1
|
Haslam RP, Larson TR. Techniques for the Measurement of Molecular Species of Acyl-CoA in Plants and Microalgae. Methods Mol Biol 2021; 2295:203-218. [PMID: 34047979 DOI: 10.1007/978-1-0716-1362-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The acyl-CoA pool is pivotal in cellular metabolism. The ability to provide reliable estimates of acyl-CoA abundance and distribution between molecular species in plant tissues and microalgae is essential to our understanding of lipid metabolism and acyl exchange. Acyl-CoAs are typically found in low abundance and require specific methods for extraction, separation and detection. Here we describe methods for acyl-CoA extraction and measurement in plant tissues and microalgae, with a focus on liquid chromatography hyphenated to detection techniques including ultraviolet (UV), fluorescence and mass spectrometry (MS). We address the resolution of isobaric species and the selection of columns needed to achieve this, including the analysis of branched chain acyl-CoA thioesters. For MS analyses, we describe diagnostic ions for the identification of acyl-CoA species and how these can be used for both discovery of new species (data dependent acquisition) and routine quantitation (triple quadrupole MS with multiple reaction monitoring).
Collapse
Affiliation(s)
- Richard P Haslam
- Department of Plant Science, Rothamsted Research, Harpenden, UK.
| | | |
Collapse
|
2
|
Lam SM, Zhou T, Li J, Zhang S, Chua GH, Li B, Shui G. A robust, integrated platform for comprehensive analyses of acyl-coenzyme As and acyl-carnitines revealed chain length-dependent disparity in fatty acyl metabolic fates across Drosophila development. Sci Bull (Beijing) 2020; 65:1840-1848. [PMID: 36659124 DOI: 10.1016/j.scib.2020.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 01/21/2023]
Abstract
Acyl-coenzyme A thioesters (acyl-CoAs) denote a key class of intermediary metabolites that lies at the hub of major metabolic pathways. The great diversity in polarity between short- and long-chain acyl-CoAs makes it technically challenging to cover an inclusive range of acyl-CoAs within a single method. Levels of acyl-carnitines, which function to convey fatty acyls into mitochondria matrix for β-oxidation, indicate the efficiency of mitochondrial import and utilization of corresponding acyl-CoAs. Herein, we report a robust, integrated platform to allow simultaneous quantitation of endogenous acyl-CoAs and acyl-carnitines. Using this method, we monitored changes in intermediary lipid profiles across Drosophila development under control (ND) and high-fat diet (HFD). We observed specific accumulations of medium-chain (C8-C12) and long-chain (≥C16) acyl-carnitines distinct to L3 larval and pupal stages, respectively. These observations suggested development-specific, chain length-dependent disparity in metabolic fates of acyl-CoAs across Drosophila development, which was validated by deploying the same platform to monitor isotope incorporation introduced from labelled 12:0 and 16:0 fatty acids into extra- and intra-mitochondrial acyl-CoA pools. We found that pupal mitochondria preferentially import and oxidise C12:0-CoAs (accumulated as C12:0-carnitines in L3 stage) over C16:0-CoAs. Preferential oxidation of medium-chain acyl-CoAs limits mitochondrial utilization of long-chain acyl-CoAs (C16-C18), leading to pupal-specific accumulation of long-chain acyl-carnitines mediated by enhanced CPT1-6A activity. HFD skewed C16:0-CoAs towards catabolism over anabolism in pupa, thereby adversely affecting overall development. Our developed platform emphasizes the importance of integrating biological knowledge in the design of pathway-oriented platforms to derive maximal physiological insights from analysis of complex biological systems.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianxing Zhou
- LipidALL Technologies Company Limited, Changzhou 213022, China
| | - Jie Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gek Huey Chua
- LipidALL Technologies Company Limited, Changzhou 213022, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou 213022, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Morin-Rivron D, Christinat N, Masoodi M. Lipidomics analysis of long-chain fatty acyl-coenzyme As in liver, brain, muscle and adipose tissue by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:344-350. [PMID: 27870154 DOI: 10.1002/rcm.7796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Long-chain fatty acyl-coenzyme As (FA-CoAs) are important bioactive molecules, playing key roles in biosynthesis of fatty acids, membrane trafficking and signal transduction. Development of sensitive analytical methods for profiling theses lipid species in various tissues is critical to understand their biological activity. A high-pressure liquid chromatography/tandem mass spectrometry method has been developed for the quantitative analysis and screening of long-chain FACoAs in liver, brain, muscle and adipose tissue. METHODS The sample preparation method consists of tissue homogenization, extraction with organic solvent and reconstitution in an ammonium hydroxide buffer. Extracts are separated by liquid chromatography (LC) on a reversed-phase column and detected by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in positive mode. An additional neutral loss scan allows for untargeted FA-CoAs screening. RESULTS Extraction was optimized for low sample load (10 mg) of four tissue types (liver, brain, muscle and adipose tissue) with recoveries between 60-140% depending on the analyte and tissue type. Targeted quantification was validated for ten FA-CoAs in the range 0.1-500 ng/mL with accuracies between 85-120%. CONCLUSIONS We have developed and validated a LC/MS/MS method for the quantifications and screening of long-chain FA-CoAs in four different types of mammalian tissue. The extraction method is straightforward and long-chain FA-CoA species can be quantified using only minimum amount of tissue. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Delphine Morin-Rivron
- Lipid Biology, Nestlé Institute of Health Sciences, EPFL Innovation Park, Bâtiment H, Lausanne, 1015, Switzerland
| | - Nicolas Christinat
- Lipid Biology, Nestlé Institute of Health Sciences, EPFL Innovation Park, Bâtiment H, Lausanne, 1015, Switzerland
| | - Mojgan Masoodi
- Lipid Biology, Nestlé Institute of Health Sciences, EPFL Innovation Park, Bâtiment H, Lausanne, 1015, Switzerland
| |
Collapse
|
4
|
Methods for measuring CoA and CoA derivatives in biological samples. Biochem Soc Trans 2015; 42:1107-11. [PMID: 25110010 DOI: 10.1042/bst20140123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CoA (coenzyme A) is a ubiquitous and essential cofactor that acts as an acyl group carrier in biochemical reactions. Apart from participating in numerous metabolic pathways as substrates and intermediates, CoA and a number of its thioester derivatives, such as acetyl-CoA, can also directly regulate the activity of proteins by allosteric mechanisms and by affecting protein acetylation reactions. Cellular levels of CoA and CoA thioesters change under various physiological and pathological conditions. Defective CoA biosynthesis is implicated in NBIA (neurodegeneration with brain iron accumulation). However, the exact role of CoA in the pathogenesis of NBIA is not well understood. Accurate and reliable assays for measuring CoA species in biological samples are essential for studying the roles of CoA and CoA derivatives in health and disease. The present mini-review discusses methods that are commonly used to measure CoA species in biological samples.
