidade Federal de Minas Gerais, NUPAD-FM/UFMG, Belo Horizonte 30130-100, MG, Brazil
| | - Thiago T. Mendes
- Department of Physical Education, Faculty of Education, Universidade Federal da Bahia, Salvador 40170-110, BA, Brazil
| | - Leandro Borges
- Interdisciplinary Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, SP, Brazil
| | - Alice L. Marques
- Post-Graduation Program in Social Sciences in Development, Culture and Society of the Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Cristian Núñez-Espinosa
- School of Medicine, Universidad de Magallanes, Punta Arenas 6200000, Chile
- Austral Integrative Neurophysiology Group, Centro Asistencial Docente y de Investigación, Universidad de Magallanes, Punta Arenas 6200000, Chile
- Interuniversity Center for Healthy Aging, Punta Arenas 6200000, Chile
| | - Dawit A. P. Gonçalves
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Sports Training Center, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Carolina B. Simões
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Sports Training Center, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Tales S. Vieira
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Roberto V. P. Ladeira
- Center for Newborn Screening and Genetics Diagnosis, Faculty of Medicine, Universidade Federal de Minas Gerais, NUPAD-FM/UFMG, Belo Horizonte 30130-100, MG, Brazil
| | - Talita G. B. Lourenço
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Danielle V. Ribeiro
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
- Post-Graduate Studies in Dentistry, Universidade Cruzeiro do Sul, São Paulo 430-0926, SP, Brazil
| | - Elaine Hatanaka
- Interdisciplinary Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, SP, Brazil
| | - Debora Heller
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
- Post-Graduate Studies in Dentistry, Universidade Cruzeiro do Sul, São Paulo 430-0926, SP, Brazil
- Department of Periodontology, School of Dentistry, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Rosa M. E. Arantes
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Center for Newborn Screening and Genetics Diagnosis, Faculty of Medicine, Universidade Federal de Minas Gerais, NUPAD-FM/UFMG, Belo Horizonte 30130-100, MG, Brazil
- Correspondence: ; Tel.: +55-(31)-999037400
| |
Collapse
|
15
|
Wang Y, Sun Y, Yang B, Wang Q, Kuang H. Integrate metabolomics strategy and target prediction to reveal the ameliorate effect of four typical 'cold' property herbs on hyperthyroidism rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115772. [PMID: 36202164 DOI: 10.1016/j.jep.2022.115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The 'cold' property herbs are commonly applied in heat syndrome. Unfortunately, the underlying mechanisms of the 'cold' property herbs on heat syndrome has not been investigated. AIM OF THE STUDY The study aimed to probe the activities of the four typical 'cold' property herbs on hyperthyroidism. MATERIALS AND METHODS Firstly, the four typical 'heat' property herbs were set as contrasting experiment. Then. the physical sign, thyroid function and metabolism profile (multivariate statistical analysis) were assessing the difference between the four typical 'cod' property herbs and the four typical 'heat' property herbs. H&E staining were used to confirmed the influence of the typical 'cold' property herbs on hyperthyroidism. A metabolomics approach combine with network pharmacology were explored the effected mechanism of the typical 'cold' property herbs on hyperthyroidism. the gene expression of UCP-1 was detected by RT-PCR. The metabolites pathway and target-associated metabolites were verified Na+/K+-ATP enzyme and GSH, as well IL6, IL17, MAPK and PPAR-γ, which detected by commercial kits and Western blot. RESULTS It is proved that the four typical 'cold' property herbs effectively ameliorate the physical sign, thyroid function and metabolism profile in hyperthyroidism rats, but the four typical 'heat' property herbs showed no benefit. Moreover, the four typical 'cold' property herbs regulated energy metabolism, glutathione metabolism, taurine hypotaurine metabolism, thyroid hormone synthesis, arachidonic acid metabolism and linoleic acid metabolism and the inflammation mediated by inflammatory factor (IL6, IL17), Ca2+ and MAPK signaling pathway. And the levels of UCP-1, Na+/K+-ATP enzyme, GSH, and the targets protein of IL6, IL17, MAPK and PPAR-γ were ameliorated by the four typical 'cold' property herbs. CONCLUSION The four typical 'cold' property herbs could alleviate hyperthyroidism by ameliorate thyroid hormone synthesis, restraining inflammation and oxidative stress via regulating energy metabolism, glutathione metabolism, taurine hypotaurine metabolism, arachidonic acid metabolism and linoleic acid metabolism and Ca 2+/MAPK signaling pathway, which might be a useful strategy for treating hyperthyroidism.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
