1
|
Mandal M, Singh Lodhi R, Chourasia S, Das S, Das P. A Review on Sustainable Slow-Release N, P, K Fertilizer Hydrogels for Smart Agriculture. Chempluschem 2025:e202400643. [PMID: 39817426 DOI: 10.1002/cplu.202400643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Indexed: 01/18/2025]
Abstract
The agricultural sector of any country plays a pivotal role in its economy. Irrigation and the provision of appropriate nutrient levels in soil are essential for optimizing plant growth and enhancing crop productivity. To support the increasing need for food due to the growing population worldwide, synthetic fertilizers have been widely used in the agricultural sector. These fertilizers could readily dissolve in the irrigation water or soil moisture, causing excessive release of the nutrients that plants cannot uptake from the root zone. The excess nutrients in the soil further harm the environment via surface run-off, leaching, and volatilization. Thus, materials with high water absorption and retention capacity, and precise control over the prolonged fertilizer release offer a potential solution to address these issues. To meet these requirements, the development of slow-release fertilizer hydrogels (SRFHs) represents a promising approach. SRFHs serve as natural agrochemicals to enhance crop growth and yield through controlled and self-sustained delivery of water and nutrients. This review provides a comprehensive study on the recent advancements in SRFHs, including their preparation methods, properties, slow-release behavior, and applications in smart agriculture. The response of soil microbial diversity to slow-release fertilizers is briefly discussed, and the future potential of SRFHs is highlighted herein.
Collapse
Affiliation(s)
- Manas Mandal
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Roop Singh Lodhi
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Shivangi Chourasia
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Subhasis Das
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, 110003, India
| | - Paramita Das
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
2
|
Traeger A, Leiske MN. The Whole Is Greater than the Sum of Its Parts - Challenges and Perspectives in Polyelectrolytes. Biomacromolecules 2025; 26:5-32. [PMID: 39661745 PMCID: PMC11733940 DOI: 10.1021/acs.biomac.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Polyelectrolytes offer unique properties for biological applications due to their charged nature and high water solubility. Here, the challenges in their synthesis and characterization techniques are reviewed, emphasizing that their strong interactions with the surrounding media and counterions must be considered when working with this interesting class of materials. Their potential in complexation for gene delivery, their unique stealth and anti-fouling properties, and their more specific interactions with amino acid transporters for cancer therapy are highlighted. The underlying mechanisms responsible for their biological efficacy, including the proton sponge effect for endosomal release and their interactions with cellular membranes, are addressed. For polyelectrolytes with a high level of usage, an overview is given of their historical context. This Perspective outlines the potential of polyelectrolytes for innovative applications in the field of biomedicine. Considering the physicochemical characteristics of this class of materials, this work strives to elucidate the distinctive properties and applications of polyelectrolytes.
Collapse
Affiliation(s)
- Anja Traeger
- Institute
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center
for Soft Matter (JCSM), Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Meike N. Leiske
- Macromolecular
Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Bavarian
Polymer Institute, 95447 Bayreuth, Germany
| |
Collapse
|
3
|
Tian X, Lin TY, Lin PT, Tsai MJ, Chen H, Chen WJ, Lee CM, Tu CH, Hsu JC, Hsieh TH, Tung YC, Wang CK, Lin S, Chu LA, Tseng FG, Hsueh YP, Lee CH, Chen P, Chen BC. Rapid lightsheet fluorescence imaging of whole Drosophila brains at nanoscale resolution by potassium acrylate-based expansion microscopy. Nat Commun 2024; 15:10911. [PMID: 39738207 DOI: 10.1038/s41467-024-55305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio. Here we show that at a tile scanning speed of ~1 min/mm3 with 1012 pixels over 14 hours, we image the centimeter-sized fly brain at an effective resolution comparable to electron microscopy, allowing us to visualize mitochondria within presynaptic compartments and Bruchpilot (Brp) scaffold proteins distributed in the central complex, enabling robust analyses of neurobiological topics.
Collapse
Affiliation(s)
- Xuejiao Tian
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Ting Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Min-Ju Tsai
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Jie Chen
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Ming Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chiao-Hui Tu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jui-Cheng Hsu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Tung-Han Hsieh
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chien-Kai Wang
- Department of Mechanical Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Fan-Gang Tseng
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
4
|
Jahan N, Al Fahad MA, Shanto PC, Kim H, Lee BT, Bae SH. Development of self-gelling powder combining chitosan/ bentonite nanoclay/ sodium polyacrylate for rapid hemostasis: In vitro and in vivo study. Int J Biol Macromol 2024; 291:139123. [PMID: 39719233 DOI: 10.1016/j.ijbiomac.2024.139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/04/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Although hemostatic powders are commonly used in clinical and emergency settings, they frequently show poor absorption, raise cytotoxicity issues, and are not effective for fatal non-compressible bleeding. The purpose of this research is to create a self-gelling hemostatic powder based on chitosan, bentonite, and sodium polyacrylate (CBS) to improve the hemostatic effect. When liquid comes into contact with CBS powders, they can fuse and form a stable hydrogel in less than 30s. Here, the concentration of the superabsorbent polymer is the primary determinant of the self-gel's creation. CBS groups exhibited excellent in vitro biocompatibility and hemocompatibility. In terms of bleeding and hemostatic time, the in vivo hemostatic results demonstrate the superiority of CBS-3 powder (∼57 s in rat liver avulsion model) and (∼64 s in rat tail amputation model) over a commercial product group called ARISTA. Additionally, the fabricated CBS powders can quickly absorb large amounts of blood, which can also aggregate platelets and blood cells. After four weeks of rat liver implantation, CBS-3 significantly accelerated the angiogenesis and wound healing processes. Thus, the hemostatic CBS self-gelling powder could be an effective solution for treating blood loss and liver wounds.
Collapse
Affiliation(s)
- Nusrat Jahan
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Hyeyoung Kim
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea.
