1
|
Dufay M, Jimenez M, Casetta M, Chai F, Blanchemain N, Maton M, Cazaux F, Bellayer S, Degoutin S. Abdominal PP meshes coated with functional core-sheath biodegradable nanofibers with anticoagulant and antibacterial properties. BIOMATERIALS ADVANCES 2025; 169:214163. [PMID: 39756090 DOI: 10.1016/j.bioadv.2024.214163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025]
Abstract
Abdominal hernia repair is a common surgical procedure, involving in most cases the use of textile meshes providing a mechanical barrier to consolidate the damaged surrounding tissues and prevent the resurgence of the hernia. However, in more than half cases postoperative complications such as adhesions and infections occur at the surface of the mesh, leading to chronic pain for the patient and requiring the removal of the implant. One of the most promising strategies to reduce the risk of postoperative adhesions and infections is to add a physical barrier between the mesh and the abdominal walls. In this study, we propose a strategy to develop functional hernia meshes possessing anticoagulant and antibacterial activities depending on the side of the implant. Two bioactive polymers were synthetized: a polysulfonate (poly(2-acrylamido-2-methylpropane sulfonic acid), PAMPS) one for anticoagulant activity and a polymer bearing ternary amines (poly((2-tert-butylamino) ethyl methacrylate), PTBAEMA) for antibacterial activity. These polymers were used to produce core-sheath nanofibers thanks to coaxial electrospinning with poly(ɛ-caprolactone) (PCL) as core and the bioactive polymer as sheath. The electrospinning parameters were optimized in order to obtain defect-free nanofibrous coatings onto the mesh with improved stability in water. The core-sheath structure was investigated as well as the presence of the functional groups at the surface. The in vitro cytocompatibility, anticoagulant activity and antibacterial activity were evaluated and highlighted the high potential of these coatings for the simultaneous prevention of postoperative adhesions and infections.
Collapse
Affiliation(s)
- Malo Dufay
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Maude Jimenez
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Mathilde Casetta
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Feng Chai
- Univ. Lille, Inserm, CHU Lille, U1008, Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Nicolas Blanchemain
- Univ. Lille, Inserm, CHU Lille, U1008, Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Mickael Maton
- Univ. Lille, Inserm, CHU Lille, U1008, Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Frédéric Cazaux
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Séverine Bellayer
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Stéphanie Degoutin
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France.
| |
Collapse
|
2
|
Polyák P, Vadász KF, Tátraaljai D, Puskas JE. Preparation of surgical meshes using self-regulating technology based on reaction-diffusion processes. Med Biol Eng Comput 2024; 62:3343-3354. [PMID: 38837082 PMCID: PMC11485147 DOI: 10.1007/s11517-024-03141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
While reaction-diffusion processes are utilized in multiple scientific fields, these phenomena have seen limited practical application in the polymer industry. Although self-regulating processes driven by parallel reaction and diffusion can lead to patterned structures, most polymeric products with repeating subunits are still prepared by methods that require complex and expensive instrumentation. A notable, high-added-value example is surgical mesh, which is often manufactured by weaving or knitting. In our present work, we demonstrate how the polymer and the biomedical industry can benefit from the pattern-forming capabilities of reaction-diffusion. We would like to propose a self-regulating method that facilitates the creation of surgical meshes from biocompatible polymers. Since the control of the process assumes a thorough understanding of the underlying phenomena, the theoretical background, as well as a mathematical model that can accurately describe the empirical data, is also introduced and explained. Our method offers the benefits of conventional techniques while introducing additional advantages not attainable with them. Most importantly, the method proposed in this paper enables the rapid creation of meshes with an average pore size that can be adjusted easily and tailored to fit the intended area of application.
Collapse
Affiliation(s)
- Péter Polyák
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary.
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 1680 Madison Avenue, Wooster, 44691, OH, USA.
| | - Katalin Fodorné Vadász
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2., Budapest, H-1117, Hungary
| | - Dóra Tátraaljai
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2., Budapest, H-1117, Hungary
| | - Judit E Puskas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 1680 Madison Avenue, Wooster, 44691, OH, USA
| |
Collapse
|
3
|
Rosenbaum C, Gerds N, Hack L, Weitschies W. Scalability of API-Loaded Multifilament Yarn Production by Hot-Melt Extrusion and Evaluation of Fiber-Based Dosage Forms. Pharmaceutics 2024; 16:1103. [PMID: 39204448 PMCID: PMC11360357 DOI: 10.3390/pharmaceutics16081103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Fiber-based technologies are widely used in various industries, but their use in pharmaceuticals remains limited. While melt extrusion is a standard method for producing medical fibers such as sutures, it is rarely used for pharmaceutical fiber-based dosage forms. The EsoCap system is a notable exception, using a melt-extruded water-soluble filament as the drug release trigger mechanism. The challenge of producing drug-loaded fibers, particularly due to the use of spinning oils, and the processing of the fibers are addressed in this work using other approaches. The aim of this study was to develop processes for the production and processing of pharmaceutical fibers for targeted drug delivery. Fibers loaded with polyvinyl alcohol and fluorescein sodium as a model drug were successfully prepared by a continuous melt extrusion process and directly spun. These fibers exhibited uniform surface smoothness and consistent tensile strength. In addition, the fibers were further processed into tubular dosage forms using a modified knitting machine and demonstrated rapid drug release in a flow cell.
