1
|
Palm E, Guidi Nissim W, Colasurdo G, Van Volkenburgh E. Inducible tolerance to low Ca:Mg in serpentine ecotype of Erythranthe guttata. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154355. [PMID: 39357114 DOI: 10.1016/j.jplph.2024.154355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
In serpentine soils, the low level of calcium relative to magnesium (Ca:Mg) is detrimental to the growth of most plant species. Ecotypic variation in Erythranthe guttata allows for some populations to maintain high photosynthetic rates and biomass despite low Ca:Mg. In this study, the mechanism of tolerance was investigated by treating hydroponically grown plants with either high (1.0) or low (0.02) Ca:Mg growth solutions and assaying excised leaf discs for rates of photosynthesis and disc expansion, and for starch, Ca2+ and Mg2+ ion concentrations. Low Ca:Mg in the assay solutions reduced both photosynthesis and leaf disc expansion after one week of treatment. However, serpentine tissues show stable photosynthetic rates after one week and a recovery in leaf tissue expansion after two weeks exposure to low Ca:Mg conditions. Values for non-serpentine tissues continued to decline. Increased growth of low Ca:Mg treated discs supplied with exogenous sucrose suggests that growth in serpentine-exposed tissues is limited by availability of carbon products from photosynthesis. Serpentine leaves had higher vacuole Mg concentrations than non-serpentine leaves after three weeks of treatment with low Ca:Mg. The combination of elevated starch concentrations, reduced growth and lower vacuolar Mg concentrations in leaves of non-serpentine plants grown in low Ca:Mg indicate an inefficient use of carbon resources and starch degradation as an observed response to Mg toxicity. Together, these results suggest that serpentine E. guttata exhibits an inducible tolerance to low Ca:Mg through gradual compartmentalization of magnesium to maintain the production and metabolism of photosynthates necessary for growth.
Collapse
Affiliation(s)
- Emily Palm
- Department of Biology, University of Washington, Box 331350, Seattle, WA, 98195, USA; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza, 2 U3, 20126, Milan, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza, 2 U3, 20126, Milan, Italy; National Biodiversity Future Center, Palermo 90133, Italy.
| | - Giacomo Colasurdo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza, 2 U3, 20126, Milan, Italy
| | | |
Collapse
|
2
|
Hoh D, Froehlich JE, Kramer DM. Redox regulation in chloroplast thylakoid lumen: The pmf changes everything, again. PLANT, CELL & ENVIRONMENT 2024; 47:2749-2765. [PMID: 38111217 DOI: 10.1111/pce.14789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Photosynthesis is the foundation of life on Earth. However, if not well regulated, it can also generate excessive reactive oxygen species (ROS), which can cause photodamage. Regulation of photosynthesis is highly dynamic, responding to both environmental and metabolic cues, and occurs at many levels, from light capture to energy storage and metabolic processes. One general mechanism of regulation involves the reversible oxidation and reduction of protein thiol groups, which can affect the activity of enzymes and the stability of proteins. Such redox regulation has been well studied in stromal enzymes, but more recently, evidence has emerged of redox control of thylakoid lumenal enzymes. This review/hypothesis paper summarizes the latest research and discusses several open questions and challenges to achieving effective redox control in the lumen, focusing on the distinct environments and regulatory components of the thylakoid lumen, including the need to transport electrons across the thylakoid membrane, the effects of pH changes by the proton motive force (pmf) in the stromal and lumenal compartments, and the observed differences in redox states. These constraints suggest that activated oxygen species are likely to be major regulatory contributors to lumenal thiol redox regulation, with key components and processes yet to be discovered.
Collapse
Affiliation(s)
- Donghee Hoh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - John E Froehlich
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
von Bismarck T, Wendering P, Perez de Souza L, Ruß J, Strandberg L, Heyneke E, Walker BJ, Schöttler MA, Fernie AR, Nikoloski Z, Armbruster U. Growth in fluctuating light buffers plants against photorespiratory perturbations. Nat Commun 2023; 14:7052. [PMID: 37923709 PMCID: PMC10624928 DOI: 10.1038/s41467-023-42648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
Photorespiration (PR) is the pathway that detoxifies the product of the oxygenation reaction of Rubisco. It has been hypothesized that in dynamic light environments, PR provides a photoprotective function. To test this hypothesis, we characterized plants with varying PR enzyme activities under fluctuating and non-fluctuating light conditions. Contrasting our expectations, growth of mutants with decreased PR enzyme levels was least affected in fluctuating light compared with wild type. Results for growth, photosynthesis and metabolites combined with thermodynamics-based flux analysis revealed two main causal factors for this unanticipated finding: reduced rates of photosynthesis in fluctuating light and complex re-routing of metabolic fluxes. Only in non-fluctuating light, mutants lacking the glutamate:glyoxylate aminotransferase 1 re-routed glycolate processing to the chloroplast, resulting in photooxidative damage through H2O2 production. Our results reveal that dynamic light environments buffer plant growth and metabolism against photorespiratory perturbations.
Collapse
Affiliation(s)
- Thekla von Bismarck
- Molecular Photosynthesis, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Philipp Wendering
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jeremy Ruß
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Linnéa Strandberg
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Elmien Heyneke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Berkley J Walker
- DOE-Plant Research Laboratory, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd Rm 212, East Lansing, MI, 48823, USA
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Ute Armbruster
- Molecular Photosynthesis, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
4
|
Giese J, Eirich J, Walther D, Zhang Y, Lassowskat I, Fernie AR, Elsässer M, Maurino VG, Schwarzländer M, Finkemeier I. The interplay of post-translational protein modifications in Arabidopsis leaves during photosynthesis induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1172-1193. [PMID: 37522418 DOI: 10.1111/tpj.16406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Diurnal dark to light transition causes profound physiological changes in plant metabolism. These changes require distinct modes of regulation as a unique feature of photosynthetic lifestyle. The activities of several key metabolic enzymes are regulated by light-dependent post-translational modifications (PTM) and have been studied at depth at the level of individual proteins. In contrast, a global picture of the light-dependent PTMome dynamics is lacking, leaving the response of a large proportion of cellular function undefined. Here, we investigated the light-dependent metabolome and proteome changes in Arabidopsis rosettes in a time resolved manner to dissect their kinetic interplay, focusing on phosphorylation, lysine acetylation, and cysteine-based redox switches. Of over 24 000 PTM sites that were detected, more than 1700 were changed during the transition from dark to light. While the first changes, as measured 5 min after onset of illumination, occurred mainly in the chloroplasts, PTM changes at proteins in other compartments coincided with the full activation of the Calvin-Benson cycle and the synthesis of sugars at later timepoints. Our data reveal connections between metabolism and PTM-based regulation throughout the cell. The comprehensive multiome profiling analysis provides unique insight into the extent by which photosynthesis reprograms global cell function and adds a powerful resource for the dissection of diverse cellular processes in the context of photosynthetic function.
