1
|
Lyu Y, Chen S, Zhao Y, Yuan H, Zhang C, Zhang C, Meng Q. Effect of GM1 concentration change on plasma membrane: molecular dynamics simulation and analysis. Phys Chem Chem Phys 2024; 26:12552-12563. [PMID: 38595108 DOI: 10.1039/d3cp06161b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Ganglioside GM1 is a class of glycolipids predominantly located in the nervous system. Comprising a ceramide anchor and an oligosaccharide chain containing sialic acid, GM1 plays a pivotal role in various cellular processes, including signal transduction, cell adhesion, and membrane organization. Moreover, GM1 has been implicated in the pathogenesis of several neurological disorders, such as Parkinson's disease, Alzheimer's disease, and stroke. In this study, by creating a neural cell model membrane simulation system and employing rigorous molecular models, we utilize a coarse-grained molecular dynamics approach to explore the structural and dynamic characteristics of multi-component neuronal plasma membranes at varying GM1 ganglioside concentrations. The simulation results reveal that as GM1 concentration increases, a greater number of hydrogen bonds form between GM1 molecules, resulting in the formation of larger clusters, which leads to reduced membrane fluidity, increased lipid ordering, decreased membrane thickness and surface area and higher levels of GM1 dissociation. Through a meticulous analysis, while considering GM1's structural attributes, we offer valuable insights into the structural and dynamic traits of the cell membrane. This study provides a robust methodology for exploring membrane characteristics and enhances our comprehension of GM1 molecules, serving as a resource for both experimental and computational researchers in this field.
Collapse
Affiliation(s)
- Yongkang Lyu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Yu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Hongxiu Yuan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Chenyang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Changzhe Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Qingtian Meng
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
2
|
Andrés‐Benito P, Gelpi E, Jové M, Mota‐Martorell N, Obis È, Portero‐Otin M, Povedano M, Pujol A, Pamplona R, Ferrer I. Lipid alterations in human frontal cortex in ALS-FTLD-TDP43 proteinopathy spectrum are partly related to peroxisome impairment. Neuropathol Appl Neurobiol 2021; 47:544-563. [PMID: 33332650 PMCID: PMC8248144 DOI: 10.1111/nan.12681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023]
Abstract
AIM Peroxisomes play a key role in lipid metabolism, and peroxisome defects have been associated with neurodegenerative diseases such as X-adrenoleukodystrophy and Alzheimer's disease. This study aims to elucidate the contribution of peroxisomes in lipid alterations of area 8 of the frontal cortex in the spectrum of TDP43-proteinopathies. Cases of frontotemporal lobar degeneration-TDP43 (FTLD-TDP), manifested as sporadic (sFTLD-TDP) or linked to mutations in various genes including expansions of the non-coding region of C9ORF72 (c9FTLD), and of sporadic amyotrophic lateral sclerosis (sALS) as the most common TDP43 proteinopathies, were analysed. METHODS We used transcriptomics and lipidomics methods to define the steady-state levels of gene expression and lipid profiles. RESULTS Our results show alterations in gene expression of some components of peroxisomes and related lipid pathways in frontal cortex area 8 in sALS, sFTLD-TDP and c9FTLD. Additionally, we identify a lipidomic pattern associated with the ALS-FTLD-TDP43 proteinopathy spectrum, notably characterised by down-regulation of ether lipids and acylcarnitine among other lipid species, as well as alterations in the lipidome of each phenotype of TDP43 proteinopathy, which reveals commonalities and disease-dependent differences in lipid composition. CONCLUSION Globally, lipid alterations in the human frontal cortex of the ALS-FTLD-TDP43 proteinopathy spectrum, which involve cell membrane composition and signalling, vulnerability against cellular stress and possible glucose metabolism, are partly related to peroxisome impairment.
Collapse
Affiliation(s)
- Pol Andrés‐Benito
- NeuropathologyBellvitge University Hospital‐Bellvitge Biomedical Research Institute (IDIBELLHospitalet de Llobregat, BarcelonaSpain
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative DiseasesInstitute of Health Carlos IIIMinistry of Economy and CompetitivenessMadridSpain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALSUtrechtThe Netherlands
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc‐Hospital Clínic‐Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPSBarcelonaSpain
- Institute of NeurologyMedical University of ViennaViennaAustria
| | - Mariona Jové
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Natalia Mota‐Martorell
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Èlia Obis
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Manuel Portero‐Otin
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Mònica Povedano
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALSUtrechtThe Netherlands
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELAService of NeurologyBellvitge University HospitalHospitalet de LlobregatSpain
| | - Aurora Pujol
- Catalan Institution for Research and Advanced Studies (ICREABarcelonaSpain
- Neurometabolic Diseases LaboratoryBellvitge Biomedical Research InstituteHospital Duran i ReynalsHospitalet de Llobregat, BarcelonaSpain
- Center for Biomedical Research on Rare Diseases (CIBERERInstitute of Health Carlos IIIMadridSpain
| | - Reinald Pamplona
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Isidro Ferrer
- NeuropathologyBellvitge University Hospital‐Bellvitge Biomedical Research Institute (IDIBELLHospitalet de Llobregat, BarcelonaSpain
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative DiseasesInstitute of Health Carlos IIIMinistry of Economy and CompetitivenessMadridSpain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALSUtrechtThe Netherlands
- Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
3
|
Sialic acid associated with oxidative stress and total antioxidant capacity (TAC) expression level as a predictive indicator in moderate to severe Alzheimer's disease. Exp Gerontol 2020; 141:111092. [PMID: 32991981 DOI: 10.1016/j.exger.2020.111092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Several studies have shown many risk factors associated with disease onset, but the sialic acid association with oxidative stress biomarkers may a key factor in the pathogenesis of Alzheimer's disease (AD). We aim to find out the most specific biomarker from the peripheral blood samples in moderate to severe Alzheimer's patients. METHODS This study examined the level of sialic acid associated with oxidative stress biomarkers and total antioxidant capacity level (TAC) in the plasma samples. Different parameters of Oxidative stress and Total antioxidant capacity by the immunoassay method have been examined in AD patients as compared to controls. The Catalase (CAT), Superoxide dismutase (SOD), Lipid peroxidation (LPO), Glutathione peroxidase (GPx), Total Glutathione (GSH), and Protein carbonyl group levels were estimated in this study. RESULTS Increased level of sialic acid is found associated with a higher level of reactive oxygen species parameters in the patients. The antioxidant parameter levels have been found significantly lower in AD, while Protein carbonyl group and lipid peroxidation were increased in cases as compared to controls with the area under the curve (AUC) 0.816, p < 0.0001 and 0.754, p < 0.0001. The Protein carbonyl group, Total antioxidant capacity (TAC), and Sigma-Aldrich TAC levels were higher in females as compared to males in AD patients. CONCLUSION During AD pathology, sialic acid, protein carbonyl, and lipid peroxidation were found as the more sensitive marker that may be used as a diagnostic and prognostic biomarker.
Collapse
|
4
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|
5
|
Sorokin M, Kholodenko I, Kalinovsky D, Shamanskaya T, Doronin I, Konovalov D, Mironov A, Kuzmin D, Nikitin D, Deyev S, Buzdin A, Kholodenko R. RNA Sequencing-Based Identification of Ganglioside GD2-Positive Cancer Phenotype. Biomedicines 2020; 8:E142. [PMID: 32486168 PMCID: PMC7344710 DOI: 10.3390/biomedicines8060142] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor-associated ganglioside GD2 represents an attractive target for cancer immunotherapy. GD2-positive tumors are more responsive to such targeted therapy, and new methods are needed for the screening of GD2 molecular tumor phenotypes. In this work, we built a gene expression-based binary classifier predicting the GD2-positive tumor phenotypes. To this end, we compared RNA sequencing data from human tumor biopsy material from experimental samples and public databases as well as from GD2-positive and GD2-negative cancer cell lines, for expression levels of genes encoding enzymes involved in ganglioside biosynthesis. We identified a 2-gene expression signature combining ganglioside synthase genes ST8SIA1 and B4GALNT1 that serves as a more efficient predictor of GD2-positive phenotype (Matthews Correlation Coefficient (MCC) 0.32, 0.88, and 0.98 in three independent comparisons) compared to the individual ganglioside biosynthesis genes (MCC 0.02-0.32, 0.1-0.75, and 0.04-1 for the same independent comparisons). No individual gene showed a higher MCC score than the expression signature MCC score in two or more comparisons. Our diagnostic approach can hopefully be applied for pan-cancer prediction of GD2 phenotypes using gene expression data.