Collapse
Affiliation(s)
- Christoph Rosenbaum
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany
| | | | | | | |
Collapse
|
4
|
Shiroud Heidari B, Dodda JM, El-Khordagui LK, Focarete ML, Maroti P, Toth L, Pacilio S, El-Habashy SE, Boateng J, Catanzano O, Sahai N, Mou L, Zheng M. Emerging materials and technologies for advancing bioresorbable surgical meshes. Acta Biomater 2024; 184:1-21. [PMID: 38879102 DOI: 10.1016/j.actbio.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Surgical meshes play a significant role in the treatment of various medical conditions, such as hernias, pelvic floor issues, guided bone regeneration, and wound healing. To date, commercial surgical meshes are typically made of non-absorbable synthetic polymers, notably polypropylene and polytetrafluoroethylene, which are associated with postoperative complications, such as infections. Biological meshes, based on native tissues, have been employed to overcome such complications, though mechanical strength has been a main disadvantage. The right balance in mechanical and biological performances has been achieved by the advent of bioresorbable meshes. Despite improvements, recurrence of clinical complications associated with surgical meshes raises significant concerns regarding the technical adequacy of current materials and designs, pointing to a crucial need for further development. To this end, current research focuses on the design of meshes capable of biomimicking native tissue and facilitating the healing process without post-operative complications. Researchers are actively investigating advanced bioresorbable materials, both synthetic polymers and natural biopolymers, while also exploring the performance of therapeutic agents, surface modification methods and advanced manufacturing technologies such as 4D printing. This review seeks to evaluate emerging biomaterials and technologies for enhancing the performance and clinical applicability of the next-generation surgical meshes. STATEMENT OF SIGNIFICANCE: In the ever-transforming landscape of regenerative medicine, the embracing of engineered bioabsorbable surgical meshes stands as a key milestone in addressing persistent challenges and complications associated with existing treatments. The urgency to move beyond conventional non-absorbable meshes, fraught with post-surgery complications, emphasises the necessity of using advanced biomaterials for engineered tissue regeneration. This review critically examines the growing field of absorbable surgical meshes, considering their potential to transform clinical practice. By strategically combining mechanical strength with bioresorbable characteristics, these innovative meshes hold the promise of mitigating complications and improving patient outcomes across diverse medical applications. As we navigate the complexities of modern medicine, this exploration of engineered absorbable meshes emerges as a promising approach, offering an overall perspective on biomaterials, technologies, and strategies adopted to redefine the future of surgical meshes.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | | | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Italy. Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| | - Peter Maroti
- University of Pecs, Medical School, 3D Printing and Visualization Centre, Hungary, University of Pecs, Medical Skills Education and Innovation Centre, Hungary
| | - Luca Toth
- University of Pecs, Medical School, Institute for Translational Medicine, Hungary, University of Pecs, Medical School, Department of Neurosurgery, Hungary
| | - Serafina Pacilio
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Italy. Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy; Department of Biomedical and Neuromotor Sciences DIBINEM, Alma Mater Studiorum-University of Bologna, Italy
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Joshua Boateng
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, UK
| | - Ovidio Catanzano
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Nitin Sahai
- University of Pecs, Medical School, 3D Printing and Visualization Centre, Hungary, University of Pecs, Medical Skills Education and Innovation Centre, Hungary; Department of Biomedical Engineering, North Eastern Hill University, Meghalaya, India
| | - Lingjun Mou
- WA Liver and Kidney Transplant Department, Sir Charles Gairdner Hospital, Western Australia, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| |
Collapse
|
5
|
Kaveti R, Lee JH, Youn JK, Jang TM, Han WB, Yang SM, Shin JW, Ko GJ, Kim DJ, Han S, Kang H, Bandodkar AJ, Kim HY, Hwang SW. Soft, Long-Lived, Bioresorbable Electronic Surgical Mesh with Wireless Pressure Monitor and On-Demand Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307391. [PMID: 37770105 DOI: 10.1002/adma.202307391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/02/2023] [Indexed: 10/03/2023]
Abstract
Current research in the area of surgical mesh implants is somewhat limited to traditional designs and synthesis of various mesh materials, whereas meshes with multiple functions may be an effective approach to address long-standing challenges including postoperative complications. Herein, a bioresorbable electronic surgical mesh is presented that offers high mechanical strength over extended timeframes, wireless post-operative pressure monitoring, and on-demand drug delivery for the restoration of tissue structure and function. The study of materials and mesh layouts provides a wide range of tunability of mechanical and biochemical properties. Dissolvable dielectric composite with porous structure in a pyramidal shape enhances sensitivity of a wireless capacitive pressure sensor, and resistive microheaters integrated with inductive coils provide thermo-responsive drug delivery system for an antibacterial agent. In vivo evaluations demonstrate reliable, long-lived operation, and effective treatment for abdominal hernia defects, by clear evidence of suppressed complications such as adhesion formation and infections.