Collapse
Affiliation(s)
- Jonas Giese
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Dirk Walther
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Ines Lassowskat
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Veronica G Maurino
- Institute of Cellular and Molecular Botany (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| |
Collapse
|
5
|
Shimakawa G, Yashiro E, Matsuda Y. Mapping of subcellular local pH in the marine diatom Phaeodactylum tricornutum. PHYSIOLOGIA PLANTARUM 2023; 175:e14086. [PMID: 38148208 DOI: 10.1111/ppl.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/28/2023]
Abstract
Diatoms are one of the most important phytoplankton on Earth. They comprise at least ten thousand species and contribute to up to 20% of the global primary production. Because of serial endosymbiotic events and horizontal gene transfers, diatoms have developed a "secondary plastid" bounded by four membranes containing a large phase-separated compartment, termed the pyrenoid. However, the physiological significance of this unique chloroplast morphology is poorly understood. Characterization of fundamental physiological parameters such as local pH in various subcellular compartments should facilitate a greater understanding of the physiological roles of the unique structure of the secondary plastid. A promising method to estimate local pH is the in situ expression of the pH-sensitive green fluorescent protein. Here, we first developed the molecular tool for the mapping of in situ local pH in the diatom Phaeodactylum tricornutum by heterologously expressing pHluorin2 in the cytosol, periplastidal compartment (PPC; the space in between two sets of outer and inner chloroplast envelopes), chloroplast stroma, and the pyrenoid matrix. Our data suggested that PPC and the pyrenoid matrix are more acidic than the adjacent areas, the cytosol and the chloroplast stroma. Finally, absolute pH values at each compartment were estimated from the ratiometric fluorescence of a recombinant pHluorin2 protein, giving pH values of approximately 7.9, 6.8, 8.0, and 7.5 respectively, for the cytosol, PPC, stroma, and pyrenoid of the P. tricornutum cells, indicating the occurrence of pH gradients and the associated electrochemical potentials at their boundary.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Emi Yashiro
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| |
Collapse
|
6
|
Wu F, Guo J, Duan H, Li T, Wang Y, Wang Y, Wang S, Feng Y. Ocean Acidification Affects the Response of the Coastal Coccolithophore Pleurochrysis carterae to Irradiance. BIOLOGY 2023; 12:1249. [PMID: 37759648 PMCID: PMC10525560 DOI: 10.3390/biology12091249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
The ecologically important marine phytoplankton group coccolithophores have a global distribution. The impacts of ocean acidification on the cosmopolitan species Emiliania huxleyi have received much attention and have been intensively studied. However, the species-specific responses of coccolithophores and how these responses will be regulated by other environmental drivers are still largely unknown. To examine the interactive effects of irradiance and ocean acidification on the physiology of the coastal coccolithophore species Pleurochrysis carterae, we carried out a semi-continuous incubation experiment under a range of irradiances (50, 200, 500, 800 μmol photons m-2 s-1) at two CO2 concentration conditions of 400 and 800 ppm. The results suggest that the saturation irradiance for the growth rate was higher at an elevated CO2 concentration. Ocean acidification weakened the particulate organic carbon (POC) production of Pleurochrysis carterae and the inhibition rate was decreased with increasing irradiance, indicating that ocean acidification may affect the tolerating capacity of photosynthesis to higher irradiance. Our results further provide new insight into the species-specific responses of coccolithophores to the projected ocean acidification under different irradiance scenarios in the changing marine environment.
Collapse
Affiliation(s)
- Fengxia Wu
- College of Marine and Environment, Tianjin University of Science and Technology, Tianjin 300453, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Jia Guo
- College of Marine and Environment, Tianjin University of Science and Technology, Tianjin 300453, China
| | - Haozhen Duan
- College of Marine and Environment, Tianjin University of Science and Technology, Tianjin 300453, China
| | - Tongtong Li
- College of Marine and Environment, Tianjin University of Science and Technology, Tianjin 300453, China
| | - Yanan Wang
- College of Marine and Environment, Tianjin University of Science and Technology, Tianjin 300453, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Shiqiang Wang
- College of Marine and Environment, Tianjin University of Science and Technology, Tianjin 300453, China
| | - Yuanyuan Feng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200040, China
- Shanghai Frontiers Science Center of Polar Science (SCOPS), Shanghai 200030, China
| |
Collapse
|
7
|
Steensma AK, Shachar-Hill Y, Walker BJ. The carbon-concentrating mechanism of the extremophilic red microalga Cyanidioschyzon merolae. PHOTOSYNTHESIS RESEARCH 2023; 156:247-264. [PMID: 36780115 PMCID: PMC10154280 DOI: 10.1007/s11120-023-01000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/27/2023] [Indexed: 05/03/2023]
Abstract
Cyanidioschyzon merolae is an extremophilic red microalga which grows in low-pH, high-temperature environments. The basis of C. merolae's environmental resilience is not fully characterized, including whether this alga uses a carbon-concentrating mechanism (CCM). To determine if C. merolae uses a CCM, we measured CO2 uptake parameters using an open-path infra-red gas analyzer and compared them to values expected in the absence of a CCM. These measurements and analysis indicated that C. merolae had the gas-exchange characteristics of a CCM-operating organism: low CO2 compensation point, high affinity for external CO2, and minimized rubisco oxygenation. The biomass δ13C of C. merolae was also consistent with a CCM. The apparent presence of a CCM in C. merolae suggests the use of an unusual mechanism for carbon concentration, as C. merolae is thought to lack a pyrenoid and gas-exchange measurements indicated that C. merolae primarily takes up inorganic carbon as carbon dioxide, rather than bicarbonate. We use homology to known CCM components to propose a model of a pH-gradient-based CCM, and we discuss how this CCM can be further investigated.
Collapse
Affiliation(s)
- Anne K Steensma
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Ennoury A, Roussi Z, Nhhala N, Zouaoui Z, Kabach I, Krid A, Kchikich A, Nhiri M. Atriplex halimus water extract: a biochemical composition that enhanced the faba bean plants growth. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:601-611. [PMID: 37187778 PMCID: PMC10172430 DOI: 10.1007/s12298-023-01311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
The burgeoning world population is exerting immense pressure on the agricultural sector to increase yield production, which has resulted in the widespread use of chemical products by farmers. However, these chemicals can have detrimental effects on both human health and the environment. To mitigate these risks, it is crucial to identify natural solutions that are less harmful to both humans and the environment. This study explores the impact of Atriplex halimus extract on the growth of Vicia faba L. broad vetch plants by testing three different concentrations (0.1%, 0.25%, and 0.5%) of the extract. The findings reveal that Atriplex halimus extract has a positive effect on various physiological and biochemical parameters of the plants, which ultimately leads to improved growth. Specifically, the treated plants displayed a significant (p < 0.05) increase in the content of plant metabolites and photosynthetic pigments. Furthermore, the extract enhanced the activity of enzymes that are involved in carbon-nitrogen assimilation, such as phosphoenolpyruvate carboxylase (EC 4.1.1.31), isocitrate dehydrogenase (EC 1.1.1.42), glutamine synthase (EC 6.3.1.2), glutathione-s-transferase (EC 2.5.1.18), and glutathione reductase (EC 1.8.1.7). The most significant improvement was observed in plants treated with 0.25% of Atriplex halimus extract. Therefore, it can be inferred that the application of Atriplex halimus extract has the potential to be an effective biostimulant for improving the growth and yield of faba bean plants.
Collapse
Affiliation(s)
- Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Nada Nhhala
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Imad Kabach
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Azzouz Krid
- Environmental Technology, Biotechnology, and Valorization of Bio-Resources, Faculty of Science and Techniques of Al Hoceima–Abdelmalek Essaadi University, BP 34, Ajdir, 32003 Al Hoceima, Morocco
| | - Anass Kchikich
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| |
Collapse
|
9
|
Förster B, Rourke LM, Weerasooriya HN, Pabuayon ICM, Rolland V, Au EK, Bala S, Bajsa-Hirschel J, Kaines S, Kasili R, LaPlace L, Machingura MC, Massey B, Rosati VC, Stuart-Williams H, Badger MR, Price GD, Moroney JV. The Chlamydomonas reinhardtii chloroplast envelope protein LCIA transports bicarbonate in planta. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad116. [PMID: 36987927 DOI: 10.1093/jxb/erad116] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 06/19/2023]
Abstract
LCIA is a chloroplast envelope protein associated with the CO2 concentrating mechanism of the green alga Chlamydomonas reinhardtii. LCIA is postulated to be a HCO3- channel, but previous studies were unable to show that LCIA was actively transporting bicarbonate in planta. Therefore, LCIA activity was investigated more directly in two heterologous systems: an E. coli mutant (DCAKO) lacking both native carbonic anhydrases and an Arabidopsis mutant (βca5) missing the plastid carbonic anhydrase βCA5. Both DCAKO and βca5 cannot grow in ambient CO2 conditions, as they lack carbonic anhydrase-catalyzed production of the necessary HCO3- concentration for lipid and nucleic acid biosynthesis. Expression of LCIA restored growth in both systems in ambient CO2 conditions, which strongly suggests that LCIA is facilitating HCO3- uptake in each system. To our knowledge, this is the first direct evidence that LCIA moves HCO3- across membranes in bacteria and plants. Furthermore, the βca5 plant bioassay used in this study is the first system for testing HCO3- transport activity in planta, an experimental breakthrough that will be valuable for future studies aimed at improving the photosynthetic efficiency of crop plants using components from algal CO2 concentrating mechanisms.