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea.
| |
Collapse
|
5
|
Lavlinskaya MS, Sorokin AV. Enhancement of Water Uptake in Composite Superabsorbents Based on Carboxymethyl Cellulose Through Porogen Incorporation and Lyophilization. Gels 2024; 10:797. [PMID: 39727554 DOI: 10.3390/gels10120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Carboxymethyl cellulose sodium salt (CMC)-based superabsorbents are promising materials for the development of agricultural matrices aimed at water management and slow-release fertilizer production. However, an increase in the CMC content tends to reduce their water-absorbing capacity. This study aims to develop a cost-effective method for producing eco-friendly superabsorbents with enhanced water-absorbing capacity by incorporating a porogen and employing lyophilization. Superabsorbents containing 10 wt% CMC (CMC-SAPs) were synthesized via free radical polymerization with the addition of 0, 5, or 10 wt% ammonium carbonate as a porogen, followed by lyophilization. The synthesized CMC-SAPs were characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and X-ray diffraction. The results revealed that CMC-SAPs prepared with the incorporation of a porogen and/or subjected to lyophilization exhibited well-developed surfaces featuring macropores and cavities. Incorporating 5 wt% ammonium carbonate as a porogen, followed by lyophilization, increased the equilibrium swelling ratio to 61%. This improvement was attributed to the enhanced surface morphology of the modified CMC-SAPs, which facilitated water molecule diffusion into the SAP matrix, as confirmed by open porosity measurements. This hypothesis was further supported by the diffusion coefficient values, which were higher for porogen-containing and lyophilized SAPs compared to unmodified samples. Moreover, the CMC-SAPs demonstrated good reusability. Thus, the combination of porogen incorporation and subsequent lyophilization represents a promising approach for enhancing the water uptake capacity of CMC-based composite superabsorbents for sustainable agricultural applications.
Collapse
Affiliation(s)
- Maria S Lavlinskaya
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| | - Andrey V Sorokin
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
- Polymer Science and Colloid Chemistry Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
| |
Collapse
|
6
|
Sutradhar SC, Banik N, Islam M, Rahman Khan MM, Jeong JH. Gamma Radiation-Induced Synthesis of Carboxymethyl Cellulose-Acrylic Acid Hydrogels for Methylene Blue Dye Removal. Gels 2024; 10:785. [PMID: 39727543 DOI: 10.3390/gels10120785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
This study aims to develop efficient and sustainable hydrogels for dye adsorption, addressing the critical need for improved wastewater treatment methods. Carboxymethyl cellulose (CMC)-based hydrogels grafted with AAc were synthesized using gamma radiation polymerization. Various AAc to CMC ratios (5:5, 5:7.5, 5:10, 5:15) were treated with 37% NaOH and exposed to 1-15 kGy radiation, with the optimal hydrogel obtained at 5 kGy. Swelling studies showed an increase in swelling with 5-7.5% AAc content, with the 5:7.5 hydrogel achieving the highest swelling at 18,774.60 (g/g). FTIR spectroscopy confirmed the interaction between AAc and CMC, indicating the successful formation of the hydrogel. DSC analysis revealed that higher AAc content led to increased glass transition and decomposition temperatures, thereby enhancing thermal stability. The swelling kinetics were linked to a reduction in pore size and improved AAc grafting. The 5:7.5 hydrogel demonstrated the highest adsorption capacity (681 mg/g) for methylene blue at 80 mg/L, achieving a desorption efficiency of 95% in 2M HCl. Kinetic analysis revealed non-uniform physisorption on a heterogeneous surface, which followed Schott's pseudo-second-order model. This study advances the development of efficient hydrogels for water purification, providing a cost-effective and environmentally friendly solution for large-scale applications.
Collapse
Affiliation(s)
- Sabuj Chandra Sutradhar
- Department of Energy & Materials Engineering, Konkuk University, Chungju-si 27478, Republic of Korea
| | - Nipa Banik
- Department of Chemical and Biological Engineering, College of Engineering, Korea National University of Transportation, Chungju-si 27469, Republic of Korea
| | - Mobinul Islam
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Mohammad Mizanur Rahman Khan
- Research Center for Green Energy Systems, Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Jae-Ho Jeong
- Research Center for Green Energy Systems, Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
7
|
Zhang J, Bai S, Zhao S, Guan X. Synthesis of a chitosan-based superabsorbent polymer and its influence on cement paste. Int J Biol Macromol 2024; 282:136676. [PMID: 39426773 DOI: 10.1016/j.ijbiomac.2024.136676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
To address the challenge of adaptability between cement-based materials and conventional superabsorbent polymers (sodium polyacrylate, Na-PA), a chitosan-based superabsorbent polymer (CSP) with high salt and alkaline resistance was synthesized, and the optimal synthesis process was determined by a single-factor method. The macroscopic performance and microstructure of CSP and Na-PA were compared, and their influences on cement paste were studied. The results show that CSP exhibits a gradual swelling process during water absorption, which is independent of the solution environment. The poriferous structure of CSP allows it to form a network composed of gel membranes. The introduction of amide group enhances the resistance of CSP to salt and alkaline conditions. The autogenous shrinkage of cement paste is mitigated by CSP, with a superior effect compared to Na-PA. The longer desorption time of CSP allows it to promote cement hydration for a longer period, reducing the loss of compressive strength. The heat release, chemically bound water and hydration products (portlandite and amorphous substances) of CSP pastes are higher than those of Na-PA pastes. The water desorption from CSP fills some middle capillary pores and mesopores, leading to the pores in the hardened cement paste being more concentrated in smaller sizes.