Collapse
Affiliation(s)
- Rajaram Kaveti
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- SK Hynix Co., Ltd., 2091, Gyeongchung-daero, Bubal-eup, Incheon, Gyeonggi-do, 17336, Republic of Korea
| | - Joong Kee Youn
- Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188, Pangyoyeok-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13524, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
6
|
Dorkhani E, Darzi B, Foroutani L, Ebrahim Soltani Z, Ahmadi Tafti SM. Characterization and in vivo evaluation of a fabricated absorbable poly(vinyl alcohol)-based hernia mesh. Heliyon 2023; 9:e22279. [PMID: 38045132 PMCID: PMC10689958 DOI: 10.1016/j.heliyon.2023.e22279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
The most widely taken medical approach toward hernia repair involves the implementation of a prosthetic mesh to cover the herniated site and reinforce the weakened area of the abdominal wall. Biodegradable meshes can serve as biocompatible grafts with a low risk of infection. However, their major complication is associated with a high rate of degradation and hernia recurrence. We proposed a facile and cost-effective method to fabricate a poly(vinyl alcohol)-based mesh, using the solution casting technique. The inclusion of zinc oxide nanoparticles, citric acid, and three cycles of freeze-thaw were intended to ameliorate the mechanical properties of poly(vinyl alcohol). Several characterization, cell culture, and animal studies were conducted. Swelling and water contact angle measurements confirmed good water uptake capacity and wetting behavior of the final mesh sample. The synthesized mesh acquired a high mechanical strength of 52.8 MPa, and its weight loss was decreased to 39 %. No cytotoxicity was found in all samples. In vivo experiments revealed that less adhesion and granuloma formation, greater tissue integration, and notably higher neovascularization rate were resulted from implanting this fabricated hernia mesh, compared to commercial Prolene® mesh. Furthermore, the amount of collagen deposition and influential growth factors were enhanced when rats were treated with the proposed mesh instead of Prolene®.
Collapse
Affiliation(s)
- Erfan Dorkhani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417614411, Iran
| | - Bahareh Darzi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417614411, Iran
| | - Laleh Foroutani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| |
Collapse
|
7
|
Shopova D, Mihaylova A, Yaneva A, Bakova D. Advancing Dentistry through Bioprinting: Personalization of Oral Tissues. J Funct Biomater 2023; 14:530. [PMID: 37888196 PMCID: PMC10607235 DOI: 10.3390/jfb14100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Despite significant advancements in dental tissue restoration and the use of prostheses for addressing tooth loss, the prevailing clinical approaches remain somewhat inadequate for replicating native dental tissue characteristics. The emergence of three-dimensional (3D) bioprinting offers a promising innovation within the fields of regenerative medicine and tissue engineering. This technology offers notable precision and efficiency, thereby introducing a fresh avenue for tissue regeneration. Unlike the traditional framework encompassing scaffolds, cells, and signaling factors, 3D bioprinting constitutes a contemporary addition to the arsenal of tissue engineering tools. The ongoing shift from conventional dentistry to a more personalized paradigm, principally under the guidance of bioprinting, is poised to exert a significant influence in the foreseeable future. This systematic review undertakes the task of aggregating and analyzing insights related to the application of bioprinting in the context of regenerative dentistry. Adhering to PRISMA guidelines, an exhaustive literature survey spanning the years 2019 to 2023 was performed across prominent databases including PubMed, Scopus, Google Scholar, and ScienceDirect. The landscape of regenerative dentistry has ushered in novel prospects for dentoalveolar treatments and personalized interventions. This review expounds on contemporary accomplishments and avenues for the regeneration of pulp-dentin, bone, periodontal tissues, and gingival tissues. The progressive strides achieved in the realm of bioprinting hold the potential to not only enhance the quality of life but also to catalyze transformative shifts within the domains of medical and dental practices.
Collapse
Affiliation(s)
- Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria (D.B.)
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria (D.B.)
| |
Collapse
|
8
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
9
|
Glover K, Mathew E, Pitzanti G, Magee E, Lamprou DA. 3D bioprinted scaffolds for diabetic wound-healing applications. Drug Deliv Transl Res 2023; 13:2096-2109. [PMID: 35018558 PMCID: PMC10315349 DOI: 10.1007/s13346-022-01115-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 11/25/2022]
Abstract
The treatment strategy required for the effective healing of diabetic foot ulcer (DFU) is a complex process that is requiring several combined therapeutic approaches. As a result, there is a significant clinical and economic burden associated in treating DFU. Furthermore, these treatments are often unsuccessful, commonly resulting in lower-limb amputation. The use of drug-loaded scaffolds to treat DFU has previously been investigated using electrospinning and fused deposition modelling (FDM) 3D printing techniques; however, the rapidly evolving field of bioprinting is creating new opportunities for innovation within this research area. In this study, 3D-bioprinted scaffolds with different designs have been fabricated for the delivery of an antibiotic (levoflocixin) to DFU. The scaffolds were fully characterised by a variety of techniques (e.g. SEM, DSC/TGA, FTIR, and mechanical characterisation), demonstrating excellent mechanical properties and providing sustained drug release for 4 weeks. This proof of concept study demonstrates the innovative potential of bioprinting technologies in fabrication of antibiotic scaffolds for the treatment of DFU.