Collapse
Affiliation(s)
- Britta Förster
- The Australian National University, Canberra, ACT 2600, Australia
| | - Loraine M Rourke
- The Australian National University, Canberra, ACT 2600, Australia
| | - Hiruni N Weerasooriya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Isaiah C M Pabuayon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vivien Rolland
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Eng Kee Au
- The Australian National University, Canberra, ACT 2600, Australia
| | - Soumi Bala
- The Australian National University, Canberra, ACT 2600, Australia
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, United States Department of Agriculture, University, MS 38677, USA
| | - Sarah Kaines
- The Australian National University, Canberra, ACT 2600, Australia
| | - Remmy Kasili
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lillian LaPlace
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Baxter Massey
- The Australian National University, Canberra, ACT 2600, Australia
| | - Viviana C Rosati
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York YO10 5DD, UK
| | | | - Murray R Badger
- The Australian National University, Canberra, ACT 2600, Australia
| | - G Dean Price
- The Australian National University, Canberra, ACT 2600, Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
10
|
Wang Y, Fan J, Ahmad N, Xin W, Wei Z, Xing S. Successful production of human epidermal growth factor in tobacco chloroplasts in a biologically active conformation. Growth Factors 2023; 41:20-31. [PMID: 36454601 DOI: 10.1080/08977194.2022.2150187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Human epidermal growth factor (hEGF) is an important therapeutic compound with multiple applications particularly in pharmaceutical industry. Human EGF has already been expressed in different expression systems, however, the production of hEGF with bioactivity in chloroplasts has not been successful so far. In this study, we expressed a 6 × His-tagged hEGF in tobacco chloroplasts in its native conformation for the potential of large-scale production of hEGF for industrial applications. Several transplastomic plant lines were obtained, which were screened by PCR (polymerase chain reaction) using primers specific to selectable gene aadA, hEGF- and GFP-coding sequences that were included in the chloroplast expression vector. The selected lines were confirmed to be homoplasmic by PCR verification and Southern blot analysis. Immunoblotting assays of homoplasmic lines using antibodies raised against hEGF confirmed the accumulation of hEGF in transplastomic plants and the ELISA results demonstrated the expression levels of hEGF were between 0.124% and 0.165% of the total soluble proteins (TSP), namely, 23.16-25.77 ng/g of the fresh weight. In terms of activity, the data from cell proliferation and elongation assays showed that the tobacco-derived recombinant hEGF was as bioactive as its commercial counterpart. To our knowledge, this is the first report of recombinant production of hEGF with native bioactivity form in the chloroplast stroma. Overall, our results demonstrate the potential of higher plant chloroplasts for the production of a human therapeutic, hEGF, in an active conformation.
Collapse
Affiliation(s)
- Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jieying Fan
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Wen Xin
- Beijing TransGen Biotech Co., Ltd, Beijing, China
| | - Zhengyi Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
11
|
Pseudophosphorylation of Arabidopsis jasmonate biosynthesis enzyme lipoxygenase 2 via mutation of Ser 600 inhibits enzyme activity. J Biol Chem 2023; 299:102898. [PMID: 36639029 PMCID: PMC9947334 DOI: 10.1016/j.jbc.2023.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Jasmonates are oxylipin phytohormones critical for plant resistance against necrotrophic pathogens and chewing herbivores. An early step in their biosynthesis is catalyzed by non-heme iron lipoxygenases (LOX; EC 1.13.11.12). In Arabidopsis thaliana, phosphorylation of Ser600 of AtLOX2 was previously reported, but whether phosphorylation regulates AtLOX2 activity is unclear. Here, we characterize the kinetic properties of recombinant WT AtLOX2 (AtLOX2WT). AtLOX2WT displays positive cooperativity with α-linolenic acid (α-LeA, jasmonate precursor), linoleic acid (LA), and arachidonic acid (AA) as substrates. Enzyme velocity with endogenous substrates α-LeA and LA increased with pH. For α-LeA, this increase was accompanied by a decrease in substrate affinity at alkaline pH; thus, the catalytic efficiency for α-LeA was not affected over the pH range tested. Analysis of Ser600 phosphovariants demonstrated that pseudophosphorylation inhibits enzyme activity. AtLOX2 activity was not detected in phosphomimics Atlox2S600D and Atlox2S600M when α-LeA or AA were used as substrates. In contrast, phosphonull mutant Atlox2S600A exhibited strong activity with all three substrates, α-LeA, LA, and AA. Structural comparison between the AtLOX2 AlphaFold model and a complex between 8R-LOX and a 20C polyunsaturated fatty acid suggests a close proximity between AtLOX2 Ser600 and the carboxylic acid head group of the polyunsaturated fatty acid. This analysis indicates that Ser600 is located at a critical position within the AtLOX2 structure and highlights how Ser600 phosphorylation could affect AtLOX2 catalytic activity. Overall, we propose that AtLOX2 Ser600 phosphorylation represents a key mechanism for the regulation of AtLOX2 activity and, thus, the jasmonate biosynthesis pathway and plant resistance.
Collapse
|
12
|
von Bismarck T, Korkmaz K, Ruß J, Skurk K, Kaiser E, Correa Galvis V, Cruz JA, Strand DD, Köhl K, Eirich J, Finkemeier I, Jahns P, Kramer DM, Armbruster U. Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:160-176. [PMID: 36378135 DOI: 10.1111/nph.18534] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Understanding photosynthesis in natural, dynamic light environments requires knowledge of long-term acclimation, short-term responses, and their mechanistic interactions. To approach the latter, we systematically determined and characterized light-environmental effects on thylakoid ion transport-mediated short-term responses during light fluctuations. For this, Arabidopsis thaliana wild-type and mutants of the Cl- channel VCCN1 and the K+ exchange antiporter KEA3 were grown under eight different light environments and characterized for photosynthesis-associated parameters and factors in steady state and during light fluctuations. For a detailed characterization of selected light conditions, we monitored ion flux dynamics at unprecedented high temporal resolution by a modified spectroscopy approach. Our analyses reveal that daily light intensity sculpts photosynthetic capacity as a main acclimatory driver with positive and negative effects on the function of KEA3 and VCCN1 during high-light phases, respectively. Fluctuations in light intensity boost the accumulation of the photoprotective pigment zeaxanthin (Zx). We show that KEA3 suppresses Zx accumulation during the day, which together with its direct proton transport activity accelerates photosynthetic transition to lower light intensities. In summary, both light-environment factors, intensity and variability, modulate the function of thylakoid ion transport in dynamic photosynthesis with distinct effects on lumen pH, Zx accumulation, photoprotection, and photosynthetic efficiency.
Collapse
Affiliation(s)
| | - Kübra Korkmaz
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Jeremy Ruß
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Kira Skurk
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Elias Kaiser
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | | | - Jeffrey A Cruz
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Deserah D Strand
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - David M Kramer
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| |
Collapse
|
13
|
Mohanta TK, Mohanta YK, Al-Harrasi A. Decoding the Virtual 2D Map of the Chloroplast Proteomes. Biol Proced Online 2022; 24:23. [PMID: 36513972 DOI: 10.1186/s12575-022-00186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The chloroplast is a semi-autonomous organelle having its own genome and corresponding proteome. Although chloroplast genomes have been reported, no reports exist on their corresponding proteomes. Therefore, a proteome-wide analysis of the chloroplast proteomes of 2893 species was conducted, and a virtual 2D map was constructed. RESULTS The resulting virtual 2D map of the chloroplast proteome exhibited a bimodal distribution. The molecular mass of the chloroplast proteome ranged from 0.448 to 616.334 kDa, and the isoelectric point (pI) ranged from 2.854 to 12.954. Chloroplast proteomes were dominated by basic pI proteins with an average pI of 7.852. The molecular weight and isoelectric point of chloroplast proteome were found to show bimodal distribution. Leu was the most abundant and Cys the least abundant amino acid in the chloroplast proteome. Notably, Trp amino acid was absent in the chloroplast protein sequences of Pilostyles aethiopica. In addition, Selenocysteine (Sec) and Pyrrolysine (Pyl) amino acids were also found to be lacking in the chloroplast proteomes. CONCLUSION The virtual 2D map and amino acid composition of chloroplast proteome will enable the researchers to understand the biochemistry of chloroplast protein in detail. Further, the amino acid composition of the chloroplast proteome will also allow us to understand the codon usage bias. The codon usage bias and amino acid usage bias of chloroplast will be crucial to understanding their relationship.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Baridua, Meghalaya, 793101, Techno City, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
14
|
Liu J, Yin W, Zhang X, Xie X, Dong G, Lu Y, Tao B, Gong Q, Chen X, Shi C, Qin Y, Zeng R, Li D, Li H, Zhao C, Zhang H. RNA-seq analysis reveals genes related to photosynthetic carbon partitioning and lipid production in Phaeodactylum tricornutum under alkaline conditions. Front Microbiol 2022; 13:969639. [PMID: 36051763 PMCID: PMC9425035 DOI: 10.3389/fmicb.2022.969639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Alkaline pH can induce triacylglyceride accumulation in microalgae, however its molecular mechanism remains elusive. Here, we investigated the effect of 2-[N-cyclohexylamino]-ethane-sulfonic acid (CHES) -induced intracellular alkalization on the lipid production in Phaeodactylum tricornutum. Intracellular pH was increased upon CHES treatment, displaying a high BCECF fluorescence ratio. CHES treatment significantly induced lipid accumulation but had no change in cell density and biomass. The expression of genes involved in photoreaction, carbon fixation, glycolysis, pentose phosphate pathway, amino acid catabolism, GS/GOGAT cycle, TCA cycle, triacylglyceride assembly, de novo fatty acid synthesis were up-regulated, while that in amino acid biosynthesis were down-regulated under CHES conditions. Correspondingly, the activity of phosphoribulokinase, carbonic anhydrase, pyruvate dehydrogenase and acetaldehyde dehydrogenase were enhanced by CHES treatment. Chloroplast-specific biological processes were activated by CHES treatment in P. tricornutum, which redirects the flux of carbon into lipid biosynthesis, meanwhile stimulates de novo fatty acid biosynthesis, leading to lipid accumulation under CHES conditions. These indicate an enhancement of intermediate metabolism, resulting in lipid accumulation by CHES.