Collapse
|
5
|
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. THE ARABIDOPSIS BOOK 2013; 11:e0161. [PMID: 23505340 PMCID: PMC3563272 DOI: 10.1199/tab.0161] [Citation(s) in RCA: 715] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
Collapse
|
6
|
Haynes CA. Analysis of mammalian fatty acyl-coenzyme A species by mass spectrometry and tandem mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:663-8. [PMID: 21679775 DOI: 10.1016/j.bbalip.2011.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/20/2011] [Accepted: 05/23/2011] [Indexed: 11/28/2022]
Abstract
Acyl-CoAs are intermediates of numerous metabolic processes in eukaryotic cells, including beta-oxidation within mitochondria and peroxisomes, and the biosynthesis/remodeling of lipids (e.g. mono-, di-, and triglycerides, phospholipids and sphingolipids). Investigations of lipid metabolism have been advanced by the ability to quantitate acyl-CoA intermediates via liquid chromatography coupled to electrospray ionization-tandem mass spectrometric detection (LC-ESI-MS/MS), which is presently one of the most sensitive and specific analytical methods for both lipids and acyl-CoAs. This review of acyl-CoA analysis by mass spectrometry focuses on mammalian samples and long-chain analytes (i.e. palmitoyl-CoA), particularly reports of streamlined methodology, improved recovery, or expansion of the number of acyl chain-lengths amenable to quantitation.
Collapse
|
7
|
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. THE ARABIDOPSIS BOOK 2010; 8:e0133. [PMID: 22303259 PMCID: PMC3244904 DOI: 10.1199/tab.0133] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
Collapse
|
8
|
Koo AJK, Fulda M, Browse J, Ohlrogge JB. Identification of a plastid acyl-acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:620-32. [PMID: 16262711 DOI: 10.1111/j.1365-313x.2005.02553.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant cells are known to elongate exogenously provided fatty acid (FA), but the subcellular sites and mechanisms for this process are not currently understood. When Arabidopsis leaves were incubated with 14C-FAs with or=20 carbons) but not synthesis of 14C-unsaturated 18-carbon or 16-carbon FAs. Isolated pea chloroplasts were also able to elongate 14C-FAs (
Collapse
Affiliation(s)
- Abraham J K Koo
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
9
|
Liu G, Chen J, Che P, Ma Y. Separation and quantitation of short-chain coenzyme A's in biological samples by capillary electrophoresis. Anal Chem 2003; 75:78-82. [PMID: 12530821 DOI: 10.1021/ac0261505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of the importance of coenzyme A's (CoA's or CoASH) in many metabolic processes and the biosynthesis of some carbohydrates and lipids, many methods have been developed to separate and determine their levels in various tissues for metabolism studies, including enzymatic assays, paper chromatography, and high-performance liquid chromatography (HPLC). However, inadequate separation of coexisting CoA's in biological samples was often encountered due to the similarity of their structures. In this paper, we demonstrated for the first time the separation and quantitation of 12 different CoA's by using capillary electrophoresis with UV detection at 254 nm. All 12 CoA's (CoASH, HMG CoA, methylmalonyl CoA, succinyl CoA, methylcrotonyl CoA, isobutyryl CoA, oxidized CoA, acetyl CoA, crotonoyl CoA, n-propzoyl CoA, acetoacetyl CoA, malonyl CoA) were completely separated at -30 kV in a 100 mM NaH2PO4 running buffer containing 0.1% beta-cyclodextrin at pH 6.0. The total separation time was less than 30 min. The signal response was linear over 2 orders of magnitudes (from 1 to 100 nmol), and the detection limits were in the picomole range. The effects of pH, buffer concentration, additives, and operation voltages on sensitivity and resolution were also discussed. This technique, described here, is much more sensitive, faster, and simpler than the published HPLC methods and can potentially be used for mechanistic study in biological systems involving CoA metabolism.
Collapse
Affiliation(s)
- Guanshu Liu
- Department of Chemistry, University of Missouri-Rolla, Rolla, Missouri 65409, USA
| | | | | | | |
Collapse
|
10
|
Kroumova AB, Wagner GJ, Davies HM. Biochemical observations on medium-chain-length polyhydroxyalkanoate biosynthesis and accumulation in Pseudomonas mendocina. Arch Biochem Biophys 2002; 405:95-103. [PMID: 12176062 DOI: 10.1016/s0003-9861(02)00350-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Certain Pseudomonads are capable of accumulating high levels of medium-chain-length polyhydroxyalkanates (PHAmcl) when grown with carbohydrates as the main carbon source. 3-OH acyl components of PHAmcl are derived from fatty acid synthase (FAS) and these components are accessed by action of 3-hydroxyacyl-acyl carrier protein (ACP)-coenzyme A (CoA) transferase (transacylase). However, little is known with regard to the time courses of 3-OH acyl component occurrence and of transacylase activity during PHAmcl induction. Also, little is known with regard to the coupling mechanism between FAS and PHAmcl synthesis or whether the FAS pathway itself is specialized in PHAmcl-producing cells. Our results with regard to the time course of formation of 3-OH acids, 3-OH acyl-ACPs, and PHAmcl are consistent with the view that transacylase provides the key link between FAS and PHAmcl synthase. They also suggest that FAS specialization is not a feature of the mechanism. Further, we observed the formation of a 3-OH 10:0 homopolymer early in the induction phase followed by later formation of a mixed polymer containing 3-OH 8:0 and 3-OH 12:0 in addition to 3-OH 10:0. Early occurrence of 3-OH 10:0-CoA transacylase activity was coincident with homopolymer formation.
Collapse
Affiliation(s)
- Antoaneta B Kroumova
- Plant Physiology/Biochemistry/Molecular Biology Program, Agronomy Department, University of Kentucky, Lexington, KY 40546-0091, USA
| | | | | |
Collapse
|
11
|
Shrago E, Woldegiorgis G. Isolation and separation of individual long-chain acyl-coenzyme A esters. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(01)01559-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Abstract
This article describes the most commonly used procedures and recent laboratory methodologies using gas and liquid chromatography developed for separation and quantitation of non-saponifiable steroidal lipids from clinical (human) studies, edible fats and oils or fatty foods.
