1
|
White A, Stremming J, Wesolowski SR, Al-Juboori SI, Dobrinskikh E, Limesand SW, Brown LD, Rozance PJ. IGF-1 LR3 does not promote growth in late-gestation growth-restricted fetal sheep. Am J Physiol Endocrinol Metab 2025; 328:E116-E125. [PMID: 39679943 DOI: 10.1152/ajpendo.00259.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Insulin-like growth factor-1 (IGF-1) and insulin are important fetal anabolic hormones. Complications of pregnancy, such as placental insufficiency, can lead to fetal growth restriction (FGR) with low-circulating IGF-1 and insulin concentrations and attenuated glucose-stimulated insulin secretion (GSIS), which likely contribute to neonatal glucose dysregulation. We previously demonstrated that a 1-wk infusion of IGF-1 LR3, an IGF-1 analog with low affinity for IGF-binding proteins and high affinity for the IGF-1 receptor, at 6.6 µg·kg-1·h-1 into normal fetal sheep increased body weight but lowered insulin concentrations and GSIS. In this study, FGR fetal sheep received either IGF-1 LR3 treatment at 1.17 ± 0.12 μg·kg-1·h-1 (LR3; n = 7) or vehicle (VEH; n = 7) for 1 wk. Plasma insulin, glucose, oxygen, and amino acids were measured before starting treatment and at the end of the treatment period. GSIS was measured on the final treatment day. Fetal body weights, insulin, glucose, oxygen, and GSIS were not different between groups. Amino acid concentrations decreased in LR3 (baseline vs. final individual means comparison P = 0.0232) but not in VEH (P = 0.3866). In summary, a 1-wk IGF-1 LR3 treatment did not improve growth in FGR fetuses. Insulin concentrations and GSIS were not attenuated by IGF-1 LR3, yet circulating amino acids decreased, which could reflect increased amino acid utilization. We speculate that maintaining amino acid concentrations or raising insulin, glucose, and/or oxygen concentrations to values consistent with normally growing fetuses during IGF-1 LR3 treatment may be necessary to increase fetal growth in the setting of placental insufficiency and FGR.NEW & NOTEWORTHY IGF-1 LR3 treatment administered directly into growth-restricted fetal sheep circulation did not improve fetal growth or attenuate circulating insulin or fetal GSIS. Importantly, IGF-1 LR3 treatment reduced circulating amino acids, notably branched-chain amino acids, which have been shown to potentiate GSIS and protein accretion supporting fetal growth.
Collapse
Affiliation(s)
- Alicia White
- University of Colorado, Aurora, Colorado, United States
| | | | | | | | | | | | - Laura D Brown
- University of Colorado, Aurora, Colorado, United States
| | | |
Collapse
|
2
|
Stremming J, Chang EI, White A, Rozance PJ, Brown LD. IGF-1 infusion increases growth in fetal sheep when euinsulinemia is maintained. J Endocrinol 2024; 262:e240058. [PMID: 38727325 PMCID: PMC11212460 DOI: 10.1530/joe-24-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Insulin-like growth factor 1 (IGF-1) is a critical fetal anabolic hormone. IGF-1 infusion to the normally growing sheep fetus increases the weight of some organs but does not consistently increase body weight. However, IGF-1 infusion profoundly decreases fetal plasma insulin concentrations, which may limit fetal growth potential. In this study, normally growing late-gestation fetal sheep received an intravenous infusion of either: IGF-1 (IGF), IGF-1 with insulin and dextrose to maintain fetal euinsulinemia and euglycemia (IGF+INS), or vehicle control (CON) for 1 week. The fetus underwent a metabolic study immediately prior to infusion start and after 1 week of the infusion to measure uterine and umbilical uptake rates of nutrients and oxygen. IGF+INS fetuses were 23% heavier than CON (P = 0.0081) and had heavier heart, liver, and adrenal glands than IGF and CON (P < 0.01). By design, final fetal insulin concentrations in IGF were 62% and 65% lower than IGF+INS and CON, respectively. Final glucose concentrations were similar in all groups. IGF+INS had lower final oxygen content than IGF and CON (P < 0.0001) and lower final amino acid concentrations than CON (P = 0.0002). Final umbilical oxygen uptake was higher in IGF+INS compared to IGF and CON (P < 0.05). Final umbilical uptake of several essential amino acids was higher in IGF+INS compared to CON (P < 0.05). In summary, maintaining euinsulinemia and euglycemia during fetal IGF-1 infusion is necessary to maximally support body growth. We speculate that IGF-1 and insulin stimulate placental nutrient transport to support fetal growth.