16
|
The Influence of Winter Swimming on Oxidative Stress Indicators in the Blood of Healthy Males. Metabolites 2023; 13:metabo13020143. [PMID: 36837762 PMCID: PMC9967992 DOI: 10.3390/metabo13020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Baths in cold water are a popular physical activity performed to improve health. This study aimed to determine whether repeated cold-water exposure leads to the up-regulation of antioxidant defenses and whether or not this leads to a reduction in basal and/or acute pulses of oxidative distress in humans. The study group consisted of 28 healthy male members of the WS club (average age 39.3 ± 6.1 years). The study sessions occurred at the beginning and the end of the WS season. During the WS season, the participants took 3-min cold-water baths in a cold lake once a week. Blood samples were collected three times during each session: before the bath, 30 min after the bath, and 24 h after the bath. The activity of selected antioxidant enzymes, including superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx), as well as the concentration of lipid peroxidation (LPO) products, including thiobarbituric acid-reactive substances (TBARS) and conjugated dienes (CD), were determined in erythrocytes. The concentration of TBARS, CD, retinol, and α-tocopherol were determined in the blood plasma, whereas the level of other LPO products, including 4-hydroxynonenal and 8-iso-prostaglandin F2α, were determined in the blood serum. The repeated cold exposure up-regulated most antioxidant defenses, and this led to an attenuation of most indicators of oxidative stress at the baseline and acute pulses in response to cold exposure. In conclusion, due to regular cold exposure, the antioxidant barrier of winter swimmers was stimulated. Thus, short cold-bath sessions seem to be an effective intervention, inducing promoting positive adaptive changes such as the increased antioxidant capacity of the organism.
Collapse
|
17
|
Bouazza A, Favier R, Fontaine E, Leverve X, Koceir EA. Potential Applications of Thyroid Hormone Derivatives in Obesity and Type 2 Diabetes: Focus on 3,5-Diiodothyronine (3,5-T2) in Psammomys obesus (Fat Sand Rat) Model. Nutrients 2022; 14:nu14153044. [PMID: 35893898 PMCID: PMC9329750 DOI: 10.3390/nu14153044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
3,5-Diiodothyronine (3,5-T2) has been shown to exert pleiotropic beneficial effects. In this study we investigated whether 3,5-T2 prevent several energy metabolism disorders related to type 2 diabetes mellitus (T2DM) in gerbils diabetes-prone P. obesus. 157 male gerbils were randomly to Natural Diet (ND-controlled) or a HED (High-Energy Diet) divided in: HED- controlled, HED-3,5-T2 and HED- Placebo groups. 3,5-T2 has been tested at 25 µg dose and was administered under subcutaneous pellet implant during 10 weeks. Isolated hepatocytes were shortly incubated with 3,5-T2 at 10−6 M and 10−9 M dose in the presence energetic substrates. 3,5-T2 treatment reduce visceral adipose tissue, prevent the insulin resistance, attenuated hyperglycemia, dyslipidemia, and reversed liver steatosis in diabetes P. obesus. 3,5-T2 decreased gluconeogenesis, increased ketogenesis and enhanced respiration capacity. 3,5-T2 potentiates redox and phosphate potential both in cytosol and mitochondrial compartment. The use of 3,5-T2 as a natural therapeutic means to regulate cellular energy metabolism. We suggest that 3,5-T2 may help improve the deleterious course of obesity and T2DM, but cannot replace medical treatment.
Collapse
Affiliation(s)
- Asma Bouazza
- Biology and Organisms Physiology Laboratory, Bioenergetics and Intermediary Metabolism Team, Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria;
| | - Roland Favier
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U1055, Univ. Grenoble Alpes, 16042 Grenoble, France; (R.F.); (E.F.); (X.L.)
| | - Eric Fontaine
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U1055, Univ. Grenoble Alpes, 16042 Grenoble, France; (R.F.); (E.F.); (X.L.)
| | - Xavier Leverve
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U1055, Univ. Grenoble Alpes, 16042 Grenoble, France; (R.F.); (E.F.); (X.L.)