Collapse
Affiliation(s)
- Maxim Sorokin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., 119992 Moscow, Russia
- Omicsway Corp., 340 S Lemon Ave, 6040, Walnut, CA 91789, USA
| | - Irina Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia;
| | - Daniel Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
| | - Tatyana Shamanskaya
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., 117997 Moscow, Russia; (T.S.); (D.K.)
| | - Igor Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Real Target LLC, 108841 Moscow, Russia
| | - Dmitry Konovalov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., 117997 Moscow, Russia; (T.S.); (D.K.)
| | - Aleksei Mironov
- Skolkovo Institute of Science and Technology, 3, Nobelya St., 121205 Moscow, Russia;
| | - Denis Kuzmin
- Moscow Institute of Physics and Technology (National Research University), 141700 Moscow, Russia;
| | - Daniil Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
| | - Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., 119992 Moscow, Russia
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., 119992 Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), 141700 Moscow, Russia;
- Oncobox ltd., 121205 Moscow, Russia
| | - Roman Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Real Target LLC, 108841 Moscow, Russia
| |
Collapse
|
6
|
Sarbu M, Raab S, Henderson L, Fabris D, Vukelić Ž, Clemmer DE, Zamfir AD. Cerebrospinal fluid: Profiling and fragmentation of gangliosides by ion mobility mass spectrometry. Biochimie 2020; 170:36-48. [DOI: 10.1016/j.biochi.2019.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/14/2019] [Indexed: 11/30/2022]
|
7
|
Seyfried TN, Choi H, Chevalier A, Hogan D, Akgoc Z, Schneider JS. Sex-Related Abnormalities in Substantia Nigra Lipids in Parkinson's Disease. ASN Neuro 2019; 10:1759091418781889. [PMID: 29932343 PMCID: PMC6024349 DOI: 10.1177/1759091418781889] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative movement disorder involving the selective loss of dopamine-producing neurons in the substantia nigra (SN). Differences in disease presentation, prevalence, and age of onset have been reported between males and females with PD. The content and composition of the major glycosphingolipids, phospholipids, and cholesterol were evaluated in the SN from 12 PD subjects and in 18 age-matched, neurologically normal controls. Total SN ganglioside sialic acid content and water content (%) were significantly lower in the male PD subjects than in the male controls. The content of all major gangliosides were reduced in the male PD subjects to some degree, but the neuronal-enriched gangliosides, GD1a and GT1b, were most significantly reduced. The distribution of phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol was also significantly lower in the male PD subjects than in the male controls. However, the distribution of myelin-enriched cerebrosides and sulfatides was significantly higher in the male PD subjects than in the male controls suggesting myelin sparing in the male PD subjects. No elevation was detected for astrocytosis-linked GD3. These neurochemical changes provide evidence of selective neuronal loss in SN of the males with PD without robust astrocytosis. In contrast to the SN lipid abnormalities found in the male PD subjects, no significant abnormalities were found in the female PD subjects for SN water content or for any major SN lipids. These data indicate sex-related differences in SN lipid abnormalities in PD.
Collapse
Affiliation(s)
- T N Seyfried
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - H Choi
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - A Chevalier
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - D Hogan
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Z Akgoc
- 1 Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - J S Schneider
- 2 Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Sarbu M, Vukelić Ž, Clemmer DE, Zamfir AD. Ion mobility mass spectrometry provides novel insights into the expression and structure of gangliosides in the normal adult human hippocampus. Analyst 2018; 143:5234-5246. [DOI: 10.1039/c8an01118d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
General work-flow for ganglioside analysis by IM-MS.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter
- Timisoara
- Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry
- University of Zagreb Medical School
- Zagreb
- Croatia
| | | | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter
- Timisoara
- Romania
- “Aurel Vlaicu” University of Arad
- Arad
| |
Collapse
|
9
|
Go S, Go S, Veillon L, Ciampa MG, Mauri L, Sato C, Kitajima K, Prinetti A, Sonnino S, Inokuchi JI. Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation. J Biol Chem 2017; 292:7040-7051. [PMID: 28275055 DOI: 10.1074/jbc.m116.771253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Gangliosides (sialic acid-containing glycosphingolipids) help regulate many important biological processes, including cell proliferation, signal transduction, and differentiation, via formation of functional microdomains in plasma membranes. The structural diversity of gangliosides arises from both the ceramide moiety and glycan portion. Recently, differing molecular species of a given ganglioside are suggested to have distinct biological properties and regulate specific and distinct biological events. Elucidation of the function of each molecular species is important and will provide new insights into ganglioside biology. Gangliosides are also suggested to be involved in skeletal muscle differentiation; however, the differential roles of ganglioside molecular species remain unclear. Here we describe striking changes in quantity and quality of gangliosides (particularly GM3) during differentiation of mouse C2C12 myoblast cells and key roles played by distinct GM3 molecular species at each step of the process.
Collapse
Affiliation(s)
- Shinji Go
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Shiori Go
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.,Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Lucas Veillon
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Jin-Ichi Inokuchi
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan,
| |
Collapse
|
10
|
Röhrig CH, Choi SSH, Baldwin N. The nutritional role of free sialic acid, a human milk monosaccharide, and its application as a functional food ingredient. Crit Rev Food Sci Nutr 2016; 57:1017-1038. [DOI: 10.1080/10408398.2015.1040113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Sharon S. H. Choi
- Intertek Scientific & Regulatory Consultancy, Mississauga, Ontario, Canada
| | - Nigel Baldwin
- Intertek Scientific & Regulatory Consultancy, Hampshire, United Kingdom
| |
Collapse
|
11
|
Couto D, Melo T, Maciel E, Campos A, Alves E, Guedes S, Domingues MRM, Domingues P. New Insights on Non-Enzymatic Oxidation of Ganglioside GM1 Using Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1965-1978. [PMID: 27576485 DOI: 10.1007/s13361-016-1474-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
Gangliosides are acidic glycosphingolipids that are present in cell membranes and lipid raft domains, being particularly abundant in central nervous systems. They participate in modulating cell membrane properties, cell-cell recognition, cell regulation, and signaling. Disturbance in ganglioside metabolism has been correlated with the development of diseases, such as neurodegenerative diseases, and in inflammation. Both conditions are associated with an increased production of reactive oxidation species (ROS) that can induce changes in the structure of biomolecules, including lipids, leading to the loss or modification of their function. Oxidized phospholipids are usually involved in chronic diseases and inflammation. However, knowledge regarding oxidation of gangliosides is scarce. In order to evaluate the effect of ROS in gangliosides, an in vitro biomimetic model system was used to study the susceptibility of GM1 (Neu5Acα2-3(Galβ1-3GalNAcβ1-4)Galβ1-4Glcβ1Cer) to undergo oxidative modifications. Oxidation of GM1 under Fenton reaction conditions was monitored using high resolution electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Upon oxidation, GM1 underwent oxidative cleavages in the carbohydrate chain, leading to the formation of other gangliosides GM2 (GalNAcβ1-4Gal(Neu5Acα2-3)1-4Glcβ1Cer), GM3 (Neu5Acα2-3Galβ1-4Glcβ1Cer), asialo-GM1 (Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1Cer), asialo-GM2 (GalNAcβ1-4Galβ1-4Glcβ1Cer), of the small glycolipids lactosylceramide (LacCer), glucosylceramide (GlcCer), and of ceramide (Cer). In addition, oxygenated GM1 and GM2 (as keto and hydroxy derivatives), glycans, oxidized glycans, and oxidized ceramides were also identified. Nonenzymatic oxidation of GM1 under oxidative stress contributes to the generation of other gangliosides that may participate in the imbalance of gangliosides metabolism in vivo, through uncontrolled enzymatic pathways and, consequently, play some role in neurodegenerative processes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Daniela Couto
- Mass Spectrometry Center, Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elisabete Maciel
- Mass Spectrometry Center, Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal
- Department of Biology and CESAM, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Campos
- Mass Spectrometry Center, Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Eliana Alves
- Mass Spectrometry Center, Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sofia Guedes
- Mass Spectrometry Center, Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Rosário M Domingues
- Mass Spectrometry Center, Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
12
|
Uchibori A, Gyohda A, Chiba A. Ca(2+)-dependent anti-GQ1b antibody in GQ1b-seronegative Fisher syndrome and related disorders. J Neuroimmunol 2016; 298:172-7. [PMID: 27609292 DOI: 10.1016/j.jneuroim.2016.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 11/29/2022]
Abstract
Although serum IgG anti-ganglioside GQ1b antibody is the most specific biomarker for Fisher syndrome and its related disorders (FS-RD), 10%-30% of the patients are still negative in conventional assays ("GQ1b-seronegative") and the relationship between GQ1b-seropositive and -seronegative patients has been unclear. Some molecules require Ca(2+) cations to interact with their ligands (Ca(2+)-dependency). Here we have investigated whether Ca(2+)-dependency is also present in anti-GQ1b antibodies in FS-RD, especially in the GQ1b-seronegative patients and show that IgG antibodies against GQ1b-related antigens (isolated GQ1b and GQ1b-containing complexes) are detected Ca(2+)-dependently in the majority of GQ1b-seronegative patients with FS-RD. The Ca(2+)-dependent antibodies might react specifically with GQ1b-Ca(2+) conformation. This is the first demonstration of disease-related Ca(2+)-dependent antibodies in neurological field. GQ1b-related pathology would be involved in FS-RD more extensively than previously revealed.