Collapse
Affiliation(s)
- Jane Stremming
- Department of Pediatrics, University of Colorado Anschutz
Medical Campus, Aurora, CO
| | - Eileen I Chang
- Department of Pediatrics, University of Colorado Anschutz
Medical Campus, Aurora, CO
| | - Alicia White
- Department of Pediatrics, University of Colorado Anschutz
Medical Campus, Aurora, CO
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado Anschutz
Medical Campus, Aurora, CO
| | - Laura D Brown
- Department of Pediatrics, University of Colorado Anschutz
Medical Campus, Aurora, CO
| |
Collapse
|
3
|
Chang EI, Stremming J, Knaub LA, Wesolowski SR, Rozance PJ, Sucharov CC, Reusch JE, Brown LD. Mitochondrial respiration is lower in the intrauterine growth-restricted fetal sheep heart. J Physiol 2024; 602:2697-2715. [PMID: 38743350 PMCID: PMC11325437 DOI: 10.1113/jp285496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Fetuses affected by intrauterine growth restriction have an increased risk of developing heart disease and failure in adulthood. Compared with controls, late gestation intrauterine growth-restricted (IUGR) fetal sheep have fewer binucleated cardiomyocytes, reflecting a more immature heart, which may reduce mitochondrial capacity to oxidize substrates. We hypothesized that the late gestation IUGR fetal heart has a lower capacity for mitochondrial oxidative phosphorylation. Left (LV) and right (RV) ventricles from IUGR and control (CON) fetal sheep at 90% gestation were harvested. Mitochondrial respiration (states 1-3, LeakOmy, and maximal respiration) in response to carbohydrates and lipids, citrate synthase (CS) activity, protein expression levels of mitochondrial oxidative phosphorylation complexes (CI-CV), and mRNA expression levels of mitochondrial biosynthesis regulators were measured. The carbohydrate and lipid state 3 respiration rates were lower in IUGR than CON, and CS activity was lower in IUGR LV than CON LV. However, relative CII and CV protein levels were higher in IUGR than CON; CV expression level was higher in IUGR than CON. Genes involved in lipid metabolism had lower expression in IUGR than CON. In addition, the LV and RV demonstrated distinct differences in oxygen flux and gene expression levels, which were independent from CON and IUGR status. Low mitochondrial respiration and CS activity in the IUGR heart compared with CON are consistent with delayed cardiomyocyte maturation, and CII and CV protein expression levels may be upregulated to support ATP production. These insights will provide a better understanding of fetal heart development in an adverse in utero environment. KEY POINTS: Growth-restricted fetuses have a higher risk of developing and dying from cardiovascular diseases in adulthood. Mitochondria are the main supplier of energy for the heart. As the heart matures, the substrate preference of the mitochondria switches from carbohydrates to lipids. We used a sheep model of intrauterine growth restriction to study the capacity of the mitochondria in the heart to produce energy using either carbohydrate or lipid substrates by measuring how much oxygen was consumed. Our data show that the mitochondria respiration levels in the growth-restricted fetal heart were lower than in the normally growing fetuses, and the expression levels of genes involved in lipid metabolism were also lower. Differences between the right and left ventricles that are independent of the fetal growth restriction condition were identified. These results indicate an impaired metabolic maturation of the growth-restricted fetal heart associated with a decreased capacity to oxidize lipids postnatally.
