1
|
Gomes LR, Correia LIV, Reis TFMD, Peres PABM, Sommerfeld S, Silva RR, Fonseca BB, Silva ACA, Lima AMC. In vitro evaluation of the antimicrobial effect of ZnO:9Ag nanoparticle and antibiotics on standard strains of Leptospira spp. Microb Pathog 2025; 199:107259. [PMID: 39736342 DOI: 10.1016/j.micpath.2024.107259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Silver nanoparticles are recognized for potent antimicrobial properties against pathogenic bacteria, crucial in addressing the severity of leptospirosis, where an ideal treatment is lacking. This study focuses on assessing the antimicrobial efficacy of silver-doped zinc oxide nanoparticles (ZnO:9Ag) on standard Leptospira spp. strains (six species and ten serovars). Comparisons with conventional antibiotics were made. In vitro characterizations, including minimum inhibitory concentration (MIC), cell viability, membrane permeability, intracellular content release, and broth microdilution checkerboard assay, evaluated streptomycin, penicillin G, doxycycline, tetracycline, and ZnO:9Ag effects on Leptospira. The safety and toxicological effects of ZnO:9Ag were explored using the chicken embryo in vivo model. All treatments displayed notable anti-Leptospira effects. Penicillin G had a lower MIC (<0.048), contrasting ZnO:9Ag's higher MIC (6.25-50 μg/mL). Despite this, ZnO:9Ag exhibited pronounced inhibitory effects, making it a viable therapeutic option. At 100 μg/mL, ZnO:9Ag reduced cell viability in 50 % of strains, notably in L. interrogans, L. kirschneri, and L. noguchii species. ZnO:9Ag induced a significant permeability change (p < 0.05) and substantial intracellular content extravasation across all species. The checkerboard method revealed a significant synergistic antibacterial effect of the ZnO:9Ag combination with doxycycline, penicillin G, streptomycin, and tetracycline against the L. interrogans species. In vivo, ZnO:9Ag differed significantly (p < 0.05) from the negative control in the GGT enzyme parameter. In conclusion, ZnO:9Ag shows promising potential as an alternative antibacterial agent against Leptospira spp., inhibiting growth with a relatively safe and low toxicity level.
Collapse
Affiliation(s)
- Lara Reis Gomes
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, 38402-018, Brazil.
| | | | | | | | - Simone Sommerfeld
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, 38402-018, Brazil
| | - Rogério Reis Silva
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, 38402-018, Brazil
| | | | | | | |
Collapse
|
2
|
Dai Y, Zhang Q, Gu R, Chen J, Ye P, Zhu H, Tang M, Nie X. Metal ion formulations for diabetic wound healing: Mechanisms and therapeutic potential. Int J Pharm 2024; 667:124889. [PMID: 39481815 DOI: 10.1016/j.ijpharm.2024.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Metals are vital in human physiology, which not only act as enzyme catalysts in the processes of superoxide dismutase and glucose phosphorylation, but also affect the redox process, osmotic adjustment, metabolism and neural signals. However, metal imbalances can lead to diseases such as diabetes, which is marked by chronic hyperglycemia and affects wound healing. The hyperglycemic milieu of diabetes impairs wound healing, posing significant challenges to patient quality of life. Wound healing encompasses a complex cascade of hemostasis, inflammation, proliferation, and remodeling phases, which are susceptible to disruption in hyperglycemic conditions. In recent decades, metals have emerged as critical facilitators of wound repair by enhancing antimicrobial properties (e.g., iron and silver), providing angiogenic stimulation (copper), promoting antioxidant activity and growth factor synthesis (zinc), and supporting wound closure (calcium and magnesium). Consequently, research has pivoted towards the development of metal ion-based therapeutics, including innovative formulations such as nano-hydrogels, nano-microneedle dressings, and microneedle patches. Prepared by combining macromolecular materials such as chitosan, hyaluronic acid and sodium alginate with metals, aiming at improving the management of diabetic wounds. This review delineates the roles of key metals in human physiology and evaluates the application of metal ions in diabetic wound management strategies.
Collapse
Affiliation(s)
- Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
3
|
Fatih HJ, Ashengroph M, Sharifi A, Zorab MM. Green-synthesized α-Fe 2O 3-nanoparticles as potent antibacterial, anti-biofilm and anti-virulence agent against pathogenic bacteria. BMC Microbiol 2024; 24:535. [PMID: 39716060 DOI: 10.1186/s12866-024-03699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) presents a serious threat to health, highlighting the urgent need for more effective antimicrobial agents with innovative mechanisms of action. Nanotechnology offers promising solutions by enabling the creation of nanoparticles (NPs) with antibacterial properties. This study aimed to explore the antibacterial, anti-biofilm, and anti-virulence effects of eco-friendly synthesized α-Fe₂O₃ nanoparticles (α-Fe₂O₃-NPs) against pathogenic bacteria. METHODS The α-Fe2O3-NPs were synthesized using a green synthesis method that involved Bacillus sp. GMS10, with iron sulfate as a precursor. The NPs were characterized through ultraviolet-visible (UV-Vis) spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDX), Dynamic Light Scattering (DLS), Zeta Potential Analysis, X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). Their antimicrobial activity was assessed against Gram-positive and Gram-negative bacteria. The study also evaluated the effect of the α-Fe2O3-NPs on bacterial cell membrane disruption, biofilm formation, efflux pump inhibition, and swarming motility. RESULTS The UV-Visible spectrum showed a peak at 228 nm, indicating plasmon absorbance of the α-Fe2O3-NPs. FESEM revealed spherical NPs (~ 30 nm), and DLS confirmed a hydrodynamic size of 36.3 nm with a zeta potential of -25.1 mV, indicating good stability. XRD identified the rhombohedral α-Fe2O3 phase, and FTIR detected O-H, C-H, C = O, and Fe-O functional groups, suggesting organic capping for stability. Antibacterial assays demonstrated that the α-Fe2O3-NPs had MIC values ranging from 0.625 to 5 µg/mL and MBC values between 5 and 20 µg/mL, with a strong effect against Gram-positive bacteria. The NPs significantly increased membrane permeability, inhibited biofilm formation in S. aureus and E. coli, and disrupted efflux pumps in S. aureus SA-1199B (a fluoroquinolone-resistant strain overexpressing norA). Additionally, the α-Fe2O3-NPs inhibited P. aeruginosa swarming motility. CONCLUSION The bacteria-synthesized α-Fe2O3-NPs demonstrated significant antimicrobial activity, particularly against Gram-positive bacteria, and exhibited strong potential for inhibiting biofilm formation and efflux pump activity, offering a promising strategy to address AMR. Focus on further evaluating their therapeutic potential in clinical settings and conducting comprehensive assessments of their safety profiles to ensure their applicability in medical treatments. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Harem Jamal Fatih
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran.
- Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran.
| | - Aram Sharifi
- Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran.
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Musa Moetasam Zorab
- Department of Physics, College of Science, University of Halabja, Halabja, Kurdistan Region, Iraq
| |
Collapse
|
4
|
Zhou Y, Huang H, Yuan Q, Ren J, Wu J, Zhao X, Lin Y, Lin Z, Xu L. Hydrogel dressing composed of nanoAg@QAC promotes the healing of bacterial infected diabetic wounds. BIOMATERIALS ADVANCES 2024; 169:214143. [PMID: 39662166 DOI: 10.1016/j.bioadv.2024.214143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Diabetes mellitus ranks as the eighth most prevalent cause of mortality and disability worldwide. It is a major challenge for clinics to treat diabetic-infected wounds. The hydrogel (referred to as NanoAg@QAC), which combines the advantages of nanosilver (NanoAg) and quaternary ammonium chitosan (QAC), possesses the characteristics of an ideal wound dressing, including proper mechanical properties, antimicrobial activity, anti-biofilm properties, and cytocompatibility. The NanoAg@QAC hydrogel proved to be efficacious in treating infections caused by S. aureus and P. aeruginosa in vivo, thereby promoting wound closure during the initial phase of healing. The application of the NanoAg@QAC hydrogel efficiently suppressed M1-type macrophage marker iNOS expression and simultaneously enhanced the M2-type macrophage marker CD206, which promoted the M1 to M2 transition. The hydrogel significantly reduced the pro-inflammatory cytokine interleukin-1β (IL-1β) and increased the levels of vascular endothelial growth factor A (VEGFA), which alleviated the inflammatory response of the wound and promoted neovascularization. Furthermore, the NanoAg@QAC hydrogel enhanced tissue regeneration and collagen deposition. Thisw study demonstrates that the NanoAg@QAC hydrogel exhibits significant potential for application in the treatment of diabetic-infected wounds.
Collapse
Affiliation(s)
- Yanyan Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Haiyan Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Qi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Jingyuan Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Jiashen Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Xilin Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Yuchun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China.
| | - Zhongning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China.
| | - Ling Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China; Shenzhen Research Institute of Xiamen University, Shenzhen, China.
| |
Collapse
|
5
|
Thamayandhi C, El-Tayeb MA, Syed SR, Sivaramakrishnan R, Gunasekar B. Antibacterial and anti-biofilm efficacy of selenium nanoparticles against Pseudomonas aeruginosa: Characterization and in vitro analysis. Microb Pathog 2024; 196:106998. [PMID: 39384023 DOI: 10.1016/j.micpath.2024.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a Gram-negative opportunistic pathogen, poses significant treatment challenges due to its antibiotic resistance and biofilm formation. This study investigates the anti-bacterial and anti-biofilm activities of chemically synthesized selenium nanoparticles (SeNPs) against P. aeruginosa. SeNPs were synthesized using ascorbic acid as a reducing agent and characterized. Biofilm formation was quantified using a modified microtiter plate method, and the anti-biofilm efficacy of SeNPs was evaluated using confocal microscopy and SEM. The P. aeruginosa isolates exhibited high resistance to piperacillin-tazobactam (60 %) and ceftazidime (59 %). SeNPs demonstrated a round shape with a diameter of 15-18 nm. UV-Vis spectra showed a peak at 275 nm, and XRD analysis revealed crystalline peaks corresponding to selenium. The FTIR spectra confirmed the presence of various functional groups. SeNPs significantly reduced biofilm formation in a dose-dependent manner, with MIC50 and MIC90 values of 60 μg/mL and 80 μg/mL, respectively. Confocal microscopy and SEM analysis showed a notable decrease in biofilm thickness and bacterial adherence post-SeNPs treatment. These findings suggest that SeNPs could be a promising alternative or adjunctive treatment option for combating antibiotic-resistant P. aeruginosa infections. Further research is warranted to explore the clinical applications of SeNPs in treating biofilm-associated infections.
Collapse
Affiliation(s)
- Catherine Thamayandhi
- Department of Microbiology, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamilnadu, India
| | - Mohamed A El-Tayeb
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyad, 11451, Saudi Arabia
| | - Shaban Rm Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyad, 11451, Saudi Arabia
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Bhuvaneshwari Gunasekar
- Department of Microbiology, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamilnadu, India.
| |
Collapse
|
6
|
Deleanu IM, Grosu E, Ficai A, Ditu LM, Motelica L, Oprea OC, Gradisteanu Pircalabioru G, Sonmez M, Busuioc C, Ciocoiu R, Antoniac VI. New Antimicrobial Materials Based on Plasticized Polyvinyl Chloride for Urinary Catheters: Preparation and Testing. Polymers (Basel) 2024; 16:3028. [PMID: 39518238 PMCID: PMC11548089 DOI: 10.3390/polym16213028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Given the constant increased number of nosocomial infections in hospitals, especially associated with prolonged usage of inserted medical devices, our work aims to ameliorate clinical experience and promote faster healing of patients undergoing urinary catheterization by improving the properties of medical devices materials. Within this research, nine different composites were prepared based on polyvinyl chloride, using three different plasticizers (di-(2-ethylhexyl) phthalate, Proviplast 2646, and Proviplast 2755), and two different antimicrobial additives containing silver nanoparticles. The prepared materials were analyzed, and their physicochemical properties were determined: water absorption, relative density, plasticizer migration, hydrophobicity/hydrophilicity by contact angle measurement, Shore A hardness, tensile strength, and elongation at break. Structure and morphology were also investigated by means of FTIR, SEM, and EDX analyses, and thermal (TG-DSC) and biological properties were evaluated. The most important aspects of obtained results are showing that plasticizer migration was significantly reduced (to almost zero) and that the usage of antimicrobial additives improved the materials' biocompatibility. Thus, based on the concluded favorable properties, the obtained materials can be further used for catheter development. Pressure-flow studies for different sizes and configurations are the next steps toward advanced in vivo and clinical trials.
Collapse
Affiliation(s)
- Iuliana Mihaela Deleanu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (I.M.D.); (L.M.); (O.-C.O.); (C.B.)
| | - Elena Grosu
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania; (E.G.); (R.C.); (V.I.A.)
| | - Anton Ficai
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (I.M.D.); (L.M.); (O.-C.O.); (C.B.)