Collapse
Affiliation(s)
- Jian Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weihua Yin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinya Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuan Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guanghui Dong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yao Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baoxiang Tao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiangbin Gong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyan Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Shi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Science and Technology Research Institute of Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dawei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hongye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chao Zhao
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiying Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Huiying Zhang,
| |
Collapse
|
15
|
Trinh MDL, Masuda S. Chloroplast pH Homeostasis for the Regulation of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:919896. [PMID: 35693183 PMCID: PMC9174948 DOI: 10.3389/fpls.2022.919896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 05/16/2023]
Abstract
The pH of various chloroplast compartments, such as the thylakoid lumen and stroma, is light-dependent. Light illumination induces electron transfer in the photosynthetic apparatus, coupled with proton translocation across the thylakoid membranes, resulting in acidification and alkalization of the thylakoid lumen and stroma, respectively. Luminal acidification is crucial for inducing regulatory mechanisms that protect photosystems against photodamage caused by the overproduction of reactive oxygen species (ROS). Stromal alkalization activates enzymes involved in the Calvin-Benson-Bassham (CBB) cycle. Moreover, proton translocation across the thylakoid membranes generates a proton gradient (ΔpH) and an electric potential (ΔΨ), both of which comprise the proton motive force (pmf) that drives ATP synthase. Then, the synthesized ATP is consumed in the CBB cycle and other chloroplast metabolic pathways. In the dark, the pH of both the chloroplast stroma and thylakoid lumen becomes neutral. Despite extensive studies of the above-mentioned processes, the molecular mechanisms of how chloroplast pH can be maintained at proper levels during the light phase for efficient activation of photosynthesis and other metabolic pathways and return to neutral levels during the dark phase remain largely unclear, especially in terms of the precise control of stromal pH. The transient increase and decrease in chloroplast pH upon dark-to-light and light-to-dark transitions have been considered as signals for controlling other biological processes in plant cells. Forward and reverse genetic screening approaches recently identified new plastid proteins involved in controlling ΔpH and ΔΨ across the thylakoid membranes and chloroplast proton/ion homeostasis. These proteins have been conserved during the evolution of oxygenic phototrophs and include putative photosynthetic protein complexes, proton transporters, and/or their regulators. Herein, we summarize the recently identified protein players that control chloroplast pH and influence photosynthetic efficiency in plants.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Shinji Masuda,
| |
Collapse
|
16
|
Current Knowledge on Mechanisms Preventing Photosynthesis Redox Imbalance in Plants. Antioxidants (Basel) 2021; 10:antiox10111789. [PMID: 34829660 PMCID: PMC8614926 DOI: 10.3390/antiox10111789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/03/2022] Open
Abstract
Photosynthesis includes a set of redox reactions that are the source of reducing power and energy for the assimilation of inorganic carbon, nitrogen and sulphur, thus generating organic compounds, and oxygen, which supports life on Earth. As sessile organisms, plants have to face continuous changes in environmental conditions and need to adjust the photosynthetic electron transport to prevent the accumulation of damaging oxygen by-products. The balance between photosynthetic cyclic and linear electron flows allows for the maintenance of a proper NADPH/ATP ratio that is adapted to the plant’s needs. In addition, different mechanisms to dissipate excess energy operate in plants to protect and optimise photosynthesis under adverse conditions. Recent reports show an important role of redox-based dithiol–disulphide interchanges, mediated both by classical and atypical chloroplast thioredoxins (TRXs), in the control of these photoprotective mechanisms. Moreover, membrane-anchored TRX-like proteins, such as HCF164, which transfer electrons from stromal TRXs to the thylakoid lumen, play a key role in the regulation of lumenal targets depending on the stromal redox poise. Interestingly, not all photoprotective players were reported to be under the control of TRXs. In this review, we discuss recent findings regarding the mechanisms that allow an appropriate electron flux to avoid the detrimental consequences of photosynthesis redox imbalances.
Collapse
|
17
|
Sukhova E, Gromova E, Yudina L, Kior A, Vetrova Y, Ilin N, Mareev E, Vodeneev V, Sukhov V. Change in H + Transport across Thylakoid Membrane as Potential Mechanism of 14.3 Hz Magnetic Field Impact on Photosynthetic Light Reactions in Seedlings of Wheat ( Triticum aestivum L.). PLANTS 2021; 10:plants10102207. [PMID: 34686016 PMCID: PMC8537839 DOI: 10.3390/plants10102207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Natural and artificial extremely low-frequency magnetic fields (ELFMFs) are important factors influencing physiological processes in living organisms including terrestrial plants. Earlier, it was experimentally shown that short-term and long-term treatments by ELFMFs with Schumann resonance frequencies (7.8, 14.3, and 20.8 Hz) influenced parameters of photosynthetic light reactions in wheat leaves. The current work is devoted to an analysis of potential ways of this ELFMF influence on the light reactions. Only a short-term wheat treatment by 14.3 Hz ELFMF was used in the analysis. First, it was experimentally shown that ELFMF-induced changes (an increase in the effective quantum yield of photosystem II, a decrease in the non-photochemical quenching of chlorophyll fluorescence, a decrease in time of changes in these parameters, etc.) were observed under the action of ELFMF with widely ranging magnitudes (from 3 to 180 µT). In contrast, the potential quantum yield of photosystem II and time of relaxation of the energy-dependent component of the non-photochemical quenching were not significantly influenced by ELFMF. Second, it was shown that the ELFMF treatment decreased the proton gradient across the thylakoid membrane. In contrast, the H+ conductivity increased under this treatment. Third, an analysis of the simplest mathematical model of an H+ transport across the thylakoid membrane, which was developed in this work, showed that changes in H+ fluxes related to activities of the photosynthetic electron transport chain and the H+-ATP synthase were not likely a mechanism of the ELFMF influence. In contrast, changes induced by an increase in an additional H+ flux (probably, through the proton leakage and/or through the H+/Ca2+ antiporter activity in the thylakoid membrane) were in good accordance with experimental results. Thus, we hypothesized that this increase is the mechanism of the 14.3 Hz ELFMF influence (and, maybe, influences of other low frequencies) on photosynthetic light reactions in wheat.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Ekaterina Gromova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
| | - Lyubov Yudina
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
| | - Anastasiia Kior
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Yana Vetrova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
| | - Nikolay Ilin
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Evgeny Mareev
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
- Correspondence: ; Tel.: +7-909-292-8653
| |
Collapse
|
18
|
Stitt M, Luca Borghi G, Arrivault S. Targeted metabolite profiling as a top-down approach to uncover interspecies diversity and identify key conserved operational features in the Calvin-Benson cycle. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5961-5986. [PMID: 34473300 PMCID: PMC8411860 DOI: 10.1093/jxb/erab291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/21/2021] [Indexed: 05/02/2023]
Abstract
Improving photosynthesis is a promising avenue to increase crop yield. This will be aided by better understanding of natural variance in photosynthesis. Profiling of Calvin-Benson cycle (CBC) metabolites provides a top-down strategy to uncover interspecies diversity in CBC operation. In a study of four C4 and five C3 species, principal components analysis separated C4 species from C3 species and also separated different C4 species. These separations were driven by metabolites that reflect known species differences in their biochemistry and pathways. Unexpectedly, there was also considerable diversity between the C3 species. Falling atmospheric CO2 and changing temperature, nitrogen, and water availability have driven evolution of C4 photosynthesis in multiple lineages. We propose that analogous selective pressures drove lineage-dependent evolution of the CBC in C3 species. Examples of species-dependent variation include differences in the balance between the CBC and the light reactions, and in the balance between regulated steps in the CBC. Metabolite profiles also reveal conserved features including inactivation of enzymes in low irradiance, and maintenance of CBC metabolites at relatively high levels in the absence of net CO2 fixation. These features may be important for photosynthetic efficiency in low light, fluctuating irradiance, and when stomata close due to low water availability.