Collapse
Affiliation(s)
- Katie Glover
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Giulia Pitzanti
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Erin Magee
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
10
|
Zareei A, Kasi V, Thornton A, Rivera UH, Sawale M, Maruthamuthu MK, He Z, Nguyen J, Wang H, Mishra DK, Rahimi R. Non-destructive processing of silver containing glass ceramic antibacterial coating on polymeric surgical mesh surfaces. NANOSCALE 2023; 15:11209-11221. [PMID: 37345366 PMCID: PMC10552273 DOI: 10.1039/d3nr01317k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Surgical meshes composed of bioinert polymers such as polypropylene are widely used in millions of hernia repair procedures to prevent the recurrence of organ protrusion from the damaged abdominal wall. However, post-operative mesh infection remains a significant complication, elevating hernia recurrence risks from 3.6% to 10%, depending on the procedure type. While attempts have been made to mitigate these infection-related complications by using antibiotic coatings, the rise in antibiotic-resistant bacterial strains threatens their effectiveness. Bioactive glass-ceramics featuring noble metals, notably silver nanoparticles (AgNPs), have recently gained traction for their wide antibacterial properties and biocompatibility. Yet, conventional methods of synthesizing and coating of such materials often require high temperatures, thus making them impractical to be implemented on temperature-sensitive polymeric substrates. To circumvent this challenge, a unique approach has been explored to deposit these functional compounds onto temperature-sensitive polypropylene mesh (PP-M) surfaces. This approach is based on the recent advancements in cold atmospheric plasma (CAP) assisted deposition of SiO2 thin films and laser surface treatment (LST), enabling the selective heating and formation of functional glass-ceramic compounds under atmospheric conditions. A systematic study was conducted to identify optimal LST conditions that resulted in the effective formation of a bioactive glass-ceramic structure without significantly altering the chemical and mechanical properties of the underlying PP-M (less than 1% change compared to the original properties). The developed coating with optimized processing conditions demonstrated high biocompatibility and persistent antibacterial properties (>7 days) against both Gram-positive and Gram-negative bacteria. The developed process is expected to provide a new stepping stone towards depositing a wide range of functional bioceramic coatings onto different implant surfaces, thereby decreasing their risk of infection and associated complications.
Collapse
Affiliation(s)
- Amin Zareei
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Birck Nanotechnology Canter, Purdue University, West Lafayette, IN 47907, USA
| | - Venkat Kasi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Birck Nanotechnology Canter, Purdue University, West Lafayette, IN 47907, USA
| | - Allison Thornton
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Birck Nanotechnology Canter, Purdue University, West Lafayette, IN 47907, USA
| | - Ulisses Heredia Rivera
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Birck Nanotechnology Canter, Purdue University, West Lafayette, IN 47907, USA
| | - Manoj Sawale
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Murali Kannan Maruthamuthu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zihao He
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dharmendra K Mishra
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Birck Nanotechnology Canter, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Abudalu M, Aqawi M, Sionov RV, Friedman M, Gati I, Munz Y, Ohana G, Steinberg D. Polyglactin 910 Meshes Coated with Sustained-Release Cannabigerol Varnish Inhibit Staphylococcus aureus Biofilm Formation and Macrophage Cytokine Secretion: An In Vitro Study. Pharmaceuticals (Basel) 2023; 16:ph16050745. [PMID: 37242528 DOI: 10.3390/ph16050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Synthetic surgical meshes are commonly used in abdominal wall reconstruction surgeries to strengthen a weak abdominal wall. Common mesh-related complications include local infection and inflammatory processes. Because cannabigerol (CBG) has both antibacterial and anti-inflammatory properties, we proposed that coating VICRYL (polyglactin 910) mesh with a sustained-release varnish (SRV) containing CBG would prevent these complications. We used an in vitro infection model with Staphylococcus aureus and an in vitro inflammation model of lipopolysaccharide (LPS)-stimulated macrophages. Meshes coated with either SRV-placebo or SRV-CBG were exposed daily to S. aureus in tryptic soy medium (TSB) or macrophage Dulbecco's modified eagle medium (DMEM). Bacterial growth and biofilm formation in the environment and on the meshes were assessed by changes in optical density, bacterial ATP content, metabolic activity, crystal violet staining, spinning disk confocal microscopy (SDCM), and high-resolution scanning electron microscopy (HR-SEM). The anti-inflammatory effect of the culture medium that was exposed daily to the coated meshes was analyzed by measuring the release of the cytokines IL-6 and IL-10 from LPS-stimulated RAW 264.7 macrophages with appropriate ELISA kits. Additionally, a cytotoxicity assay was performed on Vero epithelial cell lines. We observed that compared with SRV-placebo, the segments coated with SRV-CBG inhibited the bacterial growth of S. aureus in the mesh environment for 9 days by 86 ± 4% and prevented biofilm formation and metabolic activity in the surroundings for 9 days, with respective 70 ± 2% and 95 ± 0.2% reductions. The culture medium that was incubated with the SRV-CBG-coated mesh inhibited LPS-induced secretion of IL-6 and IL-10 from the RAW 264.7 macrophages for up to 6 days without affecting macrophage viability. A partial anti-inflammatory effect was also observed with SRV-placebo. The conditioned culture medium was not toxic to Vero epithelial cells, which had an IC50 of 25 µg/mL for CBG. In conclusion, our data indicate a potential role of coating VICRYL mesh with SRV-CBG in preventing infection and inflammation in the initial period after surgery.