Collapse
Affiliation(s)
- Eileen I. Chang
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jane Stremming
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leslie A. Knaub
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paul J. Rozance
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Jane E.B. Reusch
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Laura D. Brown
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Brown LD, Rozance PJ, Wang D, Eroglu EC, Wilkening RB, Solmonson A, Wesolowski SR. Increased hepatic glucose production with lower oxidative metabolism in the growth-restricted fetus. JCI Insight 2024; 9:e176497. [PMID: 38687612 PMCID: PMC11141920 DOI: 10.1172/jci.insight.176497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Fetal growth restriction (FGR) is accompanied by early activation of hepatic glucose production (HGP), a hallmark of type 2 diabetes (T2D). Here, we used fetal hepatic catheterization to directly measure HGP and substrate flux in a sheep FGR model. We hypothesized that FGR fetuses would have increased hepatic lactate and amino acid uptake to support increased HGP. Indeed, FGR fetuses compared with normal (CON) fetuses had increased HGP and activation of gluconeogenic genes. Unexpectedly, hepatic pyruvate output was increased, while hepatic lactate and gluconeogenic amino acid uptake rates were decreased in FGR liver. Hepatic oxygen consumption and total substrate uptake rates were lower. In FGR liver tissue, metabolite abundance, 13C-metabolite labeling, enzymatic activity, and gene expression supported decreased pyruvate oxidation and increased lactate production. Isolated hepatocytes from FGR fetuses had greater intrinsic capacity for lactate-fueled glucose production. FGR livers also had lower energy (ATP) and redox state (NADH/NAD+ ratio). Thus, reduced hepatic oxidative metabolism may make carbons available for increased HGP, but also produces nutrient and energetic stress in FGR liver. Intrinsic programming of these pathways regulating HGP in the FGR fetus may underlie increased HGP and T2D risk postnatally.
Collapse
Affiliation(s)
- Laura D Brown
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paul J Rozance
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dong Wang
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evren C Eroglu
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Randall B Wilkening
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ashley Solmonson
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
5
|
Paping A, Ehrlich L, Melchior K, Ziska T, Wippermann W, Starke A, Heinichen K, Henrich W, Braun T. A Sustainable Translational Sheep Model for Planned Cesarean Delivery of Contraction-Free Ewes. Reprod Sci 2024; 31:791-802. [PMID: 37848643 PMCID: PMC10912125 DOI: 10.1007/s43032-023-01365-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
We evaluated whether the sheep constitutes a useful translational model to evaluate anatomical and surgical aspects of cesarean delivery (CD) from a human medical perspective with the aim of both maternal and neonatal well-being. Our hypothesis was that CD in contraction-free ewes is not associated with major complications. Primary endpoint was the transferability of anatomical conditions and surgical techniques of CD from the ewe to the human. Secondary endpoints were maternal and fetal survival, occurrence of retained fetal membranes, metritis, mastitis, or wound infections. Forty-eight Merino ewes were delivered by CD after 95% gestation (142-144 days). Both ewes and newborn lambs were cared for intensively after the delivery. Ovine uterine anatomy during CD appeared slightly different but comparable to the human uterus. Uterine incisions were mostly performed in the uterine horns, not in the uterine corpus. The ovine uterine wall is thinner than in humans. All ewes survived without any major complications. Seventy-seven (88.5%) out of 87 live-born lambs survived without any complications. The contraction-free ewe constitutes an appropriate and safe model to evaluate anatomical and surgical aspects of CD from a human medical perspective. We present a step-by-step manual for successfully planned cesarean delivery for sheep including the perioperative management illustrated with photographs and a five-minute video. With adequate planning and a reasonable number of staff, it is possible to safeguard both maternal and neonatal survival. This sustainable translational medicine model offers additional potential for the offspring to be used for further research studies (e.g., transgenerational inheritance research).
Collapse
Affiliation(s)
- Alexander Paping
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Obstetrics, Augustenburger Platz 1, 13353, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of 'Experimental Obstetrics', Berlin, Germany.