Collapse
Affiliation(s)
- P Volin
- Caloniuksenk. 10 C 47, Helsinki, Finland
| |
Collapse
|
13
|
Soll J, Roughan G. Acyl-acyl carrier protein and pool sizes during steady-state fatty acid synthesis by isolated spinach chloroplasts. FEBS Lett 2001. [DOI: 10.1016/0014-5793(82)80732-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Roughan P, Slack C. Acyl-CoA may be a neglected product in studies of fatty acid synthesis by isolated chloroplasts. FEBS Lett 2001. [DOI: 10.1016/0014-5793(81)80972-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Murphy DJ, Leech RM. The pathway of [14C]bicarbonate incorporation into lipids in isolated photosynthesising spinach chloroplasts. FEBS Lett 2001. [DOI: 10.1016/0014-5793(78)80171-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Furler SM, Poynten AM, Kriketos AD, Lowy AJ, Ellis BA, Maclean EL, Courtenay BG, Kraegen EW, Campbell LV, Chisholm DJ. Independent influences of central fat and skeletal muscle lipids on insulin sensitivity. OBESITY RESEARCH 2001; 9:535-43. [PMID: 11557834 DOI: 10.1038/oby.2001.70] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Insulin resistance is closely associated with two disparate aspects of lipid storage: the intracellular lipid content of skeletal muscle and the magnitude of central adipose beds. Our aim was to determine their relative contribution to impaired insulin action. RESEARCH METHODS AND PROCEDURES Eighteen older (56 to 75 years of age) men were studied before elective knee surgery. Insulin sensitivity (M/Delta I) was determined by hyperinsulinemic-euglycemic clamp. Central abdominal fat (CF) was assessed by DXA. Skeletal muscle was excised at surgery and assayed for content of metabolically active long-chain acyl-CoA esters (LCAC). RESULTS Significant inverse relationships were observed between LCAC and M/Delta I (R(2) = 0.34, p = 0.01) and between CF and M/Delta I (R(2) = 0.38, p = 0.006), but not between CF and LCAC (R(2) = 0.0005, p = 0.93). In a multiple regression model (R(2) = 0.71, p < 0.0001), both CF (p = 0.0006) and LCAC (p = 0.0009) were independent statistical predictors of M/Delta I. Leptin levels correlated inversely with M/Delta I (R(2) = 0.60, p = 0.0002) and positively with central (R(2) = 0.41, p = 0.006) and total body fat (R(2) = 0.63, p = 0.0001). DISCUSSION The mechanisms by which altered lipid metabolism in skeletal muscle influences insulin action may not be related directly to those linking central fat and insulin sensitivity. In particular, it is unlikely that muscle accumulation of lipids directly derived from labile central fat depots is a principal contributor to peripheral insulin resistance. Instead, our results imply that circulating factors, other than nonesterified fatty acids or triglyceride, mediate between central fat depots and skeletal muscle tissue. Leptin was not exclusively associated with central fat, but other factors, secreted specifically from central fat cells, could modulate muscle insulin sensitivity.
Collapse
Affiliation(s)
- S M Furler
- Diabetes and Metabolism Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney NSW, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Larson TR, Graham IA. Technical Advance: a novel technique for the sensitive quantification of acyl CoA esters from plant tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:115-125. [PMID: 11169187 DOI: 10.1111/j.1365-313x.2001.00929.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report a novel, highly sensitive and selective method for the extraction and quantification of acyl CoA esters from plant tissues. The method detects acyl CoA esters with acyl chain lengths from C4 to C20 down to concentrations as low as 6 fmol in extracts. Acyl CoA esters from standard solutions or plant extracts were derived to their fluorescent acyl etheno CoA esters in the presence of chloroacetaldehyde, separated by ion-paired reversed-phase high-performance liquid chromatography, and detected fluorometrically. This derivitization procedure circumvents the selectivity problems associated with previously published enzymatic methods, and methods that rely on acyl chain or thiol group modification for acyl CoA ester detection. The formation of acyl etheno CoA esters was verified by mass spectrometry, which was also used to identify unknown peaks from chromatograms of plant extracts. Using this method, we report the composition and concentration of the acyl CoA pool during lipid synthesis in maturing Brassica napus seeds and during storage lipid breakdown in 2-day-old Arabidopsis thaliana seedlings. The concentrations measured were in the 3--6 microM range for both tissue types. We also demonstrate the utility of acyl CoA profiling in a transgenic B. napus line that has high levels of lauric acid. To our knowledge, this is the first time that reliable estimates of acyl CoA ester concentrations have been made for higher plants, and the ability to profile these metabolites provides a valuable new tool for the investigation of gene function.
Collapse
Affiliation(s)
- T R Larson
- Centre for Novel Agricultural Products, Department of Biology, University of York, Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK.
| | | |
Collapse
|
18
|
Thompson AL, Lim-Fraser MY, Kraegen EW, Cooney GJ. Effects of individual fatty acids on glucose uptake and glycogen synthesis in soleus muscle in vitro. Am J Physiol Endocrinol Metab 2000; 279:E577-84. [PMID: 10950825 DOI: 10.1152/ajpendo.2000.279.3.e577] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Soleus muscle strips from Wistar rats were preincubated with palmitate in vitro before the determination of insulin-mediated glucose metabolism in fatty acid-free medium. Palmitate decreased insulin-stimulated glycogen synthesis to 51% of control in a time- (0-6 h) and concentration-dependent (0-2 mM) manner. Basal and insulin-stimulated glucose transport/phosphorylation also decreased with time, but the decrease occurred after the effect on glycogen synthesis. Preincubation with 1 mM palmitate, oleate, linoleate, or linolenate for 4 h impaired glycogen synthesis stimulated with a submaximal physiological insulin concentration (300 microU/ml) to 50-60% of the control response, and this reduction was associated with impaired insulin-stimulated phosphorylation of protein kinase B (PKB). Preincubation with different fatty acids (all 1 mM for 4 h) had varying effects on insulin-stimulated glucose transport/phosphorylation, which was decreased by oleate and linoleate, whereas palmitate and linolenate had little effect. Across groups, the rates of glucose transport/phosphorylation correlated with the intramuscular long-chain acyl-CoA content. The similar effects of individual fatty acids on glycogen synthesis but different effects on insulin-stimulated glucose transport/phosphorylation provide evidence that lipids may interact with these two pathways via different mechanisms.