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania;
| | - Lia Mara Ditu
- Faculty of Biology, University of Bucharest, 1-3 Intr. Portocalelor Street, 060101 Bucharest, Romania;
- Research Institute of the University of Bucharest, 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Ludmila Motelica
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (I.M.D.); (L.M.); (O.-C.O.); (C.B.)
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania;
| | - Ovidiu-Cristian Oprea
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (I.M.D.); (L.M.); (O.-C.O.); (C.B.)
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania;
- Research Institute of the University of Bucharest, 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Maria Sonmez
- National Research and Development Institute for Textile and Leather, Leather and Footwear Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania;
| | - Cristina Busuioc
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (I.M.D.); (L.M.); (O.-C.O.); (C.B.)
| | - Robert Ciocoiu
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania; (E.G.); (R.C.); (V.I.A.)
| | - Vasile Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania; (E.G.); (R.C.); (V.I.A.)
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania;
| |
Collapse
|
7
|
Cassa MA, Gentile P, Girón-Hernández J, Ciardelli G, Carmagnola I. Smart self-defensive coatings with bacteria-triggered antimicrobial response for medical devices. Biomater Sci 2024; 12:5433-5449. [PMID: 39320148 DOI: 10.1039/d4bm00936c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Bacterial colonization and biofilm formation on medical devices represent one of the most urgent and critical challenges in modern healthcare. These issues not only pose serious threats to patient health by increasing the risk of infections but also exert a considerable economic burden on national healthcare systems due to prolonged hospital stays and additional treatments. To address this challenge, there is a need for smart, customized biomaterials for medical device fabrication, particularly through the development of surface modification strategies that prevent bacterial adhesion and the growth of mature biofilms. This review explores three bioinspired approaches through which antibacterial and antiadhesive coatings can be engineered to exhibit smart, stimuli-responsive features. This responsiveness is greatly valuable as it provides the coatings with a controlled, on-demand antibacterial response that is activated only in the presence of bacteria, functioning as self-defensive coatings. Such coatings can be designed to release antibacterial agents or change their surface properties/conformation in response to specific stimuli, like changes in pH, temperature, or the presence of bacterial enzymes. This targeted approach minimizes the risk of developing antibiotic resistance and reduces the need for continuous, high-dose antibacterial treatments, thereby preserving the natural microbiome and further reducing healthcare costs. The final part of the review reports a critical analysis highlighting the potential improvements and future evolutions regarding antimicrobial self-defensive coatings and their validation.
Collapse
Affiliation(s)
- Maria Antonia Cassa
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Joel Girón-Hernández
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gianluca Ciardelli
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
- National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Pisa 56124, Italy
| | - Irene Carmagnola
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| |
Collapse
|
8
|
de Lacerda Coriolano D, de Souza JB, Cavalcanti IDL, Cavalcanti IMF. Antibacterial Activity of Polymyxins Encapsulated in Nanocarriers Against Gram-Negative Bacteria. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/11/2024] [Indexed: 01/04/2025] Open
|
9
|
Sadeghi E, Taghavi R, Hasanzadeh A, Rostamnia S. Bactericidal behavior of silver nanoparticle decorated nano-sized magnetic hydroxyapatite. NANOSCALE ADVANCES 2024:d4na00183d. [PMID: 39386118 PMCID: PMC11459644 DOI: 10.1039/d4na00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the most common cause of acute bacterial arthritis. Due to the increase in antibiotic resistance in these bacteria, the discovery of new antibacterial agents has become one of the hot topics in the scientific community. Here, we prepared a nano-sized porous biocompatible magnetic hydroxyapatite through a solvothermal method. Then, we adopted a post-synthesis modification strategy to modify its surface for the stabilization of Ag NPs through a green reduction by the euphorbia plant extract. Moreover, the results show that the prepared composite perfectly prevents the aggregation of Ag NPs. This composite was used as a bactericidal and antibiofilm agent against MRSA bacteria in an in vitro environment, which showed excellent results. Also, the cell viability assay indicates that the prepared composite has low cytotoxicity, making it a perfect antibacterial agent for in vivo experiments.
Collapse
Affiliation(s)
- Ebrahim Sadeghi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences Urmia 57157-89400 Iran
| | - Reza Taghavi
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Amir Hasanzadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences Urmia 57157-89400 Iran
| | - Sadegh Rostamnia
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
10
|
Zykova MV, Karpova MR, Zhang Y, Chubik MV, Shunkova DM, Azarkina LA, Mihalyov DA, Konstantinov AI, Plotnikov EV, Pestryakov AN, Perminova IV, Belousov MV. The Influence of Silver-Containing Bionanomaterials Based on Humic Ligands on Biofilm Formation in Opportunistic Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1453. [PMID: 39269114 PMCID: PMC11397557 DOI: 10.3390/nano14171453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
The uncontrolled use of antibiotics has led to a global problem of antimicrobial resistance. One of the main mechanisms of bacterial resistance is the formation of biofilms. In order to prevent the growth of antimicrobial resistance, it is crucial to develop new antibacterial agents that are capable of inhibiting the formation of biofilms. This makes this area of research highly relevant today. Promising candidates for these antibacterial agents are new bionanomaterials made from natural humic substances and silver nanoparticles. These substances have the potential to not only directly kill microorganisms but also penetrate biofilms and inhibit their formation. The goal of this study is to synthesize active pharmaceutical substances in the form of bionanomaterials, using ultradispersed silver nanoparticles in a matrix of coal humic substances, perform their characterization (NMR spectroscopy, TEM, and ICP-AES methods), and research their influence on biofilm formation in the most dangerous opportunistic pathogens (E. coli, Methicillin-resistant St. Aureus, K. pneumoniae, P. aeruginosa, St. aureus, A. baumannii, and K. Pneumonia). The results showed that all of the studied bionanomaterials had antibacterial activity against all of the opportunistic pathogens. Furthermore, they were found to have a suppressive effect on both pre-existing biofilms of these bacteria and their formation.
Collapse
Affiliation(s)
- Maria V Zykova
- Pharmaceutical Faculty, Siberian State Medical University, Tomsk 634050, Russia
| | - Maria R Karpova
- Pharmaceutical Faculty, Siberian State Medical University, Tomsk 634050, Russia
| | - Yu Zhang
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russia
| | - Marianna V Chubik
- Pharmaceutical Faculty, Siberian State Medical University, Tomsk 634050, Russia
| | - Daria M Shunkova
- Pharmaceutical Faculty, Siberian State Medical University, Tomsk 634050, Russia
| | - Lyudmila A Azarkina
- Pharmaceutical Faculty, Siberian State Medical University, Tomsk 634050, Russia
| | - Dmitrii A Mihalyov
- Pharmaceutical Faculty, Siberian State Medical University, Tomsk 634050, Russia
| | - Andrey I Konstantinov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russia
| | - Evgenii V Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Alexey N Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Irina V Perminova
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russia
| | - Mikhail V Belousov
- Pharmaceutical Faculty, Siberian State Medical University, Tomsk 634050, Russia
| |
Collapse
|
11
|
Allend SO, de Oliveira Garcia M, da Cunha KF, Albernaz DTF, Panagio LA, Nakazato G, Reis GF, Oliveira TL, SeixasNeto ACP, Hartwig DD. Antibiofilm effect of biogenic silver nanoparticle alone and combined with polymyxin B against carbapenem-resistant Acinetobacter baumannii. Braz J Microbiol 2024; 55:2789-2796. [PMID: 39023813 PMCID: PMC11405624 DOI: 10.1007/s42770-024-01438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Acinetobacter baumannii is a bacteria associated with nosocomial infections and outbreaks, difficult to control due to its antibiotic resistance, ability to survive in adverse conditions, and biofilm formation adhering to biotic and abiotic surfaces. Therefore, this study aimed to evaluate the antibiofilm activity of biogenic silver nanoparticle (Bio-AgNP) and polymyxin B alone and combined in biofilms formed by isolates of carbapenem-resistant A. baumannii (CR-Ab). In the biofilm formation inhibition assay, CR-Ab strains were exposed to different concentrations of the treatments before inducing biofilm formation, to determine the ability to inhibit/prevent bacterial biofilm formation. While in the biofilm rupture assay, the bacterial biofilm formation step was previously carried out and the adhered cells were exposed to different concentrations of the treatments to evaluate their ability to destroy the bacterial biofilm formed. All CR-Ab isolates and ATCC® 19606™ used in this study are strong biofilm formers. The antibiofilm activity of Bio-AgNP and polymyxin B against CR-Ab and ATCC® 19606™ demonstrated inhibitory and biofilm-disrupting activity. When used in combination, Bio-AgNP and polymyxin B inhibited 4.9-100% of biofilm formation in the CR-Ab isolates and ATCC® 19606™. Meanwhile, when Bio-AgNP and polymyxin B were combined, disruption of 6.8-77.8% of biofilm formed was observed. Thus, antibiofilm activity against CR-Ab was demonstrated when Bio-AgNP was used alone or in combination with polymyxin B, emerging as an alternative in the control of CR-Ab strains.
Collapse
Affiliation(s)
- Suzane Olachea Allend
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Marcelle de Oliveira Garcia
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Kamila Furtado da Cunha
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Déborah Trota Farias Albernaz
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | | | - Gerson Nakazato
- Department of Microbiology, State University of Londrina, Londrina, PR, CEP 86057-970, Brazil
| | - Guilherme Fonseca Reis
- Department of Microbiology, State University of Londrina, Londrina, PR, CEP 86057-970, Brazil
| | - Thaís Larré Oliveira
- Biotechnology Nucleus, Technological Development Center, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Amilton Clair Pinto SeixasNeto
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil
| | - Daiane Drawanz Hartwig
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
12
|
Saba I, Batoo KM, Wani K, Verma R, Hameed S. Exploration of Metal-Doped Iron Oxide Nanoparticles as an Antimicrobial Agent: A Comprehensive Review. Cureus 2024; 16:e69556. [PMID: 39421116 PMCID: PMC11484742 DOI: 10.7759/cureus.69556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Over the past two decades, nanotechnology has captured significant interest, especially in the medical field, where the unique characteristics of nanoscale particles offer substantial advantages. The family of nanosized materials, specifically iron oxide nanoparticles (IONPs), has emerged as promising due to their magnetic properties, biocompatibility, and substantial surface area for therapeutic molecule attachment. The review explores various strategies to enhance the antibacterial properties of IONPs, such as metal doping, which modifies their physicochemical, biological, electrical, and optical properties. Metal-doped IONPs, including those with nickel, copper, zinc, selenium, molybdenum, gold, and others, have shown that they effectively eradicate viruses and bacteria. The mechanisms behind their enhanced antibacterial activity involve generating reactive oxygen species (ROS), inhibiting antibiotic-resistant genes, disrupting cell walls and DNA, dysfunction of efflux pumps, and internalizing nanoparticles. The review also addresses the potential toxicity of IONPs, highlighting factors such as their dimension, form, and outermost layers, which change how they affect the overall condition of cellular structures. Surface coatings using polymers and essential oils are among the strategies being investigated as potential ways to reduce toxicity. This review additionally looks into IONPs' drug delivery potential for antibiotics and antifungals. The integration of IONPs with various pharmaceutical compounds and their controlled release mechanisms are also detailed. The review concludes by offering a positive outlook on the potential enhancements and prospects of IONPs. Challenges in synthesis technologies, size tuning, and surface alteration are acknowledged, emphasizing the need for continued research to fully harness the capabilities of IONPs in biomedical applications.