Collapse
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Gian Luca Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
19
|
Akter T, Nakamoto H. pH-mediated control of anti-aggregation activities of cyanobacterial and E. coli chaperonin GroELs. J Biochem 2021; 169:351-361. [PMID: 32997746 DOI: 10.1093/jb/mvaa108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/10/2020] [Indexed: 11/12/2022] Open
Abstract
In contrast to Escherichia coli, cyanobacteria have multiple GroELs, the bacterial homologues of chaperonin/Hsp60. We have shown that cyanobacterial GroELs are mutually distinct and different from E. coli GroEL with which the paradigm for chaperonin structure/function has been established. However, little is known about regulation of cyanobacterial GroELs. This study investigated effect of pH (varied from 7.0 to 8.5) on chaperone activity of GroEL1 and GroEL2 from the cyanobacterium Synechococcus elongatus PCC7942 and E. coli GroEL. GroEL1 and GroEL2 showed pH dependency in suppression of aggregation of heat-denatured malate dehydrogenase, lactate dehydrogenase and citrate synthase. They exhibited higher anti-aggregation activity at more alkaline pHs. Escherichia coli GroEL showed a similar pH-dependence in suppressing aggregation of heat-denatured lactate dehydrogenase. No pH dependence was observed in all the GroELs when urea-denatured lactate dehydrogenase was used for anti-aggregation assay, suggesting that the pH-dependence is related to some denatured structures. There was no significant influence of pH on the chaperone activity of all the GroELs to promote refolding of heat-denatured malate dehydrogenase. It is known that pH in cyanobacterial cytoplasm increases by one pH unit following a shift from darkness to light, suggesting that the pH-change modulates chaperone activity of cyanobacterial GroEL1 and GroEL2.
Collapse
Affiliation(s)
| | - Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
20
|
Espinoza-Corral R, Schwenkert S, Lundquist PK. Molecular changes of Arabidopsis thaliana plastoglobules facilitate thylakoid membrane remodeling under high light stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1571-1587. [PMID: 33783866 DOI: 10.1111/tpj.15253] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 05/21/2023]
Abstract
Plants require rapid responses to adapt to environmental stresses. This includes dramatic changes in the size and number of plastoglobule lipid droplets within chloroplasts. Although the morphological changes of plastoglobules are well documented, little is known about the corresponding molecular changes. To address this gap, we have compared the quantitative proteome, oligomeric state, prenyl-lipid content and kinase activities of Arabidopsis thaliana plastoglobules under unstressed and 5-day light-stressed conditions. Our results show a specific recruitment of proteins related to leaf senescence and jasmonic acid biosynthesis under light stress, and identify nearly half of the plastoglobule proteins in high native molecular weight masses. Additionally, a specific increase in plastoglobule carotenoid abundance under the light stress was consistent with enhanced thylakoid disassembly and leaf senescence, supporting a specific role for plastoglobules in senescence and thylakoid remodeling as an intermediate storage site for photosynthetic pigments. In vitro kinase assays of isolated plastoglobules demonstrated kinase activity towards multiple target proteins, which was more pronounced in the plastoglobules of unstressed than light-stressed leaf tissue, and which was diminished in plastoglobules of the abc1k1/abc1k3 double-mutant. These results strongly suggest that plastoglobule-localized ABC1 kinases hold endogenous kinase activity, as these were the only known or putative kinases identified in the isolated plastoglobules by deep bottom-up proteomics. Collectively, our study reveals targeted changes to the protein and prenyl-lipid composition of plastoglobules under light stress that present strategies by which plastoglobules appear to facilitate stress adaptation within chloroplasts.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Serena Schwenkert
- Department I, Plant Biochemistry, Ludwig Maximilians University Munich, Großhadernerstr. 2-4, Planegg-Martinsried, 82152, Germany
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
21
|
Chin-Fatt A, Menassa R. A V HH-Fc Fusion Targeted to the Chloroplast Thylakoid Lumen Assembles and Neutralizes Enterohemorrhagic E. coli O157:H7. FRONTIERS IN PLANT SCIENCE 2021; 12:686421. [PMID: 34122494 PMCID: PMC8193579 DOI: 10.3389/fpls.2021.686421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Chimeric fusion proteins comprising a single domain antibody (VHH) fused to a crystallizable fragment (Fc) of an immunoglobulin are modular glycoproteins that are becoming increasingly in demand because of their value as diagnostics, research reagents and passive immunization therapeutics. Because ER-associated degradation and misfolding may potentially be limiting factors in the oxidative folding of VHH-Fc fusion proteins in the ER, we sought to explore oxidative folding in an alternative sub-compartment, the chloroplast thylakoid lumen, and determine its viability in a molecular farming context. We developed a set of in-house expression vectors for transient transformation of Nicotiana benthamiana leaves that target a VHH-Fc to the thylakoid lumen via either secretory (Sec) or twin-arginine translocation (Tat) import pathways. Compared to stromal [6.63 ± 3.41 mg/kg fresh weight (FW)], cytoplasmic (undetectable) and Tat-import pathways (5.43 ± 2.41 mg/kg FW), the Sec-targeted VHH-Fc showed superior accumulation (30.56 ± 5.19 mg/kg FW), but was less than that of the ER (51.16 ± 9.11 mg/kg FW). Additionally, the introduction of a rationally designed de novo disulfide bond enhances in planta accumulation when introduced into the Sec-targeted Fc fusion protein from 50.24 ± 4.08 mg/kg FW to 110.90 ± 6.46 mg/kg FW. In vitro immunofluorescent labeling assays on VHH-Fc purified from Sec, Tat, and stromal pathways demonstrate that the antibody still retains VHH functionality in binding Escherichia coli O157:H7 and neutralizing its intimate adherence to human epithelial type 2 cells. These results overall provide a proof of concept that the oxidative folding environment of the thylakoid lumen may be a viable compartment for stably folding disulfide-containing recombinant VHH-Fc proteins.
Collapse
Affiliation(s)
- Adam Chin-Fatt
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
22
|
Akter T, Nakamoto H. pH-regulated chaperone function of cyanobacterial Hsp90 and Hsp70: Implications for light/dark regulation. J Biochem 2021; 170:463-471. [PMID: 33993259 DOI: 10.1093/jb/mvab061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/06/2021] [Indexed: 11/14/2022] Open
Abstract
We have shown that cyanobacterial chaperonins have pH-dependent anti-aggregation activity. The pH in cyanobacterial cytosol increases by one pH unit following a shift from darkness to light. In the present study, we examined whether other major chaperones such as Hsp90 (HtpG) and Hsp70 (DnaK2) from the cyanobacterium Synechococcus elongatus PCC7942 also display pH-dependent activity. Suppressing aggregation of various heat-denatured proteins, especially lactate dehydrogenase, at an equimolar ratio of cyanobacterial Hsp90 to protein substrate was found to be pH-dependent. Hsp90 showed the highest activity at pH 8.5 over the examined pH range of 7.0 to 8.5. pH affected the anti-aggregation activity of DnaK2 in a similar manner to that of Hsp90 in the presence of half equimolar DnaK2 to the protein substrate. The ATPase activity of cyanobacterial Hsp90 was pH-dependent, with a four-fold increase in activity when the pH was raised from 7.0 to 8.5. The ATPase activity of DnaK2 was also regulated by pH in a similar manner. Finally, an increase in pH from 7.0 to 8.5 enhanced activities of both Hsp90 and Hsp70 in protein-folding assistance by two- to three-fold. These results suggest that changes in pH may regulate chaperone function during a light-dark cycle in cyanobacterial cells.