Collapse
Affiliation(s)
- A L Thompson
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| | | | | | | |
Collapse
|
19
|
Ellis BA, Poynten A, Lowy AJ, Furler SM, Chisholm DJ, Kraegen EW, Cooney GJ. Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am J Physiol Endocrinol Metab 2000; 279:E554-60. [PMID: 10950822 DOI: 10.1152/ajpendo.2000.279.3.e554] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-chain acyl-CoAs (LCACoA) are an activated lipid species that are key metabolites in lipid metabolism; they also have a role in the regulation of other cellular processes. However, few studies have linked LCACoA content in rat and human muscle to changes in nutritional status and insulin action. Fasting rats for 18 h significantly elevated the three major LCACoA species in muscle (P < 0.001), whereas high-fat feeding of rats with a safflower oil (18:2) diet produced insulin resistance and increased total LCACoA content (P < 0.0001) by specifically increasing 18:2-CoA. The LCACoA content of red muscle from rats (4-8 nmol/g) was 4- to 10-fold higher than adipose tissue (0.4-0.9 nmol/g, P < 0.001), suggesting that any contamination of muscle samples with adipocytes would contribute little to the LCACoA content of muscle. In humans, the LCACoA content of muscle correlated significantly with a measure of whole body insulin action in 17 male subjects (r(2) = 0.34, P = 0.01), supporting a link between muscle lipid metabolism and insulin action. These results demonstrate that the LCACoA pool reflects lipid metabolism and nutritional state in muscle. We conclude that the LCACoA content of muscle provides a direct index of intracellular lipid metabolism and its links to insulin action, which, unlike triglyceride content, is not subject to contamination by closely associated adipose tissue.
Collapse
Affiliation(s)
- B A Ellis
- Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ruiz-Gutiérrez V, Pérez-Camino MC. Update on solid-phase extraction for the analysis of lipid classes and related compounds. J Chromatogr A 2000; 885:321-41. [PMID: 10941680 DOI: 10.1016/s0021-9673(00)00181-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article provides information on the different procedures and methodologies developed when solid-phase extraction (SPE) is used for lipid component separation. The analytical systematics, established by different authors and designed to separate groups of compounds and also specific components by using a combination of chromatographic supports and solvents are presented. The review has been divided into three parts, which we consider well defined: edible fats and oils, fatty foods and biological samples. Separations of non-polar and polar lipids is the most extensive systematic, although many other published methods have been established to isolate specific components or a reduced number of components from edible fats and oils, fatty foods or biological samples susceptible to further analysis by other quantitative techniques.
Collapse
Affiliation(s)
- V Ruiz-Gutiérrez
- Instituto de la Grasa (CSIC), Avda. Padre García Tejero, Seville, Spain.
| | | |
Collapse
|
21
|
Cahoon EB, Dörmann P, Ohlrogge JB. Petroselinic acid biosynthesis and production in transgenic plants. Prog Lipid Res 1994; 33:155-63. [PMID: 8190735 DOI: 10.1016/0163-7827(94)90018-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E B Cahoon
- Department of Botany and Plant Pathology, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
22
|
Rosendal J, Knudsen J. A fast and versatile method for extraction and quantitation of long-chain acyl-CoA esters from tissue: content of individual long-chain acyl-CoA esters in various tissues from fed rat. Anal Biochem 1992; 207:63-7. [PMID: 1489101 DOI: 10.1016/0003-2697(92)90500-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A method for the extraction of acyl-CoA esters from tissue, and their subsequent analysis by HPLC is described. The lipids are removed by a two-phase extraction in a chloroform/methanol/water system. The long-chain acyl-CoA esters are extracted using methanol and a high salt concentration (2 M ammonium acetate). Reextraction of the dry residue after evaporation of extraction solvent results in low overall recoveries (20%). By adding 1 mg/ml acyl-CoA-binding protein to the extraction solvent the overall recovery was increased to 55%. The method is easy and fast to perform and is thereby suitable for analysis of a large number of samples. The advantages of the method over previously published methods are discussed.
Collapse
Affiliation(s)
- J Rosendal
- Institute of Biochemistry, University of Odense, Denmark
| | | |
Collapse
|
23
|
Affiliation(s)
- L L Bieber
- Department of Biochemistry, Michigan State University, East Lansing 48824
| |
Collapse
|
24
|
Mangino MJ, Zografakis J, Murphy MK, Anderson CB. Improved and simplified tissue extraction method for quantitating long-chain acyl-coenzyme A thioesters with picomolar detection using high-performance liquid chromatography. JOURNAL OF CHROMATOGRAPHY 1992; 577:157-62. [PMID: 1400734 DOI: 10.1016/0378-4347(92)80612-t] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A method has been developed that permits rapid and easy tissue extraction of long-chain acyl-coenzyme A (acyl-CoA) thioesters with sensitive quantitation by reversed-phase high-performance liquid chromatography (RP-HPLC). Tissue homogenants are extracted using a reserve Bligh-Dyer technique, and long-chain acyl-CoA esters are harvested in the methanolic aqueous phase. Complex lipids and phospholipids are removed in the chloroform-rich organic Bligh-Dyer second phase, and long-chain acyl-CoA compounds are further purified from the methanolic aqueous Bligh-Dyer first phase on C18 extraction columns after removal of the methanol. The eluted and purified acyl-CoA esters are then quantitated by RP-HPLC using heptadecanoyl-CoA as an internal standard resulting in a detector sensitivity of about 12 pmol. Ten long-chain acyl-CoA esters from C12:0 to C20:4 were identified and separated from canine renal cortex and murine liver samples. The predominant acyl-CoA peaks from both kidney and liver were 14:0, 16:1, 16:0, 18:1, 18:2 and 20:4. Murine liver also produced 18:0 and all peaks disappeared after alkaline hydrolysis of the samples. This extraction and quantitation technique can successfully be used for tissue samples as small as 20 mg, and many samples can be processed in a short period of time. The simplicity of the extraction procedure and the sensitivity of the assay make this an attractive alternative approach to quantitating long-chain acyl-CoA thioesters from complex biological samples such as tissues.
Collapse
Affiliation(s)
- M J Mangino
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | |
Collapse
|
25
|
Tamvakopoulos CS, Anderson VE. Detection of acyl-coenzyme A thioester intermediates of fatty acid beta-oxidation as the N-acylglycines by negative-ion chemical ionization gas chromatography-mass spectrometry. Anal Biochem 1992; 200:381-7. [PMID: 1632504 DOI: 10.1016/0003-2697(92)90483-n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An analytical method for the separation and quantitation of acyl-CoA thioesters by gas chromatography-mass spectrometry is described. The method utilizes glycine aminolysis of the acyl-CoA thiolesters, esterification with pentafluorobenzyl bromide followed by gas chromatographic separation, and detection by negative chemical ionization mass spectrometry of the N-acylpentafluorobenzyl glycinates. The glycine aminolysis provides over 100-fold discrimination against oxygen esters and obviates the difficulty of removing trace contaminants of free fatty acids. The limit of detection of the described methodology for palmitoyl-CoA has been found to be 300 fmol, which improves at shorter chain lengths. Baseline separation was obtained for a standard mixture of seven acyl-CoAs (60 pmol injected) containing butyryl-CoA, hexanoyl-CoA, octanoyl-CoA, decanoyl-CoA, lauroyl-CoA, myristoyl-CoA, and palmitoyl-CoA. The above procedure is also applicable to the alpha-beta unsaturated and 3-hydroxyacyl-CoA derivatives, making it possible to quantify all of the intermediates in fatty acid oxidation, except the 3-ketoacyl-CoAs, in a single procedure.