Collapse
Affiliation(s)
- Iram Saba
- Biotechnology, Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), IND
- Research and Scientific Center, Sultan Bin Abdulaziz Humanitarian City, Riyadh, SAU
| | - Khalid M Batoo
- Medical Physics, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, SAU
| | - Kaiser Wani
- Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, IND
- Biochemistry, College of Science, King Saud University, Riyadh, SAU
| | - Ritesh Verma
- Physics, Amity University Haryana, Gurugram (Manesar), IND
| | - Saif Hameed
- Biotechnology, Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), IND
| |
Collapse
|
13
|
Aguilar-Garay R, Lara-Ortiz LF, Campos-López M, Gonzalez-Rodriguez DE, Gamboa-Lugo MM, Mendoza-Pérez JA, Anzueto-Ríos Á, Nicolás-Álvarez DE. A Comprehensive Review of Silver and Gold Nanoparticles as Effective Antibacterial Agents. Pharmaceuticals (Basel) 2024; 17:1134. [PMID: 39338299 PMCID: PMC11434858 DOI: 10.3390/ph17091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing threat from antibiotic-resistant bacteria has necessitated the development of novel methods to counter bacterial infections. In this context, the application of metallic nanoparticles (NPs), especially gold (Au) and silver (Ag), has emerged as a promising strategy due to their remarkable antibacterial properties. This review examines research published between 2006 and 2023, focusing on leading journals in nanotechnology, materials science, and biomedical research. The primary applications explored are the efficacy of Ag and Au NPs as antibacterial agents, their synthesis methods, morphological properties, and mechanisms of action. An extensive review of the literature on NPs synthesis, morphology, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and effectiveness against various Gram(+/-) bacteria confirms the antibacterial efficacy of Au and Ag NPs. The synthesis methods and characteristics of NPs, such as size, shape, and surface charge, are crucial in determining their antibacterial activity, as these factors influence their interactions with bacterial cells. Furthermore, this review underscores the urgent necessity of standardizing synthesis techniques, MICs, and reporting protocols to enhance the comparability and reproducibility of future studies. Standardization is essential for ensuring the reliability of research findings and accelerating the clinical application of NP-based antimicrobial approaches. This review aims to propel NP-based antimicrobial strategies by elucidating the properties that enhance the antibacterial activity of Ag and Au NPs. By highlighting their inhibitory effects against various bacterial strains and relatively low cytotoxicity, this work positions Ag and Au NPs as promising materials for developing antibacterial agents, making a significant contribution to global efforts to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Ricardo Aguilar-Garay
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Luis F. Lara-Ortiz
- Hormones and Behavior Laboratory, Department of Physiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Maximiliano Campos-López
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Dafne E. Gonzalez-Rodriguez
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Margoth M. Gamboa-Lugo
- Faculty of Chemical and Biological Sciences, Universidad Autónoma de Sinaloa, Culiacan 80013, Mexico;
| | - Jorge A. Mendoza-Pérez
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Álvaro Anzueto-Ríos
- Bionic Academy, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Dulce E. Nicolás-Álvarez
- Hormones and Behavior Laboratory, Department of Physiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| |
Collapse
|
14
|
Babilas R, Młynarek-Żak K, Kania A, Deshmukh AA, Warski T, Hawełek Ł. Structure and Corrosion Behavior of Multiphase Intermetallic ZrCu-Based Alloys. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4182. [PMID: 39274572 PMCID: PMC11395922 DOI: 10.3390/ma17174182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
Zirconium-based alloys are highly regarded by the research community for their exceptional corrosion resistance, thermal stability, and mechanical properties. In our work, we investigated two newly developed alloys, Zr42.42Cu41.18Al9.35Ag7.05 and Zr46.81Cu35.44Al10.09Ag7.66, in the form of ingots and ribbons. In the course of our investigation, we conducted a comprehensive structural and thermal analysis. In addition, an examination of the corrosion activity encompassing electrochemical studies and an analysis of the corrosion mechanisms was carried out. To further evaluate the performance of the materials, tests of their mechanical properties were performed, including microhardness and resistance to abrasive wear. Structural analysis showed that both alloys studied had a multiphase, crystalline structure with intermetallic phases. The samples in the form of ribbons showed improved corrosion resistance compared to that of the ingots. The ingot containing a higher content of copper Zr42.42Cu41.18Al9.35Ag7.05 was characterized by better corrosion resistance, while showing lower average hardness and a higher degree of abrasive wear based on SEM observations after pin-on-disc tests.
Collapse
Affiliation(s)
- Rafał Babilas
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
| | - Katarzyna Młynarek-Żak
- Department of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
| | - Aneta Kania
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
| | - Akash A Deshmukh
- Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Silesian University of Technology, Towarowa 7a St., 44-100 Gliwice, Poland
| | - Tymon Warski
- Łukasiewicz Research Network, Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland
| | - Łukasz Hawełek
- Łukasiewicz Research Network, Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland
| |
Collapse
|
15
|
Shoudho K, Uddin S, Rumon MMH, Shakil MS. Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity. ACS OMEGA 2024; 9:33303-33334. [PMID: 39130596 PMCID: PMC11308002 DOI: 10.1021/acsomega.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The increasing occurrence of infectious diseases caused by antimicrobial resistance organisms urged the necessity to develop more potent, selective, and safe antimicrobial agents. The unique magnetic and tunable properties of iron oxide nanoparticles (IONPs) make them a promising candidate for different theragnostic applications, including antimicrobial agents. Though IONPs act as a nonspecific antimicrobial agent, their antimicrobial activities are directly or indirectly linked with their synthesis methods, synthesizing precursors, size, shapes, concentration, and surface modifications. Alteration of these parameters could accelerate or decelerate the production of reactive oxygen species (ROS). An increase in ROS role production disrupts bacterial cell walls, cell membranes, alters major biomolecules (e.g., lipids, proteins, nucleic acids), and affects metabolic processes (e.g., Krebs cycle, fatty acid synthesis, ATP synthesis, glycolysis, and mitophagy). In this review, we will investigate the antibacterial activity of bare and surface-modified IONPs and the influence of physiochemical parameters on their antibacterial activity. Additionally, we will report the potential mechanism of IONPs' action in driving this antimicrobial activity.
Collapse
Affiliation(s)
- Kishan
Nandi Shoudho
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
- Department
of Chemical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shihab Uddin
- Department
of Bioengineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Md Mahamudul Hasan Rumon
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
16
|
Pan D, Wu H, Li JJ, Wang B, Jia AQ. Two cinnamoyl hydroxamates as potential quorum sensing inhibitors against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1424038. [PMID: 39165918 PMCID: PMC11333444 DOI: 10.3389/fcimb.2024.1424038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Pseudomonas aeruginosa is a ubiquitous pathogen that causes various infectious diseases through the regulation of quorum sensing (QS). The strategy of interfering with the QS systems of P. aeruginosa, coupled with a reduction in the dosage of conventional antibiotics, presents a potential solution to treating infection and mitigating antibiotic resistance. In this study, seven cinnamoyl hydroxamates were synthesized to evaluate their inhibitory effects on QS of P. aeruginosa. Among these cinnamic acid derivatives, we found cinnamoyl hydroxamic acid (CHA) and 3-methoxy-cinnamoyl hydroxamic acid (MCHA) were the two most effective candidates. Furtherly, the effect of CHA and MCHA on the production of virulence factors and biofilm of P. aeruginosa were evaluated. Ultimately, our study may offer promising potential for treating P. aeruginosa infections and reducing its virulence. Methods The disc diffusion test were conducted to evaluate inhibitory effects on QS of seven cinnamoyl hydroxamates. The influence of CHA and MCHA on the production of virulence and flagellar motility of P. aeruginosa was furtherly explored. Scanning electron microscopy (SEM) experiment were conducted to evaluate the suppression of CHA and MCHA on the formed biofilm of P. aeruginosa. RT-qPCR was used to detect rhlI, lasA, lasB, rhlA, rhlB, and oprL genes in P. aeruginosa. In silico docking study was performed to explore the molecular mechanism of CHA and MCHA. The synergistic effects of CHA with gentamicin were detected on biofilm cell dispersal. Result After treatment of CHA or MCHA, the production of multiple virulence factors, including pyocyanin, proteases, rhamnolipid, and siderophore, and swimming and swarming motilities in P. aeruginosa were inhibited significantly. And our results showed CHA and MCHA could eliminate the formed biofilm of P. aeruginosa. RT-qPCR revealed that CHA and MCHA inhibited the expression of QS related genes in P. aeruginosa. Molecular docking indicated that CHA and MCHA primarily inhibited the RhlI/R system in P. aeruginosa by competing with the cognate signaling molecule C4-HSL.Additionally, CHA exhibited potent synergistic effects with gentamicin on biofilm cell dispersal. Discussion P. aeruginosa is one of the most clinically and epidemiologically important bacteria and a primary cause of catheter-related urinary tract infections and ventilator-associated pneumonia. This study aims to explore whether cinnamoyl hydroxamates have inhibitory effects on QS. And our results indicate that CHA and MCHA, as two novel QSIs, offer promising potential for treating P. aeruginosa infections and reducing its virulence.
Collapse
Affiliation(s)
- Deng Pan
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hua Wu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jun-Jian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
17
|
Aguilar-Ávila DS, Reyes-Becerril M, Velázquez-Carriles CA, Hinojosa-Ventura G, Macías-Rodríguez ME, Angulo C, Silva-Jara JM. Biogenic Ag 2O nanoparticles with "Hoja Santa" (Piper auritum) extract: characterization and biological capabilities. Biometals 2024; 37:971-982. [PMID: 38409305 DOI: 10.1007/s10534-024-00589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
The 'sacred leaf' or "Hoja Santa" (Piper auritum Kunth) has a great value for Mexican culture and has gained popularity worldwide for its excellent properties from culinary to remedies. To contribute to its heritage, in this project we proposed the green synthesis of silver oxide nanoparticles (Ag2O NPs) using an extract of "Hoja Santa" (Piper auritum) as a reducing and stabilizing agent. The synthesized Ag2O NPs were characterized by UV-Visible spectroscopy (plasmon located at 405 nm), X-ray diffraction (XRD) (particle size diameter of 10 nm), scanning electron microscopy (SEM) (particle size diameter of 13.62 ± 4.61 nm), and Fourier-transform infrared spectroscopy (FTIR) (functional groups from "Hoja Santa" attached to nanoparticles). Antioxidant capacity was evaluated using DPPH, ABTS and FRAP methods. Furthermore, the antimicrobial activity of NPs against a panel of clinically relevant bacterial strains, including both Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Salmonella Enteritidis and Escherichia coli O157:H7), was over 90% at concentrations of 200 µg/mL. Additionally, we assessed the antibiofilm activity of the NPs against Pseudomonas aeruginosa (reaching 98% of biofilm destruction at 800 µg/mL), as biofilm formation plays a crucial role in bacterial resistance and chronic infections. Moreover, we investigated the impact of Ag2O NPs on immune cell viability, respiratory burst, and phagocytic activity to understand their effects on the immune system.
Collapse
Affiliation(s)
- Dalia S Aguilar-Ávila
- Chemical Engineering Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico
| | - M Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), Av. Instituto Politecnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, BCS, Mexico
| | - Carlos A Velázquez-Carriles
- Pharmacobiology Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico
- Biological, Synthetic and Materials Engineering Department, Universidad de Guadalajara, CUTlajomulco, Carretera Tlajomulco - Santa Fé km 3.5, 595, Lomas de Tejeda, 45641, Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Gabriela Hinojosa-Ventura
- Chemical Engineering Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico
| | - María E Macías-Rodríguez
- Pharmacobiology Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), Av. Instituto Politecnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, BCS, Mexico
| | - Jorge M Silva-Jara
- Pharmacobiology Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
18
|
Holguín-Meráz C, Martínez-Martínez RE, Zaragoza-Contreras EA, Domínguez-Pérez RA, Reyes-López SY, Donohue-Cornejo A, Cuevas-González JC, Silva-Benítez EDL, Molina-Frechero N, Espinosa-Cristóbal LF. Antibacterial Effect of Silver Nanoparticles against Oral Biofilms in Subjects with Motor and Intellectual Disabilities. J Funct Biomater 2024; 15:191. [PMID: 39057312 PMCID: PMC11277624 DOI: 10.3390/jfb15070191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Motor and intellectual disabilities (MIDs) represent a great challenge for maintaining general health due to physical and cognitive limitations, particularly in the maintenance and preservation of oral health. Silver nanoparticles (AgNPs) have emerged as a promising therapeutic tool for bacterial control, including oral biofilms; however, knowledge of the bactericidal effectiveness of oral biofilms from patients with MIDs is insufficient. This study aims to determine the antimicrobial effect of AgNPs on different oral biofilms taken from patients with and without MIDs. METHODS Two sizes of AgNPs were prepared and characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Through consecutive sampling, biofilm samples were collected from 17 subjects with MIDs and 20 subjects without disorders. The antimicrobial effect was determined by obtaining the minimum inhibitory concentration (MIC) of AgNPs, and the identification and distribution of oral bacterial species were determined by polymerase chain reaction (PCR). Finally, correlations between sociodemographic characteristics and the antimicrobial levels of AgNPs were also explored. The values of the MIC results were analyzed with IBM-SPSS software (version25) using non-parametric tests for independent groups and correlations, with statistical significance being considered as p < 0.05. RESULTS Both sizes of AgNPs exhibited tight particle size distributions (smaller: 10.2 ± 0.7 nm; larger: 29.3 ± 2.3 nm) with zeta potential values (-35.0 ± 3.3 and -52.6 ± 8.5 mV, respectively) confirming the stability that resulted in little to no agglomeration of nanoparticles. Although both sizes of AgNPs had good antimicrobial activity in all oral biofilms, the smallest particles had the best antimicrobial effects on the oral biofilm samples from patients with and without MIDs, even better than chlorhexidine (CHX) (p < 0.05). Likewise, the patients with disabilities showed higher levels of antimicrobial sensitivity to AgNPs compared with CHX (p < 0.05). Although the microorganisms included in the biofilms of females had a statistically higher growth level, the AgNP antimicrobial effect was statistically similar in both genders (p > 0.05). The most frequent bacteria for all oral biofilms were S. mutans (100%), P. intermedia (91.6%), T. forsythia (75.0%), T. denticola (75.0%), P. gingivalis (66.6%), F. nucleatum (66.6%), S. sobrinus (50.0%), and A. actinomycetemcomitans (8.3%). CONCLUSIONS AgNPs exhibited considerable antimicrobial potential to be used as a complementary and alternative tool in maintaining and preserving oral health in patients with MIDs.