| | - Loreen Ehrlich
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of 'Experimental Obstetrics', Berlin, Germany
| | - Kerstin Melchior
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of 'Experimental Obstetrics', Berlin, Germany
| | - Thomas Ziska
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of 'Experimental Obstetrics', Berlin, Germany
| | - Wolf Wippermann
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Alexander Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Karin Heinichen
- Oberholz Farm for Teaching and Research, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Wolfgang Henrich
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Obstetrics, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Thorsten Braun
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Obstetrics, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of 'Experimental Obstetrics', Berlin, Germany
| |
Collapse
|
6
|
Piccolo B, Chen A, Louey S, Thornburg K, Jonker S. Physiological response to fetal intravenous lipid emulsion. Clin Sci (Lond) 2024; 138:117-134. [PMID: 38261523 PMCID: PMC10876438 DOI: 10.1042/cs20231419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
In preterm neonates unable to obtain sufficient oral nutrition, intravenous lipid emulsion is life-saving. The contribution of post-conceptional level of maturation to pathology that some neonates experience is difficult to untangle from the global pathophysiology of premature birth. In the present study, we determined fetal physiological responses to intravenous lipid emulsion. Fetal sheep were given intravenous Intralipid 20® (n = 4 females, 7 males) or Lactated Ringer's Solution (n = 7 females, 4 males) between 125 ± 1 and 133 ± 1 d of gestation (term = 147 d). Manufacturer's recommendation for premature human infants was followed: 0.5-1 g/kg/d initial rate, increased by 0.5-1 to 3 g/kg/d. Hemodynamic parameters and arterial blood chemistry were measured, and organs were studied postmortem. Red blood cell lipidomics were analyzed by LC-MS. Intravenous Intralipid did not alter hemodynamic or most blood parameters. Compared with controls, Intralipid infusion increased final day plasma protein (P=0.004; 3.5 ± 0.3 vs. 3.9 ± 0.2 g/dL), albumin (P = 0.031; 2.2 ± 0.1 vs. 2.4 ± 0.2 g/dL), and bilirubin (P<0.001; conjugated: 0.2 ± 0.1 vs. 0.6 ± 0.2 mg/dL; unconjugated: 0.2 ± 0.1 vs. 1.1 ± 0.4 mg/dL). Circulating IGF-1 decreased following Intralipid infusion (P<0.001; 66 ± 24 vs. 46 ± 24 ng/mL). Compared with control Oil Red O liver stains (median score 0), Intralipid-infused fetuses scored 108 (P=0.0009). Lipidomic analysis revealed uptake and processing of infused lipids into red blood cells, increasing abundance of saturated fatty acids. The near-term fetal sheep tolerates intravenous lipid emulsion well, although lipid accumulates in the liver. Increased levels of unconjugated bilirubin may reflect increased red blood cell turnover or impaired placental clearance. Whether Intralipid is less well tolerated earlier in gestation remains to be determined.
Collapse
Affiliation(s)
- Brian D. Piccolo
- USDA/ARS-Arkansas Children’s Nutrition Center, Little Rock, AR, U.S.A
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, U.S.A
| | - Athena Chen
- Department of Pathology, Oregon Health and Science University, Portland, OR, U.S.A
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, U.S.A
| | - Samantha Louey
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, U.S.A
| | - Kent L.R. Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, U.S.A
| | - Sonnet S. Jonker
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, U.S.A
| |
Collapse
|
7
|
Forde B, Martin S, Watanabe-Chailland M, Lim FY. Acute Fetal Metabolomic Changes in Twins Undergoing Fetoscopic Surgery for Twin-Twin Transfusion Syndrome. Twin Res Hum Genet 2024; 27:56-63. [PMID: 38515292 DOI: 10.1017/thg.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Fetuses undergo major surgical stress as well as fluid shifts secondary to both twin-twin transfusion (TTTS) as well as the fetoscopic surgery for treatment of TTTS. While the pathophysiology of TTTS is understood, the acute metabolic changes that fetuses experience from fetoscopic surgery are not. We sought to evaluate the changes in recipient metabolomic profile secondary to TTTS surgery. Amniotic fluid was collected at the beginning and end of four TTTS surgical cases performed from 12/2022-2/2023. Samples were immediately processed and evaluated via NMR-based Metabolomics Facility protocol. In univariate analysis, 12 metabolites (glucose, lactate, and 10 key amino acids) showed statistically significant changes between the beginning and end of the surgery. Among these, 11 metabolites decreased at the end, while only lactate increased. Supervised oPLS-DA modeling revealed pyruvate and lactate as the two metabolites most impact on the variance between cases, and that 40% of metabolomic changes could be attributed directly to the timing that the sample was taken (i.e., if pre- or postoperatively). These results indicate significant metabolic changes in the recipient twin during fetoscopic surgery for TTTS. These findings of decreased glucose, increased lactate, and decreased amnio acids would indicate increased catabolism during surgery. This study raises questions regarding optimal maternal and fetal nutrition during surgery and if nutritional status could be optimized to further improve twin survival during fetoscopic surgery.