Collapse
Affiliation(s)
- Ayumi Uchibori
- Department of Neurology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Atsuko Gyohda
- Department of Neurology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Atsuro Chiba
- Department of Neurology, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan.
| |
Collapse
|
13
|
He Z, Tan JS, Lai OM, Ariff AB. Optimization of conditions for the single step IMAC purification of miraculin from Synsepalum dulcificum. Food Chem 2015; 181:19-24. [PMID: 25794715 DOI: 10.1016/j.foodchem.2014.11.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/03/2014] [Accepted: 11/08/2014] [Indexed: 11/30/2022]
Abstract
In this study, the methods for extraction and purification of miraculin from Synsepalum dulcificum were investigated. For extraction, the effect of different extraction buffers (phosphate buffer saline, Tris-HCl and NaCl) on the extraction efficiency of total protein was evaluated. Immobilized metal ion affinity chromatography (IMAC) with nickel-NTA was used for the purification of the extracted protein, where the influence of binding buffer pH, crude extract pH and imidazole concentration in elution buffer upon the purification performance was explored. The total amount of protein extracted from miracle fruit was found to be 4 times higher using 0.5M NaCl as compared to Tris-HCl and phosphate buffer saline. On the other hand, the use of Tris-HCl as binding buffer gave higher purification performance than sodium phosphate and citrate-phosphate buffers in IMAC system. The optimum purification condition of miraculin using IMAC was achieved with crude extract at pH 7, Tris-HCl binding buffer at pH 7 and the use of 300 mM imidazole as elution buffer, which gave the overall yield of 80.3% and purity of 97.5%. IMAC with nickel-NTA was successfully used as a single step process for the purification of miraculin from crude extract of S. dulcificum.
Collapse
Affiliation(s)
- Zuxing He
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Joo Shun Tan
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Oi Ming Lai
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Arbakariya B Ariff
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
Naudí A, Cabré R, Jové M, Ayala V, Gonzalo H, Portero-Otín M, Ferrer I, Pamplona R. Lipidomics of human brain aging and Alzheimer's disease pathology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:133-89. [PMID: 26358893 DOI: 10.1016/bs.irn.2015.05.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context.
Collapse
Affiliation(s)
- Alba Naudí
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Victoria Ayala
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Hugo Gonzalo
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Biomedical Research Institute of Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain.
| |
Collapse
|
15
|
Caughlin S, Hepburn JD, Park DH, Jurcic K, Yeung KKC, Cechetto DF, Whitehead SN. Increased Expression of Simple Ganglioside Species GM2 and GM3 Detected by MALDI Imaging Mass Spectrometry in a Combined Rat Model of Aβ Toxicity and Stroke. PLoS One 2015; 10:e0130364. [PMID: 26086081 PMCID: PMC4473074 DOI: 10.1371/journal.pone.0130364] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 05/18/2015] [Indexed: 01/14/2023] Open
Abstract
The aging brain is often characterized by the presence of multiple comorbidities resulting in synergistic damaging effects in the brain as demonstrated through the interaction of Alzheimer's disease (AD) and stroke. Gangliosides, a family of membrane lipids enriched in the central nervous system, may have a mechanistic role in mediating the brain's response to injury as their expression is altered in a number of disease and injury states. Matrix-Assisted Laser Desorption Ionization (MALDI) Imaging Mass Spectrometry (IMS) was used to study the expression of A-series ganglioside species GD1a, GM1, GM2, and GM3 to determine alteration of their expression profiles in the presence of beta-amyloid (Aβ) toxicity in addition to ischemic injury. To model a stroke, rats received a unilateral striatal injection of endothelin-1 (ET-1) (stroke alone group). To model Aβ toxicity, rats received intracerebralventricular (i.c.v.) injections of the toxic 25-35 fragment of the Aβ peptide (Aβ alone group). To model the combination of Aβ toxicity with stroke, rats received both the unilateral ET-1 injection and the bilateral icv injections of Aβ25-35 (combined Aβ/ET-1 group). By 3 d, a significant increase in the simple ganglioside species GM2 was observed in the ischemic brain region of rats who received a stroke (ET-1), with or without Aβ. By 21 d, GM2 levels only remained elevated in the combined Aβ/ET-1 group. GM3 levels however demonstrated a different pattern of expression. By 3 d GM3 was elevated in the ischemic brain region only in the combined Aβ/ET-1 group. By 21 d, GM3 was elevated in the ischemic brain region in both stroke alone and Aβ/ET-1 groups. Overall, results indicate that the accumulation of simple ganglioside species GM2 and GM3 may be indicative of a mechanism of interaction between AD and stroke.
Collapse
Affiliation(s)
- Sarah Caughlin
- Dept. Anatomy and Cell Biology, Western University, London, ON, N6A 5C1, Canada
| | - Jeffrey D. Hepburn
- Dept. Anatomy and Cell Biology, Western University, London, ON, N6A 5C1, Canada
| | - Dae Hee Park
- Dept. Anatomy and Cell Biology, Western University, London, ON, N6A 5C1, Canada
| | - Kristina Jurcic
- Dept. Chemistry and Dept. Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Ken K.-C. Yeung
- Dept. Chemistry and Dept. Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - David F. Cechetto
- Dept. Anatomy and Cell Biology, Western University, London, ON, N6A 5C1, Canada
| | - Shawn N. Whitehead
- Dept. Anatomy and Cell Biology, Western University, London, ON, N6A 5C1, Canada
- Dept. Clinical Neurological Sciences, London Health Sciences Centre, University of Western Ontario, London, ON, N6A 5A5, Canada
- * E-mail:
| |
Collapse
|
16
|
Palmano K, Rowan A, Guillermo R, Guan J, McJarrow P. The role of gangliosides in neurodevelopment. Nutrients 2015; 7:3891-913. [PMID: 26007338 PMCID: PMC4446785 DOI: 10.3390/nu7053891] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
Gangliosides are important components of neuronal cell membranes and it is widely accepted that they play a critical role in neuronal and brain development. They are functionally involved in neurotransmission and are thought to support the formation and stabilization of functional synapses and neural circuits required as the structural basis of memory and learning. Available evidence, as reviewed herein, suggests that dietary gangliosides may impact positively on cognitive functions, particularly in the early postnatal period when the brain is still growing. Further, new evidence suggests that the mechanism of action may be through an effect on the neuroplasticity of the brain, mediated through enhanced synaptic plasticity in the hippocampus and nigro-striatal dopaminergic pathway.
Collapse
Affiliation(s)
| | - Angela Rowan
- Fonterra Co-operative Group Ltd., Private Bag 11029, Palmerston North 4442, New Zealand.
| | - Rozey Guillermo
- Centre for Brain Research, Auckland University, Private Bag 92019, Auckland 1142, New Zealand.
| | - Jian Guan
- Centre for Brain Research, Auckland University, Private Bag 92019, Auckland 1142, New Zealand.
| | - Paul McJarrow
- Fonterra Co-operative Group Ltd., Private Bag 11029, Palmerston North 4442, New Zealand.
| |
Collapse
|
17
|
Guo J, Wang Y, Song B, Wang X, Yang G, Guan F. Identification and functional characterization of intracellular sialidase NeuA3 from Streptomyces avermitilis. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Rockwell HE, McCurdy VJ, Eaton SC, Wilson DU, Johnson AK, Randle AN, Bradbury AM, Gray-Edwards HL, Baker HJ, Hudson JA, Cox NR, Sena-Esteves M, Seyfried TN, Martin DR. AAV-mediated gene delivery in a feline model of Sandhoff disease corrects lysosomal storage in the central nervous system. ASN Neuro 2015; 7:7/2/1759091415569908. [PMID: 25873306 PMCID: PMC4720176 DOI: 10.1177/1759091415569908] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Sandhoff disease (SD) is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the β-subunit of β-N-acetylhexosaminidase (Hex), resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV) vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV) injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients.