Collapse
Affiliation(s)
- Carolina Holguín-Meráz
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico; (C.H.-M.); (A.D.-C.); (J.C.C.-G.)
| | - Rita Elizabeth Martínez-Martínez
- Master Program in Advanced Dentistry, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava Avenue, University Campus, San Luis Potosí 78290, San Luis Potosí, Mexico;
| | - Erasto Armando Zaragoza-Contreras
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S. C., Miguel de Cervantes No. 120, Chihuahua 31136, Chihuahua, Mexico;
| | - Rubén Abraham Domínguez-Pérez
- Laboratory of Multidisciplinary Dental Research, Faculty of Medicine, Autonomous University of Queretaro, Clavel Street, Prados de La Capilla, Santiago de Querétaro 76176, Querétaro, Mexico;
| | - Simón Yobanny Reyes-López
- Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico;
| | - Alejandro Donohue-Cornejo
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico; (C.H.-M.); (A.D.-C.); (J.C.C.-G.)
| | - Juan Carlos Cuevas-González
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico; (C.H.-M.); (A.D.-C.); (J.C.C.-G.)
| | - Erika de Lourdes Silva-Benítez
- Faculty of Odontology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez Street, Culiacán 80010, Sinaloa, Mexico;
| | - Nelly Molina-Frechero
- Division of Biological and Health Sciences, Autonomous Metropolitan University Xochimilco (UAM), Mexico City 04960, Mexico;
| | - León Francisco Espinosa-Cristóbal
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico; (C.H.-M.); (A.D.-C.); (J.C.C.-G.)
| |
Collapse
|
19
|
Carvalho-Silva JM, Vilela Teixeira AB, Schiavon MA, dos Reis AC. Antimicrobial gel with silver vanadate and silver nanoparticles: antifungal and physicochemical evaluation. Future Microbiol 2024; 19:1217-1227. [PMID: 38979570 PMCID: PMC11633398 DOI: 10.1080/17460913.2024.2366630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Aim: To develop a β-AgVO3 gel and evaluate its physicochemical stability and antifungal activity against Candida albicans.Materials & methods: The gel was prepared from the minimum inhibitory concentration (MIC) of β-AgVO3. The physicochemical stability was evaluated by centrifugation, accelerated stability (AS), storage (St), pH, syringability, viscosity and spreadability tests and antifungal activity by the agar diffusion.Results: The MIC was 62.5 μg/ml. After centrifugation, AS and St gels showed physicochemical stability. Lower viscosity and higher spreadability were observed for the higher β-AgVO3 concentration and the minimum force for extrusion was similar for all groups. Antifungal effect was observed only for the β-AgVO3 gel with 20xMIC.Conclusion: The β-AgVO3 gel showed physicochemical stability and antifungal activity.
Collapse
Affiliation(s)
- João Marcos Carvalho-Silva
- Department of Dental Materials & Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ana Beatriz Vilela Teixeira
- Department of Dental Materials & Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Marco Antônio Schiavon
- Department of Natural Sciences, Federal University of São João del-Rei, São João del-Rei,Brazil
| | - Andréa Cândido dos Reis
- Department of Dental Materials & Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
20
|
Sedighi O, Bednarke B, Sherriff H, Doiron AL. Nanoparticle-Based Strategies for Managing Biofilm Infections in Wounds: A Comprehensive Review. ACS OMEGA 2024; 9:27853-27871. [PMID: 38973924 PMCID: PMC11223148 DOI: 10.1021/acsomega.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Chronic wounds containing opportunistic bacterial pathogens are a growing problem, as they are the primary cause of morbidity and mortality in developing and developed nations. Bacteria can adhere to almost every surface, forming architecturally complex communities called biofilms that are tolerant to an individual's immune response and traditional treatments. Wound dressings are a primary source and potential treatment avenue for biofilm infections, and research has recently focused on using nanoparticles with antimicrobial activity for infection control. This Review categorizes nanoparticle-based approaches into four main types, each leveraging unique mechanisms against biofilms. Metallic nanoparticles, such as silver and copper, show promising data due to their ability to disrupt bacterial cell membranes and induce oxidative stress, although their effectiveness can vary based on particle size and composition. Phototherapy-based nanoparticles, utilizing either photodynamic or photothermal therapy, offer targeted microbial destruction by generating reactive oxygen species or localized heat, respectively. However, their efficacy depends on the presence of light and oxygen, potentially limiting their use in deeper or more shielded biofilms. Nanoparticles designed to disrupt extracellular polymeric substances directly target the biofilm structure, enhancing the penetration and efficacy of antimicrobial agents. Lastly, nanoparticles that induce biofilm dispersion represent a novel strategy, aiming to weaken the biofilm's defense and restore susceptibility to antimicrobials. While each method has its advantages, the selection of an appropriate nanoparticle-based treatment depends on the specific requirements of the wound environment and the type of biofilm involved. The integration of these nanoparticles into wound dressings not only promises enhanced treatment outcomes but also offers a reduction in the overall use of antibiotics, aligning with the urgent need for innovative solutions in the fight against antibiotic-tolerant infections. The overarching objective of employing these diverse nanoparticle strategies is to replace antibiotics or substantially reduce their required dosages, providing promising avenues for biofilm infection management.
Collapse
Affiliation(s)
- Omid Sedighi
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Brooke Bednarke
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Hannah Sherriff
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L. Doiron
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
21
|
Nizamani MM, Hughes AC, Zhang HL, Wang Y. Revolutionizing agriculture with nanotechnology: Innovative approaches in fungal disease management and plant health monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172473. [PMID: 38615773 DOI: 10.1016/j.scitotenv.2024.172473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Nanotechnology has emerged as a transformative force in modern agriculture, offering innovative solutions to address challenges related to fungal plant diseases and overall agricultural productivity. Specifically, the antifungal activities of metal, metal oxide, bio-nanoparticles, and polymer nanoparticles were examined, highlighting their unique mechanisms of action against fungal pathogens. Nanoparticles can be used as carriers for fungicides, offering advantages in controlled release, targeted delivery, and reduced environmental toxicity. Nano-pesticides and nano-fertilizers can enhance nutrient uptake, plant health, and disease resistance were explored. The development of nanosensors, especially those utilizing quantum dots and plasmonic nanoparticles, promises early and accurate detection of fungal pathogens, a crucial step in timely disease management. However, concerns about their potential toxic effects on non-target organisms, environmental impacts, and regulatory hurdles underscore the importance of rigorous research and impact assessments. The review concludes by emphasizing the significant prospects of nanotechnology in reshaping the future of agriculture but advocates for a balanced approach that prioritizes safety, sustainability, and environmental stewardship.
Collapse
Affiliation(s)
- Mir Muhammad Nizamani
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, China
| | - Hai-Li Zhang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
22
|
Jose A, Asha S, Rani A, T S X, Kumar P. Pseudomonas otitidis-mediated synthesis of silver nanoparticles: characterization, antimicrobial and antibiofilm potential. Lett Appl Microbiol 2024; 77:ovae053. [PMID: 38845375 DOI: 10.1093/lambio/ovae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
This study explores the eco-friendly synthesis of silver nanoparticles (AgNPs) using soil bacteria, Pseudomonas otitidis. The bio-synthesized AgNPs were characterized using various techniques, including UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). UV-visible spectroscopy revealed a distinct broad absorption band in the range of 443 nm, indicating the reduction of silver nitrate to AgNPs. XRD analysis provided evidence of the crystalline nature of the particles, with sharp peaks confirming their crystallinity and an average size of 82.76 nm. FTIR spectroscopy identified extracellular protein compounds as capping agents. SEM examination revealed spherical agglomeration of the crystalline AgNPs. The antimicrobial assay by a disc diffusion method, minimum inhibitory concentration, and minimum bactericidal concentration testing revealed that the biosynthesized AgNPs showed moderate antibacterial activity against both pathogenic Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) and Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus mutans) bacterial strains. Furthermore, the AgNPs significantly disrupted the biofilm of P. aeruginosa, as confirmed by crystal violet assay and fluorescent microscopy. Overall, this study underscores the potential of microbial-synthesized nanoparticles in biomedical applications, particularly in combating pathogenic bacteria, offering a promising avenue for future research and development.
Collapse
Affiliation(s)
- Ashitha Jose
- Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Sneha Asha
- Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Anaswara Rani
- Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Xavier T S
- Center for Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Praveen Kumar
- Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
23
|
Teixeira ABV, Carvalho-Silva JM, Ferreira I, Schiavon MA, Cândido Dos Reis A. Silver vanadate nanomaterial incorporated into heat-cured resin and coating in printed resin - Antimicrobial activity in two multi-species biofilms and wettability. J Dent 2024; 145:104984. [PMID: 38583645 DOI: 10.1016/j.jdent.2024.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVES To incorporate the nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) into denture base materials: heat-cured (HC) and 3D printed (3DP) resins, at concentrations of 2.5 %, 5 %, and 10 %; and to evaluate the antimicrobial activity in two multi-species biofilm: (1) Candida albicans, Candida glabrata, and Streptococcus mutans, (2) Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus, and the wettability. METHODS The AgVO3 was added to the HC powder, and printed samples were coated with 3DP with AgVO3 incorporated. After biofilm formation, the antimicrobial activity was evaluated by colony forming units per milliliter (CFU/mL), metabolic activity, and epifluorescence microscopy. Wettability was assessed by the contact angles with water and artificial saliva. RESULTS In biofilm (1), HC-5 % and HC-10 % showed activity against S. mutans, HC-10 % against C. glabrata, and HC-10 % and 3DP-10 % had higher CFU/mL of C. albicans. 3DP-5 % had lower metabolic activity than the 3DP control. In biofilm (2), HC-10 % reduced S. aureus and P. aeruginosa, and HC-5 %, 3DP-2.5 %, and 3DP-5 % reduced S. aureus. 3DP incorporated with AgVO3, HC-5 %, and HC-10 % reduced biofilm (2) metabolic activity. 3DP-5 % and 3DP-10 % increased wettability with water and saliva. CONCLUSION HC-10 % was effective against C. glabrata, S. mutans, P. aeruginosa, and S. aureus, and HC-5 % reduced S. mutans and S. aureus. For 3DP, 2.5 % and 5 % reduced S. aureus. The incorporation of AgVO3 into both resins reduced the metabolic activity of biofilms but had no effect on C. albicans. The wettability of the 3DP with water and saliva increased with the addition of AgVO3. CLINICAL SIGNIFICANCE The incorporation of silver vanadate into the denture base materials provides antimicrobial efficacy and can prevent the aggravation of oral and systemic diseases. The incorporation of nanomaterials into printed resins is challenging and the coating is an alternative to obtain the inner denture base with antimicrobial effect.
Collapse
Affiliation(s)
- Ana Beatriz Vilela Teixeira
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - João Marcos Carvalho-Silva
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Izabela Ferreira
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Marco Antônio Schiavon
- Department of Natural Sciences, Federal University of São João Del-Rei, São João Del-Rei, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
24
|
Uehara LM, Teixeira ABV, Valente MLDC, Reis ACD. Mechanical and microbiological properties of orthodontic resin modified with nanostructured silver vanadate decorated with silver nanoparticles (βAgVO 3). J Dent 2024; 145:104836. [PMID: 38199325 DOI: 10.1016/j.jdent.2024.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE To investigate the impact of incorporating the antimicrobial nanomaterial β-AgVO3 into orthodontic resin, focusing on degree of conversion, surface characteristics, microhardness, adhesion properties, and antimicrobial activity. METHODS The 3 M Transbond XT resin underwent modification, resulting in three groups (Control, 2.5% addition, 5% addition) with 20 specimens each. Fourier transform infrared spectroscopy assessed monomer conversion. Laser confocal microscopy examined surface roughness, and microhardness was evaluated using Knoop protocols. Shear strength was measured before and after artificial aging on 36 premolar teeth. Microbiological analysis against S. mutans and S. sanguinis was conducted using the agar diffusion method. RESULTS Degree of conversion remained unaffected by time (P = 0.797), concentration (P = 0.438), or their interaction (P = 0.187). The 5% group exhibited the lowest surface roughness, differing significantly from the control group (P = 0.045). Microhardness showed no significant differences between concentrations (P = 0.740). Shear strength was highest in the control group (P < 0.001). No significant differences were observed in the samples with or without thermocycling (P = 0.759). Microbial analysis revealed concentration-dependent variations, with the 5% group exhibiting the largest inhibition halo (P < 0.001). CONCLUSIONS Incorporating β-AgVO3 at 2.5% and 5% concentrations led to significant differences in surface roughness, adhesion, and antimicrobial activity. Overall, resin modification positively impacted degree of conversion, surface characteristics, microhardness, and antimicrobial activity. Further research is warranted to determine clinically optimal concentrations that maximize antimicrobial benefits while minimizing adverse effects on adhesion properties. CLINICAL SIGNIFICANCE Incorporating β-AgVO3 into orthodontic resin could improve patient quality of life by prolonging intervention durability and reducing the impact of cariogenic microorganisms. The study's findings also hold promise for the industry, paving the way for the development of new materials with antimicrobial properties for potential applications in the health sector.