Collapse
Affiliation(s)
- Braxton Forde
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
- Cincinnati Children's Fetal Care Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Samuel Martin
- Cincinnati Children's Fetal Care Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Miki Watanabe-Chailland
- NMR-Based Metabolomics Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Foong-Yen Lim
- Cincinnati Children's Fetal Care Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Kyllo HM, Wang D, Lorca RA, Julian CG, Moore LG, Wilkening RB, Rozance PJ, Brown LD, Wesolowski SR. Adaptive responses in uteroplacental metabolism and fetoplacental nutrient shuttling and sensing during placental insufficiency. Am J Physiol Endocrinol Metab 2023; 324:E556-E568. [PMID: 37126847 PMCID: PMC10259853 DOI: 10.1152/ajpendo.00046.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Glucose, lactate, and amino acids are major fetal nutrients. During placental insufficiency-induced intrauterine growth restriction (PI-IUGR), uteroplacental weight-specific oxygen consumption rates are maintained, yet fetal glucose and amino acid supply is decreased and fetal lactate concentrations are increased. We hypothesized that uteroplacental metabolism adapts to PI-IUGR by altering nutrient allocation to maintain oxidative metabolism. Here, we measured nutrient flux rates, with a focus on nutrients shuttled between the placenta and fetus (lactate-pyruvate, glutamine-glutamate, and glycine-serine) in a sheep model of PI-IUGR. PI-IUGR fetuses weighed 40% less and had decreased oxygen, glucose, and amino acid concentrations and increased lactate and pyruvate versus control (CON) fetuses. Uteroplacental weight-specific rates of oxygen, glucose, lactate, and pyruvate uptake were similar. In PI-IUGR, fetal glucose uptake was decreased and pyruvate output was increased. In PI-IUGR placental tissue, pyruvate dehydrogenase (PDH) phosphorylation was decreased and PDH activity was increased. Uteroplacental glutamine output to the fetus and expression of genes regulating glutamine-glutamate metabolism were lower in PI-IUGR. Fetal glycine uptake was lower in PI-IUGR, with no differences in uteroplacental glycine or serine flux. These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose utilization, and lower fetoplacental amino acid shuttling during PI-IUGR. Mechanistically, AMP-activated protein kinase (AMPK) activation was higher and associated with thiobarbituric acid-reactive substances (TBARS) content, a marker of oxidative stress, and PDH activity in the PI-IUGR placenta, supporting a potential link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism.NEW & NOTEWORTHY These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose uptake, and lower amino acid shuttling in the placental insufficiency-induced intrauterine growth restriction (PI-IUGR) placenta. AMPK activation was associated with oxidative stress and PDH activity, supporting a putative link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism at the expense of fetal growth.