Collapse
Affiliation(s)
- Tahmina Akter
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| |
Collapse
|
23
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
24
|
Inago H, Sato R, Masuda S. Regulation of light-induced H + extrusion and uptake by cyanobacterial homologs of the plastidial FLAP1, DLDG1, and Ycf10 in Synechocystis sp. PCC6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148258. [PMID: 32619428 DOI: 10.1016/j.bbabio.2020.148258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/29/2022]
Abstract
Upon a dark-to-light transition, multiple species of cyanobacteria release a certain amount of H+ from the inside to the outside of their cells. Previous studies revealed the plasma membrane-localizing Proton exchange A (PxcA) is involved in the light-induced H+ extrusion in the cyanobacterium Synechocystis sp. PCC6803. Among oxygenic phototrophs, two PxcA homologs are conserved; they are the nuclear-encoded Day-length-dependent delayed-greening1 (DLDG1) and the plastid-encoded Ycf10 in Arabidopsis thaliana. We previously identified the putative DLDG1/Ycf10-interacting protein, Fluctuating-light acclimation protein1 (FLAP1), required for pH regulation in Arabidopsis chloroplasts. Synechocystis has PxcA and FLAP1 homologs designated here as PxcA like (PxcL) and FLAP1 homolog A (FlpA). Synechocystis mutants lacking pxcA, pxcL, and flpA were constructed and characterized to gain more insight into regulatory mechanisms of light-induced H+ extrusion in cyanobacteria. pH change kinetics of the extracellular solvent after shifting Synechocystis cells from dark to light indicated that PxcA is essential for the light-induced H+ extrusion, and both PxcA and PxcL were involved in H+ uptake. Mutational loss of flpA resulted in altered PxcA- and PxcL-dependent H+ efflux/influx activities, and the flpA-null mutant showed inhibited growth under dark-light cycles, indicating the importance of FlpA function for photosynthetic growth under fluctuating light. Collectively, these data suggest that PxcA is involved in H+ efflux immediately after light irradiation for the rapid formation of the H+ concentration gradient across the thylakoid membranes, PxcL is involved in H+ influx for activation of the Calvin-Benson-Bassham cycle, and FlpA controls the H+ transport under fluctuating light.
Collapse
Affiliation(s)
- Haruya Inago
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Ryoichi Sato
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
25
|
Stirbet A, Lazár D, Guo Y, Govindjee G. Photosynthesis: basics, history and modelling. ANNALS OF BOTANY 2020; 126:511-537. [PMID: 31641747 PMCID: PMC7489092 DOI: 10.1093/aob/mcz171] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 10/21/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND With limited agricultural land and increasing human population, it is essential to enhance overall photosynthesis and thus productivity. Oxygenic photosynthesis begins with light absorption, followed by excitation energy transfer to the reaction centres, primary photochemistry, electron and proton transport, NADPH and ATP synthesis, and then CO2 fixation (Calvin-Benson cycle, as well as Hatch-Slack cycle). Here we cover some of the discoveries related to this process, such as the existence of two light reactions and two photosystems connected by an electron transport 'chain' (the Z-scheme), chemiosmotic hypothesis for ATP synthesis, water oxidation clock for oxygen evolution, steps for carbon fixation, and finally the diverse mechanisms of regulatory processes, such as 'state transitions' and 'non-photochemical quenching' of the excited state of chlorophyll a. SCOPE In this review, we emphasize that mathematical modelling is a highly valuable tool in understanding and making predictions regarding photosynthesis. Different mathematical models have been used to examine current theories on diverse photosynthetic processes; these have been validated through simulation(s) of available experimental data, such as chlorophyll a fluorescence induction, measured with fluorometers using continuous (or modulated) exciting light, and absorbance changes at 820 nm (ΔA820) related to redox changes in P700, the reaction centre of photosystem I. CONCLUSIONS We highlight here the important role of modelling in deciphering and untangling complex photosynthesis processes taking place simultaneously, as well as in predicting possible ways to obtain higher biomass and productivity in plants, algae and cyanobacteria.
Collapse
Affiliation(s)
| | - Dušan Lazár
- Department of Biophysics, Center of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, China
- University of Missouri, Columbia, MO, USA
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
26
|
Ye Y, Fulcher YG, Sliman DJ, Day MT, Schroeder MJ, Koppisetti RK, Bates PD, Thelen JJ, Van Doren SR. The BADC and BCCP subunits of chloroplast acetyl-CoA carboxylase sense the pH changes of the light-dark cycle. J Biol Chem 2020; 295:9901-9916. [PMID: 32467229 PMCID: PMC7380191 DOI: 10.1074/jbc.ra120.012877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/26/2020] [Indexed: 01/20/2023] Open
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed step in the de novo synthesis of fatty acids. The multisubunit ACCase in the chloroplast is activated by a shift to pH 8 upon light adaptation and is inhibited by a shift to pH 7 upon dark adaptation. Here, titrations with the purified ACCase biotin attachment domain-containing (BADC) and biotin carboxyl carrier protein (BCCP) subunits from Arabidopsis indicated that they can competently and independently bind biotin carboxylase (BC) but differ in responses to pH changes representing those in the plastid stroma during light or dark conditions. At pH 7 in phosphate buffer, BADC1 and BADC2 gain an advantage over BCCP1 and BCCP2 in affinity for BC. At pH 8 in KCl solution, however, BCCP1 and BCCP2 had more than 10-fold higher affinity for BC than did BADC1. The pH-modulated shifts in BC preferences for BCCP and BADC partners suggest they contribute to light-dependent regulation of heteromeric ACCase. Using NMR spectroscopy, we found evidence for increased intrinsic disorder of the BADC and BCCP subunits at pH 7. We propose that this intrinsic disorder potentially promotes fast association with BC through a "fly-casting mechanism." We hypothesize that the pH effects on the BADC and BCCP subunits attenuate ACCase activity by night and enhance it by day. Consistent with this hypothesis, Arabidopsis badc1 badc3 mutant lines grown in a light-dark cycle synthesized more fatty acids in their seeds. In summary, our findings provide evidence that the BADC and BCCP subunits function as pH sensors required for light-dependent switching of heteromeric ACCase activity.
Collapse
Affiliation(s)
- Yajin Ye
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Yan G Fulcher
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - David J Sliman
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Mizani T Day
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Mark J Schroeder
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Rama K Koppisetti
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
27
|
Launay H, Huang W, Maberly SC, Gontero B. Regulation of Carbon Metabolism by Environmental Conditions: A Perspective From Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2020; 11:1033. [PMID: 32765548 PMCID: PMC7378808 DOI: 10.3389/fpls.2020.01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Diatoms belong to a major, diverse and species-rich eukaryotic clade, the Heterokonta, within the polyphyletic chromalveolates. They evolved as a result of secondary endosymbiosis with one or more Plantae ancestors, but their precise evolutionary history is enigmatic. Nevertheless, this has conferred them with unique structural and biochemical properties that have allowed them to flourish in a wide range of different environments and cope with highly variable conditions. We review the effect of pH, light and dark, and CO2 concentration on the regulation of carbon uptake and assimilation. We discuss the regulation of the Calvin-Benson-Bassham cycle, glycolysis, lipid synthesis, and carbohydrate synthesis at the level of gene transcripts (transcriptomics), proteins (proteomics) and enzyme activity. In contrast to Viridiplantae where redox regulation of metabolic enzymes is important, it appears to be less common in diatoms, based on the current evidence, but regulation at the transcriptional level seems to be widespread. The role of post-translational modifications such as phosphorylation, glutathionylation, etc., and of protein-protein interactions, has been overlooked and should be investigated further. Diatoms and other chromalveolates are understudied compared to the Viridiplantae, especially given their ecological importance, but we believe that the ever-growing number of sequenced genomes combined with proteomics, metabolomics, enzyme measurements, and the application of novel techniques will provide a better understanding of how this important group of algae maintain their productivity under changing conditions.