Collapse
Affiliation(s)
- Lívia Maiumi Uehara
- Master´s Degee Student, Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana Beatriz Vilela Teixeira
- Post-Doc student, Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mariana Lima da Costa Valente
- Post-Doc student, Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Andréa Cândido Dos Reis
- Professor, Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
25
|
de Almeida Campos LA, de Souza JB, de Queiroz Macêdo HLR, Borges JC, de Oliveira DN, Cavalcanti IMF. Synthesis of polymeric nanoparticles by double emulsion and pH-driven: encapsulation of antibiotics and natural products for combating Escherichia coli infections. Appl Microbiol Biotechnol 2024; 108:351. [PMID: 38819646 PMCID: PMC11142984 DOI: 10.1007/s00253-024-13114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 06/01/2024]
Abstract
The design, development, and obtaining of nanostructured materials, such as polymeric nanoparticles, have garnered interest due to loading therapeutic agents and its broad applicability. Polymeric nanoparticle synthesis employs advanced techniques such as the double emulsion approach and the pH-driven method, allowing the efficient incorporation of active compounds into these matrices. These loading methods ensure compound stability within the polymeric structure and enable control of the release of therapeutic agents. The ability of loaded polymeric nanoparticles to transport and release therapeutic agents on target manner represents a significant advancement in the quest for effective therapeutic solutions. Amid escalating concerns regarding antimicrobial resistance, interventions using polymeric nanostructures stand out for the possibility of carrying antimicrobial agents and enhancing antibacterial action against antibiotic-resistant bacteria, making a new therapeutic approach or complement to conventional treatments. In this sense, the capability of these polymeric nanoparticles to act against Escherichia coli underscores their relevance in controlling bacterial infections. This mini-review provides a comprehensive synthesis of promising techniques for loading therapeutic agents into polymeric nanoparticles highlighting methodologies and their implications, addressing prospects of combating bacterial infections caused by E. coli. KEY POINTS: • The double emulsion method provides control over size and release of bioactives. • The pH-driven method improves the solubility, stability, and release of active. • The methods increase the antibacterial action of those encapsulated in PNPs.
Collapse
Affiliation(s)
- Luís André de Almeida Campos
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE, 123550670-901, Brazil
| | - Jaqueline Barbosa de Souza
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE, 123550670-901, Brazil
| | - Hanne Lazla Rafael de Queiroz Macêdo
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE, 123550670-901, Brazil
| | - Joyce Cordeiro Borges
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE, 123550670-901, Brazil
| | - David Nattan de Oliveira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE, 123550670-901, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE, 123550670-901, Brazil.
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
26
|
Ning W, Luo X, Zhang Y, Tian P, Xiao Y, Li S, Yang X, Li F, Zhang D, Zhang S, Liu Y. Broad-spectrum nano-bactericide utilizing antimicrobial peptides and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes for sustained protection against persistent bacterial pathogens in crops. Int J Biol Macromol 2024; 265:131042. [PMID: 38521320 DOI: 10.1016/j.ijbiomac.2024.131042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Worldwide crop yields are threatened by persistent pathogenic bacteria that cause significant damage and jeopardize global food security. Chemical pesticides have shown limited effectiveness in protecting crops from severe yield loss. To address this obstacle, there is a growing need to develop environmentally friendly bactericides with broad-spectrum and sustained protection against persistent crop pathogens. Here, we present a method for preparing a nanocomposite that combines antimicrobial peptides (AMPs) and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes (MWCNTs). The nanocomposite exhibited dual antibacterial activity by disrupting bacterial cell membranes and splicing nucleic acids. By functionalizing MWCNTs with small AMPs (sAMPs), we achieved enhanced stability and penetration of the nanocomposite, and improved loading capacity of the Cu-Ag nanoparticles. The synthesized MWCNTs&CuNCs@AgNPs@P nanocomposites demonstrated broad-spectrum lethality against both Gram-positive and Gram-negative bacterial pathogens. Glasshouse pot trials confirmed the efficacy of the nanocomposites in protecting rice crops against bacterial leaf blight and tomato crops against bacterial wilt. These findings highlight the excellent antibacterial properties of the MWCNTs&CuNCs@AgNPs@P nanocomposite and its potential to replace chemical pesticides, offering significant advantages for agricultural applications.
Collapse
Affiliation(s)
- Weimin Ning
- Longping branch, Biology College, Hunan University, Changsha 410125, China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Peijie Tian
- Plant Protection College, Yunnan Agricultural University, Kunming 650000, China
| | - Youlun Xiao
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Shijun Li
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiao Yang
- Longping branch, Biology College, Hunan University, Changsha 410125, China
| | - Fan Li
- Plant Protection College, Yunnan Agricultural University, Kunming 650000, China
| | - Deyong Zhang
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Songbai Zhang
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China.
| | - Yong Liu
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China.
| |
Collapse
|
27
|
Mekky AE, Abdelaziz AEM, Youssef FS, Elaskary SA, Shoun AA, Alwaleed EA, Gaber MA, Al-Askar AA, Alsamman AM, Yousef A, AbdElgayed G, Suef RA, Selim MA, Saied E, Khedr M. Unravelling the Antimicrobial, Antibiofilm, Suppressing Fibronectin Binding Protein A ( fnba) and cna Virulence Genes, Anti-Inflammatory and Antioxidant Potential of Biosynthesized Solanum lycopersicum Silver Nanoparticles. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:515. [PMID: 38541241 PMCID: PMC10972527 DOI: 10.3390/medicina60030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 01/06/2025]
Abstract
Background and Objectives: Urinary tract infections [UTIs] are considered the third most known risk of infection in human health around the world. There is increasing appreciation for the pathogenicity of Gram-positive and Gram-negative strains in UTIs, aside from fungal infection, as they have numerous virulence factors. Materials and Methods: In this study, fifty urine samples were collected from patients suffering from UTI. Among the isolates of UTI microbes, six isolates were described as MDR isolates after an antibiotic susceptibility test carried out using ten different antibiotics. An alternative treatment for microbial elimination involved the use of biosynthesized silver nanoparticles (AgNPs) derived from Solanum lycopersicum [S. cumin]. Results: The sizes and shapes of AgNPs were characterized through TEM imaging, which showed spherical particles in a size range of 35-80 nm, of which the average size was 53 nm. Additionally, the silver nanoparticles (AgNPs) demonstrated inhibitory activity against Staphylococcus aureus (OR648079), exhibiting a 31 mm zone of inhibition at a minimum inhibitory concentration (MIC) of 4 mg/mL and a minimum bactericidal concentration (MBC) of 8 mg/mL. This was followed by Aspergillus niger (OR648075), which showed a 30 mm inhibition zone at an MIC of 16 mg/mL and a minimum fungicidal concentration (MFC) of 32 mg/mL. Then, Enterococcus faecalis (OR648078), Klebsiella pneumoniae (OR648081), and Acinetobacter baumannii (OR648080) each displayed a 29 mm zone of inhibition at an MIC of 8 mg/mL and an MBC of 16 mg/mL. The least inhibition was observed against Candida auris (OR648076), with a 25 mm inhibition zone at an MIC of 16 mg/mL and an MFC of 32 mg/mL. Furthermore, AgNPs at different concentrations removed DPPH and H2O2 at an IC50 value of 13.54 μg/mL. Also, AgNPs at 3 mg/mL showed remarkable DNA fragmentation in all bacterial strains except Enterococcus faecalis. The phytochemical analysis showed the presence of different active organic components in the plant extract, which concluded that rutin was 88.3 mg/g, garlic acid was 70.4 mg/g, and tannic acid was 23.7 mg/g. Finally, AgNPs concentrations in the range of 3-6 mg/mL showed decreased expression of two of the fundamental genes necessary for biofilm formation within Staphylococcus aureus, fnbA (6 folds), and Cna (12.5 folds) when compared with the RecA gene, which decreased by one-fold when compared with the control sample. These two genes were submitted with NCBI accession numbers [OR682119] and [OR682118], respectively. Conclusions: The findings from this study indicate that biosynthesized AgNPs from Solanum lycopersicum exhibit promising antimicrobial and antioxidant properties against UTI pathogens, including strains resistant to multiple antibiotics. This suggests their potential as an effective alternative treatment for UTIs. Further research is warranted to fully understand the mechanisms of action and to explore the therapeutic applications of these nanoparticles in combating UTIs.
Collapse
Affiliation(s)
- Alsayed E. Mekky
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Ahmed E. M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Port-Said University, 23 December Street, P.O. Box 42522, Port-Said 42522, Egypt;
| | - Fady Sayed Youssef
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Shymaa A. Elaskary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Menoufia University, Shibin El-Kom 32511, Egypt
| | - Aly A. Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Salehey El Gadida University, El Saleheya El Gadida 44813, Egypt;
| | - Eman A. Alwaleed
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Mahmoud Ali Gaber
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Alhadary M. Alsamman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Abdullah Yousef
- Basic & Medical Sciences Department, Faculty of Dentistry, Alryada University for Science & Technology, Sadat 32897, Egypt;
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Reda A. Suef
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Mohamed A Selim
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Mohamed Khedr
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| |
Collapse
|
28
|
Allend SO, Oliveira Garcia M, da Cunha KF, de Albernaz DTF, Panagio LA, Nakazaro G, Reis GF, Oliveira TL, Neto ACPS, Hartwig DD. The synergic and addictive activity of biogenic silver nanoparticle associated with meropenem against carbapenem-resistant Acinetobacter baumannii. J Appl Microbiol 2024; 135:lxae046. [PMID: 38383758 DOI: 10.1093/jambio/lxae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
AIMS Antibiotic management of infections caused by Acinetobacter baumannii often fails due to antibiotic resistance (especially to carbapenems) and biofilm-forming strains. Thus, the objective here was to evaluate in vitro the antibacterial and antibiofilm activity of biogenic silver nanoparticle (Bio-AgNP) combined with meropenem, against multidrug-resistant isolates of A. baumannii. METHODS AND RESULTS In this study, A. baumannii ATCC® 19606™ and four carbapenem-resistant A. baumannii (Ab) strains were used. The antibacterial activity of Bio-AgNP and meropenem was evaluated through broth microdilution. The effect of the Bio-AgNP association with meropenem was determined by the checkboard method. Also, the time-kill assay and the integrity of the bacterial cell membrane were evaluated. Furthermore, the antibiofilm activity of Bio-AgNP and meropenem alone and in combination was determined. Bio-AgNP has antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration ranging from 0.46 to 1.87 μg ml-1. The combination of Bio-AgNP and meropenem showed a synergistic and additive effect against Ab strains, and Bio-AgNP was able to reduce the MIC of meropenem from 4- to 8-fold. Considering the time-kill of the cell, meropenem and Bio-AgNP when used in combination reduced bacterial load to undetectable levels within 10 min to 24 h after treatment. Protein leakage was observed in all treatments evaluated. When combined, meropenem/Bio-AgNP presents biofilm inhibition for Ab2 isolate and ATCC® 19606™, with 21% and 19%, and disrupts the biofilm from 22% to 50%, respectively. The increase in nonviable cells in the biofilm can be observed after treatment with Bio-AgNP and meropenem in carbapenem-resistant A. baumannii strains. CONCLUSIONS The combination of Bio-AgNP with meropenem can be a therapeutic option in the treatment of infections caused by carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- Suzane Olachea Allend
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| | - Marcelle Oliveira Garcia
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| | - Kamila Furtado da Cunha
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| | - Déborah Trota Farias de Albernaz
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| | | | - Gerson Nakazaro
- Department of Microbiology, State University of Londrina, CEP 86057-970 Londrina, PR, Brazil
| | - Guilherme Fonseca Reis
- Department of Microbiology, State University of Londrina, CEP 86057-970 Londrina, PR, Brazil
| | - Thaís Larré Oliveira
- Biotechnology Nucleus, Technological Development Center, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| | - Amilton Clair Pinto Seixas Neto
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
29
|