| | - Elhadj-Ahmed Koceir
- Biology and Organisms Physiology Laboratory, Bioenergetics and Intermediary Metabolism Team, Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria;
- Correspondence: ; Tel.: +213-(0)6-6674-2770 or +213-(0)2124-7217; Fax: +213-(0)2124-7217
| |
Collapse
|
18
|
Cardiac Cx43 Signaling Is Enhanced and TGF-β1/SMAD2/3 Suppressed in Response to Cold Acclimation and Modulated by Thyroid Status in Hairless SHRM. Biomedicines 2022; 10:biomedicines10071707. [PMID: 35885012 PMCID: PMC9313296 DOI: 10.3390/biomedicines10071707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
The hearts of spontaneously hypertensive rats (SHR) are prone to malignant arrhythmias, mainly due to disorders of electrical coupling protein Cx43 and the extracellular matrix. Cold acclimation may induce cardio-protection, but the underlying mechanisms remain to be elucidated. We aimed to explore whether the adaptation of 9-month-old hairless SHRM to cold impacts the fundamental cardiac pro-arrhythmia factors, as well as the response to the thyroid status. There were no significant differences in the registered biometric, redox and blood lipids parameters between hairless (SHRM) and wild type SHR. Prominent findings revealed that myocardial Cx43 and its variant phosphorylated at serine 368 were increased, while an abnormal cardiomyocyte Cx43 distribution was attenuated in hairless SHRM vs. wild type SHR males and females. Moreover, the level of β-catenin, ensuring mechanoelectrical coupling, was increased as well, while extracellular matrix collagen-1 and hydroxyproline were lower and the TGF-β1 and SMAD2/3 pathway was suppressed in hairless SHRM males compared to the wild type strain. Of interest, the extracellular matrix remodeling was less pronounced in females of both hypertensive strains. There were no apparent differences in response to the hypothyroid or hyperthyroid status between SHR strains concerning the examined markers. Our findings imply that hairless SHRM benefit from cold acclimation due to the attenuation of the hypertension-induced adverse downregulation of Cx43 and upregulation of extracellular matrix proteins.
Collapse
|
19
|
Bruzzi RS, Moraes MM, Martins YAT, Hudson ASR, Ladeira RVP, Núñez-Espinosa C, Wanner SP, Arantes RME. Heart rate variability, thyroid hormone concentration, and neuropsychological responses in Brazilian navy divers: a case report of diving in Antarctic freezing waters. AN ACAD BRAS CIENC 2022; 94:e20210501. [PMID: 35648992 DOI: 10.1590/0001-3765202120210501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Open-water diving in a polar environment is a psychophysiological challenge to the human organism. We evaluated the effect of short-term diving (i.e., 10 min) in Antarctic waters on autonomic cardiac control, thyroid hormone concentration, body temperatures, mood, and neuropsychological responses (working memory and sleepiness). Data collection was carried out at baseline, before, and after diving in four individuals divided into the supporting (n=2) and diving (n=2) groups. In the latter group, autonomic cardiac control (by measuring heart rate variability) was also assessed during diving. Diving decreased thyroid-stimulating hormone (effect size = 1.6) and thyroxine (effect size = 2.1) concentrations; these responses were not observed for the supporting group. Diving also reduced both the parasympathetic (effect size = 2.6) and sympathetic activities to the heart (ES > 3.0). Besides, diving reduced auricular (effect size > 3.0), skin [i.e., hand (effect size = 1.2) and face (effect size = 1.5)] temperatures compared to pre-dive and reduced sleepiness state (effect size = 1.3) compared to basal, without changing performance in the working memory test. In conclusion, short-term diving in icy waters affects the hypothalamic-pituitary-thyroid axis, modulates autonomic cardiac control, and reduces body temperature, which seems to decrease sleepiness.