Collapse
Affiliation(s)
- Mustafa Abudalu
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of General Surgery, Barzilai Medical Center, Ashkelon 7830604, Israel
| | - Muna Aqawi
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Michael Friedman
- The Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Irith Gati
- The Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yaron Munz
- Department of General Surgery, Barzilai Medical Center, Ashkelon 7830604, Israel
| | - Gil Ohana
- Department of General Surgery, Barzilai Medical Center, Ashkelon 7830604, Israel
| | - Doron Steinberg
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
12
|
Yang Q, Guo J, Zhang S, Guan F, Yu Y, Feng S, Song X, Bao D, Zhang X. Development of cell adhesive and inherently antibacterial polyvinyl alcohol/polyethylene oxide nanofiber scaffolds via incorporating chitosan for tissue engineering. Int J Biol Macromol 2023; 236:124004. [PMID: 36914060 DOI: 10.1016/j.ijbiomac.2023.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Currently, polyvinyl alcohol (PVA) and polyethylene oxide (PEO), as tissue engineering scaffolds materials, had been widely studied, however the hard issues in cell adhesive and antimicrobial properties still seriously limited their application in biomedical respects. Herein, we solved both hard issues by incorporating chitosan (CHI) into the PVA/PEO system, and successfully prepared PVA/PEO/CHI nanofiber scaffolds via electrospinning technology. First, the hierarchical pore structure and elevated porosity stacked by nanofiber of the nanofiber scaffolds supplied suitable space for cell growth. Significantly, the PVA/PEO/CHI nanofiber scaffolds (the cytotoxicity of grade 0) effectively improved cell adhesion by regulating the CHI content, and presented positively correlated with the CHI content. Besides, the excellent surface wettability of PVA/PEO/CHI nanofiber scaffolds exhibited maximum absorbability at a CHI content of 15 wt%. Based on the FTIR, XRD, and mechanical test results, we studied the semi-quantitative effect of hydrogen content on the aggregated state structure and mechanical properties of the PVA/PEO/CHI nanofiber scaffolds. The breaking stress of the nanofiber scaffolds increased with increasing CHI content, and the maximum value reached 15.37 MPa, increased by 67.61 %. Therefore, such dual biofunctional nanofiber scaffolds with improved mechanical properties showed great potential application in tissue engineering scaffolds.
Collapse
Affiliation(s)
- Qiang Yang
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China.
| | - Sen Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China.
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| | - Yue Yu
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| | - Shi Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| | - Xuecui Song
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| | - Da Bao
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| | - Xin Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| |
Collapse
|
13
|
Direct Fabrication of Functional Shapes on 3D Surfaces Using Electrospinning. Polymers (Basel) 2023; 15:polym15030533. [PMID: 36771836 PMCID: PMC9919392 DOI: 10.3390/polym15030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In this work, we demonstrate the ability to simultaneously pattern fibers and fabricate functional 2D and 3D shapes (e.g., letters, mask-like structures with nose bridges and ear loops, aprons, hoods) using a single step electrospinning process. Using 2D and 3D mesh templates, electrospun fibers were preferentially attracted to the metal protrusions relative to the voids so that the pattern of the electrospun mat mimicked the woven mesh macroscopically. On a microscopic scale, the electrostatic lensing effect decreased fiber diameter and narrowed the fiber size distribution, e.g., the coefficient of variation of the fiber diameter for sample collected on a 0.6 mm mesh was 14% compared to 55% for the sample collected on foil). Functionally, the mesh did not affect the wettability of the fiber mats. Notably, the fiber patterning increased the rigidity of the fiber mat. There was a 2-fold increase in flexural rigidity using the 0.6 mm mesh compared to the sample collected on foil. Overall, we anticipate this approach will be a versatile tool for design and fabrication of 2D and 3D patterns with potential applications in personalized wound care and surgical meshes.
Collapse
|
14
|
Aramini B, Masciale V, Radaelli LFZ, Sgarzani R, Dominici M, Stella F. The sternum reconstruction: Present and future perspectives. Front Oncol 2022; 12:975603. [PMID: 36387077 PMCID: PMC9649912 DOI: 10.3389/fonc.2022.975603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
Sternectomy is a procedure mainly used for removing tumor masses infiltrating the sternum or treating infections. Moreover, the removal of the sternum involves the additional challenge of performing a functional reconstruction. Fortunately, various approaches have been proposed for improving the operation and outcome of reconstruction, including allograft transplantation, using novel materials, and developing innovative surgical approaches, which promise to enhance the quality of life for the patient. This review will highlight the surgical approaches to sternum reconstruction and the new perspectives in the current literature.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
- *Correspondence: Beatrice Aramini,
| | - Valentina Masciale
- Cell Therapy Laboratory, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Federico Zini Radaelli
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Rossella Sgarzani
- Center of Major Burns, Plastic Surgery Unit, Maurizio Bufalini Hospital, Cesena, Italy
| | - Massimo Dominici
- Cell Therapy Laboratory, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| |
Collapse
|
15
|
A review of recent developments of polypropylene surgical mesh for hernia repair. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Pedersen DD, Kim S, Wagner WR. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. J Biomed Mater Res A 2022; 110:1460-1487. [PMID: 35481723 DOI: 10.1002/jbm.a.37394] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Early explorations of tissue engineering and regenerative medicine concepts commonly utilized simple polyesters such as polyglycolide, polylactide, and their copolymers as scaffolds. These biomaterials were deemed clinically acceptable, readily accessible, and provided processability and a generally known biological response. With experience and refinement of approaches, greater control of material properties and integrated bioactivity has received emphasis and a broadened palette of synthetic biomaterials has been employed. Biodegradable polyurethanes (PUs) have emerged as an attractive option for synthetic scaffolds in a variety of tissue applications because of their flexibility in molecular design and ability to fulfill mechanical property objectives, particularly in soft tissue applications. Biodegradable PUs are highly customizable based on their composition and processability to impart tailored mechanical and degradation behavior. Additionally, bioactive agents can be readily incorporated into these scaffolds to drive a desired biological response. Enthusiasm for biodegradable PU scaffolds has soared in recent years, leading to rapid growth in the literature documenting novel PU chemistries, scaffold designs, mechanical properties, and aspects of biocompatibility. Despite the enthusiasm in the field, there are still few examples of biodegradable PU scaffolds that have achieved regulatory approval and routine clinical use. However, there is a growing literature where biodegradable PU scaffolds are being specifically developed for a wide range of pathologies and where relevant pre-clinical models are being employed. The purpose of this review is first to highlight examples of clinically used biodegradable PU scaffolds, and then to summarize the growing body of reports on pre-clinical applications of biodegradable PU scaffolds.