Collapse
Affiliation(s)
| | - Victoria J McCurdy
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Samuel C Eaton
- Boston College Biology Department, Chestnut Hill, MA, USA
| | - Diane U Wilson
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL, USA
| | - Aime K Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL, USA
| | - Ashley N Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA
| | - Allison M Bradbury
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA
| | - Henry J Baker
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Judith A Hudson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL, USA
| | - Nancy R Cox
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL, USA
| |
Collapse
|
19
|
Akgoc Z, Sena-Esteves M, Martin DR, Han X, d'Azzo A, Seyfried TN. Bis(monoacylglycero)phosphate: a secondary storage lipid in the gangliosidoses. J Lipid Res 2015; 56:1006-13. [PMID: 25795792 DOI: 10.1194/jlr.m057851] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 01/24/2023] Open
Abstract
Bis(monoacylglycero)phosphate (BMP) is a negatively charged glycerophospholipid with an unusual sn-1;sn-1' structural configuration. BMP is primarily enriched in endosomal/lysosomal membranes. BMP is thought to play a role in glycosphingolipid degradation and cholesterol transport. Elevated BMP levels have been found in many lysosomal storage diseases (LSDs), suggesting an association with lysosomal storage material. The gangliosidoses are a group of neurodegenerative LSDs involving the accumulation of either GM1 or GM2 gangliosides resulting from inherited deficiencies in β-galactosidase or β-hexosaminidase, respectively. Little information is available on BMP levels in gangliosidosis brain tissue. Our results showed that the content of BMP in brain was significantly greater in humans and in animals (mice, cats, American black bears) with either GM1 or GM2 ganglioside storage diseases, than in brains of normal subjects. The storage of BMP and ganglioside GM2 in brain were reduced similarly following adeno-associated viral-mediated gene therapy in Sandhoff disease mice. We also found that C22:6, C18:0, and C18:1 were the predominant BMP fatty acid species in gangliosidosis brains. The results show that BMP accumulates as a secondary storage material in the brain of a broad range of mammals with gangliosidoses.
Collapse
Affiliation(s)
- Zeynep Akgoc
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605
| | - Douglas R Martin
- Scott-Ritchey Research Center and Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849
| | - Xianlin Han
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827
| | | | | |
Collapse
|
20
|
Heinecke KA, Luoma A, d'Azzo A, Kirschner DA, Seyfried TN. Myelin abnormalities in the optic and sciatic nerves in mice with GM1-gangliosidosis. ASN Neuro 2015; 7:7/1/1759091415568913. [PMID: 25694553 PMCID: PMC4342369 DOI: 10.1177/1759091415568913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
GM1-gangliosidosis is a glycosphingolipid lysosomal storage disease involving accumulation of GM1 and its asialo form (GA1) primarily in the brain. Thin-layer chromatography and X-ray diffraction were used to analyze the lipid content/composition and the myelin structure of the optic and sciatic nerves from 7- and 10-month old β-galactosidase (β-gal) +/? and β-gal −/− mice, a model of GM1gangliosidosis. Optic nerve weight was lower in the β-gal −/− mice than in unaffected β-gal +/? mice, but no difference was seen in sciatic nerve weight. The levels of GM1 and GA1 were significantly increased in both the optic nerve and sciatic nerve of the β-gal −/− mice. The content of myelin-enriched cerebrosides, sulfatides, and plasmalogen ethanolamines was significantly lower in optic nerve of β-gal −/− mice than in β-gal +/? mice; however, cholesteryl esters were enriched in the β-gal −/− mice. No major abnormalities in these lipids were detected in the sciatic nerve of the β-gal −/− mice. The abnormalities in GM1 and myelin lipids in optic nerve of β-gal −/− mice correlated with a reduction in the relative amount of myelin and periodicity in fresh nerve. By contrast, the relative amount of myelin and periodicity in the sciatic nerves from control and β-gal −/− mice were indistinguishable, suggesting minimal pathological involvement in sciatic nerve. Our results indicate that the greater neurochemical pathology observed in the optic nerve than in the sciatic nerve of β-gal −/− mice is likely due to the greater glycolipid storage in optic nerve.
Collapse
Affiliation(s)
| | - Adrienne Luoma
- Department of Biology, Boston College, Chestnut Hill, MA, USA Department of Biochemistry and Molecular Biology, Committee on Immunology, University of Chicago, IL, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | |
Collapse
|
21
|
Abstract
The sialic acids N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) differ by a single oxygen atom and are widely found at the terminal position of glycans on vertebrate cell surfaces. In animals capable of synthesizing Neu5Gc, most tissues and cell types express both sialic acids, in proportions that vary between species. However, it has long been noted that Neu5Gc is consistently expressed at trace to absent levels in the brains of all vertebrates studied to date. Although several reports have claimed to find low levels of Neu5Gc-containing glycans in neural tissue, no study definitively excludes the possibility of contamination with glycans from non-neural cell types. This distribution of a molecule - prominently but variably expressed in extraneural tissues but very low or absent in the brain - is, to our knowledge, unique. The evolutionarily conserved brain-specific suppression of Neu5Gc may indicate that its presence is toxic to this organ; however, no studies to date have directly addressed this very interesting question. Here we provide a historical background to this issue and discuss potential mechanisms causing the suppression of Neu5Gc expression in brain tissue, as well as mechanisms by which Neu5Gc may exert the presumed toxicity. Finally, we discuss future approaches towards understanding the mechanisms and implications of this unusual finding.
Collapse
Affiliation(s)
- Leela R L Davies
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Biomedical Sciences Graduate Program, Departments of Medicine and Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Dr., MC 0687, La Jolla, CA, 92093-0687, USA
| | | |
Collapse
|
22
|
Jiang L, Bechtel MD, Bean JL, Winefield R, Williams TD, Zaidi A, Michaelis EK, Michaelis ML. Effects of gangliosides on the activity of the plasma membrane Ca2+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1255-65. [PMID: 24434060 DOI: 10.1016/j.bbamem.2014.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 02/03/2023]
Abstract
Control of intracellular calcium concentrations ([Ca(2+)]i) is essential for neuronal function, and the plasma membrane Ca(2+)-ATPase (PMCA) is crucial for the maintenance of low [Ca(2+)]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca(2+) homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (d-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by d-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca(2+) transporter.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA.
| | - Misty D Bechtel
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| | - Jennifer L Bean
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert Winefield
- Structural Biology Center, University of Kansas, Lawrence, KS, USA
| | - Todd D Williams
- Structural Biology Center, University of Kansas, Lawrence, KS, USA
| | - Asma Zaidi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA; Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | - Elias K Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| | - Mary L Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
23
|
Therapeutic response in feline sandhoff disease despite immunity to intracranial gene therapy. Mol Ther 2013; 21:1306-15. [PMID: 23689599 DOI: 10.1038/mt.2013.86] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/20/2013] [Indexed: 12/25/2022] Open
Abstract
Salutary responses to adeno-associated viral (AAV) gene therapy have been reported in the mouse model of Sandhoff disease (SD), a neurodegenerative lysosomal storage disease caused by deficiency of β-N-acetylhexosaminidase (Hex). While untreated mice reach the humane endpoint by 4.1 months of age, mice treated by a single intracranial injection of vectors expressing human hexosaminidase may live a normal life span of 2 years. When treated with the same therapeutic vectors used in mice, two cats with SD lived to 7.0 and 8.2 months of age, compared with an untreated life span of 4.5 ± 0.5 months (n = 11). Because a pronounced humoral immune response to both the AAV1 vectors and human hexosaminidase was documented, feline cDNAs for the hexosaminidase α- and β-subunits were cloned into AAVrh8 vectors. Cats treated with vectors expressing feline hexosaminidase produced enzymatic activity >75-fold normal at the brain injection site with little evidence of an immune infiltrate. Affected cats treated with feline-specific vectors by bilateral injection of the thalamus lived to 10.4 ± 3.7 months of age (n = 3), or 2.3 times as long as untreated cats. These studies support the therapeutic potential of AAV vectors for SD and underscore the importance of species-specific cDNAs for translational research.
Collapse
|
24
|
Davies LRL, Pearce OMT, Tessier MB, Assar S, Smutova V, Pajunen M, Sumida M, Sato C, Kitajima K, Finne J, Gagneux P, Pshezhetsky A, Woods R, Varki A. Metabolism of vertebrate amino sugars with N-glycolyl groups: resistance of α2-8-linked N-glycolylneuraminic acid to enzymatic cleavage. J Biol Chem 2012; 287:28917-31. [PMID: 22692207 DOI: 10.1074/jbc.m112.365056] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) and its hydroxylated derivative N-glycolylneuraminic acid (Neu5Gc) differ by one oxygen atom. CMP-Neu5Gc is synthesized from CMP-Neu5Ac, with Neu5Gc representing a highly variable fraction of total Sias in various tissues and among different species. The exception may be the brain, where Neu5Ac is abundant and Neu5Gc is reported to be rare. Here, we confirm this unusual pattern and its evolutionary conservation in additional samples from various species, concluding that brain Neu5Gc expression has been maintained at extremely low levels over hundreds of millions of years of vertebrate evolution. Most explanations for this pattern do not require maintaining neural Neu5Gc at such low levels. We hypothesized that resistance of α2-8-linked Neu5Gc to vertebrate sialidases is the detrimental effect requiring the relative absence of Neu5Gc from brain. This linkage is prominent in polysialic acid (polySia), a molecule with critical roles in vertebrate neural development. We show that Neu5Gc is incorporated into neural polySia and does not cause in vitro toxicity. Synthetic polymers of Neu5Ac and Neu5Gc showed that mammalian and bacterial sialidases are much less able to hydrolyze α2-8-linked Neu5Gc at the nonreducing terminus. Notably, this difference was not seen with acid-catalyzed hydrolysis of polySias. Molecular dynamics modeling indicates that differences in the three-dimensional conformation of terminal saccharides may partly explain reduced enzymatic activity. In keeping with this, polymers of N-propionylneuraminic acid are sensitive to sialidases. Resistance of Neu5Gc-containing polySia to sialidases provides a potential explanation for the rarity of Neu5Gc in the vertebrate brain.