Collapse
Affiliation(s)
- Rúbio S Bruzzi
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Av. Presidente Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Michele M Moraes
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Av. Presidente Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.,Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Patologia, Av. Presidente Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.,Universidade Federal de Minas Gerais (NUPAD- FM/UFMG), Núcleo de Ações e Pesquisa em Apoio Diagnóstico, Rua Alfredo Balena, 189, 30130-100 Belo Horizonte, MG, Brazil
| | - Ygor A T Martins
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Av. Presidente Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Alexandre S R Hudson
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Av. Presidente Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Roberto V P Ladeira
- Universidade Federal de Minas Gerais (NUPAD- FM/UFMG), Núcleo de Ações e Pesquisa em Apoio Diagnóstico, Rua Alfredo Balena, 189, 30130-100 Belo Horizonte, MG, Brazil
| | - Cristian Núñez-Espinosa
- Universidad de Magallanes, Escuela de Medicina, Laboratorio de Fisiología, Avenida Bulnes, Punta Arenas, Chile
| | - Samuel P Wanner
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Av. Presidente Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Rosa M E Arantes
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Patologia, Av. Presidente Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.,Universidade Federal de Minas Gerais (NUPAD- FM/UFMG), Núcleo de Ações e Pesquisa em Apoio Diagnóstico, Rua Alfredo Balena, 189, 30130-100 Belo Horizonte, MG, Brazil
| |
Collapse
|
20
|
Tipisova EV, Molodovskaya IN, Alikina VA, Elfimova AE. Distinctive features of the hypothalamic-pituitary-gonadal axis and the level of dopamine in men of the European and Asian North. Klin Lab Diagn 2022; 67:261-266. [PMID: 35613343 DOI: 10.51620/0869-2084-2022-67-5-261-266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In recent years, there has been a decrease in reproductive potential, especially among residents of the Arctic territories, having the greatest stress from various body systems, including the state of the hormonal regulation of the male reproductive system. The study of the dopamine levels and the content of sex hormones in the male population of various Arctic regions is relevant due to the increased stress on the part of the dopaminergic system and the hypothalamic-pituitary-gonadal axis in residents of the Northern regions, as well as the lack of information about their interaction among the apparently healthy population. The aim of the investigation is to study the possible effect of various plasma concentrations of the dopamine on the content of sex hormones and sex-steroid-binding β-globulin (SHBG) in apparently healthy men in the Arctic zone of the Russian Federation, taking into account the territory of residence. There were examined 181 men aged 22-60 years, living in the territories of the European and Asian North. The levels of sex hormones, SHBG, and dopamine were determined by the enzyme-linked immunosorbent assay. The inhabitants of the Asian North in comparison with the men of the European North have higher levels of dopamine, luteinizing hormone, progesterone, prolactin, estradiol and SHBG with decreased serum levels of free fractions of testosterone. Reference levels of dopamine in men from the European North are combined with the stimulatory effect of dopamine on LH levels, which may indicate an increase steroidogenesis. The high levels of dopamine in men from the Asian North are combined with increased level of estradiol, which may be related to the effect of dopamine on testosterone aromatization. The separate region with its ecological differences is characterized by the presence of features of compensatory-adaptive reactions of an organism in male representatives on the part of the dopaminergic system and the hypothalamic-pituitary-gonadal axis. The identified features can help in carrying out preventive measures aimed at preserving the male reproductive potential of the inhabitants of the Arctic territories.
Collapse
Affiliation(s)
- E V Tipisova
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| | - I N Molodovskaya
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| | - V A Alikina
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| | - A E Elfimova
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| |
Collapse
|
21
|
Sawicka-Gutaj N, Erampamoorthy A, Zybek-Kocik A, Kyriacou A, Zgorzalewicz-Stachowiak M, Czarnywojtek A, Ruchała M. The Role of Thyroid Hormones on Skeletal Muscle Thermogenesis. Metabolites 2022; 12:metabo12040336. [PMID: 35448523 PMCID: PMC9032586 DOI: 10.3390/metabo12040336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays obesity becomes a significant global problem. Hence, recently more and more attention has been paid to substances present in the body that have a significant impact on metabolic processes and thermogenesis, in the context of their potential use in the prevention and treatment of obesity. It is well known that the relationship between thyroid hormones and obesity is multilayered, however recently, more and more information about the possible relation between thyroid hormones and muscle metabolism has been published. The aim of this review is to present the most updated information on the physiological impact of thyroid hormones on muscle tissue, as well as pathological changes related to the occurrence of various types of thyroid disorders, including hypothyroidism, hyperthyroidism and sick euthyroid syndrome. However, the data in humans still remains insufficient, and further studies are needed to fully explore the thyroid-muscle cross-talk.
Collapse
Affiliation(s)
- Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.E.); (A.Z.-K.); (M.R.)