Collapse
Affiliation(s)
- Hélène Launay
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
| | - Wenmin Huang
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
28
|
Petrova EV, Kukarskikh GP, Krendeleva TE, Antal TK. The Mechanisms and Role of Photosynthetic Hydrogen Production by Green Microalgae. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720030169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Harada K, Arizono T, Sato R, Trinh MDL, Hashimoto A, Kono M, Tsujii M, Uozumi N, Takaichi S, Masuda S. DAY-LENGTH-DEPENDENT DELAYED-GREENING1, the Arabidopsis Homolog of the Cyanobacterial H+-Extrusion Protein, Is Essential for Chloroplast pH Regulation and Optimization of Non-Photochemical Quenching. PLANT & CELL PHYSIOLOGY 2019; 60:2660-2671. [PMID: 31665522 DOI: 10.1093/pcp/pcz203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/22/2019] [Indexed: 05/21/2023]
Abstract
Plants convert solar energy into chemical energy through photosynthesis, which supports almost all life activities on earth. Because the intensity and quality of sunlight can change dramatically throughout the day, various regulatory mechanisms help plants adjust their photosynthetic output accordingly, including the regulation of light energy accumulation to prevent the generation of damaging reactive oxygen species. Non-photochemical quenching (NPQ) is a regulatory mechanism that dissipates excess light energy, but how it is regulated is not fully elucidated. In this study, we report a new NPQ-regulatory protein named Day-Length-dependent Delayed-Greening1 (DLDG1). The Arabidopsis DLDG1 associates with the chloroplast envelope membrane, and the dldg1 mutant had a large NPQ value compared with wild type. The mutant also had a pale-green phenotype in developing leaves but only under continuous light; this phenotype was not observed when dldg1 was cultured in the dark for ≥8 h/d. DLDG1 is a homolog of the plasma membrane-localizing cyanobacterial proton-extrusion-protein A that is required for light-induced H+ extrusion and also shows similarity in its amino-acid sequence to that of Ycf10 encoded in the plastid genome. Arabidopsis DLDG1 enhances the growth-retardation phenotype of the Escherichia coli K+/H+ antiporter mutant, and the everted membrane vesicles of the E. coli expressing DLDG1 show the K+/H+ antiport activity. Our findings suggest that DLDG1 functionally interacts with Ycf10 to control H+ homeostasis in chloroplasts, which is important for the light-acclimation response, by optimizing the extent of NPQ.
Collapse
Affiliation(s)
- Kyohei Harada
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takatoshi Arizono
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Ryoichi Sato
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Mai Duy Luu Trinh
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Akira Hashimoto
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Shinji Masuda
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
30
|
Harada K, Arizono T, Sato R, Trinh MDL, Hashimoto A, Kono M, Tsujii M, Uozumi N, Takaichi S, Masuda S. DAY-LENGTH-DEPENDENT DELAYED-GREENING1, the Arabidopsis Homolog of the Cyanobacterial H+-Extrusion Protein, Is Essential for Chloroplast pH Regulation and Optimization of Non-Photochemical Quenching. PLANT & CELL PHYSIOLOGY 2019; 60:2660-2671. [PMID: 31665522 DOI: 10.1101/731653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/22/2019] [Indexed: 05/24/2023]
Abstract
Plants convert solar energy into chemical energy through photosynthesis, which supports almost all life activities on earth. Because the intensity and quality of sunlight can change dramatically throughout the day, various regulatory mechanisms help plants adjust their photosynthetic output accordingly, including the regulation of light energy accumulation to prevent the generation of damaging reactive oxygen species. Non-photochemical quenching (NPQ) is a regulatory mechanism that dissipates excess light energy, but how it is regulated is not fully elucidated. In this study, we report a new NPQ-regulatory protein named Day-Length-dependent Delayed-Greening1 (DLDG1). The Arabidopsis DLDG1 associates with the chloroplast envelope membrane, and the dldg1 mutant had a large NPQ value compared with wild type. The mutant also had a pale-green phenotype in developing leaves but only under continuous light; this phenotype was not observed when dldg1 was cultured in the dark for ≥8 h/d. DLDG1 is a homolog of the plasma membrane-localizing cyanobacterial proton-extrusion-protein A that is required for light-induced H+ extrusion and also shows similarity in its amino-acid sequence to that of Ycf10 encoded in the plastid genome. Arabidopsis DLDG1 enhances the growth-retardation phenotype of the Escherichia coli K+/H+ antiporter mutant, and the everted membrane vesicles of the E. coli expressing DLDG1 show the K+/H+ antiport activity. Our findings suggest that DLDG1 functionally interacts with Ycf10 to control H+ homeostasis in chloroplasts, which is important for the light-acclimation response, by optimizing the extent of NPQ.
Collapse
Affiliation(s)
- Kyohei Harada
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takatoshi Arizono
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Ryoichi Sato
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Mai Duy Luu Trinh
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Akira Hashimoto
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Shinji Masuda
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
31
|
Alvarez CE, Bovdilova A, Höppner A, Wolff CC, Saigo M, Trajtenberg F, Zhang T, Buschiazzo A, Nagel-Steger L, Drincovich MF, Lercher MJ, Maurino VG. Molecular adaptations of NADP-malic enzyme for its function in C 4 photosynthesis in grasses. NATURE PLANTS 2019; 5:755-765. [PMID: 31235877 DOI: 10.1038/s41477-019-0451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
In C4 grasses of agronomical interest, malate shuttled into the bundle sheath cells is decarboxylated mainly by nicotinamide adenine dinucleotide phosphate (NADP)-malic enzyme (C4-NADP-ME). The activity of C4-NADP-ME was optimized by natural selection to efficiently deliver CO2 to Rubisco. During its evolution from a plastidic non-photosynthetic NADP-ME, C4-NADP-ME acquired increased catalytic efficiency, tetrameric structure and pH-dependent inhibition by its substrate malate. Here, we identified specific amino acids important for these C4 adaptions based on strict differential conservation of amino acids, combined with solving the crystal structures of maize and sorghum C4-NADP-ME. Site-directed mutagenesis and structural analyses show that Q503, L544 and E339 are involved in catalytic efficiency; E339 confers pH-dependent regulation by malate, F140 is critical for the stabilization of the oligomeric structure and the N-terminal region is involved in tetramerization. Together, the identified molecular adaptations form the basis for the efficient catalysis and regulation of one of the central biochemical steps in C4 metabolism.
Collapse
Affiliation(s)
- Clarisa E Alvarez
- Centro de Estudios Fotosinteticos y Bioquimicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, University of Rosario, Rosario, Argentina
| | - Anastasiia Bovdilova
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Astrid Höppner
- Center for Structural Studies, Hreinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian-Claus Wolff
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Mariana Saigo
- Centro de Estudios Fotosinteticos y Bioquimicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, University of Rosario, Rosario, Argentina
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Tao Zhang
- Institut für Physikalische Biologie, Heinrich Heine University, Düsseldorf, Germany
- Institut of Complex Systems, Structural Biochemistry (ICS-6), Jülich, Germany
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Integrative Microbiology of Zoonotic Agents, Department of Microbiology, Institut Pasteur, Paris, France
| | - Luitgard Nagel-Steger
- Institut für Physikalische Biologie, Heinrich Heine University, Düsseldorf, Germany
- Institut of Complex Systems, Structural Biochemistry (ICS-6), Jülich, Germany
| | - Maria F Drincovich
- Centro de Estudios Fotosinteticos y Bioquimicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, University of Rosario, Rosario, Argentina
| | - Martin J Lercher
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
- Institute for Computer Science and Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Veronica G Maurino
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany.
| |
Collapse
|
32
|
Bulychev AA, Rybina AA. Long-range interactions of Chara chloroplasts are sensitive to plasma-membrane H + flows and comprise separate photo- and dark-operated pathways. PROTOPLASMA 2018; 255:1621-1634. [PMID: 29704048 DOI: 10.1007/s00709-018-1255-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Local illumination of the characean internode with a 30-s pulse of white light was found to induce the delayed transient increase of modulated chlorophyll fluorescence in shaded cell parts, provided the analyzed region is located downstream in the cytoplasmic flow at millimeter distances from the light spot. The fluorescence response to photostimulation of a remote cell region indicates that the metabolites produced by source chloroplasts in an illuminated region are carried downstream with the cytoplasmic flow, thus ensuring long-distance communications between anchored plastids in giant internodal cells. The properties of individual stages of metabolite signaling are not yet well known. We show here that the export of assimilates and/or reducing equivalents from the source chloroplasts into the flowing cytoplasm is largely insensitive to the direction of plasma-membrane H+ flows, whereas the events in sink regions where these metabolites are delivered to the acceptor chloroplasts under dim light are controlled by H+ fluxes across the plasma membrane. The fluorescence response to local illumination of remote cell regions was best pronounced under weak background light and was also observed in a modified form within 1-2 min after the transfer of cell to darkness. The fluorescence transients in darkened cells were suppressed by antimycin A, an inhibitor of electron transfer from ferredoxin to plastoquinone, whereas the fluorescence response under background light was insensitive to this inhibitor. We conclude that the accumulation of reduced metabolites in the stroma leads to the reduction of photosystem II primary quinone acceptor (QA) via two separate (photochemical and non-photochemical) pathways.