Gondal AJ, Choudhry N, Niaz A, Yasmin N. Molecular Analysis of Carbapenem and Aminoglycoside Resistance Genes in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Strains: A Challenge for Tertiary Care Hospitals. Antibiotics (Basel) 2024; 13:191. [PMID: 38391577 PMCID: PMC10886086 DOI: 10.3390/antibiotics13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) strains have become a global threat due to their remarkable capability to survive and disseminate successfully by the acquisition of resistance genes. As a result, the treatment strategies have been severely compromised. Due to the insufficient available data regarding P. aeruginosa resistance from Pakistan, we aimed to investigate the resistance mechanisms of 249 P. aeruginosa strains by antimicrobial susceptibility testing, polymerase chain reaction for the detection of carbapenemases, aminoglycoside resistance genes, extended-spectrum beta-lactamases (ESBLs), sequence typing and plasmid typing. Furthermore, we tested silver nanoparticles (AgNPs) to evaluate their in vitro sensitivity against antimicrobial-resistant P. aeruginosa strains. We observed higher resistance against antimicrobials in the general surgery ward, general medicine ward and wound samples. Phenotypic carbapenemase-producer strains comprised 80.7% (201/249) with 89.0% (179/201) demonstrating genes encoding carbapenemases: blaNDM-1 (32.96%), blaOXA48 (37.43%), blaIMP (7.26%), blaVIM (5.03%), blaKPC-2 (1.12%), blaNDM-1/blaOXA48 (13.97%), blaOXA-48/blaVIM (1.68%) and blaVIM/blaIMP (0.56%). Aminoglycoside-modifying enzyme genes and 16S rRNA methylase variants were detected in 43.8% (109/249) strains: aac(6')-lb (12.8%), aac(3)-lla (12.0%), rmtB (21.1%), rmtC (11.0%), armA (12.8%), rmtD (4.6%), rmtF (6.4%), rmtB/aac(3)-lla (8.2%), rmtB/aac(6')-lla (7.3%) and rmtB/armA (3.6%). In total, 43.0% (77/179) of the strains coharbored carbapenemases and aminoglycoside resistance genes with 83.1% resistant to at least 1 agent in 3 or more classes and 16.9% resistant to every class of antimicrobials tested. Thirteen sequence types (STs) were identified: ST235, ST277, ST234, ST170, ST381, ST175, ST1455, ST1963, ST313, ST207, ST664, ST357 and ST348. Plasmid replicon types IncFI, IncFII, IncA/C, IncL/M, IncN, IncX, IncR and IncFIIK and MOB types F11, F12, H121, P131 and P3 were detected. Meropenem/AgNPs and Amikacin/AgNPs showed enhanced antibacterial activity. We reported the coexistence of carbapenemases and aminoglycoside resistance genes among carbapenem-resistant P. aeruginosa with diverse clonal lineages from Pakistan. Furthermore, we highlighted AgNP's potential role in handling future antimicrobial resistance concerns.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Ammara Niaz
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
30
|
Akar Z, Akay S, Ejder N, Özad Düzgün A. Determination of the Cytotoxicity and Antibiofilm Potential Effect of Equisetum arvense Silver Nanoparticles. Appl Biochem Biotechnol 2024; 196:909-922. [PMID: 37273097 DOI: 10.1007/s12010-023-04587-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
This study aimed to synthesize and characterize silver nanoparticles (AgNPs) by green synthesis from Equisetum arvense (Ea) extracts and to investigate their cytotoxicity, antibiofilm activity, and α-glucosidase enzyme inhibition. Diverse characterization techniques were applied to verify the production of nanoparticles. SEM examination confirmed that the size of nanoparticles is in the range of 40-60 nm. Also, interactions between silver and natural compounds of plant extract were confirmed through FT-IR and EDX analyses. It was determined that Equisetum arvense silver nanoparticles had antibiofilm activity against three different clinical strains with high biofilm-forming ability. AgNPs reduced the biofilm-forming capacity of clinical A. baumannii isolate with strong biofilm-forming capacity by approximately twofold, while the capacity of clinical K.pneumonaie and E.coli isolates decreased by 1.5 and 1.2 fold, respectively. The α-glucosidase enzyme inhibition potential of the AgNPs, which is determined as 93.50%, was higher than the plant extract with, and the α- 30.37%. MTT was performed to assess whether incubation of nanoparticles with A549 and ARPE-19 cell lines affected their viability, and a dramatic reduction in cell growth inhibition of both A549 and ARPE-19 cells was observed. It has been shown that A549 cells treated with 200 and 150 µg/mL nanoparticles had less cell proliferation compared to control cells at 24-h and 48-h incubation time. According to these results, Ea-derived AgNPs appear to have potential anticancer activity against A549 cancer cells. Investigating the effects of green synthesis nanoparticles on microbial biofilm and various tumors may be important for developing new therapies. The outcomes of this study have showed that Ea-AgNPsmay have a high potential both in the treatment of pathogenic strains that form biofilms, as well as in anticancer therapy use.
Collapse
Affiliation(s)
- Zeynep Akar
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, 29100, Gümüşhane, Turkey
| | - Seref Akay
- Department of Genetics and Bioengineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkey
| | - Nebahat Ejder
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Azer Özad Düzgün
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, 29100, Gümüşhane, Turkey.
| |
Collapse
|
31
|
Tasnim NT, Ferdous N, Rumon MMH, Shakil MS. The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent. ACS OMEGA 2024; 9:16-32. [PMID: 38222657 PMCID: PMC10785672 DOI: 10.1021/acsomega.3c06323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Antibiotic resistance (AMR) is one of the pressing global public health concerns and projections indicate a potential 10 million fatalities by the year 2050. The decreasing effectiveness of commercially available antibiotics due to the drug resistance phenomenon has spurred research efforts to develop potent and safe antimicrobial agents. Iron oxide nanoparticles (IONPs), especially when doped with metals, have emerged as a promising avenue for combating microbial infections. Like IONPs, the antimicrobial activities of doped-IONPs are also linked to their surface charge, size, and shape. Doping metals on nanoparticles can alter the size and magnetic properties by reducing the energy band gap and combining electronic charges with spins. Furthermore, smaller metal-doped nanoparticles tend to exhibit enhanced antimicrobial activity due to their higher surface-to-volume ratio, facilitating greater interaction with bacterial cells. Moreover, metal doping can also lead to increased charge density in magnetic nanoparticles and thereby elevate reactive oxygen species (ROS) generation. These ROS play a vital role to disrupt bacterial cell membrane, proteins, or nucleic acids. In this review, we compared the antimicrobial activities of different doped-IONPs, elucidated their mechanism(s), and put forth opinions for improved biocompatibility.
Collapse
Affiliation(s)
- Nazifa Tabassum Tasnim
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Nushrat Ferdous
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
32
|
Holubnycha V, Husak Y, Korniienko V, Bolshanina S, Tveresovska O, Myronov P, Holubnycha M, Butsyk A, Borén T, Banasiuk R, Ramanavicius A, Pogorielov M. Antimicrobial Activity of Two Different Types of Silver Nanoparticles against Wide Range of Pathogenic Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:137. [PMID: 38251102 PMCID: PMC10818322 DOI: 10.3390/nano14020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
The emergence of antibiotic-resistant bacteria, particularly the most hazardous pathogens, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE)-pathogens pose a significant threat to global health. Current antimicrobial therapies, including those targeting biofilms, have shown limited effectiveness against these superbugs. Nanoparticles, specifically silver nanoparticles (AgNPs), have emerged as a promising alternative for combating bacterial infections. In this study, two types of AgNPs with different physic-chemical properties were evaluated for their antimicrobial and antibiofilm activities against clinical ESKAPE strains. Two types of silver nanoparticles were assessed: spherical silver nanoparticles (AgNPs-1) and cubic-shaped silver nanoparticles (AgNPs-2). AgNPs-2, characterized by a cubic shape and higher surface-area-to-volume ratio, exhibited superior antimicrobial activity compared to spherical AgNPs-1. Both types of AgNPs demonstrated the ability to inhibit biofilm formation and disrupt established biofilms, leading to membrane damage and reduced viability of the bacteria. These findings highlight the potential of AgNPs as effective antibacterial agents against ESKAPE pathogens, emphasizing the importance of nanoparticle characteristics in determining their antimicrobial properties. Further research is warranted to explore the underlying mechanisms and optimize nanoparticle-based therapies for the management of infections caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Viktoriia Holubnycha
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Yevheniia Husak
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Viktoriia Korniienko
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| | - Svetlana Bolshanina
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Olesia Tveresovska
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Petro Myronov
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Marharyta Holubnycha
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Anna Butsyk
- Department Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (A.B.); (T.B.)
| | - Thomas Borén
- Department Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (A.B.); (T.B.)
| | - Rafal Banasiuk
- NanoWave, 02-676 Warsaw, Poland;
- Mechanical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Maksym Pogorielov
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| |
Collapse
|
33
|
Ekram B, Tolba E, El-Sayed AF, Müller WEG, Schröder HC, Wang X, Abdel-Hady BM. Cell migration, DNA fragmentation and antibacterial properties of novel silver doped calcium polyphosphate nanoparticles. Sci Rep 2024; 14:565. [PMID: 38177275 PMCID: PMC10766647 DOI: 10.1038/s41598-023-50849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
To combat infections, silver was used extensively in biomedical field but there was a need for a capping agent to eliminate its cytotoxic effects. In this study, polymeric calcium polyphosphate was doped by silver with three concentrations 1, 3 or 5 mol.% and were characterized by TEM, XRD, FTIR, TGA. Moreover, cytotoxicity, antibacterial, cell migration and DNA fragmentation assays were done to assure its safety. The results showed that the increase in silver percentage caused an increase in particle size. XRD showed the silver peaks, which indicated that it is present in its metallic form. The TGA showed that thermal stability was increased by increasing silver content. The antibacterial tests showed that the prepared nanoparticles have an antibacterial activity against tested pathogens. In addition, the cytotoxicity results showed that the samples exhibited non-cytotoxic behavior even with the highest doping concentration (5% Ag-CaPp). The cell migration assay showed that the increase in the silver concentration enhances cell migration up to 3% Ag-CaPp. The DNA fragmentation test revealed that all the prepared nanoparticles caused no fragmentation. From the results we can deduce that 3% Ag-CaPp was the optimum silver doped calcium polyphosphate concentration that could be used safely for medical applications.
Collapse
Affiliation(s)
- Basma Ekram
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Cairo, 12622, Egypt.
| | - Emad Tolba
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Bothaina M Abdel-Hady
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Cairo, 12622, Egypt
| |
Collapse
|
34
|
Yakoup AY, Kamel AG, Elbermawy Y, Abdelsattar AS, El-Shibiny A. Characterization, antibacterial, and cytotoxic activities of silver nanoparticles using the whole biofilm layer as a macromolecule in biosynthesis. Sci Rep 2024; 14:364. [PMID: 38172225 PMCID: PMC10764356 DOI: 10.1038/s41598-023-50548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Recently, multi-drug resistant (MDR) bacteria are responsible for a large number of infectious diseases that can be life-threatening. Globally, new approaches are targeted to solve this essential issue. This study aims to discover novel antibiotic alternatives by using the whole components of the biofilm layer as a macromolecule to synthesize silver nanoparticles (AgNPs) as a promising agent against MDR. In particular, the biosynthesized biofilm-AgNPs were characterized using UV-Vis spectroscopy, electron microscopes, Energy Dispersive X-ray (EDX), zeta sizer and potential while their effect on bacterial strains and normal cell lines was identified. Accordingly, biofilm-AgNPs have a lavender-colored solution, spherical shape, with a size range of 20-60 nm. Notably, they have inhibitory effects when used on various bacterial strains with concentrations ranging between 12.5 and 25 µg/mL. In addition, they have an effective synergistic effect when combined with phage ZCSE9 to inhibit and kill Salmonella enterica with a concentration of 3.1 µg/mL. In conclusion, this work presents a novel biosynthesis preparation of AgNPs using biofilm for antibacterial purposes to reduce the possible toxicity by reducing the MICs using phage ZCSE9.
Collapse
Affiliation(s)
- Aghapy Yermans Yakoup
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza G Kamel
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Yasmin Elbermawy
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.
| |
Collapse
|
35
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
36
|
Ebadati A, Oshaghi M, Saeedi S, Parsa P, Mahabadi VP, Karimi M, Hajiebrahimdehi AJ, Hamblin MR, Karimi M. Mechanism and antibacterial synergies of poly(Dabco-BBAC) nanoparticles against multi-drug resistant Pseudomonas aeruginosa isolates from human burns. Bioorg Chem 2023; 140:106718. [PMID: 37566942 DOI: 10.1016/j.bioorg.2023.106718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Multi-drug resistant bacteria are a major problem in the treatment of infectious diseases, such as pneumonia, meningitis, or even coronavirus disease 2019 (COVID-19). Cationic nanopolymers are a new type of antimicrobial agent with high efficiency. We synthesized and characterized cationic polymer based on 1,4-diazabicyclo [2.2.2] octane (DABCO) and Bis (bromoacetyl)cystamine (BBAC), named poly (DABCO-BBAC) nanoparticles(NPs), and produced 150 nm diameter NPs. The antibacterial activity of poly (DABCO-BBAC) against eight multi drug resistant (MDR) Pseudomonas aeruginosa isolates from human burns, its possible synergistic effect with gentamicin, and the mechanism of action were examined. Poly(DABCO-BBAC) could effectively inhibit and kill bacterial strains at a very low concentration calculated by minimum inhibitory concentration (MIC) assay. Nevertheless, its synergism index with gentamicin showed an indifferent effect. Moreover, transmission electron microscopy and lipid peroxidation assays showed that poly (DABCO-BBAC) distorted and damaged the bacterial cell wall. These results suggest that the poly (DABCO-BBAC) could be an effective antibacterial agent for MDR clinical pathogens.