Collapse
Affiliation(s)
- Leela R L Davies
- Department of Medicine, Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093-0687, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Arthur JR, Lee JP, Snyder EY, Seyfried TN. Therapeutic effects of stem cells and substrate reduction in juvenile Sandhoff mice. Neurochem Res 2012; 37:1335-43. [PMID: 22367451 DOI: 10.1007/s11064-012-0718-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 01/18/2012] [Accepted: 01/28/2012] [Indexed: 12/19/2022]
Abstract
Sandhoff Disease (SD) involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the β-subunit gene of β-hexosaminidase A and B (Hexb gene). Substrate reduction therapy, utilizing imino sugar N-butyldeoxygalactonojirimycin (NB-DGJ), reduces ganglioside biosynthesis and levels of stored GM2 in SD mice. Intracranial transplantation of Neural Stem Cells (NSCs) can provide enzymatic cross correction, to help reduce ganglioside storage and extend life. Here we tested the effect of NSCs and NB-DGJ, alone and together, on brain β-hexosaminidase activity, GM2, and GA2 content in juvenile SD mice. The SD mice received either cerebral NSC transplantation at post-natal day 0 (p-0), intraperitoneal injection of NB-DGJ (500 mg/kg/day) from p-9 to p-15, or received dual treatments. The brains were analyzed at p-15. β-galactosidase staining confirmed engraftment of lacZ-expressing NSCs in the cerebral cortex. Compared to untreated and sham-treated SD controls, NSC treatment alone provided a slight increase in Hex activity and significantly decreased GA2 content. However, NSCs had no effect on GM2 content when analyzed at p-15. NB-DGJ alone had no effect on Hex activity, but significantly reduced GM2 and GA2 content. Hex activity was slightly elevated in the NSC + drug-treated mice. GM2 and GA2 content in the dual treated mice were similar to that of the NB-DGJ treated mice. These data indicate that NB-DGJ alone was more effective in targeting storage in juvenile SD mice than were NSCs alone. No additive or synergistic effect between NSC and drug was found in these juvenile SD mice.
Collapse
Affiliation(s)
- J R Arthur
- Boston College Biology Department, Higgins Hall, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
26
|
Uchiyama SI, Sekiguchi K, Akaishi M, Anan A, Maeda T, Izumi T. Characterization and chronological changes of preterm human milk gangliosides. Nutrition 2011; 27:998-1001. [PMID: 21288691 DOI: 10.1016/j.nut.2010.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Gangliosides are present in high concentrations in the nervous tissue, and some are observed in small amounts in many extraneural tissues and body fluids. Human milk may play important roles in energy supplementation, prophylaxis of infection, and brain development. For preterm infants, human milk gangliosides are also very important substances during the early lactation stage. However, there are no data on human milk gangliosides from mothers at preterm delivery. We investigated the characterization of gangliosides and chronologic changes in human preterm milk earlier than 30 wk of gestation from 1 to 60 d after birth. METHODS Forty-one samples were analyzed by high-performance thin-layer chromatography and a microtechnique using 1 mL of milk from each lactation and compared with 61 full-term human milk samples. RESULTS Total lipid-bound sialic acid of human milk gangliosides after preterm delivery showed a peak concentration at 2 to 3 d postpartum and then remained at a high concentration until approximately 10 d. GD3 was the major ganglioside in the colostrum until approximately 7 to 10 d postpartum. GM3 was scarcely detected until 7 d postpartum and then increased gradually. There was no difference in the GD3 concentration per 1 mL of human milk between preterm and full-term human milk until approximately 5 to 8 d postpartum. After that time, the GD3 concentration decreased sharply. In contrast, the total concentrations of GM3 per 1 mL of human milk from mothers after preterm delivery were lower than those from mothers after full-term delivery throughout the entire period examined. CONCLUSION This finding is essential to elucidate the composition of human milk gangliosides after preterm delivery, which may contribute to the analysis of the physiologic composition and formulation appropriate preterm infant nutrition.
Collapse
Affiliation(s)
- Shin-ichi Uchiyama
- Department of Pediatrics and Child Neurology, Oita University Faculty of Medicine, Oita, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Heinecke KA, Peacock BN, Blazar BR, Tolar J, Seyfried TN. Lipid composition of whole brain and cerebellum in Hurler syndrome (MPS IH) mice. Neurochem Res 2011; 36:1669-76. [PMID: 21253856 DOI: 10.1007/s11064-011-0400-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 11/29/2022]
Abstract
Hurler syndrome (MPS IH) is caused by a mutation in the gene encoding alpha-L-iduronidase (IDUA) and leads to the accumulation of partially degraded glycosaminoglycans (GAGs). Ganglioside content is known to increase secondary to GAG accumulation. Most studies in organisms with MPS IH have focused on changes in gangliosides GM3 and GM2, without the study of other lipids. We evaluated the total lipid distribution in the whole brain and cerebellum of MPS IH (Idua⁻/⁻) and control (Idua(+/?)) mice at 6 months and at 12 months of age. The content of total sialic acid and levels of gangliosides GM3, GM2, and GD3 were greater in the whole brains of Idua⁻/⁻ mice then in Idua (+/?) mice at 12 months of age. No other significant lipid differences were found in either whole brain or in cerebellum at either age. The accumulation of ganglioside GD3 suggests that neurodegeneration occurs in the Idua⁻/⁻) mouse brain, but not to the extent seen in human MPS IH brain.
Collapse
Affiliation(s)
- Karie A Heinecke
- Department of Biology, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA 02467, USA
| | | | | | | | | |
Collapse
|
28
|
Denny CA, Desplats PA, Thomas EA, Seyfried TN. Cerebellar lipid differences between R6/1 transgenic mice and humans with Huntington’s disease. J Neurochem 2010; 115:748-58. [DOI: 10.1111/j.1471-4159.2010.06964.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Denny CA, Heinecke KA, Kim YP, Baek RC, Loh KS, Butters TD, Bronson RT, Platt FM, Seyfried TN. Restricted ketogenic diet enhances the therapeutic action of N-butyldeoxynojirimycin towards brain GM2 accumulation in adult Sandhoff disease mice. J Neurochem 2010; 113:1525-35. [PMID: 20374428 DOI: 10.1111/j.1471-4159.2010.06733.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sandhoff disease is an autosomal recessive, neurodegenerative disease involving the storage of brain ganglioside GM2 and asialo-GM2. Previous studies showed that caloric restriction, which augments longevity, and N-butyldeoxynojirimycin (NB-DNJ, Miglustat), an imino sugar that hinders the glucosyltransferase catalyzing the first step in glycosphingolipid biosynthesis, both increase longevity and improve motor behavior in the beta-hexosaminidase (Hexb) knockout (-/-) murine model of Sandhoff disease. In this study, we used a restricted ketogenic diet (KD-R) and NB-DNJ to combat ganglioside accumulation. Adult Hexb-/- mice were placed into one of the following groups: (i) a standard diet (SD), (ii) a SD with NB-DNJ (SD + NB-DNJ), (iii) a KD-R, and (iv) a KD-R with NB-DNJ (KD-R + NB-DNJ). Forebrain GM2 content (mug sialic acid/100 mg dry wt) in the four groups was 375 +/- 15, 312 +/- 8, 340 +/- 28, and 279 +/- 26, respectively, indicating an additive interaction between NB-DNJ and the KD-R. Most interestingly, brain NB-DNJ content was 3.5-fold greater in the KD-R + NB-DNJ mice than in the SD + NB-DNJ mice. These data suggest that the KD-R and NB-DNJ may be a potential combinatorial therapy for Sandhoff disease by enhancing NB-DNJ delivery to the brain and may allow lower dosing to achieve the same degree of efficacy as high dose monotherapy.
Collapse
Affiliation(s)
- Christine A Denny
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Determination of sialic acid and gangliosides in biological samples and dairy products: A review. J Pharm Biomed Anal 2010; 51:346-57. [DOI: 10.1016/j.jpba.2009.04.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/17/2009] [Accepted: 04/23/2009] [Indexed: 11/20/2022]
|
31
|
Abstract
The rapid growth of infant brains places an exceptionally high demand on the supply of nutrients from the diet, particularly for preterm infants. Sialic acid (Sia) is an essential component of brain gangliosides and the polysialic acid (polySia) chains that modify neural cell adhesion molecules (NCAM). Sia levels are high in human breast milk, predominately as N-acetylneuraminic acid (Neu5Ac). In contrast, infant formulas contain a low level of Sia consisting of both Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). Neu5Gc is implicated in some human inflammatory diseases. Brain gangliosides and polysialylated NCAM play crucial roles in cell-to-cell interactions, neuronal outgrowth, modifying synaptic connectivity, and memory formation. In piglets, a diet rich in Sia increases the level of brain Sia and the expression of two learning-related genes and enhances learning and memory. The purpose of this review is to summarize the evidence showing the importance of dietary Sia as an essential nutrient for brain development and cognition.