Collapse
Affiliation(s)
- Drake D Pedersen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Żywicka B, Struszczyk MH, Paluch D, Kostanek K, Krucińska I, Kowalski K, Kopias K, Rybak Z, Szymonowicz M, Gutowska A, Kubiak P. Design of New Concept of Knitted Hernia Implant. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2671. [PMID: 35408005 PMCID: PMC9000569 DOI: 10.3390/ma15072671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
A knitted implant, unilaterally modified with plasma-assisted chemical-vapor deposition (PACVD), and with a nano-layer of fluorine derivative supplementation, for reducing the risk of complications related to adhesions, and the formation of a thick postoperative scar was prepared. The biological evaluation of designed or modified medical devices is the main aspect of preclinical research. If such studies use a medical device with prolonged contact with connective tissue (more than 30 days), biocompatibility studies require a safety assessment in terms of toxicity in vitro and in vivo, allergenicity, irritation, and cancerogenicity, reproductive and developmental toxicity. The ultimate aspect of biological evaluation is biofunctionality, and evaluation of the local tissue response after implantation, resulting in the determination of all aspects of local biocompatibility with the implemented synthetic material. The implantation of PACVD-modified materials in muscle allows us to estimate the local irritation effect on the connective tissue, determining the risk of scar formation, whereas implantation of the above-mentioned knitted fabric into the abdominal wall, assists with evaluating the risk of fistula formation-the main post-surgical complications. The research aimed to evaluate the local reaction of the soft tissues after the implantation of the knitted implants modified with PACVD of the fluoropolymer in the nanostuctural form. The local effect that occurred during the implantation of the designed implants was quantitatively and qualitatively evaluated when PACVD unmodified (reference), and modified medical devices were implanted in the abdominal cavity (intra-abdominal position) for 12 or into the muscles for 56 weeks. The comparative semi-quantitative histological assessment included the severity of inflammatory cells (multinucleated cells, lymphocytes, plasma cells, macrophages, giant cells) and the tissue response (necrosis, neovascularization, fibrosis, and fat infiltration) on a five-point scale. The knitted implants modified by PACVD did not indicate cumulative tissue response when they were implanted in the muscle and intra-abdominally with direct contact with the viscera. They reduced local tissue reaction (score -2.71 after 56 weeks of the implantation) and internal organ adhesion (irritation score -2.01 and adhesion susceptibility -0.3 after 12 weeks of the implantation) compared with the reference (unmodified by PACVD) knitted implant, which had an identical structure and was made of the same source.
Collapse
Affiliation(s)
- Bogusława Żywicka
- Pre-clinical Research Center, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (D.P.); (Z.R.); (M.S.)
| | - Marcin Henryk Struszczyk
- Institute of Security Technologies “MORATEX”, Curie-Sklodowskiej 3, 90-505 Lodz, Poland; (M.H.S.); (A.G.); (P.K.)
| | - Danuta Paluch
- Pre-clinical Research Center, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (D.P.); (Z.R.); (M.S.)
| | - Krzysztof Kostanek
- Łukasiewicz Research Network—Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland;
| | - Izabella Krucińska
- Department of Material and Commodity Sciences and Textile Metrology, Faculty of Material Technologies and Textile Design, Technological University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Krzysztof Kowalski
- Department of Knitting Technology, Faculty of Material Technologies and Textile Design, Technological University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland; (K.K.); (K.K.)
| | - Kazimierz Kopias
- Department of Knitting Technology, Faculty of Material Technologies and Textile Design, Technological University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland; (K.K.); (K.K.)
| | - Zbigniew Rybak
- Pre-clinical Research Center, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (D.P.); (Z.R.); (M.S.)
| | - Maria Szymonowicz
- Pre-clinical Research Center, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (D.P.); (Z.R.); (M.S.)
| | - Agnieszka Gutowska
- Institute of Security Technologies “MORATEX”, Curie-Sklodowskiej 3, 90-505 Lodz, Poland; (M.H.S.); (A.G.); (P.K.)
| | - Paweł Kubiak
- Institute of Security Technologies “MORATEX”, Curie-Sklodowskiej 3, 90-505 Lodz, Poland; (M.H.S.); (A.G.); (P.K.)