Collapse
Affiliation(s)
- C S Tamvakopoulos
- Department of Chemistry, Brown University, Providence, Rhode Island 02912
| | | |
Collapse
|
26
|
Young AJ, Barker KL. Effect of estradiol and progesterone on long chain fatty acyl-coenzyme A levels in the rat uterus. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1092:211-7. [PMID: 2018788 DOI: 10.1016/0167-4889(91)90159-u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fatty acyl-CoAs are potential in vivo inactivators of glucose-6-phosphate dehydrogenase (G6PD). Ovariectomized mature rats (n = 74) were given 5 micrograms of estradiol intravenously, then killed 0, 24, 36, 48 and 72 h later. Control levels of myristoyl-, palmitoyl-, stearoyl-, arachidonoyl-, oleoyl- and linoleoyl-CoA were 0.6, 3.2, 4.7, 3.4, 2.4 and 3.0 micrograms/uterus and were increased 39, 110, 146, 100, 84 and 69% at 36-48 h, respectively. Levels of fatty acyl-CoAs in the rat uterus become elevated 36 h after estradiol treatment. At the same time G6PD changes from a stable enzyme to one that is irreversibly inactivated, possibly due to being rapidly degraded. Progesterone (2 mg subcutaneously every 12 h, n = 30), administered beginning at either 24 or 36 h after estradiol treatment, had no effect on estradiol-induced changes in myristoyl-, palmitoyl-, or stearoyl-CoA. Compared to the groups of rats treated with estradiol alone, animals treated with combinations of estradiol and progesterone exhibited higher levels of arachidonoyl-CoA after 48 h, and oleoyl-CoA and linoleoyl-CoA were greater after 72 h. Progesterone increased the estradiol-induced levels of unsaturated fatty acyl-CoAs suggesting that progesterone may induce uterine fatty acid desaturase activity and/or uptake of dietary fatty acids. Addition of fatty acyl-CoAs, at concentrations seen in vivo at 36-48 h after estradiol, to purified G6PD, causes irreversible G6PD inactivation.
Collapse
Affiliation(s)
- A J Young
- Department of Biochemistry and Molecular Biology, Texas Tech Health Sciences Center, Lubbock 79430
| | | |
Collapse
|
27
|
A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Arch Biochem Biophys 1991; 284:306-12. [PMID: 1989513 DOI: 10.1016/0003-9861(91)90300-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Umbellularia californica (California Bay) seeds accumulate 10:0 and 12:0 as principal reserve fatty acyl groups. An in vitro fatty acid synthesis system from the developing cotyledons produces chiefly 10:0 and 12:0, in approximately the same proportions as the intact tissue. The kinetics of acyl thioester and free fatty acid formation in this system suggest that a medium-chain specific acyl-acyl-carrier protein (ACP) hydrolysis mechanism is responsible for the preponderance of medium-chain products. A crude extract of the developing cotyledons exhibits hydrolytic activity toward acyl-ACPs, with marked preference for 12:0-ACP and 18:1-ACP in the test series 6:0, 8:0, 10:0, 11:0, 12:0, 14:0, 16:0, and 18:1-ACPs. Partial purification of the 12:0-ACP hydrolytic activity has resulted in its separation from the 18:1-ACP hydrolase(s) and the 12:0-coenzyme A hydrolase(s) that are also present, thereby demonstrating its specificity for the 12-carbon acyl chain length and the ACP derivative. During cotyledon development, as the proportion of medium-chain to other fatty acyl groups increases, the extractable yield of this activity also increases substantially. Collectively these results suggest a role for this 12-ACP thioesterase in medium-chain production in vivo.
Collapse
|
28
|
Hazel JR, Livermore RC. Fatty-acyl coenzyme A pool in liver of rainbow trout (Salmo gairdneri): Effects of temperature acclimation. ACTA ACUST UNITED AC 1990. [DOI: 10.1002/jez.1402560105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Wolf BA, Conrad-Kessel W, Turk J. Long-chain fatty alcohol quantitation in subfemtomole amounts by gas chromatography-negative ion chemical ionization mass spectrometry. Application to long-chain acyl coenzyme A measurement. J Chromatogr A 1990; 509:325-32. [PMID: 2211898 DOI: 10.1016/s0021-9673(01)93090-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We describe a simple and sensitive method to identify and quantitate long-chain fatty alcohols. Long-chain fatty alcohols were converted to their pentafluorobenzoyl derivative and analyzed by gas chromatography (GC)-mass spectrometry in the negative ion chemical ionization (NICI) mode with selected ion monitoring. GC resolution was obtained for myristyl, palmityl, heptadecyl, stearyl, oleyl, linoleyl and arachidonyl alcohols. As little as 0.4 fmol of fatty alcohol can be detected, which represents a six order-of-magnitude increase in sensitivity over previously described methods. This assay can be used to measure femtomolar amounts of long-chain acyl coenzyme A thioesters after reduction to the corresponding fatty alcohols with sodium borohydride. Other potential applications of this assay include identification and quantitation of long-chain fatty alcohol production by microorganisms.
Collapse
Affiliation(s)
- B A Wolf
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | |
Collapse
|
30
|
Roughan G, Nishida I. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves. Arch Biochem Biophys 1990; 276:38-46. [PMID: 2297229 DOI: 10.1016/0003-9861(90)90007-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fatty acid synthesis from [1-14C]acetate by chloroplasts isolated from peas and amaranthus was linear for at least 15 min, whereas incorporation of the tracer into long-chain acyl-acyl carrier protein (ACP) did not increase after 2-3 min. When reactions were transferred to the dark after 3-5 min, long-chain acyl-ACPs lost about 90% of their radioactivity and total fatty acids retained all of theirs. Half-lives of the long-chain acyl-ACPs were estimated to be 10-15 s. Concentrations of palmitoyl-, stearoyl-, and oleoyl-ACP as indicated by equilibrium labeling during steady-state fatty acid synthesis, ranged from 0.6-1.1, 0.2-0.7, and 0.4-1.6 microM, respectively, for peas and from 1.6-1.9, 1.3-2.6, and 0.6-1.4 microM, respectively, for amaranthus. These values are based on a chloroplast volume of 47 microliters/mg chlorophyll and varied according to the mode of the incubation. A slow increase in activity of the fatty acid synthetase in safflower chloroplasts resulted in long-chain acyl-ACPs continuing to incorporate labeled acetate for 10 min. Upon re-illumination following a dark break, however, both fatty acid synthetase activity and acyl-ACP concentrations increased very rapidly. Palmitoyl-ACP was present at concentrations up to 2.5 microM in safflower chloroplasts, whereas those of stearoyl- and oleoyl-ACPs were in the lower ranges measured for peas. Acyl-ACPs were routinely separated from extracts of chloroplasts that had been synthesising long-chain fatty acids from labeled acetate by a minor modification of the method of Mancha et al. (Anal. Biochem., 1975, 68, 600-608). The results compared favorably with those obtained using alternative analytical methods such as adsorption to filter paper and partition chromatography on silicic acid columns. The acyl-ACP which coprecipitated with ammonium sulfate was not affected by treatments with neutral hydroxylamine or borohydride, whereas that eluted from silicic acid was relatively easily derivatized. A single radioactive polypeptide of Mr 11,500 from pea and amaranthus chloroplasts was revealed by autoradiography of gels from sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the silicic acid eluates.