Collapse
Affiliation(s)
- Bing Wang
- Human Nutrition Unit, School of Molecular and Microbial Biosciences, University of Sydney, Australia and School of Medicine, Xiamen University, P. R. China.
| |
Collapse
|
32
|
Liquid Chromatography–High-Resolution Mass Spectrometry for Quantitative Analysis of Gangliosides. Lipids 2009; 44:867-74. [DOI: 10.1007/s11745-009-3327-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
|
33
|
Baek RC, Martin DR, Cox NR, Seyfried TN. Comparative analysis of brain lipids in mice, cats, and humans with Sandhoff disease. Lipids 2008; 44:197-205. [PMID: 19034545 DOI: 10.1007/s11745-008-3268-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/29/2008] [Indexed: 11/29/2022]
Abstract
Sandhoff disease (SD) is a glycosphingolipid (GSL) storage disease that arises from an autosomal recessive mutation in the gene for the beta-subunit of beta-Hexosaminidase A (Hexb gene), which catabolizes ganglioside GM2 within lysosomes. Accumulation of GM2 and asialo-GM2 (GA2) occurs primarily in the CNS, leading to neurodegeneration and brain dysfunction. We analyzed the total lipids in the brains of SD mice, cats, and humans. GM2 and GA2 were mostly undetectable in the normal mouse, cat, and human brain. The lipid abnormalities in the SD cat brain were generally intermediate to those observed in the SD mouse and the SD human brains. GM2 comprised 38, 67, and 87% of the total brain ganglioside distribution in the SD mice, cats, and humans, respectively. The ratio of GA2-GM2 was 0.93, 0.13, and 0.27 in the SD mice, cats, and humans, respectively, suggesting that the relative storage of GA2 is greater in the SD mouse than in the SD cat or human. Finally, the myelin-enriched lipids, cerebrosides and sulfatides, were significantly lower in the SD brains than in the control brains. This study is the first comparative analysis of brain lipids in mice, cats, and humans with SD and will be important for designing therapies for Sandhoff disease patients.
Collapse
Affiliation(s)
- Rena C Baek
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
34
|
Seyfried TN, Heinecke KA, Mantis JG, Denny CA. Brain lipid analysis in mice with Rett syndrome. Neurochem Res 2008; 34:1057-65. [PMID: 19002580 DOI: 10.1007/s11064-008-9874-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2008] [Indexed: 12/25/2022]
Abstract
Rett syndrome (RS) is an X-linked neurodevelopmental disorder mostly involving mutations in the gene for methyl-CpG-binding protein 2 (MECP2). Ganglioside abnormalities were previously found in cerebrum and cerebellum in RS patients. We evaluated total lipid distribution in cerebrum/brainstem, hippocampus, and cerebellum in male mice carrying either the Mecp2 (tm1.1Bird) knockout mutation or the Mecp2 (308/y) deletion mutation. The concentration of the neuronal enriched ganglioside GD1a was significantly lower in the cerebrum/brainstem of Mecp2 (tm1.1Bird) mice than in that of age matched controls, but was not reduced in the Mecp2 (308/y) mice. No other differences in brain lipid content, including myelin-enriched cerebrosides, were detected in mice with either type of Mecp2 mutation. These findings indicate that the poor motor performance previously reported in the RS mutant mice is not associated with major brain lipid abnormalities and that most previous brain lipid abnormalities observed in RS patients were not observed in the Mecp2 (tm1.1Bird) or the Mecp2 (308/y) RS mice.
Collapse
|
35
|
Nakano J, Muto M, Ota T, Matsutani Y, Asagami C. Ganglioside expression of human melanoma and tumor progression. Ganglioside composition of a plaque and a nodule of acral lentiginous melanoma. PIGMENT CELL RESEARCH 2008; Suppl 2:151-3. [PMID: 1409417 DOI: 10.1111/j.1600-0749.1990.tb00366.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J Nakano
- Department of Dermatology, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | |
Collapse
|
36
|
Yoshino H, Ariga T, Suzuki A, Yu RK, Miyatake T. Identification of gangliosides recognized by IgG anti-GalNAc-GD1a antibodies in bovine spinal motor neurons and motor nerves. Brain Res 2008; 1227:216-20. [PMID: 18598683 DOI: 10.1016/j.brainres.2008.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 06/11/2008] [Accepted: 06/11/2008] [Indexed: 12/16/2022]
Abstract
The presence of immunoglobulin G (IgG)-type antibodies to the ganglioside, N-acetylgalactosaminyl GD1a (GalNAc-GD1a), is closely associated with the pure motor type of Guillain-Barré syndrome (GBS). In the present study, we isolated disialogangliosides from the motor neurons and motor nerves of bovine spinal cords by DEAE-Sephadex column chromatography. The disialoganglioside fraction contained GD1a, GD2, GD1b, and three gangliosides, designated X1, X2 and X3. Serum from a patient with axonal GBS with IgG anti-GalNAc-GD1a antibody yielded positive immunostaining with X1, X2, and X3. When isolated by preparative thin-layer chromatography (TLC), X1 migrated at the same position as GalNAc-GD1a from Tay-Sachs brain, suggesting that X1 is GalNAc-GD1a containing N-acetylneuraminic acid (NeuAc). TLC of isolated X2 revealed that it migrated between GD1a and GD2. On the other hand, X3 had a migratory rate on TLC between and GD1b and GT1b. Since both X2 and X3 were recognized by IgG anti-GalNAc-GD1a antibody, the results suggest that X2 is a GalNAc-GD1a species containing a mixture containing a NeuAc-and an N-glycolylneuraminic acid (NeuGc) species, and X3 is a GalNAc-GD1a species with two NeuGc. This evidence indicating the specific localization of GalNAc-GD1a and its isomers in spinal motor neurons should be useful in elucidating the pathogenic role of IgG anti-GalNAc-GD1a antibody in pure motor-type GBS.
Collapse
Affiliation(s)
- Hiide Yoshino
- Department of Neurology, Kohnodai Hospital, National Center of Neurology and Psychiatry, 1-7-1 Kohnodai, Ichikawa, Chiba 2720-8516, Japan
| | | | | | | | | |
Collapse
|
37
|
Higher expression of renal sulfoglycolipids in marine mammals. Glycoconj J 2008; 25:723-6. [PMID: 18470608 DOI: 10.1007/s10719-008-9132-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
Patterns and contents of major acidic glycosphingolipids in the kidney of three marine mammalian species, the Steller sea lion (Pinnipedia), the rough-toothed dolphin and the broad-beaked dolphin (Odontoceti), were examined, and compared with those of terrestrial mesic mammals. The profile of major acidic glycosphingolipids was not significantly different between the terrestrial and marine mammals: predominant gangliosides were GM3 and GD3, and major sulfoglycolipids were SM4s and SM3. On the other hand, the total concentration (nmol/g wet tissue) of sulfoglycolipids was considerably higher in the marine mammals (2.3-3.0 times) than that in the terrestrial mesic mammals with comparable body weights. In contrast, there was no significant difference in the level of renal glycolipids-bound sialic acid between the marine and the terrestrial mammals. These results suggest that higher expression of renal sulfoglycolipids in marine mammals may contribute to the maintenance of osmotic balance of their body fluid against sea water.
Collapse
|
38
|
Baek RC, Kasperzyk JL, Platt FM, Seyfried TN. N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice. Neurochem Int 2007; 52:1125-33. [PMID: 18207611 DOI: 10.1016/j.neuint.2007.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/20/2007] [Accepted: 12/03/2007] [Indexed: 11/17/2022]
Abstract
Sandhoff disease involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the beta-subunit gene of beta-hexosaminidase A and B (Hexb gene). Accumulation of these glycosphingolipids (GSLs) produces progressive neurodegeneration, ultimately leading to death. Substrate reduction therapy (SRT) aims to decrease the rate of glycosphingolipid (GSL) biosynthesis to compensate for the impaired rate of catabolism. The imino sugar, N-butyldeoxygalactonojirimycin (NB-DGJ) inhibits the first committed step in GSL biosynthesis. NB-DGJ treatment, administered from postnatal day 2 (p-2) to p-5 (600 mg/kg/day)), significantly reduced total brain ganglioside and GM2 content in the Sandhoff disease (Hexb(-/-)) mice, but did not reduce the content of GA2. We also found that NB-DGJ treatment caused a slight, but significant elevation in brain sialidase activity. The drug had no adverse effects on viability, body weight, brain weight, or brain water content in the mice. No significant alterations in neutral lipids or acidic phospholipids were observed in the NB-DGJ-treated Hexb(-/-) mice. Our results show that NB-DGJ is effective in reducing total brain ganglioside and GM2 content at early neonatal ages.