| |
Collapse
|
18
|
Mirel S, Pusta A, Moldovan M, Moldovan S. Antimicrobial Meshes for Hernia Repair: Current Progress and Perspectives. J Clin Med 2022; 11:jcm11030883. [PMID: 35160332 PMCID: PMC8836564 DOI: 10.3390/jcm11030883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the development of biomaterials have given rise to new options for surgery. New-generation medical devices can control chemical breakdown and resorption, prevent post-operative adhesion, and stimulate tissue regeneration. For the fabrication of medical devices, numerous biomaterials can be employed, including non-degradable biomaterials (silicone, polypropylene, expanded polytetrafluoroethylene) or biodegradable polymers, including implants and three-dimensional scaffolds for tissue engineering, which require particular physicochemical and biological properties. Based on the combination of new generation technologies and cell-based therapies, the biocompatible and bioactive properties of some of these medical products can lead to progress in the repair of injured or harmed tissue and in tissue regeneration. An important aspect in the use of these prosthetic devices is the associated infection risk, due to the medical complications and socio-economic impact. This paper provides the latest achievements in the field of antimicrobial surgical meshes for hernia repair and discusses the perspectives in the development of these innovative biomaterials.
Collapse
Affiliation(s)
- Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Alexandra Pusta
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Correspondence:
| | - Mihaela Moldovan
- Pediatric Surgery Department, Emergency Clinical Children’s Hospital, 400370 Cluj-Napoca, Romania;
| | - Septimiu Moldovan
- Surgery Department, Prof. Dr. O. Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| |
Collapse
|
19
|
A framework for the sustainability implications of 3D bioprinting through nature-inspired materials and structures. Biodes Manuf 2022. [DOI: 10.1007/s42242-021-00168-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Corduas F, Mathew E, McGlynn R, Mariotti D, Lamprou DA, Mancuso E. Melt-extrusion 3D printing of resorbable levofloxacin-loaded meshes: Emerging strategy for urogynaecological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112523. [PMID: 34857302 DOI: 10.1016/j.msec.2021.112523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/28/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Current surgical strategies for the treatment of pelvic floor dysfunctions involve the placement of a polypropylene mesh into the pelvic cavity. However, polypropylene meshes have proven to have inadequate mechanical properties and have been associated to the arising of severe complications, such as infections. Furthermore, currently employed manufacturing strategies are unable to produce compliant and customisable devices. In this work, polycaprolactone has been used to produce resorbable levofloxacin-loaded meshes in two different designs (90° and 45°) via melt-extrusion 3D printing. Drug-loaded meshes were produced using a levofloxacin concentration of 0.5% w/w. Drug loaded meshes were successfully produced with highly reproducible mechanical and physico-chemical properties. Tensile test results showed that drug-loaded 45° meshes possessed a mechanical behaviour close to that of the vaginal tissue (E ≃ 8.32 ± 1.85 MPa), even after 4 weeks of accelerated degradation. Meshes released 80% of the loaded levofloxacin in the first 3 days and were capable of producing an inhibitory effect against S. Aureus and E. coli bacterial strains with an inhibition zone equal to 12.8 ± 0.45 mm and 15.8 ± 0.45 mm respectively. Thus, the strategy adopted in this work holds great promise for the manufacturing of custom-made surgical meshes with antibacterial properties.
Collapse
Affiliation(s)
- Francesca Corduas
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus -, Newtownabbey BT37 0QB, UK; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ruairi McGlynn
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus -, Newtownabbey BT37 0QB, UK
| | - Davide Mariotti
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus -, Newtownabbey BT37 0QB, UK
| | | | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus -, Newtownabbey BT37 0QB, UK.
| |
Collapse
|
21
|
Ragelle H, Rahimian S, Guzzi EA, Westenskow PD, Tibbitt MW, Schwach G, Langer R. Additive manufacturing in drug delivery: Innovative drug product design and opportunities for industrial application. Adv Drug Deliv Rev 2021; 178:113990. [PMID: 34600963 DOI: 10.1016/j.addr.2021.113990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
Additive manufacturing (AM) or 3D printing is enabling new directions in product design. The adoption of AM in various industrial sectors has led to major transformations. Similarly, AM presents new opportunities in the field of drug delivery, opening new avenues for improved patient care. In this review, we discuss AM as an innovative tool for drug product design. We provide a brief overview of the different AM processes and their respective impact on the design of drug delivery systems. We highlight several enabling features of AM, including unconventional release, customization, and miniaturization, and discuss several applications of AM for the fabrication of drug products. This includes products that have been approved or are in development. As the field matures, there are also several new challenges to broad implementation in the pharmaceutical landscape. We discuss several of these from the regulatory and industrial perspectives and provide an outlook for how these issues may be addressed. The introduction of AM into the field of drug delivery is an enabling technology and many new drug products can be created through productive collaboration of engineers, materials scientists, pharmaceutical scientists, and industrial partners.