- Correspondence: ; Tel.: +48-607-093-970
| | - Abikasinee Erampamoorthy
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.E.); (A.Z.-K.); (M.R.)
| | - Ariadna Zybek-Kocik
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.E.); (A.Z.-K.); (M.R.)
| | - Angelos Kyriacou
- CEDM, Centre of Endocrinology, Diabetes and Metabolism, Limassol 3075, Cyprus;
- Department of Diabetes, Endocrinology & Obesity Medicine, Salford Royal NHS Foundation & University Teaching Trust, Salford M6 8HD, UK
- Medical School, European University of Cyprus, Nicosia 2404, Cyprus
| | - Małgorzata Zgorzalewicz-Stachowiak
- Laboratory of Medical Electrodiagnostics, Department of Health Prophylaxis, University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland;
| | - Agata Czarnywojtek
- Department of Pharmacology, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.E.); (A.Z.-K.); (M.R.)
| |
Collapse
|
22
|
Patyra K, Löf C, Jaeschke H, Undeutsch H, Zheng HS, Tyystjärvi S, Puławska K, Doroszko M, Chruściel M, Loo BM, Kurkijärvi R, Zhang FP, Huang CCJ, Ohlsson C, Kero A, Poutanen M, Toppari J, Paschke R, Rahman N, Huhtaniemi I, Jääskeläinen J, Kero J. Congenital Hypothyroidism and Hyperthyroidism Alters Adrenal Gene Expression, Development, and Function. Thyroid 2022; 32:459-471. [PMID: 35044245 PMCID: PMC9048185 DOI: 10.1089/thy.2021.0535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background: The human adrenal cortex undergoes several rapid remodeling steps during its lifetime. In rodents, similar remodeling occurs postnatally in the "X-zone" layer through unknown mechanisms. Furthermore, little is known regarding the impact of thyroid hormone (TH) on adrenal glands in humans. Methods: To investigate the impact of TH on adrenal pathophysiology, we created two genetic murine models mimicking human nonautoimmune hypothyroidism and hyperthyroidism. Moreover, we analyzed serum thyrotropin (TSH) and steroid hormone concentrations in patients diagnosed with congenital hypothyroidism and premature adrenarche (PA). Results: We found that TH receptor beta-mediated hypertrophy of the X-zone significantly elevated the adrenal weights of hyperthyroid women. In the hypothyroid model, the X-zone was poorly developed in both sexes. Moreover, large reciprocal changes in the expression levels of genes that regulate adrenal cortical function were observed with both models. Unexpectedly, up- and downregulation of several genes involved in catecholamine synthesis were detected in the adrenal glands of the hypothyroid and hyperthyroid models, respectively. Furthermore, TSH and adrenal steroid concentrations correlated positively in pediatric patients with congenital hypothyroidism and PA. Conclusions: Our results revealed that congenital hypothyroidism and hyperthyroidism functionally affect adrenal gland development and related steroidogenic activity, as well as the adrenal medulla.
Collapse
Affiliation(s)
- Konrad Patyra
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine; Turku, Finland
- Department of Pediatrics; Turku, Finland
| | - Christoffer Löf
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine; Turku, Finland
- Molecular Medicine and Genetics of Cancer, Institute of Biomedicine; Turku, Finland
| | - Holger Jaeschke
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine; Turku, Finland
| | - Hendrik Undeutsch
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine; Turku, Finland
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Huifei Sophia Zheng
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Sofia Tyystjärvi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine; Turku, Finland
- Department of Experimental Neuroimmunology, Klinikum rechst der Isar, Technical University of Munich, Munich, Germany
| | - Kamila Puławska
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine; Turku, Finland
| | - Milena Doroszko
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine; Turku, Finland
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marcin Chruściel
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine; Turku, Finland
- Orion Pharma, Turku, Finland
| | | | | | - Fu-Ping Zhang
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine; Turku, Finland
- Turku Center for Disease Modeling; University of Turku, Turku, Finland
- GM-Unit of Laboratory Animal Centre and Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andreina Kero
- Department of Pediatrics; Turku, Finland
- Centre for Population Health Research; Turku University Hospital, Turku, Finland
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine; Turku, Finland
- Turku Center for Disease Modeling; University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine; Turku, Finland
- Department of Pediatrics; Turku, Finland
| | - Ralf Paschke
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Nafis Rahman
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine; Turku, Finland