Collapse
Affiliation(s)
- Rena C Baek
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
39
|
Barrier L, Ingrand S, Damjanac M, Rioux Bilan A, Hugon J, Page G. Genotype-related changes of ganglioside composition in brain regions of transgenic mouse models of Alzheimer's disease. Neurobiol Aging 2007; 28:1863-72. [PMID: 17007963 DOI: 10.1016/j.neurobiolaging.2006.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/14/2006] [Accepted: 08/05/2006] [Indexed: 01/07/2023]
Abstract
In this study, brain gangliosides of different transgenic mouse models of Alzheimer's disease (AD) were analyzed and compared with age-matched wild-type mice. Gangliosides were analyzed in cerebral cortex, a region with extensive A beta plaques, and cerebellum, a non-vulnerable region with no A beta containing plaques. There was a marked increase in simple gangliosides GM2 and GM3 only within the cortex of all mice expressing APP(SL). Additionally, loss of complex "a" gangliosides (GT1a, GD1a and GM1) was recorded in APP/PS1Ki model, whereas in APP(SL) and APP/PS1 mice, the complex "b" gangliosides (GQ1b, GT1b and GD1b) moderately decreased. Surprisingly, expression of either mutant PS1(M146L) or PS1 mutant FAD (Ki model) alone tended to lower the levels of both GM2 and GM3 within the cortex. Conversely, only slight changes of the ganglioside pattern were found in the cerebellum. Because ganglioside alterations occurring in APP transgenic mice were similar to those observed in human AD brain, these transgenic models would represent valuable tools to further investigate the role of altered ganglioside metabolism in the pathogenesis of AD.
Collapse
Affiliation(s)
- Laurence Barrier
- Groupe de Recherche sur le Vieillissement Cérébral, GReViC EA 3808, Faculté de Médecine et de Pharmacie, 34, rue du Jardin des Plantes, BP 199, 86005 Poitiers Cedex, France.
| | | | | | | | | | | |
Collapse
|
40
|
Denny CA, Alroy J, Pawlyk BS, Sandberg MA, d'Azzo A, Seyfried TN. Neurochemical, morphological, and neurophysiological abnormalities in retinas of Sandhoff and GM1 gangliosidosis mice. J Neurochem 2007; 101:1294-302. [PMID: 17442056 DOI: 10.1111/j.1471-4159.2007.04525.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Retinal abnormalities are well documented in patients with ganglioside storage diseases. The total content and distribution of retinal glycosphingolipids was studied for the first time in control mice and in Sandhoff disease (SD) and GM1 gangliosidosis mice. Light and electron microscopy of the SD and the GM1 retinas revealed storage in ganglion cells. Similar to previous findings in rat retina, GD3 was the major ganglioside in mouse retina, while GM2 and GM1 were minor species. Total ganglioside content was 44% and 40% higher in the SD and the GM1 retinas, respectively, than in the control retinas. Furthermore, GM2 and GM1 content were 11-fold and 51-fold higher in the SD and the GM1 retinas than in the control retinas, respectively. High concentrations of asialo-GM2 and asialo-GM1 were found in the SD and the GM1 retinas, respectively, but were undetectable in the control retinas. The GSL abnormalities in the SD and the GM1 retinas reflect significant reductions in beta-hexosaminidase and beta-galactosidase enzyme activities, respectively. Although electroretinograms appeared normal in the SD and the GM1 mice, visual evoked potentials were subnormal in both mutants, indicating visual impairments. Our findings present a model system for assessing retinal pathobiology and therapies for the gangliosidoses.
Collapse
Affiliation(s)
- Christine A Denny
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | |
Collapse
|
41
|
Desplats PA, Denny CA, Kass KE, Gilmartin T, Head SR, Sutcliffe JG, Seyfried TN, Thomas EA. Glycolipid and ganglioside metabolism imbalances in Huntington's disease. Neurobiol Dis 2007; 27:265-77. [PMID: 17600724 PMCID: PMC2082128 DOI: 10.1016/j.nbd.2007.05.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 05/03/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022] Open
Abstract
We have explored genome-wide expression of genes related to glycobiology in exon 1 transgenic Huntington's disease (HD) mice using a custom-designed GLYCOv2 chip and Affymetrix microarray analyses. We validated, using quantitative real-time PCR, abnormal expression levels of genes encoding glycosyltransferases in the striatum of R6/1 transgenic mice, as well as in postmortem caudate from human HD subjects. Many of these genes show differential regional expression within the CNS, as indicated by in situ hybridization analysis, suggesting region-specific regulation of this system in the brain. We further show disrupted patterns of glycolipids (acidic and neutral lipids) and/or ganglioside levels in both the forebrain of the R6/1 transgenic mice and caudate samples from human HD subjects. These findings reveal novel disruptions in glycolipid/ganglioside metabolic pathways in the pathology of HD and suggest that the development of new targets to restore glycosphingolipid balance may act to ameliorate some symptoms of HD.
Collapse
Affiliation(s)
- Paula A. Desplats
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Christine A. Denny
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Kristi E. Kass
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Tim Gilmartin
- Department of Research Services, The Scripps Research Institute, La Jolla, California, USA
| | - Steven R. Head
- Department of Research Services, The Scripps Research Institute, La Jolla, California, USA
| | - J. Gregor Sutcliffe
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Thomas N. Seyfried
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Elizabeth A. Thomas
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
42
|
Pick J, Vajda J, Anh-tuan N, Leisztner L, Hollan SR. Class Fractionation of Acidic Glycolipids and Further Separation of Gangliosides by OPTLC. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/01483918408067045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Yu Z, Chen Y, Xu G, Chang L. Separation and Determination of Gangliosides Using High Performance Capillary Electrophoresis. J LIQ CHROMATOGR R T 2006. [DOI: 10.1080/10826079808000495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Z. Yu
- a Laboratory of Analytical Biochemistry , Institute of Chemistry The Chinese Academy of Sciences , Beijing, 100080, P. R. China
| | - Y. Chen
- a Laboratory of Analytical Biochemistry , Institute of Chemistry The Chinese Academy of Sciences , Beijing, 100080, P. R. China
| | - G. Xu
- a Laboratory of Analytical Biochemistry , Institute of Chemistry The Chinese Academy of Sciences , Beijing, 100080, P. R. China
| | - L. Chang
- a Laboratory of Analytical Biochemistry , Institute of Chemistry The Chinese Academy of Sciences , Beijing, 100080, P. R. China
| |
Collapse
|
44
|
Denny CA, Kasperzyk JL, Gorham KN, Bronson RT, Seyfried TN. Influence of caloric restriction on motor behavior, longevity, and brain lipid composition in Sandhoff disease mice. J Neurosci Res 2006; 83:1028-38. [PMID: 16521125 DOI: 10.1002/jnr.20798] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Caloric restriction (CR), which improves health and increases longevity, was studied as a therapy in a hexosaminidase beta knockout mouse model of Sandhoff disease (SD), an incurable neurodegenerative disease involving accumulation of brain ganglioside GM2 and asialo-GM2 (GA2). Adult mice were fed a rodent chow diet either ad libitum (AL) or restricted to reduce body weight by 15-18% (CR). Although GM2 and GA2 were elevated, no significant differences were seen between the Hexb-/- and the Hexb+/- mice for most brain phospholipids and cholesterol. Cerebrosides and sulfatides were reduced in the Hexb-/- mice. In addition, rotorod performance was significantly worse in the Hexb-/- mice than in the Hexb+/- mice. CR, which decreased circulating glucose and elevated ketone bodies, significantly improved rotorod performance and extended longevity in the Hexb-/- mice but had no significant effect on brain lipid composition or on cytoplasmic neuronal vacuoles. The expression of CD68 and F4/80 was significantly less in the CR-fed than in the AL-fed Hexb-/- mice. We suggest that the CR delays disease progression in SD and possibly in other ganglioside storage diseases through anti-inflammatory mechanisms.
Collapse
MESH Headings
- 3-Hydroxybutyric Acid/blood
- Age Factors
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Behavior, Animal/physiology
- Blood Glucose
- Blotting, Western/methods
- Body Weight/physiology
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Caloric Restriction
- Cell Count/methods
- Chromatography, High Pressure Liquid/methods
- Disease Models, Animal
- Hexosaminidase B
- Immunohistochemistry/methods
- Lipids
- Mice
- Mice, Knockout
- Motor Activity/physiology
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Rotarod Performance Test/methods
- Sandhoff Disease/genetics
- Sandhoff Disease/metabolism
- Sandhoff Disease/physiopathology
- beta-N-Acetylhexosaminidases/deficiency
Collapse
Affiliation(s)
- Christine A Denny
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
45
|
Lauc G, Heffer-Lauc M. Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins. Biochim Biophys Acta Gen Subj 2005; 1760:584-602. [PMID: 16388904 DOI: 10.1016/j.bbagen.2005.11.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Gangliosides and glycosylphosphatidylinositol (GPI)-anchored proteins have very different biosynthetic origin, but they have one thing in common: they are both comprised of a relatively large hydrophilic moiety tethered to a membrane by a relatively small lipid tail. Both gangliosides and GPI-anchored proteins can be actively shed from the membrane of one cell and taken up by other cells by insertion of their lipid anchors into the cell membrane. The process of shedding and uptake of gangliosides and GPI-anchored proteins has been independently discovered in several disciplines during the last few decades, but these discoveries were largely ignored by people working in other areas of science. By bringing together results from these, sometimes very distant disciplines, in this review, we give an overview of current knowledge about shedding and uptake of gangliosides and GPI-anchored proteins. Tumor cells and some pathogens apparently misuse this process for their own advantage, but its real physiological functions remain to be discovered.