Collapse
Affiliation(s)
- Jianjian Zhang
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China; School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shuai Bai
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China; School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shengying Zhao
- China Construction Eighth Engineering Division Co., Ltd, 200122 Shanghai, China
| | - Xinchun Guan
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology and Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China; School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Pereira AEN, de Almeida EA, Kruger FR, da Silva-Filho EC, Muniz EC. Polyacrylamide Hydrogel Containing Starch and Sugarcane Bagasse Ash: Synthesis, Characterisation, and Application in Cement Pastes and Mortars. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5889. [PMID: 39685324 DOI: 10.3390/ma17235889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Internal curing is a process based on the addition of materials that function as water reservoirs in cementitious media. Superabsorbent hydrogels are an alternative that can be used as an internal curing agent, as they have the ability to absorb and release water in a controlled manner. In the present work, superabsorbent hydrogels based on crosslinked polyacrylamide in the presence of starch and sugarcane bagasse ash (SCBA) were developed and applied to mortars as an internal curing agent. The synthesized hydrogels were evaluated by SEM, FTIR, and swelling analysis. Cement pastes and mortars were produced using different amounts of hydrogel (0.03%, 0.06%, and 0.1% by weight). An analysis of the cement pastes and mortars revealed that hydrogel contributes to hydration, thus improving the quality of the product. Furthermore, the addition of 0.03% hydrogel by weight increased the mechanical resistance of the mortars in up to 26.8% at 28 days of curing as compared with reference (without hydrogel). To the best of our knowledge, this is the first study to use a hydrogel based on polyacrylamide crosslinked with starch and SCBA as a curing agent for mortars and cement pastes. This approach is environmentally friendly, because it uses a natural product (starch) and a byproduct from the sugarcane industry (SCBA).
Collapse
Affiliation(s)
| | - Edson Araujo de Almeida
- Chemistry Postgraduation Program, State University of Maringa-UEM, Maringá 87020-900, PR, Brazil
| | - Fábio Rodrigo Kruger
- Civil Construction Department, Federal University of Technology-Parana-UTFPR-CM, Campo Mourão 87301-889, PR, Brazil
| | | | - Edvani Curti Muniz
- Chemistry Postgraduation Program, Federal University of Piaui-UFPI, Teresina 64049-550, PI, Brazil
- Chemistry Postgraduation Program, State University of Maringa-UEM, Maringá 87020-900, PR, Brazil
- Materials Science Postgraduation Program, Federal University of Technology-Parana-UTFPR-LD, Londrina 86036-370, PR, Brazil
| |
Collapse
|
9
|
Özcan N, Orakdogen N. Temperature-Regulated Synthesis of Hyaluronic Acid-Interpenetrated Polyacrylamide/Poly(Acrylic Acid Sodium Salt) Semi-Interpenetrated Polymer Network Gel for the Removal of Methyl Violet. Gels 2024; 10:556. [PMID: 39330158 PMCID: PMC11431609 DOI: 10.3390/gels10090556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
An alternative synthetic pathway was proposed for the optimization of synthesis to find a better correlation between the swelling and elasticity of hyaluronic acid-interpenetrated gels via temperature regulation. An experimental design methodology was presented for the synthesis of polyacrylamide/poly(acrylic acid sodium salt)/hyaluronic acid, PAAm/PSA/HyA, gels by modifying the one-pot procedure using free radical crosslinking copolymerization of AAm with the addition of anionic linear PSA chains in the presence of various amount of HyA, ranging between 0.05% and 0.20% (w/v). Semi-interpenetrated polymer network (IPN)-structured gels were designed with tunable elasticity, in which the extent of covalent crosslinking interactions is controlled by polymerization temperature ranging between -18 and 45 °C. Depending on the HyA content added in the synthesis and the polymerization temperature, the swelling ratio could be controlled. The addition of 0.05% (w/v) HyA increased the swelling of semi-IPNs, while the elastic modulus increased with increasing HyA content and decreased with the polymerization temperature. PAAm/PSA/HyA semi-IPNs showed the typical pH-sensitive swelling of anionic gels, and the swelling reached a maximum at a pH of 11.2. PAAm/PSA/HyA gels were tested for the removal of methyl violet from wastewater. Adsorption kinetics were shown to be well-fitted with the pseudo-second-order model using linear and nonlinear regression analysis. With the clear relationship between increased modulus and composition, this study enabled the fine-tuning of semi-IPN interactions by varying the polymerization temperature.
Collapse
Affiliation(s)
- Nida Özcan
- Department of Chemistry, Graduate School of Science Engineering and Technology, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Nermin Orakdogen
- Soft Materials Research Laboratory, Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Istanbul, Turkey
| |
Collapse
|
10
|
Gad SF, Vasiukhina A, Keller JS, Solorio L, Yeo Y. Multidimensional opioid abuse deterrence using a nanoparticle-polymer hybrid formulation. J Control Release 2024; 370:490-500. [PMID: 38685384 PMCID: PMC11162896 DOI: 10.1016/j.jconrel.2024.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Misuse of prescription opioid drugs is the leading cause of the opioid crisis and overdose-related death. Abuse deterrent formulations (ADFs) have been developed to discourage attempts to tamper with the formulation and alter the ingestion methods. However, abusers develop complex extraction strategies to circumvent the ADF technologies. For comprehensive deterrence of drug abuse, we develop tannic acid nanoparticles (NPs) that protect encapsulated opioids from solvent extraction and thermal challenge (crisping), complementing the existing formulation strategy to deter injection abuse. Here, we develop a hybrid ADF tablet (NP-Tab), consisting of iron-crosslinked tannic acid NPs encapsulating thebaine (model opioid compound), xanthan gum, and chitosan (gel-forming polymers), and evaluate its performance in common abuse conditions. NP-Tab tampered by crushing and suspended in aqueous solvents forms an instantaneous gel, which is difficult to pull or push through a 21-gauge needle. NPs insulate the drug from organic solvents, deterring solvent extraction. NPs also promote thermal destruction of the drug to make crisping less rewarding. However, NP-Tab releases thebaine in the simulated gastric fluid without delay, suggesting that its analgesic effect may be unaffected if consumed orally as prescribed. These results demonstrate that NP-Tab can provide comprehensive drug abuse deterrence, resisting aqueous/organic solvent extraction, injection, and crisping, while retaining its therapeutic effect upon regular usage.