Collapse
Affiliation(s)
- Arefeh Ebadati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Oshaghi
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Saeedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Parastoo Parsa
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Karimi
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran; Karen Diagnostic Laboratory, Varamin, Iran; Sepid Diagnostic Laboratory, Varamin, Iran
| | - Atefeh Jahandideh Hajiebrahimdehi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
37
|
Khan M, Khan T, Wahab S, Aasim M, Sherazi TA, Zahoor M, Yun SI. Solvent based fractional biosynthesis, phytochemical analysis, and biological activity of silver nanoparticles obtained from the extract of Salvia moorcroftiana. PLoS One 2023; 18:e0287080. [PMID: 37883497 PMCID: PMC10602276 DOI: 10.1371/journal.pone.0287080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Multi-drug resistant bacteria sometimes known as "superbugs" developed through overuse and misuse of antibiotics are determined to be sensitive to small concentrations of silver nanoparticles. Various methods and sources are under investigation for the safe and efficient synthesis of silver nanoparticles having effective antibacterial activity even at low concentrations. We used a medicinal plant named Salvia moorcroftiana to extract phytochemicals with antibacterial, antioxidant, and reducing properties. Three types of solvents; from polar to nonpolar, i.e., water, dimethyl sulfoxide (DMSO), and hexane, were used to extract the plant as a whole and as well as in fractions. The biosynthesized silver nanoparticles in all extracts (except hexane-based extract) were spherical, smaller than 20 nm, polydispersed (PDI ranging between 0.2 and 0.5), and stable with repulsive force of action (average zeta value = -18.55±1.17). The tested bacterial strains i.e., Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis were found to be sensitive to even small concentrations of Ag-NPs, especially P. aeruginosa. The antibacterial effect of these Ag-NPs was associated with their ability to generate reactive oxygen species. DMSO (in fraction) could efficiently extract antibacterial phytochemicals and showed activity against MDR bacteria (inhibition zone = 11-12 mm). Thus, the antibacterial activity of fractionated DMSO extract was comparable to that of Ag-NPs because it contained phytochemicals having solid antibacterial potential. Furthermore, Ag-NPs synthesized from this extract owned superior antibacterial activity. However, whole aqueous extract-based Ag-NPs MIC was least (7-32 μg/mL) as compared to others.
Collapse
Affiliation(s)
- Maham Khan
- Department of Biotechnology, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Wahab
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of South Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju, Republic of South Korea
| | - Muhammad Aasim
- Department of Biotechnology, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Tauqir A. Sherazi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of South Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju, Republic of South Korea
| |
Collapse
|
38
|
Yathavan B, Chhibber T, Steinhauff D, Pulsipher A, Alt JA, Ghandehari H, Jafari P. Matrix-Mediated Delivery of Silver Nanoparticles for Prevention of Staphylococcus aureus and Pseudomonas aeruginosa Biofilm Formation in Chronic Rhinosinusitis. Pharmaceutics 2023; 15:2426. [PMID: 37896186 PMCID: PMC10610389 DOI: 10.3390/pharmaceutics15102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a chronic health condition affecting the sinonasal cavity. CRS-associated mucosal inflammation leads to sinonasal epithelial cell death and epithelial cell barrier disruption, which may result in recurrent bacterial infections and biofilm formation. For patients who fail medical management and elect endoscopic sinus surgery for disease control, bacterial biofilm formation is particularly detrimental, as it reduces the efficacy of surgical intervention. Effective treatments that prevent biofilm formation in post-operative patients in CRS are currently limited. To address this unmet need, we report the controlled release of silver nanoparticles (AgNps) with silk-elastinlike protein-based polymers (SELPs) to prevent bacterial biofilm formation in CRS. This polymeric network is liquid at room temperature and forms a hydrogel at body temperature, and is hence, capable of conforming to the sinonasal cavity upon administration. SELP hydrogels demonstrated sustained AgNp and silver ion release for the studied period of three days, potent in vitro antibacterial activity against Pseudomonas aeruginosa (**** p < 0.0001) and Staphylococcus aureus (**** p < 0.0001), two of the most commonly virulent bacterial strains observed in patients with post-operative CRS, and high cytocompatibility with human nasal epithelial cells. Antibacterial controlled release platform shows promise for treating patients suffering from prolonged sinonasal cavity infections due to biofilms.
Collapse
Affiliation(s)
- Bhuvanesh Yathavan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Tanya Chhibber
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Douglas Steinhauff
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Abigail Pulsipher
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Jeremiah A. Alt
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Paris Jafari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (B.Y.); (T.C.); (A.P.); (J.A.A.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA;
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Kaiaty AM, Salib FA, El-Gameel SM, Abdel Massieh ES, Hussien AM, Kamel MS. Emerging alternatives to traditional anthelmintics: the in vitro antiparasitic activity of silver and selenium nanoparticles, and pomegranate (Punica granatum) peel extract against Haemonchus contortus. Trop Anim Health Prod 2023; 55:317. [PMID: 37737938 PMCID: PMC10516797 DOI: 10.1007/s11250-023-03722-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Haemonchus contortus (H. contortus) is one of the most prevalent gastrointestinal nematodes, causing health problems and economic losses in ruminants. Nanotechnology holds great promise as a field of science, with potential applications in veterinary medicine. This study investigated the in vitro anthelmintic activity of silver nanoparticles (AgNPs), selenium nanoparticles (SeNPs), and pomegranate peel extract (Punica granatum; PPE) on different stages of H. contortus: eggs, larvae, and adults. The in vitro anthelmintic efficacy was evaluated using the egg hatching inhibition assay (EHA), the third larval stage paralysis assay (LPA), and the adult worm motility inhibition assay (WMI). Six dilutions of PPE were utilized for EHA, LPA, and WMI, ranging from 0.25 to 6 mg/ml. AgNPs dilutions ranged from 0.00001 to 1.0 μg/ml for EHA and LPA and 1 to 25 μg/ml for WMI. SeNPs were utilized at dilutions of 1, 5, 10, and 15 μg/ml for EHA, LPA, and WMI. The results showed that the lowest concentration of AgNPs, SeNPs, and PPE significantly inhibited egg hatching. To further assess larvicidal activity, AgNPs at the highest concentration of 1 μg/ml induced a strong larvicidal effect, as did SeNPs at the lowest concentration. On the contrary, PPE displayed a significant larvicidal effect at 1 mg/ml compared to the control. The percentage mortality of adult H. contortus was measured as follows (mortality (%) = the number of dead adult H. contortus/total number of adult H. contortus per test × 100). The death of the adult H. contortus was determined by the absence of motility. Adult H. contortus mortality percentage was also significantly affected by all three agents when compared to the control. The AgNPs, SeNPs, and PPE have effective antiparasitic activity on gastrointestinal parasitic nematodes. These results provide evidence of the excellent antiparasitic properties of AgNPs, SeNPs, and PPE, demonstrating their effectiveness in controlling eggs, larvae, and adult H. contortus in vitro.
Collapse
Affiliation(s)
- Ahmed M Kaiaty
- General Organization for Veterinary Services, Giza, Egypt
| | - Fayez A Salib
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Sohila M El-Gameel
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Emil S Abdel Massieh
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Ahmed M Hussien
- Toxicology & Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Mohamed S Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt.
| |
Collapse
|
40
|
Silva JM, Teixeira AB, Reis AC. Silver-based gels for oral and skin infections: antimicrobial effect and physicochemical stability. Future Microbiol 2023; 18:985-996. [PMID: 37750752 DOI: 10.2217/fmb-2023-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Aim: To systematically evaluate the literature on silver (Ag) gels and their antimicrobial efficacy and physicochemical stability. Materials & methods: A search was performed in PubMed/MEDLINE, LILACS, Web of Science, Scopus, Embase and Google Scholar. Results: Gels were formulated with Ag nanoparticles, Ag oxynitrate and colloidal Ag and showed antimicrobial activity for concentrations ranging from 0.002 to 30%. Gels showed stability of their chemical components, and their physicochemical properties, including viscosity, organoleptic characteristics, homogeneity, pH and spreadability, were suitable for topical application. Conclusion: Ag-based gels show antimicrobial action proportional to concentration, with higher action against Gram-negative bacteria and physicochemical stability for oral and skin infection applications.
Collapse
Affiliation(s)
- João Mc Silva
- Department of Dental Materials & Prosthesis, Ribeirão Preto Dental School, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Ana Bv Teixeira
- Department of Dental Materials & Prosthesis, Ribeirão Preto Dental School, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Andréa C Reis
- Department of Dental Materials & Prosthesis, Ribeirão Preto Dental School, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil
| |
Collapse
|
41
|
Priya, Ashique S, Afzal O, Khalid M, Faruque Ahmad M, Upadhyay A, Kumar S, Garg A, Ramzan M, Hussain A, Altamimi MA, Altamimi ASA, Webster TJ, Khanam A. Biogenic nanoparticles from waste fruit peels: Synthesis, applications, challenges and future perspectives. Int J Pharm 2023; 643:123223. [PMID: 37442399 DOI: 10.1016/j.ijpharm.2023.123223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Nanotechnology is a continually growing field with a wide range of applications from food science to biotechnology and nanobiotechnology. As the current world is grappling with non-biodegradable waste, considered more challenging and expensive to dispose of than biodegradable waste, new technologies are needed today more than ever. Modern technologies, especially nanotechnology, can transform biodegradable waste into products for human use. Researchers are exploring sustainable pathways for nanotechnology by utilizing biodegradable waste as a source for preparing nanomaterials. Over the past ten years, the biogenic production of metallic nanoparticles (NPs) has become a promising alternative technique to traditional NPs synthesis due to its simplicity, eco-friendliness, and biocompatibility in nature. Fruit and vegetable waste (after industrial processing) contain various bioactives (such as flavonoids, phenols, tannins, steroids, triterpenoids, glycosides, anthocyanins, carotenoids, ellagitannins, vitamin C, and essential oils) serving as reducing and capping agents for NP synthesis and they possess antibacterial, antioxidant, and anti-inflammatory properties. This review addresses various sources of biogenic NPs including their synthesis using fruit/vegetable waste, types of biogenic NPs, extraction processes and extracted biomaterials, the pharmacological functionality of NPs, industrial aspects, and future perspectives. In this manner, this review will cover the most recent research on the biogenic synthesis of NPs from fruit/vegetable peels to transform them into therapeutic nanomedicines.
Collapse
Affiliation(s)
- Priya
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, UP, India
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713378, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Aakash Upadhyay
- Department of Pharmacy, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, UP, India
| | - Shubneesh Kumar
- Department of Pharmacy, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, UP, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Mohhammad Ramzan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwada, Punjab, India
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China; School of Engineering, Saveetha University, Chennai, India; Program in Materials Science, UFPI, Teresina, Brazil
| | - Anjum Khanam
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
42
|
Aqel H, Sannan N, Foudah R, Al-Hunaiti A. Enzyme Production and Inhibitory Potential of Pseudomonas aeruginosa: Contrasting Clinical and Environmental Isolates. Antibiotics (Basel) 2023; 12:1354. [PMID: 37760651 PMCID: PMC10525495 DOI: 10.3390/antibiotics12091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: This study summarizes the findings of two studies investigating the inhibitory effects of Pseudomonas aeruginosa strains from clinical and environmental sources against gram-positive and gram-negative bacteria and fungi. The studies also analyzed the correlation between enzyme production and inhibitory effects to gain insights into the antimicrobial capabilities of P. aeruginosa strains; (2) Methods: Both studies employed similar methodologies, including the use of disk diffusion and well diffusion methods to assess the inhibitory effects of P. aeruginosa strains against target pathogens. Enzyme production was analyzed through various biochemical assays to determine the diversity and frequencies of enzyme secretion among the strains; (3) Results: A comparative analysis of enzyme production in P. aeruginosa strains from clinical sources revealed significant variations in enzyme production, with hemolysin and protease being the most commonly produced enzymes. Gelatinase production showed lower rates, whereas chondroitinase and hyaluronidase were absent or occurred less frequently. In contrast, a comparative analysis of enzyme production in environmental isolates showed different patterns, indicating adaptation to environmental conditions. Pyocyanin production was absent in all environmental isolates. The inhibitory effects against gram-positive and gram-negative bacteria varied among different P. aeruginosa strains, with strain-specific variations observed. Limited inhibitory effects were observed against fungi, primarily toward gram-positive bacteria; (4) Conclusions: The findings highlight the strain-specific nature of inhibitory effects and enzyme production in P. aeruginosa strains. The correlation between enzyme production and inhibitory effects against gram-positive bacteria suggest a potential role of specific enzymes, such as hemolysin and protease, in the antimicrobial activity. The complexity of the relationship between enzyme production and the inhibition of different pathogens requires further investigation. The results emphasize the potential of P. aeruginosa strains as sources for antimicrobial strategies, particularly against gram-positive bacteria. Future research should focus on understanding the mechanisms underlying these inhibitory effects and exploring their therapeutic applications.