Collapse
Affiliation(s)
- Gordan Lauc
- Department of Chemistry and Biochemistry, University of Osijek School of Medicine, Croatia.
| | | |
Collapse
|
46
|
Kasperzyk JL, d'Azzo A, Platt FM, Alroy J, Seyfried TN. Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. J Lipid Res 2005; 46:744-51. [PMID: 15687347 DOI: 10.1194/jlr.m400411-jlr200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
II3NeuAc-GgOse4Cer (GM1) gangliosidosis is an incurable lysosomal storage disease caused by a deficiency in acid beta-galactosidase (beta-gal), resulting in the accumulation of ganglioside GM1 and its asialo derivative GgOse4Cer (GA1) in the central nervous system, primarily in the brain. In this study, we investigated the effects of N-butyldeoxygalacto-nojirimycin (N B-DGJ), an imino sugar that inhibits ganglioside biosynthesis, in normal C57BL/6J mice and in beta-gal knockout (beta-gal-/-) mice from postnatal day 9 (p-9) to p-15. This is a period of active cerebellar development and central nervous system (CNS) myelinogenesis in the mouse and would be comparable to late-stage embryonic and early neonatal development in humans. N B-DGJ significantly reduced total ganglioside and GM1 content in cerebrum-brainstem (C-BS) and in cerebellum of normal and beta-gal-/- mice. N B-DGJ had no adverse effects on body weight or C-BS/cerebellar weight, water content, or thickness of the external cerebellar granule cell layer. Sphingomyelin was increased in C-BS and cerebellum, but no changes were found for cerebroside (a myelin-enriched glycosphingolipid), neutral phospholipids, or GA1 in the treated mice. Our findings indicate that the effects of N B-DGJ in the postnatal CNS are largely specific to gangliosides and suggest that N B-DGJ may be an effective early intervention therapy for GM1 gangliosidosis and other ganglioside storage disorders.
Collapse
Affiliation(s)
- J L Kasperzyk
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | |
Collapse
|
47
|
Fujiwaki T, Yamaguchi S, Tasaka M, Takayanagi M, Isobe M, Taketomi T. Evaluation of sphingolipids in vitreous bodies from a patient with Gaucher disease, using delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 806:47-51. [PMID: 15149610 DOI: 10.1016/j.jchromb.2004.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gaucher disease is a glycolipid storage disorder characterized by the accumulation of glucosylceramide in tissues. Using delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry (DE MALDI-TOF-MS), we analyzed sphingolipids in vitreous bodies from a patient with Gaucher disease who suffered from vitreous opacities. Crude lipids were extracted from the freeze-dried vitreous bodies with chloroform and methanol. After mild alkaline treatment of the crude lipids, a sphingolipid fraction was prepared and analyzed by DE MALDI-TOF-MS. The results were as follows: (a). the m/z values of the ions found in the mass spectra for both the control and the Gaucher disease patient corresponded to different sphingomyelin species. (b). The mass spectrum of the Gaucher disease patient showed additional ions with m/z values corresponding to different ceramide monohexoside (CMH) species. It was indicated that the accumulation of CMH in vitreous bodies from Gaucher disease patients could be easily detected with the DE MALDI-TOF-MS method.
Collapse
Affiliation(s)
- Takehisa Fujiwaki
- Department of Pediatrics, Shimane University School of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Kasperzyk JL, El-Abbadi MM, Hauser EC, D'Azzo A, Platt FM, Seyfried TN. N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. J Neurochem 2004; 89:645-53. [PMID: 15086521 DOI: 10.1046/j.1471-4159.2004.02381.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GM1 gangliosidosis is a glycosphingolipid (GSL) lysosomal storage disease caused by a genetic deficiency of acid beta-galactosidase (beta-gal), the enzyme that catabolyzes GM1 within lysosomes. Accumulation of GM1 and its asialo form (GA1) occurs primarily in the brain, leading to progressive neurodegeneration and brain dysfunction. Substrate reduction therapy aims to decrease the rate of GSL biosynthesis to counterbalance the impaired rate of catabolism. The imino sugar N-butyldeoxygalactonojirimycin (NB-DGJ) is a competitive inhibitor of the ceramide-specific glucosyltransferase that catalyzes the first step in GSL biosynthesis. Neonatal C57BL/6J (B6) and beta-gal knockout (-/-) mice were injected daily from post-natal day 2 (p-2) to p-5 with either vehicle or NB-DGJ at 600 mg or 1200 mg/kg body weight. These drug concentrations significantly reduced total brain ganglioside and GM1 content in the B6 and the beta-gal (-/-) mice. Drug treatment had no significant effect on viability, body weight, brain weight, or brain water content in the B6 and beta-gal (-/-) mice. Significant elevations in neutral lipids (GA1, ceramide, and sphingomyelin) were observed in the NB-DGJ-treated beta-gal (-/-) mice, but were not associated with adverse effects. Also, NB-DGJ treatment of B6 and beta-gal (-/-) mice from p-2 to p-5 had no subsequent effect on brain ganglioside content at p-21. Our results show that NB-DGJ is effective in reducing total brain ganglioside and GM1 content at early neonatal ages. These findings suggest that substrate reduction therapy using NB-DGJ may be an effective early intervention for GM1 gangliosidosis and possibly other GSL lysosomal storage diseases.
Collapse
Affiliation(s)
- Julie L Kasperzyk
- Department of Biology, Boston College, Chestnut Hill, Massachussetts, USA
| | | | | | | | | | | |
Collapse
|
49
|
Wang X, Wei D, Zhou L, Yin Z. Simple Method for Large‐Scale Isolation and Purification of Gangliosides by Non‐Ionic Adsorption Chromatography. Prep Biochem Biotechnol 2004; 34:305-13. [PMID: 15553901 DOI: 10.1081/pb-200030954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A type of non-ionic adsorption resin, X-5, was used in the isolation and purification of brain gangliosides. Hydrolysis with base treatment was carried out for the purpose of eliminating contaminants. The major advantages of the new procedure, compared to conventional methods, were the shorter separation time, higher loading capacity (80 micromol LBSA per gram resin), and recovery (98%) of separated ganglioside fractions with little solvent. It is a practical way for large-scale isolation and purification of gangliosides.
Collapse
Affiliation(s)
- Xuedong Wang
- State Key Laboratory of Bioreactor Engineering, Luhua Institute of Biochemistry, East China University of Science and Technology, Shanghai, P.R. China.
| | | | | | | |
Collapse
|
50
|
Kanda T, Ariga T, Kubodera H, Jin HL, Owada K, Kasama T, Yamawaki M, Mizusawa H. Glycosphingolipid composition of primary cultured human brain microvascular endothelial cells. J Neurosci Res 2004; 78:141-50. [PMID: 15372501 DOI: 10.1002/jnr.20228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glycosphingolipid (GSL) antigens have been considered to be involved in the pathogenesis of autoimmune neurologic disorders including multiple sclerosis. To establish the GSL pattern specific for endothelial cells forming blood-brain barrier (BBB), we established a method to yield sufficient quantities of highly purified human brain microvascular endothelial cells (HBMECs) and compared their GSL composition to that of human umbilical cord vein endothelial cells (HUVECs), as the representative of endothelial cells not forming BBB. The major gangliosides were GM3 and sialyl paragloboside (LM1), and the major neutral GSLs were lactosylceramide (LacCer), globotriaosylceramide (Gb3), and globoside (Gb4). Trace amounts of GM1, GD1a, GD1b, GT1b, and sulfoglucuronosyl paragloboside (SGPG) could be detected by the high performance thin layer chromatography-overlay method. SGPG was detected only at a nonconfluent state in an amount almost 1/30 that of in nonconfluent HUVECs. Conversely, GM3 and LM1 increased significantly after confluency. The amount of Gb3 in HBMECs was almost as twice that in HUVECs. The significance of these differences in GSL content between HBMECs and HUVECs and between confluent and nonconfluent states is obscure. It might be related, however, to the defense mechanism at the BBB and to the susceptibility of the central nervous system in some disorders that target cell surface GSL, such as hemolytic uremic syndrome.
Collapse
Affiliation(s)
- Takashi Kanda
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|