Collapse
Affiliation(s)
- G Roughan
- Division of Horticulture and Processing, DSIR, Mt. Albert Research Centre, Private Bag, Auckland
| | | |
Collapse
|
31
|
Enzymes of Fatty Acid Synthesis. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/b978-0-12-461013-2.50018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Watmough NJ, Turnbull DM, Sherratt HS, Bartlett K. Measurement of the acyl-CoA intermediates of beta-oxidation by h.p.l.c. with on-line radiochemical and photodiode-array detection. Application to the study of [U-14C]hexadecanoate oxidation by intact rat liver mitochondria. Biochem J 1989; 262:261-9. [PMID: 2818568 PMCID: PMC1133256 DOI: 10.1042/bj2620261] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The quantitative isolation of acyl-CoA esters of chain length C2-C17 from mitochondrial incubations and their analysis by reverse-phase radio-h.p.l.c. is described. Photodiode-array detection was used to characterize 2-enoyl-CoA esters. The chromatographic behaviour of all 27 intermediates of the beta-oxidation of hexadecanoyl-CoA is documented. Only C16, C14 and C12 intermediates were detected in uncoupled mitochondria oxidizing [U-14C]hexadecanoyl-CoA in the presence of fluorocitrate and carnitine, providing evidence for some organization of the enzymes of beta-oxidation [Garland, Shepherd & Yates (1965) Biochem. J. 97, 587-594; Sumegi & Srere (1984) J. Biol. Chem. 259, 8748-8752]. Rotenone increased concentrations of 3-hydroxyacyl-CoA and 2-enoyl-CoA esters and inhibited flux. These experiments provide the first direct unambiguous measurements of acyl-CoA esters in intact respiring rat liver mitochondrial fractions.
Collapse
Affiliation(s)
- N J Watmough
- Department of Neurology, University of Newcastle upon Tyne, U.K
| | | | | | | |
Collapse
|
33
|
den Breejen JN, Batenburg JJ, van Golde LM. The species of acyl-CoA in subcellular fractions of type II cells isolated from adult rat lung and their incorporation into phosphatidic acid. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1002:277-82. [PMID: 2713380 DOI: 10.1016/0005-2760(89)90341-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microsomes and cytosol were prepared from type II cells isolated from adult rat lung. Upon determination of the acyl-CoA composition in the microsomes, we found 49% palmitoyl-CoA, 2% myristoyl-CoA, 21% stearoyl-CoA, 5% palmitoleoyl-CoA, 16% oleoyl-CoA, 5% linoleoyl-CoA and 2% arachidonoyl-CoA. The acyl-CoA composition of the cytosol was very similar. Upon incubation of type II cell microsomes with [U-14C]glycerol 3-phosphate and with acyl-CoA species mixed in the proportions in which they were found in this cell fraction, approx. 40% of the synthesized phosphatidic acid was disaturated. Of the two quantitatively most important acyl-CoA species, the palmitoyl species was incorporated 4-times faster into total and disaturated phosphatidic acid than the stearoyl species. These two species were distributed very similarly among the phosphatidic acid species synthesized de novo. In newly formed disaturated phosphatidic acid, the palmitoyl groups were distributed approximately equally between the 1- and the 2-position. From these data, it can be estimated that of the phosphatidic acid molecules synthesized by type II cell microsomes, approx. 26% contain two palmitoyl moieties. Assuming that both phosphatidic acid phosphatase and cholinephosphotransferase are non-selective with regard to the substrate species that they convert, this would mean that 26% of the phosphatidylcholine molecules synthesized de novo would be dipalmitoylphosphatidylcholine. As in surfactant, approx. 60% of the phosphatidylcholine is constituted by the dipalmitoyl species, this would mean that approx. 45% of the surfactant dipalmitoylphosphatidylcholine would be made via de novo synthesis.
Collapse
Affiliation(s)
- J N den Breejen
- Laboratory of Veterinary Biochemistry, Utrecht University, The Netherlands
| | | | | |
Collapse
|
34
|
Latipää PM, Hassinen IE, Hiltunen JK. Enzymatic assay for 3-hydroxyacyl-CoA and 2-trans-enoyl-CoA intermediates of beta-oxidation. Anal Biochem 1988; 171:67-72. [PMID: 3407922 DOI: 10.1016/0003-2697(88)90125-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An enzymatic assay is presented for determining 3-hydroxyacyl-CoA and 2-trans-enoyl-CoA esters in tissue samples. The procedure includes extraction of acyl-CoA esters from frozen tissue samples with chloroform/methanol, stochiometric oxidation of the acyl esters to 3-keto-acyl-CoAs with 3-hydroxyacyl-CoA dehydrogenase in the presence or absence of enoyl-CoA hydratase, and an enzymatic cycling amplification of NADH produced for fluorometric determination. The procedure allows measurement of these intermediates of beta-oxidation at the picomole level. The method has been used successfully to measure the concentrations of 3-hydroxyacyl-CoA and 2-trans-enoyl-CoA esters in isolated rat hearts perfused with glucose or oleate or under anoxia.