Collapse
Affiliation(s)
- Hannah M Kyllo
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Dong Wang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Ramón A Lorca
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Colleen G Julian
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Randall B Wilkening
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
9
|
Trotta RJ, Vasquez-Hidalgo MA, Smith BI, Reed SA, Govoni KE, Vonnahme KA, Swanson KC. Timing of maternal nutrient restriction during mid- to late-gestation influences net umbilical uptake of glucose and amino acids in adolescent sheep. J Anim Sci 2023; 101:skad383. [PMID: 37982730 PMCID: PMC10684045 DOI: 10.1093/jas/skad383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/18/2023] [Indexed: 11/21/2023] Open
Abstract
Previous research demonstrated that maternal nutrient restriction during mid- to late-gestation influenced net umbilical uptakes of glucose and amino acids in sheep. However, it is unclear how the timing and duration of nutrient restriction during mid- to late-gestation influences net uterine, uteroplacental, and fetal flux of glucose and amino acids. On day 50 of gestation, 41 adolescent ewe lambs carrying singletons were randomly assigned to one of six dietary treatments: 1) 100% of nutrient requirements from days 50 to 90 of gestation (CON; n = 7); 2) 60% of nutrient requirements (RES; n = 7) from days 50 to 90 of gestation; 3) 100% of nutrient requirements from days 50 to 130 of gestation (CON-CON; n = 6); 4) 100% of nutrient requirements from days 50 to 90 of gestation and 60% of nutrient requirements from days 90 to 130 of gestation (CON-RES; n = 7); 5) 60% of nutrient requirements from days 50 to 90 of gestation and 100% of nutrient requirements from days 90 to 130 of gestation (RES-CON; n = 7); or 6) 60% of nutrient requirements from days 50 to 130 of gestation (RES-RES; n = 7). On day 90 (n = 14) and day 130 (n = 27), intraoperative procedures were performed to evaluate uteroplacental blood flows, collect blood samples, and then ewes were euthanized. Net uterine, uteroplacental, and umbilical fluxes of glucose and amino acids were calculated by multiplying blood flow by the arterial-venous concentration difference. Data from days 90 and 130 were analyzed separately using ANOVA in SAS. Maternal nutrient restriction during mid-gestation increased (P = 0.04) net umbilical glucose uptake but, maternal nutrient restriction during late-gestation decreased (P = 0.02) net umbilical glucose uptake. Net umbilical essential amino acid uptake decreased (P = 0.03) with nutrient restriction during mid-gestation; however, net umbilical uptakes of Phe (P = 0.02), Thr (P = 0.05), Met (P = 0.09), and His (P = 0.08) increased or tended to increase after nutrient restriction during late-gestation. These data demonstrate that net umbilical glucose and amino acid uptakes were influenced by the timing of nutrient restriction during mid- to late-gestation. Elevated net umbilical glucose uptake after mid-gestational nutrient restriction was sustained throughout late-gestation, independent of late-gestational feeding level. Long-term adaptations in umbilical glucose uptake may have implications for prenatal and postnatal growth and development of the offspring.
Collapse
Affiliation(s)
- Ronald J Trotta
- Department of Animal Science, North Dakota State University, Fargo, ND 58108, USA
| | | | - Brandon I Smith
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Sarah A Reed
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Kristen E Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Kimberly A Vonnahme
- Department of Animal Science, North Dakota State University, Fargo, ND 58108, USA
| | - Kendall C Swanson
- Department of Animal Science, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
10
|
Stremming J, Chang EI, Knaub LA, Armstrong ML, Baker PR, Wesolowski SR, Reisdorph N, Reusch JEB, Brown LD. Lower citrate synthase activity, mitochondrial complex expression, and fewer oxidative myofibers characterize skeletal muscle from growth-restricted fetal sheep. Am J Physiol Regul Integr Comp Physiol 2022; 322:R228-R240. [PMID: 34907787 PMCID: PMC8858669 DOI: 10.1152/ajpregu.00222.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
Skeletal muscle from the late gestation sheep fetus with intrauterine growth restriction (IUGR) has evidence of reduced oxidative metabolism. Using a sheep model of placental insufficiency and IUGR, we tested the hypothesis that by late gestation, IUGR fetal skeletal muscle has reduced capacity for oxidative phosphorylation because of intrinsic deficits in mitochondrial respiration. We measured mitochondrial respiration in permeabilized muscle fibers from biceps femoris (BF) and soleus (SOL) from control and IUGR fetal sheep. Using muscles including BF, SOL, tibialis anterior (TA), and flexor digitorum superficialis (FDS), we measured citrate synthase (CS) activity, mitochondrial complex subunit abundance, fiber type distribution, and gene expression of regulators of mitochondrial biosynthesis. Ex vivo mitochondrial respiration was similar in control and IUGR muscle. However, CS activity was lower in IUGR BF and TA, indicating lower mitochondrial content, and protein expression of individual mitochondrial complex subunits was lower in IUGR TA and BF in a muscle-specific pattern. IUGR TA, BF, and FDS also had lower expression of type I oxidative fibers. Fiber-type shifts that support glycolytic instead of oxidative metabolism may be advantageous for the IUGR fetus in a hypoxic and nutrient-deficient environment, whereas these adaptions may be maladaptive in postnatal life.