Collapse
Affiliation(s)
- Sheryhan F Gad
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anastasiia Vasiukhina
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Joseph S Keller
- Department of Chemistry, Purdue University, 560 Oval Dr, West Lafayette, IN 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN 47907, USA.
| |
Collapse
|
11
|
Tuan HNA, Phan BTC, Giang HN, Nguyen GT, Le TDH, Phuong H. Impact of Modifications from Potassium Hydroxide on Porous Semi-IPN Hydrogel Properties and Its Application in Cultivation. Polymers (Basel) 2024; 16:1195. [PMID: 38732665 PMCID: PMC11085908 DOI: 10.3390/polym16091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This study synthesized and modified a semi-interpenetrating polymer network hydrogel from polyacrylamide, N,N'-dimethylacrylamide, and maleic acid in a potassium hydroxide solution. The chemical composition, interior morphology, thermal properties, mechanical characteristics, and swelling behaviors of the initial hydrogel (SH) and modified hydrogel (SB) in water, salt solutions, and buffer solutions were investigated. Hydrogels were used as phosphate fertilizer (PF) carriers and applied in farming techniques by evaluating their impact on soil properties and the growth of mustard greens. Fourier-transform infrared spectra confirmed the chemical composition of SH, SB, and PF-adsorbed hydrogels. Scanning electron microscopy images revealed that modification increased the largest pore size from 817 to 1513 µm for SH and SB hydrogels, respectively. After modification, the hydrogels had positive changes in the swelling ratio, swelling kinetics, thermal properties, mechanical and rheological properties, PF absorption, and PF release. The modification also increased the maximum amount of PF loaded into the hydrogel from 710.8 mg/g to 770.9 mg/g, while the maximum % release of PF slightly increased from 84.42% to 85.80%. In addition, to evaluate the PF release mechanism and the factors that influence this process, four kinetic models were applied to confirm the best-fit model, which included zero-order, first-order, Higuchi, and Korsmeyer-Peppas. In addition, after six cycles of absorption and release in the soil, the hydrogels retained their original shapes, causing no alkalinization or acidification. At the same time, the moisture content was higher as SB was used. Finally, modifying the hydrogel increased the mustard greens' lifespan from 20 to 32 days. These results showed the potential applications of modified semi-IPN hydrogel materials in cultivation.
Collapse
Affiliation(s)
- Huynh Nguyen Anh Tuan
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| | - Bui Thi Cam Phan
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| | - Ha Ngoc Giang
- Faculty of Chemical Technology, Ho Chi Minh City University of Industry and Trade, No. 140, Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City 72009, Vietnam;
| | - Giang Tien Nguyen
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| | - Thi Duy Hanh Le
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| | - Ho Phuong
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, No. 1, Vo Van Ngan Street, Linh Chieu Ward, Thu Duc, Ho Chi Minh City 71307, Vietnam; (B.T.C.P.); (G.T.N.); (T.D.H.L.); (H.P.)
| |
Collapse
|
12
|
Almousa R, Xie D, Chen Y, Li J, Anderson GG. Thermoplastic polyurethane surface coated with polymer brushes for reduced protein and cell attachment. J Biomater Appl 2024; 38:758-771. [PMID: 37963494 DOI: 10.1177/08853282231213937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The objective of this study was to coat negatively charged polymer brushes covalently onto the surface of thermoplastic polyurethane (TPU) using a simple conventional surface free-radical polymerization technique. The coated surfaces were assessed with contact angle, protein adsorption, cell adhesion and bacterial adhesion. Bovine serum albumin (BSA) and bovine fibrinogen (BFG) were used for protein adsorption evaluation. Mouse fibroblasts (NIH-3T3) and Pseudomonas aeruginosa (P. aeruginosa) were used to assess surface adhesion. Results show that the TPU surface modified with the attached polymer brushes exhibited significantly reduced contact angle, protein adsorption, and cell as well as bacterial adhesion, among which the negatively charged polymers showed the extremely low values in all the tests. Its contact angle is 5°, as compared to 70° for original TPU. Its BSA, BFG, 3T3 adhesion and P. aeruginosa adhesion were 93%, 84%, 92%, and 93% lower than original TPU. Furthermore, the TPU surface coated with negatively charged polymer brushes exhibited a hydrogel-like property. The results indicate that placing acrylic acids using a simple surface-initiated free-radical polymerization onto a TPU surface and then converting those to negative charges can be an effective and efficient route for fouling resistant applications.
Collapse
Affiliation(s)
- Rashed Almousa
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
- Department of Medical Equipment Technology, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Dong Xie
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
- Department of Biomedical Engineering, Indiana University Purdue University at Indianapolis, Indianapolis, IN, United States
| | - Yong Chen
- Department of Biomedical Engineering, Indiana University Purdue University at Indianapolis, Indianapolis, IN, United States
| | - Jiliang Li
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Gregory G Anderson
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
13
|
Ransing AA, Dhavale RP, Parale VG, Bangi UKH, Choi H, Lee W, Kim J, Wang Q, Phadtare VD, Kim T, Jung WK, Park HH. One-Pot Sol-Gel Synthesis of Highly Insulative Hybrid P(AAm-CO-AAc)-Silica Aerogels with Improved Mechanical and Thermal Properties. Gels 2023; 9:651. [PMID: 37623106 PMCID: PMC10454204 DOI: 10.3390/gels9080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Silica aerogels and their derivatives have outstanding thermal properties with exceptional values in the thermal insulation industry. However, their brittle nature restricts their large-scale commercialization. Thus, enhancing their mechanical strength without affecting their thermal insulating properties is essential. Therefore, for the first time, highly thermally stable poly(acrylamide-co-acrylic acid) partial sodium salt is used as a reinforcing polymer to synthesize hybrid P(AAm-CO-AAc)-silica aerogels via epoxy ring-opening polymerization in the present study. Functional groups in P(AAm-CO-AAc) partial sodium salts, such as CONH2 and COOH, acted as nucleophiles for the epoxy ring-opening reaction with (3-glycidyloxypropyl)trimethoxysilane, which resulted in a seven-fold enhancement in mechanical strength compared to that of pristine silica aerogel while maintaining thermal conductivity at less than 30.6 mW/mK and porosity of more than 93.68%. Moreover, the hybrid P(AAm-CO-AAc)-silica aerogel demonstrated improved thermal stability up to 343 °C, owing to the synergetic effect between the P(AAm-CO-AAc) and the silica aerogel, corresponding to the thermal stability and strong covalent bonding among them. These excellent results illustrate that this new synthetic approach for producing hybrid P(AAm-CO-AAc)-silica aerogels is useful for enhancing the mechanical strength of pristine silica aerogel without impairing its thermal insulating property and shows potential as an industrial heat insulation material.