Collapse
Affiliation(s)
- P M Latipää
- Department of Medical Biochemistry, University of Oulu, Finland
| | | | | |
Collapse
|
35
|
Molaparast-Saless F, Shrago E, Spennetta TL, Donatello S, Kneeland LM, Nellis SH, Liedtke AJ. Determination of individual long-chain fatty acyl-CoA esters in heart and skeletal muscle. Lipids 1988; 23:490-2. [PMID: 3412130 DOI: 10.1007/bf02535525] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A method has been developed for determination of individual long-chain fatty acyl-CoA esters from heart and skeletal muscle using high performance liquid chromatography (HPLC). The esters were extracted from freeze-clamped tissue of pig and rat hearts and rat skeletal muscle for analysis on a radially compressed C18 5mu reverse-phase column. Nine peaks in the extract with carbon chain lengths from C12 to C20 that subsequently disappeared on alkaline hydrolysis were identified. The major acyl-CoA peaks were 14:1, 18:2, 16:0 and 18:1 and additionally in rat heart 18:0. Total long-chain acyl-CoA esters obtained by summation of the individual molecular species was 11.34 +/- 1.48 nmol/g wet wt. pig heart; 14.51 +/- 2.11 nmol/g wet wt. in rat heart, and 4.35 +/- 0.71 nmol/g wet wt. in rat skeletal muscle. These values were approximately 132% of those obtained using a separate procedure that measured total CoA by HPLC after alkaline hydrolysis of the esters. The described method demonstrates the quantitation of individual acyl-CoA species in muscle tissue. Therefore, it has a number of advantages in that it permits information to be obtained on the individual molecular species under various nutritional and metabolic conditions.
Collapse
|
36
|
|
37
|
Prasad MR, Sauter J, Lands WE. Quantitative determination of acyl chain composition of subnanomole amounts of cellular long-chain acyl-coenzyme A esters. Anal Biochem 1987; 162:202-12. [PMID: 3605588 DOI: 10.1016/0003-2697(87)90028-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A procedure for the quantitative determination of the acyl chain composition of cellular long-chain acyl-CoA esters in subnanomole amounts is described. The abundant cellular lipids of samples are removed by extraction with organic solvents, and the proteins are precipitated from the aqueous phase by the addition of acetonitrile. The CoA thiolesters are adsorbed on neutral aluminum oxide and reduced with sodium borohydride to the corresponding alcohols that are then converted to t-butyldimethylsilyl ethers and analyzed quantitatively by gas chromatography. Saturated and unsaturated acyl chains behaved similarly throughout the procedure, and the common lipid esters do not interfere with the analysis of the CoA esters in the final assay procedure described. This simple and relatively rapid method is suitable for analyzing a large number of samples at a time.
Collapse
|
38
|
Roughan P. Acyl lipid synthesis by chloroplasts isolated from the chilling-sensitive plant Amaranthus lividus L. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0005-2760(86)90245-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
|
40
|
Woldegiorgis G, Spennetta T, Corkey BE, Williamson JR, Shrago E. Extraction of tissue long-chain acyl-CoA esters and measurement by reverse-phase high-performance liquid chromatography. Anal Biochem 1985; 150:8-12. [PMID: 4083485 DOI: 10.1016/0003-2697(85)90434-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Long-chain acyl-CoA esters were extracted from freeze-clamped livers of fed and fasted rats according to the method of Mancha et al. [M. Mancha, G. B. Stokes, and P. K. Stumpf (1975) Anal. Biochem. 68, 600-608] and analyzed on a radially compressed C18, 5 microns, reverse-phase column using a gradient system consisting of acetonitrile and 25 mM KH2PO4, pH 5.3, at 254 nm. Total analysis time was 25 min. Eight peaks in the extract with carbon chain lengths of 12 to 18, which subsequently disappeared on alkaline hydrolysis, were identified. The major acyl-CoA peaks in the extract in order of increasing retention times were 14:0, 16:1, 18:2, 16:0, 18:1, and 18:0. Total liver long-chain acyl-CoA esters were 108 +/- 11 and 248 +/- 19 nmol/g protein for fed and fasted rats, respectively. On fasting (48 h) the levels of 18:2, 16:0, and 18:1 increased two-to threefold and that of 18:0 sixfold. The advantages of this method are that it not only provides a more direct determination of total tissue long-chain acyl-CoA esters, in that no decomposition of the CoA ester is involved, but it also detects the constituent molecular species.
Collapse
|
41
|
Abstract
A method has been developed which allows the quantitative analysis of labeled or unlabeled acyl-CoAs in complex reaction mixtures. The method is based on (a) a quantitative solubilization of acyl-CoAs and lipids, directly in the reaction vessel, by 0.05 M Tris-HCl, pH 7.5/CHCl3/CH3OH (1/3/3, v/v/v); (b) monodimensional TLC of aliquots of the whole reaction mixture, resolving malonyl-CoA, acetyl-CoA, long-chain acyl-CoAs, polar lipids and neutral lipids plus free fatty acids; and (c) quantitation by TLC densitometry and/or TLC radiochromatography. All fractions--and particularly long chain-acyl-CoAs--can then be analyzed for distribution and label of fatty acyl moieties.
Collapse
|
42
|
|
43
|
Agrawal VP, Lessire R, Stumpf PK. Biosynthesis of very long chain fatty acids in microsomes from epidermal cells of Allium porrum L. Arch Biochem Biophys 1984; 230:580-9. [PMID: 6712254 DOI: 10.1016/0003-9861(84)90438-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The elongation system present in leek epidermal cells functions to synthesize very long chain fatty acids which, in turn, are the precursors to alkanes. The elongation system is microsomal, employs only saturated acyl components of the endogenous lipid pool as acceptors, utilizes malonyl-CoA as the C2 donor, has an absolute requirement for ATP, and is markedly inhibited by acetyl-ACP. Only saturated acyl-CoAs are readily elongated to very long chain fatty acids by malonyl-CoA in the absence of ATP. ACP is not required by the microsomal system.
Collapse
|
44
|
|
45
|
Moore KH, Koen AE, Hull FE. beta-Hydroxy fatty acid production by ischemic rabbit heart. J Clin Invest 1982; 69:377-83. [PMID: 6799549 PMCID: PMC370987 DOI: 10.1172/jci110461] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
beta-Hydroxymyristate, -palmitate, and -stearate were produced by and accumulated in isolated rabbit heart when perfused ischemically for 2-10 min by the nonrecirculating langendorff technique with 0.75 mM palmitate and 0.16 mM albumin. Tissue fractionation into mitochondria and cytosol showed that by 2 min of ischemia 44% of beta-hydroxypalmitate and 38% beta-hydroxystearate was located in the cytosol; this percentage increased to greater than 50% by 5 min of ischemia. Lipid fractionation studies showed that by 10 min these two beta-hydroxy fatty acids were distributed approximately as 60% acylcarnitine, 20% acyl-coenzyme A (CoA), and 20% free fatty acids. All three chemical forms of beta-hydroxypalmitate were found in both the mitochondria and the cytosol. After 10 min of ischemia beta-hydroxypalmitoyl-CoA and beta-hydroxystearoyl-CoA constituted at least 16% of the incremental long-chain acyl-CoA, whereas beta-hydroxypalmitoylcarnitine and b-hydroxystearoylcarnitine constituted 8% of the incremental long-chain acylcarnitine. These data suggests that myocardial beta-hydroxyacyl-CoA oxidation is limited during ischemia. Substrate accumulates and is transferred to the cytosol where it accumulates primarily as beta-hydroxyacylcarnitine.