Collapse
Affiliation(s)
- Jane Stremming
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Eileen I Chang
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Leslie A Knaub
- Division of Endocrinology, University of Colorado, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | | | - Peter R Baker
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | | | | | - Jane E B Reusch
- Division of Endocrinology, University of Colorado, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Laura D Brown
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| |
Collapse
|
11
|
Chang EI, Hetrick B, Wesolowski SR, McCurdy CE, Rozance PJ, Brown LD. A Two-Week Insulin Infusion in Intrauterine Growth Restricted Fetal Sheep at 75% Gestation Increases Skeletal Myoblast Replication but Did Not Restore Muscle Mass or Increase Fiber Number. Front Endocrinol (Lausanne) 2021; 12:785242. [PMID: 34917036 PMCID: PMC8670988 DOI: 10.3389/fendo.2021.785242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 01/14/2023] Open
Abstract
Intrauterine growth restricted (IUGR) fetuses are born with lower skeletal muscle mass, fewer proliferating myoblasts, and fewer myofibers compared to normally growing fetuses. Plasma concentrations of insulin, a myogenic growth factor, are lower in IUGR fetuses. We hypothesized that a two-week insulin infusion at 75% gestation would increase myoblast proliferation and fiber number in IUGR fetal sheep. Catheterized control fetuses received saline (CON-S, n=6), and the IUGR fetuses received either saline (IUGR-S, n=7) or insulin (IUGR-I, 0.014 ± 0.001 units/kg/hr, n=11) for 14 days. Fetal arterial blood gases and plasma amino acid levels were measured. Fetal skeletal muscles (biceps femoris, BF; and flexor digitorum superficialis, FDS) and pancreases were collected at necropsy (126 ± 2 dGA) for immunochemistry analysis, real-time qPCR, or flow cytometry. Insulin concentrations in IUGR-I and IUGR-S were lower vs. CON-S (P ≤ 0.05, group). Fetal arterial PaO2, O2 content, and glucose concentrations were lower in IUGR-I vs. CON-S (P ≤ 0.01) throughout the infusion period. IGF-1 concentrations tended to be higher in IUGR-I vs. IUGR-S (P=0.06), but both were lower vs. CON-S (P ≤ 0.0001, group). More myoblasts were in S/G2 cell cycle stage in IUGR-I vs. both IUGR-S and CON-S (145% and 113%, respectively, P ≤ 0.01). IUGR-I FDS muscle weighed 40% less and had 40% lower fiber number vs. CON-S (P ≤ 0.05) but were not different from IUGR-S. Myonuclear number per fiber and the mRNA expression levels of muscle regulatory factors were not different between groups. While the pancreatic β-cell mass was lower in both IUGR-I and IUGR-S compared to CON-S, the IUGR groups were not different from each other indicating that feedback inhibition by endogenous insulin did not reduce β-cell mass. A two-week insulin infusion at 75% gestation promoted myoblast proliferation in the IUGR fetus but did not increase fiber or myonuclear number. Myoblasts in the IUGR fetus retain the capacity to proliferate in response to mitogenic stimuli, but intrinsic defects in the fetal myoblast by 75% gestation may limit the capacity to restore fiber number.
Collapse
MESH Headings
- Animals
- Drug Administration Schedule
- Female
- Fetal Development/drug effects
- Fetal Development/physiology
- Fetal Growth Retardation/drug therapy
- Fetal Growth Retardation/pathology
- Hypoglycemic Agents/administration & dosage
- Infusions, Intravenous
- Insulin/administration & dosage
- Muscle Development/drug effects
- Muscle Development/physiology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Myoblasts, Skeletal/drug effects
- Myoblasts, Skeletal/pathology
- Myoblasts, Skeletal/physiology
- Pregnancy
- Sheep
Collapse
Affiliation(s)
- Eileen I. Chang
- Perinatal Research Center, Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Stephanie R. Wesolowski
- Perinatal Research Center, Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Paul J. Rozance
- Perinatal Research Center, Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Laura D. Brown
- Perinatal Research Center, Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, United States
- *Correspondence: Laura D. Brown,
| |
Collapse
|