Collapse
Affiliation(s)
- Akshay A. Ransing
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (A.A.R.); (R.P.D.); (V.G.P.); (H.C.); (W.L.); (J.K.); (Q.W.); (V.D.P.); (T.K.)
| | - Rushikesh P. Dhavale
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (A.A.R.); (R.P.D.); (V.G.P.); (H.C.); (W.L.); (J.K.); (Q.W.); (V.D.P.); (T.K.)
| | - Vinayak G. Parale
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (A.A.R.); (R.P.D.); (V.G.P.); (H.C.); (W.L.); (J.K.); (Q.W.); (V.D.P.); (T.K.)
| | - Uzma K. H. Bangi
- Department of Physics, School of Physical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur—Pune National Highway, Solapur 413 255, Maharashtra, India;
| | - Haryeong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (A.A.R.); (R.P.D.); (V.G.P.); (H.C.); (W.L.); (J.K.); (Q.W.); (V.D.P.); (T.K.)
| | - Wonjun Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (A.A.R.); (R.P.D.); (V.G.P.); (H.C.); (W.L.); (J.K.); (Q.W.); (V.D.P.); (T.K.)
| | - Jiseung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (A.A.R.); (R.P.D.); (V.G.P.); (H.C.); (W.L.); (J.K.); (Q.W.); (V.D.P.); (T.K.)
| | - Qi Wang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (A.A.R.); (R.P.D.); (V.G.P.); (H.C.); (W.L.); (J.K.); (Q.W.); (V.D.P.); (T.K.)
| | - Varsha D. Phadtare
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (A.A.R.); (R.P.D.); (V.G.P.); (H.C.); (W.L.); (J.K.); (Q.W.); (V.D.P.); (T.K.)
| | - Taehee Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (A.A.R.); (R.P.D.); (V.G.P.); (H.C.); (W.L.); (J.K.); (Q.W.); (V.D.P.); (T.K.)
| | - Wook Ki Jung
- Agency for Defense Development (ADD), Daejeon 34146, Republic of Korea;
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (A.A.R.); (R.P.D.); (V.G.P.); (H.C.); (W.L.); (J.K.); (Q.W.); (V.D.P.); (T.K.)
| |
Collapse
|
14
|
Huang G, Xu J, Markides CN. High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf. Nat Commun 2023; 14:3344. [PMID: 37291103 PMCID: PMC10250451 DOI: 10.1038/s41467-023-38984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Most solar energy incident (>70%) upon commercial photovoltaic panels is dissipated as heat, increasing their operating temperature, and leading to significant deterioration in electrical performance. The solar utilisation efficiency of commercial photovoltaic panels is typically below 25%. Here, we demonstrate a hybrid multi-generation photovoltaic leaf concept that employs a biomimetic transpiration structure made of eco-friendly, low-cost and widely-available materials for effective passive thermal management and multi-generation. We demonstrate experimentally that bio-inspired transpiration can remove ~590 W/m2 of heat from a photovoltaic cell, reducing the cell temperature by ~26 °C under an irradiance of 1000 W/m2, and resulting in a relatively 13.6% increase in electrical efficiency. Furthermore, the photovoltaic leaf is capable of synergistically utilising the recovered heat to co-generate additional thermal energy and freshwater simultaneously within the same component, significantly elevating the overall solar utilisation efficiency from 13.2% to over 74.5%, along with over 1.1 L/h/m2 of clean water.
Collapse
Affiliation(s)
- Gan Huang
- Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, London, UK.
| | - Jingyuan Xu
- Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, London, UK
| | - Christos N Markides
- Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
15
|
Jahan N, Ibne Mahbub MS, Lee BT, Bae SH. In Vivo and In Vitro Investigation of a Novel Gelatin/Sodium Polyacrylate Composite Hemostatic Sponge for Topical Bleeding. J Funct Biomater 2023; 14:jfb14050265. [PMID: 37233375 DOI: 10.3390/jfb14050265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Designing a functional and efficient blood-clotting agent is a major challenge. In this research, hemostatic scaffolds (GSp) were prepared from the superabsorbent, inter-crosslinked polymer sodium polyacrylate (Sp) bound to a natural protein gelatin (G) loaded with thrombin (Th) by a cost-effective freeze-drying method. Five compositions were grafted (GSp0.0, Gsp0.1, GSp0.2, GSp0.3, GSp0.3-Th) where the concentration of Sp varied but the ratios of G remained the same. The fundamental physical characteristics that increased the amounts of Sp with G gave synergistic effects after interacting with thrombin. Due to the presence of superabsorbent polymer (SAP) swelling capacities in GSp0.3 and GSp0.3-Th surge forward 6265% and 6948%, respectively. Pore sizes became uniform and larger (ranging ≤ 300 μm) and well-interconnected. The water-contact angle declined in GSp0.3 and GSp0.3-Th to 75.73 ± 1.097 and 75.33 ± 0.8342 degrees, respectively, thus increasing hydrophilicity. The pH difference was found to be insignificant as well. In addition, an evaluation of the scaffold in in vitro biocompatibility with the L929 cell line showed cell viability >80%, so the samples were nontoxic and produced a favorable environment for cell proliferation. The composite GSp0.3-Th revealed the lowest HR (%) (2.601%), and the in vivo blood-clotting time (s) and blood loss (gm) supported hemostasis. Overall, the results showed that a novel GSp0.3-Th scaffold can be a potential candidate as a hemostatic agent.