Collapse
Affiliation(s)
- Hazem Aqel
- Basic Medical Sciences Department, College of Medicine, Al-Balqa’ Applied University, Salt 19117, Jordan
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Jeddah 22384, Saudi Arabia;
| | - Naif Sannan
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Jeddah 22384, Saudi Arabia;
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
| | - Ramy Foudah
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia;
| | - Afnan Al-Hunaiti
- Chemistry Department, College of Science, Jordan University, Amman 11942, Jordan;
| |
Collapse
|
43
|
Palau M, Muñoz E, Gusta MF, Larrosa N, Gomis X, Gilabert J, Almirante B, Puntes V, Texidó R, Gavaldà J. In Vitro Antibacterial Activity of Silver Nanoparticles Conjugated with Amikacin and Combined with Hyperthermia against Drug-Resistant and Biofilm-Producing Strains. Microbiol Spectr 2023; 11:e0028023. [PMID: 37078875 PMCID: PMC10269648 DOI: 10.1128/spectrum.00280-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023] Open
Abstract
In view of the current increase and spread of antimicrobial resistance (AMR), there is an urgent need to find new strategies to combat it. This study had two aims. First, we synthesized highly monodispersed silver nanoparticles (AgNPs) of approximately 17 nm, and we functionalized them with mercaptopoly(ethylene glycol) carboxylic acid (mPEG-COOH) and amikacin (AK). Second, we evaluated the antibacterial activity of this treatment (AgNPs_mPEG_AK) alone and in combination with hyperthermia against planktonic and biofilm-growing strains. AgNPs, AgNPs_mPEG, and AgNPs_mPEG_AK were characterized using a suite of spectroscopy and microscopy methods. Susceptibility to these treatments and AK was determined after 24 h and over time against 12 clinical multidrug-resistant (MDR)/extensively drug-resistant (XDR) isolates of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The efficacy of the treatments alone and in combination with hyperthermia (1, 2, and 3 pulses at 41°C to 42°C for 15 min) was tested against the same planktonic strains using quantitative culture and against one P. aeruginosa strain growing on silicone disks using confocal laser scanning microscopy. The susceptibility studies showed that AgNPs_mPEG_AK was 10-fold more effective than AK alone, and bactericidal efficacy after 4, 8, 24, or 48 h was observed against 100% of the tested strains. The combination of AgNPs_mPEG_AK and hyperthermia eradicated 75% of the planktonic strains and exhibited significant reductions in biofilm formation by P. aeruginosa in comparison with the other treatments tested, except for AgNPs_mPEG_AK without hyperthermia. In conclusion, the combination of AgNPs_mPEG_AK and hyperthermia may be a promising therapy against MDR/XDR and biofilm-producing strains. IMPORTANCE Antimicrobial resistance (AMR) is one of the greatest public health challenges, accounting for 1.27 million deaths worldwide in 2019. Biofilms, a complex microbial community, directly contribute to increased AMR. Therefore, new strategies are urgently required to combat infections caused by AMR and biofilm-producing strains. Silver nanoparticles (AgNPs) exhibit antimicrobial activity and can be functionalized with antibiotics. Although AgNPs are very promising, their effectiveness in complex biological environments still falls below the concentrations at which AgNPs are stable in terms of aggregation. Thus, improving the antibacterial effectiveness of AgNPs by functionalizing them with antibiotics may be a significant change to consolidate AgNPs as an alternative to antibiotics. It has been reported that hyperthermia has a large effect on the growth of planktonic and biofilm-producing strains. Therefore, we propose a new strategy based on AgNPs functionalized with amikacin and combined with hyperthermia (41°C to 42°C) to treat AMR and biofilm-related infections.
Collapse
Affiliation(s)
- Marta Palau
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Estela Muñoz
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Muriel F. Gusta
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain
- Vall d’Hebron University Hospital, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Nieves Larrosa
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Xavier Gomis
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Benito Almirante
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain
- Vall d’Hebron University Hospital, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Robert Texidó
- Grup d’Enginyeria de Materials (GEMAT), Universitat Ramón Llull, Barcelona, Spain
| | - Joan Gavaldà
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
44
|
Jacobo-Delgado YM, Rodríguez-Carlos A, Serrano CJ, Rivas-Santiago B. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible? Front Immunol 2023; 14:1194923. [PMID: 37266428 PMCID: PMC10230078 DOI: 10.3389/fimmu.2023.1194923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most important infectious agents worldwide and causes more than 1.5 million deaths annually. To make matters worse, the drug resistance among Mtb strains has risen substantially in the last few decades. Nowadays, it is not uncommon to find patients infected with Mtb strains that are virtually resistant to all antibiotics, which has led to the urgent search for new molecules and therapies. Over previous decades, several studies have demonstrated the efficiency of antimicrobial peptides to eliminate even multidrug-resistant bacteria, making them outstanding candidates to counterattack this growing health problem. Nevertheless, the complexity of the Mtb cell wall makes us wonder whether antimicrobial peptides can effectively kill this persistent Mycobacterium. In the present review, we explore the complexity of the Mtb cell wall and analyze the effectiveness of antimicrobial peptides to eliminate the bacilli.
Collapse
|
45
|
Wang H, Huang X, Liang H, Sun X, Meng N, Zhou N. Synthesis and Characterization of Polydopamine‐Modified Montmorillonite Loaded with Silver Nanoparticles for Antibacterial Functionalization. ChemistrySelect 2023. [DOI: 10.1002/slct.202204371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Huiyan Wang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing 210046 China
| | - Xinrong Huang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing 210046 China
| | - Han Liang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing 210046 China
| | - Xuemei Sun
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing 210046 China
| | - Na Meng
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing 210046 China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
- Jiangsu Key Laboratory of Biofunctional Materials Jiangsu Engineering Research Center for Biomedical Function Materials Nanjing 210023 China
- Nanjing Zhou Ninglin Advanced Materials Technology Company Limited Nanjing 211505 China
| |
Collapse
|
46
|
Owoseni MC, Labulo AH, Bako G, Okunade O, Hassan I. Antimicrobial Potency of Green Synthesized Silver Nanoparticles from Stem Extract of Euphorbia poissoniion Urinary Tract Pathogens. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-022-00500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
47
|
Moreno Ruiz YP, de Almeida Campos LA, Alves Agreles MA, Galembeck A, Macário Ferro Cavalcanti I. Advanced Hydrogels Combined with Silver and Gold Nanoparticles against Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:antibiotics12010104. [PMID: 36671305 PMCID: PMC9855178 DOI: 10.3390/antibiotics12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
The development of multidrug-resistant (MDR) microorganisms has increased dramatically in the last decade as a natural consequence of the misuse and overuse of antimicrobials. The World Health Organization (WHO) recognizes that this is one of the top ten global public health threats facing humanity today, demanding urgent multisectoral action. The UK government foresees that bacterial antimicrobial resistance (AMR) could kill 10 million people per year by 2050 worldwide. In this sense, metallic nanoparticles (NPs) have emerged as promising alternatives due to their outstanding antibacterial and antibiofilm properties. The efficient delivery of the NPs is also a matter of concern, and recent studies have demonstrated that hydrogels present an excellent ability to perform this task. The porous hydrogel structure with a high-water retention capability is a convenient host for the incorporation of the metallic nanoparticles, providing an efficient path to deliver the NPs properly reducing bacterial infections caused by MDR pathogenic microorganisms. This article reviews the most recent investigations on the characteristics, applications, advantages, and limitations of hydrogels combined with metallic NPs for treating MDR bacteria. The mechanisms of action and the antibiofilm activity of the NPs incorporated into hydrogels are also described. Finally, this contribution intends to fill some gaps in nanomedicine and serve as a guide for the development of advanced medical products.
Collapse
Affiliation(s)
- Yolice Patricia Moreno Ruiz
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Luís André de Almeida Campos
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - Maria Andressa Alves Agreles
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
- Correspondence: ; Tel.: +55-81-98648-2081
| |
Collapse
|
48
|
Metal nanoparticles against multi-drug-resistance bacteria. J Inorg Biochem 2022; 237:111938. [PMID: 36122430 DOI: 10.1016/j.jinorgbio.2022.111938] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023]
Abstract
Antimicrobial-resistant (AMR) bacterial infections remain a significant public health concern. The situation is exacerbated by the rapid development of bacterial resistance to currently available antimicrobials. Metal nanoparticles represent a new perspective in treating AMR due to their unique mechanisms, such as disrupting bacterial cell membrane potential and integrity, biofilm inhibition, reactive oxygen species (ROS) formation, enhancing host immune responses, and inhibiting RNA and protein synthesis by inducing intracellular processes. Metal nanoparticles (MNPs) properties such as size, shape, surface functionalization, surface charges, and co-encapsulated drug delivery capability all play a role in determining their potential against multidrug-resistant bacterial infections. Silver, gold, zinc oxide, selenium, copper, cobalt, and iron oxide nanoparticles have recently been studied extensively against multidrug-resistant bacterial infections. This review aims to provide insight into the size, shape, surface properties, and co-encapsulation of various MNPs in managing multidrug-resistant bacterial infections.
Collapse
|
49
|
Srichaiyapol O, Maddocks SE, Thammawithan S, Daduang S, Klaynongsruang S, Patramanon R. TA-AgNPs/Alginate Hydrogel and Its Potential Application as a Promising Antibiofilm Material against Polymicrobial Wound Biofilms Using a Unique Biofilm Flow Model. Microorganisms 2022; 10:2279. [PMID: 36422349 PMCID: PMC9692730 DOI: 10.3390/microorganisms10112279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 07/30/2023] Open
Abstract
The presence of biofilm within a chronic wound may delay the healing process. Thus, control of biofilm formation and providing bactericidal effect are crucial factors for wound healing management. Alginate-based nanocomposite hydrogels have been suggested as dressing materials for wound treatment, which are employed as a biocompatible matrix. Therefore, in this study, we aimed to develop a biocompatible antimicrobial wound dressing containing AgNPs and demonstrate its efficacy against polymicrobial wound biofilms by using a biofilm flow device to simulate a chronic infected, exuding wound and specific wound environment. The results from agar well diffusion, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays showed that TA-AgNPs exhibited antibacterial activity against wound pathogens. Additionally, the Minimum Biofilm Eradication Concentration assay (MBEC) demonstrated it could impair biofilm formation. Importantly, our TA-AgNPs/Alginate hydrogel clearly showed antibacterial activities against Streptococcus pyogenes, Staphylococcus aureus and Pseudomonas aeruginosa. Furthermore, we used the biofilm flow device to test the topical antimicrobial hydrogel against a three-species biofilm. We found that TA-AgNPs/Alginate hydrogel significantly showed a 3-4 log reduction in bacterial numbers when applied with multiple doses at 24 h intervals, and was especially effective against the chronic wound pathogen P. aeruginosa. This work highlighted that the TA-AgNPs/Alginate hydrogel is a promising material for treating complex wound biofilms.
Collapse
Affiliation(s)
- Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sarah E. Maddocks
- Microbiology and Infection Research Group, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakda Daduang
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Program Management Unit for Human Resources and Institutional Development, Research and Innovation (PMU-B), Bangkok 10330, Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
50
|
Nanoparticles for Antimicrobial Agents Delivery-An Up-to-Date Review. Int J Mol Sci 2022; 23:ijms232213862. [PMID: 36430343 PMCID: PMC9696780 DOI: 10.3390/ijms232213862] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Infectious diseases constitute an increasing threat to public health and medical systems worldwide. Particularly, the emergence of multidrug-resistant pathogens has left the pharmaceutical arsenal unarmed to fight against such severe microbial infections. Thus, the context has called for a paradigm shift in managing bacterial, fungal, viral, and parasitic infections, leading to the collision of medicine with nanotechnology. As a result, renewed research interest has been noted in utilizing various nanoparticles as drug delivery vehicles, aiming to overcome the limitations of current treatment options. In more detail, numerous studies have loaded natural and synthetic antimicrobial agents into different inorganic, lipid, and polymeric-based nanomaterials and tested them against clinically relevant pathogens. In this respect, this paper reviews the most recently reported successfully fabricated nanoformulations that demonstrated a great potential against bacteria, fungi, viruses, and parasites of interest for human medicine.
Collapse
|