Collapse
|
22
|
Zhao C, Ji J, Yin T, Yang J, Pang Y, Sun W. Affinity-Controlled Double-Network Hydrogel Facilitates Long-Term Release of Anti-Human Papillomavirus Protein. Biomedicines 2021; 9:1298. [PMID: 34680415 PMCID: PMC8533454 DOI: 10.3390/biomedicines9101298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrogels have recently received attention as delivery carriers owing to their good biocompatibility and structural similarity to natural extracellular matrices. However, the utilization of traditional single-network (SN) hydrogels is limited by poor mechanical properties and burst drug release. Therefore, we developed a novel double-network (DN) hydrogel, which employs an alginate (ALG)/polyethylene glycol diacrylate (PEGDA) network to adjust the mechanical strength and a positively charged monomer AETAC (2-(acryloyloxy)ethyl]trimethyl-ammonium chloride) to regulate the release curve of the electronegative anti-human papillomavirus (HPV) protein (bovine β-lactoglobulin modified with 3-hydroxyphthalic anhydride) based on an affinity-controlled delivery mechanism. The results show that the double-network hydrogel strongly inhibits the burst release, and the burst release amount is about one-third of that of the single-network hydrogel. By changing the concentration of the photoinitiator, the mechanical strength of the DN hydrogels can be adjusted to meet the stiffness requirements for various tissues within the range of 0.71 kPa to 10.30 kPa. Compared with the SN hydrogels, the DN hydrogels exhibit almost twice the mechanical strength and have smaller micropores. Cytotoxicity tests indicated that these SN and DN hydrogels were not cytotoxic with the result of over 100% relative proliferation rate of the HUVECs. Furthermore, DN hydrogels can significantly alleviate the burst release of antiviral proteins and prolong the release time to more than 14 days. Finally, we utilized digital light processing (DLP) technology to verify the printability of the DN hydrogel. Our study indicates that ALG/PEGDA-AETAC DN hydrogels could serve as platforms for delivering proteins and show promise for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Chenjia Zhao
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (C.Z.); (J.J.); (T.Y.)
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, China
| | - Jingyuan Ji
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (C.Z.); (J.J.); (T.Y.)
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, China
| | - Tianjun Yin
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (C.Z.); (J.J.); (T.Y.)
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, China
| | - Jing Yang
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (C.Z.); (J.J.); (T.Y.)
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (C.Z.); (J.J.); (T.Y.)
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Overseas Expertise Introduction Center for Discipline Innovation, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, China
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Delp A, Becker A, Hülsbusch D, Scholz R, Müller M, Glasmacher B, Walther F. In Situ Characterization of Polycaprolactone Fiber Response to Quasi-Static Tensile Loading in Scanning Electron Microscopy. Polymers (Basel) 2021; 13:polym13132090. [PMID: 34202874 PMCID: PMC8271998 DOI: 10.3390/polym13132090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Microstructural responses to the mechanical load of polymers used in tissue engineering is notably important for qualification at in vivo testing, although insufficiently studied, especially regarding promising polycaprolactone (PCL). For further investigations, electrospun PCL scaffolds with different degrees of fiber alignment were produced, using two discrete relative drum collector velocities. Development and preparation of an adjusted sample geometry enabled in situ tensile testing in scanning electron microscopy. By analyzing the microstructure and the use of selected tracking techniques, it was possible to visualize and quantify fiber/fiber area displacements as well as local fractures of single PCL fibers, considering quasi-static tensile load and fiber alignment. The possibility of displacement determination using in situ scanning electron microscopy techniques for testing fibrous PCL scaffolds was introduced and quantified.
Collapse
Affiliation(s)
- Alexander Delp
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany; (D.H.); (R.S.); (F.W.)
- Correspondence: (A.D.); (A.B.)
| | - Alexander Becker
- Institute for Multiphase Processes, Leibniz University Hannover, 30823 Garbsen, Germany; (M.M.); (B.G.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- Correspondence: (A.D.); (A.B.)
| | - Daniel Hülsbusch
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany; (D.H.); (R.S.); (F.W.)
| | - Ronja Scholz
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany; (D.H.); (R.S.); (F.W.)
| | - Marc Müller
- Institute for Multiphase Processes, Leibniz University Hannover, 30823 Garbsen, Germany; (M.M.); (B.G.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, 30823 Garbsen, Germany; (M.M.); (B.G.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Frank Walther
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany; (D.H.); (R.S.); (F.W.)
| |
Collapse
|
24
|
The Role of Mesh Implants in Surgical Treatment of Parastomal Hernia. MATERIALS 2021; 14:ma14051062. [PMID: 33668318 PMCID: PMC7956701 DOI: 10.3390/ma14051062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
A parastomal hernia is a common complication following stoma surgery. Due to the large number of hernial relapses and other complications, such as infections, adhesion to the intestines, or the formation of adhesions, the treatment of hernias is still a surgical challenge. The current standard for the preventive and causal treatment of parastomal hernias is to perform a procedure with the use of a mesh implant. Researchers are currently focusing on the analysis of many relevant options, including the type of mesh (synthetic, composite, or biological), the available surgical techniques (Sugarbaker’s, “keyhole”, or “sandwich”), the surgical approach used (open or laparoscopic), and the implant position (onlay, sublay, or intraperitoneal onlay mesh). Current surface modification methods and combinations of different materials are actively explored areas for the creation of biocompatible mesh implants with different properties on the visceral and parietal peritoneal side. It has been shown that placing the implant in the sublay and intraperitoneal onlay mesh positions and the use of a specially developed implant with a 3D structure are associated with a lower frequency of recurrences. It has been shown that the prophylactic use of a mesh during stoma formation significantly reduces the incidence of parastomal hernias and is becoming a standard method in medical practice.
Collapse
|