Collapse
Affiliation(s)
- Nusrat Jahan
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Md Sowaib Ibne Mahbub
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Sang Ho Bae
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea
| |
Collapse
|
16
|
Manaila E, Demeter M, Calina IC, Craciun G. NaAlg-g-AA Hydrogels: Candidates in Sustainable Agriculture Applications. Gels 2023; 9:gels9040316. [PMID: 37102928 PMCID: PMC10138036 DOI: 10.3390/gels9040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Nowadays, the degradation of agricultural soil due to various factors should be a major concern for everyone. In this study, a new sodium alginate-g-acrylic acid-based hydrogel was developed simultaneously by cross-linking and grafting with accelerated electrons to be used as soil remediation. The effect of irradiation dose and NaAlg contents on the gel fraction, network and structural parameters, sol-gel analysis, swelling power, and swelling kinetics of NaAlg-g-AA hydrogels have been investigated. It was demonstrated that NaAlg hydrogels show significative swelling power that is greatly dependent on their composition and irradiation dose; they keep the structure and are not degraded in different pH conditions and different water sources. Diffusion data revealed a non-Fickian transport mechanism (0.61-0.99) also specific to cross-linked hydrogels. The prepared hydrogels were proved as excellent candidates in sustainable agriculture applications.
Collapse
Affiliation(s)
- Elena Manaila
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Maria Demeter
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Ion Cosmin Calina
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Gabriela Craciun
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| |
Collapse
|
17
|
Ejeromedoghene O, Zuo X, Oderinde O, Yao F, Adewuyi S, Fu G. Photochromic Behavior of Inorganic Superporous Hydrogels Fabricated from Different Reacting Systems of Polymeric Deep Eutectic Solvents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Paré L, Banchini C, Hamel C, Bernier L, Stefani F. A simple and low-cost technique to initiate single-spore cultures of arbuscular mycorrhizal fungi using a superabsorbent polymer. Symbiosis 2022. [DOI: 10.1007/s13199-022-00878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractMost species of arbuscular mycorrhizal fungi (AMF) are propagated with a host plant in a pot culture. However, the soil matrix makes it difficult to monitor the establishment and development of the symbiosis. In vitro culturing using Ri T-DNA transformed roots provides a clear medium and a sterile environment which offsets the constraints of the soil matrix. Nevertheless, the sterile conditions and the Ri T-DNA transformed roots provide very different growing conditions compared to a pot culture. Transparent soil based on superabsorbent polymer (SAP) has the potential of combining the advantages of current in vivo and in vitro culture methods without the constraints associated with either technique (opacity and sterility). Here we describe a SAP-based autotrophic culture as an alternative to current in vivo and in vitro culture methods. This system using two-compartment Petri dishes makes it easy to initiate single-spore cultures and to monitor fungal propagation. The SAP-based autotrophic system allowed the establishment of single-spore cultures of seven species (Diversispora varaderana, Funneliformis geosporus, Gigaspora rosea, Racocetra fulgida, Rhizophagus irregularis, R. intraradices and Sclerocystis sp.) from six genera and three families. Cultures were maintained over several months under non-sterile conditions. The Petri dishes avoid the problem of cross contamination and they can be stacked for space optimization. The grains of SAP colonized with new spores were used as inoculum to initiate new cultures in the SAP-based system. The SAP-based autotrophic culture method is a low-cost and low-tech approach, which makes the study of AMF much more accessible.
Collapse
|
19
|
Performance of a novel, eco‐friendly, cellulose‐based superabsorbent polymer (
Cellulo‐SAP
): Absorbency, stability, reusability, and biodegradability. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Chau AL, Getty PT, Rhode AR, Bates CM, Hawker CJ, Pitenis AA. Superlubricity of pH-responsive hydrogels in extreme environments. Front Chem 2022; 10:891519. [PMID: 36034669 PMCID: PMC9405656 DOI: 10.3389/fchem.2022.891519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Poly(acrylamide-co-acrylic acid) (P(AAm-co-AA)) hydrogels are highly tunable and pH-responsive materials frequently used in biomedical applications. The swelling behavior and mechanical properties of these gels have been extensively characterized and are thought to be controlled by the protonation state of the acrylic acid (AA) through the regulation of solution pH. However, their tribological properties have been underexplored. Here, we hypothesized that electrostatics and the protonation state of AA would drive the tribological properties of these polyelectrolyte gels. P(AAm-co-AA) hydrogels were prepared with constant acrylamide (AAm) concentration (33 wt%) and varying AA concentration to control the amount of ionizable groups in the gel. The monomer:crosslinker molar ratio (200:1) was kept constant. Hydrogel swelling, stiffness, and friction behavior were studied by systematically varying the acrylic acid (AA) concentration from 0-12 wt% and controlling solution pH (0.35, 7, 13.8) and ionic strength (I = 0 or 0.25 M). The stiffness and friction coefficient of bulk hydrogels were evaluated using a microtribometer and borosilicate glass probes as countersurfaces. The swelling behavior and elastic modulus of these polyelectrolyte hydrogels were highly sensitive to solution pH and poorly predicted the friction coefficient (µ), which decreased with increasing AA concentration. P(AAm-co-AA) hydrogels with the greatest AA concentrations (12 wt%) exhibited superlubricity (µ = 0.005 ± 0.001) when swollen in unbuffered, deionized water (pH = 7, I = 0 M) and 0.5 M NaOH (pH = 13.8, I = 0.25 M) (µ = 0.005 ± 0.002). Friction coefficients generally decreased with increasing AA and increasing solution pH. We postulate that tunable lubricity in P(AAm-co-AA) gels arises from changes in the protonation state of acrylic acid and electrostatic interactions between the probe and hydrogel surface.