Collapse
|
46
|
Sanchez J, Mancha M. Synthesis of acyl-CoAs by isolated spinach chloroplasts in relation to added CoA and ATP. PLANTA 1981; 153:519-523. [PMID: 24275869 DOI: 10.1007/bf00385535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/1981] [Accepted: 09/10/1981] [Indexed: 06/02/2023]
Abstract
The kinetics of incorporation of [2-(14)C] acetate into lipids and acyl-CoAs in relation to added CoA and ATP by isolated spinach chloroplasts have been examined. The effect of the concentration of these cofactors on lipid and acyl-CoA synthesis was also studied. In the absence of cofactors, or when only one was present, the incorporation was very low and went mainly into lipids. When both cofactors were present a strong stimulation of both activities occurred. After 25 min, acyl-CoAs were more strongly labeled than lipids and both activities continued linearly for at least 60 min.
Collapse
Affiliation(s)
- J Sanchez
- Instituto de la Grasa, Avenida P. Garcia Tejero, 4, 12, Sevilla, Spain
| | | |
Collapse
|
47
|
Sanchez J, Harwood JL. Products of fatty acid synthesis by a particulate fraction from germinating pea (Pisum sativum L.). Biochem J 1981; 199:221-6. [PMID: 7337704 PMCID: PMC1163353 DOI: 10.1042/bj1990221] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The synthesis of lipids and acyl thioesters was studied in microsomal preparations from germinating pea (Pisum sativum cv. Feltham First) seeds. Under conditions of maximal synthesis (in the presence of exogenous acyl-carrier protein) acyl-acyl-carrier proteins accounted for about half the total incorporation from [14C]malonyl-CoA. Decreasing the concentrations of exogenous acyl-carrier protein lowered the overall synthesis of fatty acids by decreasing, almost exclusively, the radioactivity associated with acyl-acyl-carrier proteins. A time-course experiment showed that acyl-acyl-carrier proteins accumulated most of the radioactive label at the beginning of the incubation but, eventually, the amount of radioactivity in that fraction decreased, while a simultaneous increase in the acyl-CoA and lipid fractions was noticed. Addition of exogenous CoA (1 mM) produced a decrease of total incorporation, but an increase in the radioactivity incorporated into acyl-CoA. The microsomal preparations synthesized saturated fatty acids up to C20, including significant proportions of pentadecanoic acid and heptadecanoic acid. Synthesis of these 'odd-chain' fatty acids only took place in the microsomal fraction. In contrast, when the 18,000g supernatant (containing the microsomal and soluble fractions) was incubated with [14C]malonyl-CoA, the radioactive fatty acid and acyl classes closely resembled the patterns produced by germinating in the presence of [14C]acetate in vivo. The results are discussed in relation to the role of acyl thioesters in the biosynthesis of plant lipids.
Collapse
|
48
|
Affiliation(s)
- K. C. Oo
- Department of Biochemistry and BiophysicsUniversity of CaliforniaDavisCalifornia95616
- Department of BiochemistryUniversity of MalayaKuala LumpurMalaysia
| | - P. K. Stumpf
- Department of Biochemistry and BiophysicsUniversity of CaliforniaDavisCalifornia95616
| |
Collapse
|
49
|
Giompres P, Packter NM. Purification and properties of the polymeric fatty acid synthetase from a filamentous fungus. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 529:189-200. [PMID: 350287 DOI: 10.1016/0005-2760(78)90062-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fatty acid synthetase was purified from the filamentous fungus, Aspergillus fumigatus to a specific activity of 4000--5000 munits/mg protein. Its purity was established by its appearance in electron micrographs, on sodium dodecyl sulphate polyacrylamide gels and by analytical ultracentrifugation, and also by its behaviour upon sucrose gradient centrifugation. This enzyme comprises two large polypeptides with molecular weights of 190 000 and 186 000. Evidence from electron microscopy indicates that it consists of three equivalent loops of protein. It dissociates into different-sized circular subunits on ageing or upon dissolution in buffer of low ionic strength. Differences in properties between this fungal synthetase and that found in yeast have been noted and relate, for example, to inhibition by acetyl CoA and malonyl-CoA, cold-lability and pH optimum. The synthetase from A. fumigatus, purified by different procedures, consistently exists in two forms of similar specific activity, with sedimentation coefficients approx. 40 S and 60 S. Synthetase activity present in crude extracts has been identified as a very heavy component with sedimentation coefficient greater than 100 S.
Collapse
|
50
|
Bolton P, Harwood JL. Fatty acid biosynthesis by a particulate preparation from germinating pea. Biochem J 1977; 168:261-9. [PMID: 579600 PMCID: PMC1183759 DOI: 10.1042/bj1680261] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1. Fatty acid synthesis was studied in microsomal preparations from germinating pea (Pisum sativum). 2. The preparations synthesized a mixture of saturated fatty acids up to a chain length of C(24) from [(14)C]malonyl-CoA. 3. Whereas hexadecanoic acid was made de novo, octadecanoic acid and icosanoic acid were synthesized by elongation. 4. The products formed during [(14)C]malonyl-CoA incubation were analysed, and unesterified fatty acids and polar lipids were found to be major products. [(14)C]Palmitic acid represented a high percentage of the acyl-carrier protein esters, whereas (14)C-labelled very-long-chain fatty acids were mainly present as unesterified fatty acids. CoA esters were minor products. 5. The addition of exogenous lipids to the incubation system usually resulted in stimulation of [(14)C]malonyl-CoA incorporation into fatty acids. The greatest stimulation was obtained with dipalmitoyl phosphatidylcholine. Both exogenous palmitic acid and dipalmitoyl phosphatidylcholine increased the amount of [(14)C]-stearic acid synthesized, relative to [(14)C]palmitic acid. Addition of stearic acid increased the amount of [(14)C]icosanoic acid formed. 6. [(14)C]Stearic acid was elongated more effectively to icosanoic acid than [(14)C]stearoyl-CoA, and its conversion was not decreased by addition of unlabelled stearoyl-CoA. 7. Incorporation of [(14)C]malonyl-CoA into fatty acids was markedly decreased by iodoacetamide and 5,5'-dithiobis-(2-nitrobenzoic acid). Palmitate elongation was sensitive to arsenite addition, and stearate elongation to the presence of Triton X-100 or fluoride. The action of fluoride was not, apparently, due to chelation. 8. The microsomal preparations differed from soluble fractions from germinating pea in (a) synthesizing very-long-chain fatty acids, (b) not utilizing exogenous palmitate-acyl-carrier protein as a substrate for palmitate elongation and (c) having fatty acid synthesis stimulated by the addition of certain complex lipids.
Collapse
|