- Department of Reproduction and Gynecology, Medical University of Białystok, Białystok, Poland
| | - Ilpo Huhtaniemi
- Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | | | - Jukka Kero
- Department of Pediatrics; Turku, Finland
- Address correspondence to: Jukka Kero, MD, PhD, Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, Turku 20521, Finland
| |
Collapse
|
23
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
24
|
Sampaio RAG, Riet-Correa F, Barbosa FMS, de Gois DD, Lima RC, da Silva IG, da Silva VM, Oliveira AM, Simões SVD, Lucena RB. Diffuse Alopecia and Thyroid Atrophy in Sheep. Animals (Basel) 2021; 11:ani11123530. [PMID: 34944304 PMCID: PMC8698121 DOI: 10.3390/ani11123530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Thyroid dysfunction substantially affects quality of life, causing disturbances in different organs. A low intake of selenium and zinc can predispose to thyroid changes, resulting in hypothyroidism. A deficiency of selenium and zinc causes thyroid dysfunction and skin lesions. This paper describes natural cases of diffuse alopecia and thyroid abnormalities in sheep with selenium and zinc deficiency. The sheep had severe alopecia, and the thyroid hormones serum concentrations were below the reference values for the species. Zinc and Se concentrations were low in the serum and liver, and the thyroid gland was smaller than normal size. The present study is important as it is the first study examining zinc and Se deficiencies causing hypothyroidism in sheep. Furthermore, thyroid disorders affect the quality of life of humans and animals, and are associated with many organ-specific and non-organ-specific disorders. Abstract Thyroid dysfunction substantially affects the quality of life due to its association with various disorders in different organs. A low intake of selenium and zinc can predispose to thyroid alterations, resulting in hypothyroidism. A deficiency of selenium and zinc causes direct and indirect skin lesions, both by the action of free radicals on the skin and by thyroid dysfunction. The aim of this study was to describe natural cases of diffuse alopecia and thyroid abnormalities in sheep with selenium and zinc deficiency. Five adult sheep presented marked and diffuse alopecia, and the residual hairs were dry and brittle. The skin was thick and crusty, with marked peeling. The triiodothyronine (T3) and thyroxine (T4) serum concentrations were below reference values for the species. Zinc and Se concentrations were low in both the serum and liver. During necropsy, cachexia associated with serous fat atrophy was observed, and the thyroid glands showed marked atrophy. Microscopically, the thyroid presented multifocal to coalescent atrophy, with atrophied and dilated follicles, macrophage infiltration, and the presence of fibrous connective tissue. The skin revealed hyperkeratosis and edema. It is concluded that thyroid atrophy, alopecia, and hyperkeratosis are associated with low serum and liver concentrations of zinc and selenium in sheep.
Collapse
Affiliation(s)
- Rubia Avlade Guedes Sampaio
- Graduate Program in Animal Science, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil; (R.A.G.S.); (F.R.-C.); (F.M.S.B.); (A.M.O.); (S.V.D.S.)
| | - Franklin Riet-Correa
- Graduate Program in Animal Science, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil; (R.A.G.S.); (F.R.-C.); (F.M.S.B.); (A.M.O.); (S.V.D.S.)
- Graduate Program in Animal Science in the Tropics, Universidade Federal da Bahia, Salvador 40170-110, BA, Brazil
| | - Francisca Maria Sousa Barbosa
- Graduate Program in Animal Science, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil; (R.A.G.S.); (F.R.-C.); (F.M.S.B.); (A.M.O.); (S.V.D.S.)
| | - Daniela Dantas de Gois
- Laboratory of Veterinary Pathology, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil; (D.D.d.G.); (R.C.L.); (I.G.d.S.); (V.M.d.S.)
| | - Raquel Costa Lima
- Laboratory of Veterinary Pathology, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil; (D.D.d.G.); (R.C.L.); (I.G.d.S.); (V.M.d.S.)
| | - Iara Geovana da Silva
- Laboratory of Veterinary Pathology, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil; (D.D.d.G.); (R.C.L.); (I.G.d.S.); (V.M.d.S.)
| | - Vitória Maria da Silva
- Laboratory of Veterinary Pathology, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil; (D.D.d.G.); (R.C.L.); (I.G.d.S.); (V.M.d.S.)
| | - Alexandra Melo Oliveira
- Graduate Program in Animal Science, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil; (R.A.G.S.); (F.R.-C.); (F.M.S.B.); (A.M.O.); (S.V.D.S.)
| | - Sara Vilar Dantas Simões
- Graduate Program in Animal Science, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil; (R.A.G.S.); (F.R.-C.); (F.M.S.B.); (A.M.O.); (S.V.D.S.)
| | - Ricardo Barbosa Lucena
- Graduate Program in Animal Science, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil; (R.A.G.S.); (F.R.-C.); (F.M.S.B.); (A.M.O.); (S.V.D.S.)