Collapse
Affiliation(s)
- Allison L. Chau
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick T. Getty
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Andrew R. Rhode
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Christopher M. Bates
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Craig J. Hawker
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Angela A. Pitenis
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
21
|
Siqueira JS, Reed WF. Continuous Monitoring and Characterization of Copolymerization Reactions of Acrylate Monomers with Indistinguishable Ultraviolet Spectra using Infrared Spectroscopy. MACROMOL REACT ENG 2022. [DOI: 10.1002/mren.202200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Ejeromedoghene O, Hu YP, Oderinde O, Yao F, Akinremi C, Akinyeye R, Adewuyi S, Fu G. Transparent and photochromic poly(hydroxyethyl acrylate–acrylamide)/
WO
3
hydrogel with antibacterial properties against bacterial keratitis in contact lens. J Appl Polym Sci 2022. [DOI: 10.1002/app.51815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Yi Ping Hu
- School of Chemistry and Chemical Engineering Southeast University Nanjing China
| | - Olayinka Oderinde
- Department of Chemical Sciences, Faculty of Basic Medical and Applied Sciences Lead City University Ibadan Nigeria
| | - Fang Yao
- School of Chemistry and Chemical Engineering Southeast University Nanjing China
| | - Caroline Akinremi
- Department of Chemistry College of Physical Sciences, Federal University of Agriculture Abeokuta Nigeria
| | - Richard Akinyeye
- Department of Industrial Chemistry Ekiti State University Ado‐Ekiti Nigeria
| | - Sheriff Adewuyi
- Department of Chemistry College of Physical Sciences, Federal University of Agriculture Abeokuta Nigeria
| | - Guodong Fu
- School of Chemistry and Chemical Engineering Southeast University Nanjing China
| |
Collapse
|
23
|
Corsaro C, Neri G, Santoro A, Fazio E. Acrylate and Methacrylate Polymers' Applications: Second Life with Inexpensive and Sustainable Recycling Approaches. MATERIALS (BASEL, SWITZERLAND) 2021; 15:282. [PMID: 35009430 PMCID: PMC8746205 DOI: 10.3390/ma15010282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Polymers are widely employed in several fields thanks to their wide versatility and the easy derivatization routes. However, a wide range of commercial polymers suffer from limited use on a large scale due to their inert nature. Nowadays, acrylate and methacrylate polymers, which are respectively derivatives of acrylic or methacrylic acid, are among the most proposed materials for their useful characteristics like good biocompatibility, capping ability toward metal clusters, low price, potentially recyclability and reusability. Here, we discuss the advantages and challenges of this class of smart polymers focusing our attention on their current technological applications in medical, electronic, food packaging and environmental remediation fields. Furthermore, we deal with the main issue of their recyclability, considering that the current commercial bioplastics are not yet able to meet the global needs as much as to totally replace fossil-fuel-based products. Finally, the most accredited strategies to reach recyclable composites based on acrylic polymers are described.
Collapse
Affiliation(s)
- Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, 98166 Messina, Italy;
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.N.); (A.S.)
| | - Antonio Santoro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.N.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, 98166 Messina, Italy;
| |
Collapse
|
24
|
Wang X, Yang S, Zhang H, Xu X, Wood CD, Lipiński W. Amine infused hydrogel-based CO2 gas storage technology for CO2 hydrate-based cold thermal energy storage. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Ben-Barak I, Schneier D, Kamir Y, Goor M, Golodnitsky D, Peled E. Drop-on-demand 3D-printed silicon-based anodes for lithium-ion batteries. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05056-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Abstract
Among the advanced wound dressing types, superabsorbent (SA) dressings form an important class of dressings, particularly for the management of medium to highly exuding wounds. However, SA dressings are not all made the same. This educational article describes distinct, common SA dressing designs, which differ fundamentally in structure and composition, and, thereby, in their exudate absorption function and clinical efficacy. The diverse design families of SA dressings, including dressings with an SA polymer-sheet core, versus dressings with an air laid core, where the SA polymer grains are embedded in fluff, relate to different manufacturing processes, production techniques and associated fabrication costs. These fundamental structural and material differences across SA dressing designs from different manufacturers naturally lead to wide variations in the fluid handling characteristics of the products, which are analysed here using both theoretical and experimental bioengineering laboratory approaches. This work is primarily aimed at promoting critical thinking among health professionals who should ask manufacturers to present relevant testing data for an informed clinical decision-making with regards to the choice of the safest and best performing SA dressing for each treated wound case.
Collapse
Affiliation(s)
- Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
27
|
Fadl AM, Abdou MI, Moustafa HY, Ahmed AESI, Anter ES, Ahmed HES. A New Comparative Evaluation for the Rheological and Filtration Properties of Water-Based Drilling Fluids Utilizing Sodium Salt of Linear and Cross-Linked Acrylate Polymer Hydrogels. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Mahon R, Oluyemi G, Oyeneyin B, Balogun Y. Experimental investigation of the displacement flow mechanism and oil recovery in primary polymer flood operations. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04360-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Abstract
Polymer flooding is a mature chemical enhanced oil recovery method employed in oilfields at pilot testing and field scales. Although results from these applications empirically demonstrate the higher displacement efficiency of polymer flooding over waterflooding operations, the fact remains that not all the oil will be recovered. Thus, continued research attention is needed to further understand the displacement flow mechanism of the immiscible process and the rock–fluid interaction propagated by the multiphase flow during polymer flooding operations. In this study, displacement sequence experiments were conducted to investigate the viscosifying effect of polymer solutions on oil recovery in sandpack systems. The history matching technique was employed to estimate relative permeability, fractional flow and saturation profile through the implementation of a Corey-type function. Experimental results showed that in the case of the motor oil being the displaced fluid, the XG 2500 ppm polymer achieved a 47.0% increase in oil recovery compared with the waterflood case, while the XG 1000 ppm polymer achieved a 38.6% increase in oil recovery compared with the waterflood case. Testing with the motor oil being the displaced fluid, the viscosity ratio was 136 for the waterflood case, 18 for the polymer flood case with XG 1000 ppm polymer and 9 for the polymer flood case with XG 2500 ppm polymer. Findings also revealed that for the waterflood cases, the porous media exhibited oil-wet characteristics, while the polymer flood cases demonstrated water-wet characteristics. This paper provides theoretical support for the application of polymer to improve oil recovery by providing insights into the mechanism behind oil displacement.
Graphic abstract
Highlights
The difference in shape of relative permeability curves are indicative of the effect of mobility control of each polymer concentration.
The water-oil systems exhibited oil-wet characteristics, while the polymer-oil systems demonstrated water-wet characteristics.
A large contrast in displacing and displaced fluid viscosities led to viscous fingering and early water breakthrough.
Collapse
|
29
|
Mechanistic study of the wettability alteration induced by preformed particle gel (PPG) in carbonate reservoirs. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Kim S, Kim M, Koh WG. Preparation of Surface-Reinforced Superabsorbent Polymer Hydrogel Microspheres via Incorporation of In Situ Synthesized Silver Nanoparticles. Polymers (Basel) 2021; 13:902. [PMID: 33804248 PMCID: PMC7999066 DOI: 10.3390/polym13060902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Superabsorbent polymer (SAP) particles are primarily applied for absorbing and storing liquids. Here, poly (acrylic acid) (PAA)-based SAP microspheres incorporated with silver nanoparticles (AgNPs) are prepared as an effort to maintain microsphere shape during swelling and minimize gel blocking. PAA-based SAP spheres are synthesized via inverse suspension polymerization. AgNPs are formed within SAP spheres through in situ reduction of silver nitrate (AgNO3), using polyvinylpyrrolidone as the reducing agent. The formation of AgNPs within SAP was observed via techniques such as scanning electron microscopy, ultraviolet-visible spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and transmission electron microscopy. Energy dispersive spectroscopy analyses reveal that thin and dense layers of AgNPs are formed on the outer regions of the SAP spheres at higher concentrations of AgNO3. The water absorbency capacity decreases on increasing the amount of incorporated silver nanoparticles; however, it is comparable with that of commercially available surface-crosslinked SAP particles. Finally, micro-computerized tomography (micro-CT) study revealed that AgNP-incorporated SAP spheres maintained their shapes during swelling and exhibit higher void fractions in the packed gel bed, minimizing gel blocking and improving fluid permeability.
Collapse
Affiliation(s)
| | | | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea; (S.K.); (M.K.)
| |
Collapse
|
31
|
Synthesis of the superabsobents enriched in chitosan derivatives with excellent water absorption properties. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03521-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Calamak S. Sodium polyacrylate microparticle containing multifunctional skin patch for sweat analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Savaskan Yilmaz S, Yildirim N, Misir M, Misirlioglu Y, Celik E. Synthesis, Characterization of a New Polyacrylic Acid Superabsorbent, Some Heavy Metal Ion Sorption, the Adsorption Isotherms, and Quantum Chemical Investigation. MATERIALS 2020; 13:ma13194390. [PMID: 33019755 PMCID: PMC7579146 DOI: 10.3390/ma13194390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
Poly(acrylic acid/Kryptofix 23-Dimethacrylate) superabsorbent polymer [P (AA/Kry23-DM) SAP] was synthesized by solution polymerization to remove Co, Ni, Cu, Cd, Mn, Zn, Pb, Cr, and Fe ions in water and improve the quality of the water. Kry23-DM cross-linker (1,4,7,13,16-Pentaoxa-10,19 diazo cyclohexene icosane di methacrylate) was synthesized using Kry23 and methacryloyl chloride. The characterization of the molecules was done by FTIR, TGA, DSC, and SEM techniques. The effects of parameters such as pH, concentration, and the metal ion interaction on the heavy metal ions uptaking of SAP was investigated. It was observed that P (AA/Kry23-DM) SAP has maximum water absorption, and the absorption increases with the pH increase. Adsorption rates and sorption capacity, desorption ratios, competitive sorption (qcs), and distribution coefficient (log D) of P(AA/Kry23-DM) SAP were studied as a function of time and pH with the heavy metal ion concentration. Langmuir and Freundlich isotherms of the P (AA/Kry23-DM) SAP were investigated to verify the metal uptake. Molecular mechanic (MM2), Assisted Model Building with Energy Refinement (AMBER), and optimized potentials for liquid simulations (OPLS) methods. were used in quantum chemical calculations for the conformational analysis of the cross-linker and the SAP. ΔH0f calculations of the cross-linker and the superabsorbent were made using Austin Model 1(AM1) method.
Collapse
Affiliation(s)
- Sevil Savaskan Yilmaz
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, University Avanue, 61080 Trabzon, Turkey; (N.Y.); (E.C.)
- Correspondence: ; Tel.: +90-462-377-2506; Fax: +90-462-325-3195
| | - Nuri Yildirim
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, University Avanue, 61080 Trabzon, Turkey; (N.Y.); (E.C.)
| | - Murat Misir
- Faculty of Engineering and Architecture, Ahi Evran University, 40100 Kırşehir, Turkey; (M.M.); (Y.M.)
| | - Yasin Misirlioglu
- Faculty of Engineering and Architecture, Ahi Evran University, 40100 Kırşehir, Turkey; (M.M.); (Y.M.)
| | - Emre Celik
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, University Avanue, 61080 Trabzon, Turkey; (N.Y.); (E.C.)
| |
Collapse
|
34
|
Tsigkou K, Tsafrakidou P, Zafiri C, Soto Beobide A, Kornaros M. Pretreatment of used disposable nappies: Super absorbent polymer deswelling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 112:20-29. [PMID: 32480300 DOI: 10.1016/j.wasman.2020.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Typical used disposable nappies usually consist of nonwoven fabrics, Super Absorbent Polymer (SAP), and organic material, namely fluffy pulp, urine and/or excreta. Currently, this waste stream is being disposed to landfills causing many environmental issues. An alternative management method could be the valorisation of the biodegradable material through anaerobic digestion, and the recycling of plastics and SAP. Pretreatment of nappies is mandatory to separate SAP and plastics from the organic material. The aim of this work was the development of a process to minimize SAP's volume, as this component can swell up to 1500 times its own mass by water absorbance, thus hindering any further biological process. CaCl2, MgCl2, and a range of CaCl2/MgCl2 combinations were tested against their deswelling efficiency on SAP, residual reagent concentration and reagent cost. The mixture of 20% CaCl2 and 50% MgCl2 (w/w) of SAP was concluded as the suitable combination of salts achieving a final SAP volume reduction of 92.7% with low residual cation concentrations and minimum cost. The physicochemical characterization of nappies' hydrolysate that took place to estimate its adequacy as substrate for anaerobic digestion resulted to a COD:N ratio within the acceptable range for a subsequent anaerobic digestion processing.
Collapse
Affiliation(s)
- Konstantina Tsigkou
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, University Campus, Patras 26504, Greece
| | | | | | - Amaia Soto Beobide
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Platani, P.O. Box 1414, 265 04 Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, University Campus, Patras 26504, Greece.
| |
Collapse
|