- Laboratory of Veterinary Pathology, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil; (D.D.d.G.); (R.C.L.); (I.G.d.S.); (V.M.d.S.)
- Correspondence: or
| |
Collapse
|
25
|
Tournissac M, Leclerc M, Valentin-Escalera J, Vandal M, Bosoi CR, Planel E, Calon F. Metabolic determinants of Alzheimer's disease: A focus on thermoregulation. Ageing Res Rev 2021; 72:101462. [PMID: 34534683 DOI: 10.1016/j.arr.2021.101462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disease, associated with central and peripheral metabolic anomalies, such as impaired glucose utilization and insulin resistance. These observations led to a considerable interest not only in lifestyle-related interventions, but also in repurposing insulin and other anti-diabetic drugs to prevent or treat dementia. Body temperature is the oldest known metabolic readout and mechanisms underlying its maintenance fail in the elderly, when the incidence of AD rises. This raises the possibility that an age-associated thermoregulatory deficit contributes to energy failure underlying AD pathogenesis. Brown adipose tissue (BAT) plays a central role in thermogenesis and maintenance of body temperature. In recent years, the modulation of BAT activity has been increasingly demonstrated to regulate energy expenditure, insulin sensitivity and glucose utilization, which could also provide benefits for AD. Here, we review the evidence linking thermoregulation, BAT and insulin-related metabolic defects with AD, and we propose mechanisms through which correcting thermoregulatory impairments could slow the progression and delay the onset of AD.
Collapse
|
26
|
Yuan C, Sun X, Liu Y, Wu J. The thyroid hormone levels and glucose and lipid metabolism in children with type 1 diabetes: a correlation analysis. Transl Pediatr 2021; 10:276-282. [PMID: 33708513 PMCID: PMC7944189 DOI: 10.21037/tp-20-204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is common in clinical setting, the relationship between thyroid hormone levels and glucose and lipid metabolism in patients with T1DM remains unclear. We attempted to analyze the correlation of thyroid hormone levels and blood glucose and lipid metabolism in children with normal thyroid function. METHODS Children with T1DM were selected, and 85 healthy children who underwent physical examinations in our hospital as control group. The characteristics and laboratory testing results were compared, the correlation of thyroid hormone levels with blood glucose and blood lipids was analyzed by Pearson correlation analysis. RESULTS A total of 167 participants were included. the low-density lipoprotein-cholesterol (LDL-C), triglyceride (TG), fasting blood glucose (FBG), and glycated hemoglobin (HbAlc) in T1DM patients were higher than those in healthy controls, while the high-density lipoprotein-cholesterol (HDL-C), thyroid stimulating hormone (TSH) and free triiodothyronine (FT3) in T1DM patients were lower than that of healthy children (all P<0.05). TSH was positively correlated with LDL-C (r=0.169, P=0.032), TC (r=0.182, P=0.017) and TG (r=0.197, P=0.008), negatively correlated with FBG (r=-0.196, P=0.023) and HbAlc (r=-0.328, P=0.002). FT3 was negatively correlated with TG (r=-0.182, P=0.011), FBG (r=-0.184, P=0.009) and HbAlc (r=-0.223, P=0.005). TG in the high TSH group and the middle TSH group is higher than that of low TSH group. However, FBG and HbAlc were lower than those in the low TSH group (all P<0.05). Compared with the low FT3 group, the TG, FBG and HbAlc decreased in the high and middle FT3 group (all P<0.05). CONCLUSIONS The serum TSH are closely associated with FT3 and glycolipid metabolism in children with T1DM, which may be the useful indicators to assess the severity of T1DM in clinical settings to provide insights into the management of T1DM.
Collapse
Affiliation(s)
- Chuanjie Yuan
- Department of Pediatric Endocrinology and Metabolism, West China Second Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiaomei Sun
- Department of Pediatric Endocrinology and Metabolism, West China Second Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yin Liu
- Department of Pediatric Endocrinology and Metabolism, West China Second Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jin Wu
- Department of Pediatric Endocrinology and Metabolism, West China Second Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|