Collapse
Affiliation(s)
- Alexander A Bulychev
- Department of Biophysics, Faculty of Biology, Moscow State University, Moscow, Russia, 119991.
| | - Anna A Rybina
- Department of Biophysics, Faculty of Biology, Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
33
|
Küken A, Sommer F, Yaneva-Roder L, Mackinder LCM, Höhne M, Geimer S, Jonikas MC, Schroda M, Stitt M, Nikoloski Z, Mettler-Altmann T. Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts. eLife 2018; 7:e37960. [PMID: 30306890 PMCID: PMC6235561 DOI: 10.7554/elife.37960] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/27/2018] [Indexed: 11/16/2022] Open
Abstract
Cells and organelles are not homogeneous but include microcompartments that alter the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM-suppressed cells. We then employed a computational strategy to estimate how fluxes through the Calvin-Benson cycle are compartmented between the pyrenoid and the stroma. Our model predicts that ribulose-1,5-bisphosphate (RuBP), the substrate of Rubisco, and 3-phosphoglycerate (3PGA), its product, diffuse in and out of the pyrenoid, respectively, with higher fluxes in CCM-induced cells. It also indicates that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Our computational approach represents a stepping stone to understanding microcompartmentalized CCM in other organisms.
Collapse
Affiliation(s)
- Anika Küken
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
- Bioinformatics Group, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Frederik Sommer
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| | | | - Luke CM Mackinder
- Department of Plant BiologyCarnegie Institution for ScienceStanfordUnited States
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| | - Stefan Geimer
- Institute of Cell BiologyUniversity of BayreuthBayreuthGermany
| | - Martin C Jonikas
- Department of Plant BiologyCarnegie Institution for ScienceStanfordUnited States
| | - Michael Schroda
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
- Bioinformatics Group, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Tabea Mettler-Altmann
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
- Cluster of Excellence on Plant SciencesHeinrich-Heine UniversityDüsseldorfGermany
- Institute of Plant BiochemistryHeinrich-Heine UniversityDüsseldorfGermany
| |
Collapse
|
34
|
Cai B, Li Q, Liu F, Bi H, Ai X. Decreasing fructose-1,6-bisphosphate aldolase activity reduces plant growth and tolerance to chilling stress in tomato seedlings. PHYSIOLOGIA PLANTARUM 2018; 163:247-258. [PMID: 29230823 DOI: 10.1111/ppl.12682] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/23/2017] [Accepted: 12/07/2017] [Indexed: 05/23/2023]
Abstract
In northern China, low temperature is the most common abiotic stresses for tomato plants cultivated in solar-greenhouse in winter. We recently found that the expression and enzyme activity of fructose-1,6-bisphosphate aldolases (FBAs) in tomato, which are important enzymes in the Calvin-Benson cycle (CBC), were significantly altered in tomato seedlings subjected to heat/cold stresses. In order to study the role of FBA in photosynthesis and in regulating cold stress responses of tomato seedlings (Solanum lycopersicum), we transformed a tomato inbred line (FF) with RNA interference (RNAi) vector containing SlFBA7 reverse tandem repeat sequence. We found that the decreased SlFBA7 expression led to the decreased activities of FBA, as well as the activities of other main enzymes in the CBC. We also noticed a decrease in net photosynthetic rate, ribulose-1,5-bisphosphate and soluble sugar content, stem diameter, dry weight and seed size in RNAi SlFBA7 plants compared to wild-type. However, there are no changes in starch contents in the RNAi transgenic plants. RNAi SlFBA7 plants showed a decreased germination rate, and an increased levels of superoxide anions (O2·- ) and hydrogen peroxide (H2 O2 ) under low temperature (8/5°C) and low-light intensity (100 μmol m-2 s-1 photon flux density) growth conditions. These findings demonstrated the important role of SlFBA7 in regulating growth and chilling tolerance of tomato seedlings, and suggested that the catalytic activity of FBA in the CBC is sensitive to temperature.
Collapse
Affiliation(s)
- Bingbing Cai
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qiang Li
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Fengjiao Liu
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Huangai Bi
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xizhen Ai
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
35
|
Sukhova E, Mudrilov M, Vodeneev V, Sukhov V. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea. PHOTOSYNTHESIS RESEARCH 2018; 136:215-228. [PMID: 29086893 DOI: 10.1007/s11120-017-0460-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/23/2017] [Indexed: 05/17/2023]
Abstract
Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO2 assimilation by the Calvin-Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Maxim Mudrilov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950.
| |
Collapse
|
36
|
Shameer S, Baghalian K, Cheung CYM, Ratcliffe RG, Sweetlove LJ. Computational analysis of the productivity potential of CAM. NATURE PLANTS 2018; 4:165-171. [PMID: 29483685 DOI: 10.1038/s41477-018-0112-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/18/2018] [Indexed: 05/24/2023]
Abstract
There is considerable interest in transferring crassulacean acid metabolism (CAM) to C3 crops to improve their water-use efficiency. However, because the CAM biochemical cycle is energetically costly, it is unclear what impact this would have on yield. Using diel flux balance analysis of the CAM and C3 leaf metabolic networks, we show that energy consumption is three-fold higher in CAM at night. However, this additional cost of CAM can be entirely offset by the carbon-concentrating effect of malate decarboxylation behind closed stomata during the day. Depending on the resultant rates of the carboxylase and oxygenase activities of rubisco, the productivity of the PEPCK-CAM subtype is 74-100% of the C3 network. We conclude that CAM does not impose a significant productivity penalty and that engineering CAM into C3 crops is likely to lead to a major increase in water-use efficiency without substantially affecting yield.
Collapse
Affiliation(s)
- Sanu Shameer
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | | | | | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
37
|
Structural basis for the magnesium-dependent activation of transketolase from Chlamydomonas reinhardtii. Biochim Biophys Acta Gen Subj 2017; 1861:2132-2145. [DOI: 10.1016/j.bbagen.2017.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 01/18/2023]
|
38
|
Hill BL, Figueroa CM, Asencion Diez MD, Lunn JE, Iglesias AA, Ballicora MA. On the stability of nucleoside diphosphate glucose metabolites: implications for studies of plant carbohydrate metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3331-3337. [PMID: 28859372 PMCID: PMC5853320 DOI: 10.1093/jxb/erx190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/25/2017] [Indexed: 05/25/2023]
Abstract
Nucleoside diphosphate sugars (NDP-sugars) are the substrates for biosynthesis of oligo- and polysaccharides, such as starch and cellulose, and are also required for biosynthesis of nucleotides, ascorbic acid, several cofactors, glycoproteins and many secondary metabolites. A controversial study that questions the generally accepted pathway of ADP-glucose and starch synthesis in plants is based, in part, on claims that NDP-sugars are unstable at alkaline pH in the presence of Mg2+ and that this instability can lead to unreliable results from in vitro assays of enzyme activities. If substantiated, this claim would have far-reaching implications for many published studies that report on the activities of NDP-sugar metabolizing enzymes. To resolve this controversy, we investigated the stability of UDP- and ADP-glucose using biophysical, namely nuclear magnetic resonance (NMR), and highly specific enzymatic methods. Results obtained with both techniques indicate that NDP-sugars are not as unstable as previously suggested. Moreover, their calculated in vitro half-lives are significantly higher than estimates of their in planta turnover times. This indicates that the physico-chemical stability of NDP-sugars has little impact on their concentrations in vivo and that NDP-sugar levels are determined primarily by the relative rates of enzymatic synthesis and consumption. Our results refute one of the main arguments for the controversial pathway of starch synthesis from imported ADP-glucose produced by sucrose synthase in the cytosol.
Collapse
Affiliation(s)
- Benjamin L Hill
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, IL, USA
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Matías D Asencion Diez
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam-Golm, Germany
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, IL, USA
| |
Collapse
|
39
|
Bose J, Munns R, Shabala S, Gilliham M, Pogson B, Tyerman SD. Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3129-3143. [PMID: 28472512 DOI: 10.1093/jxb/erx142] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salt stress impacts multiple aspects of plant metabolism and physiology. For instance it inhibits photosynthesis through stomatal limitation, causes excessive accumulation of sodium and chloride in chloroplasts, and disturbs chloroplast potassium homeostasis. Most research on salt stress has focused primarily on cytosolic ion homeostasis with few studies of how salt stress affects chloroplast ion homeostasis. This review asks the question whether membrane-transport processes and ionic relations are differentially regulated between glycophyte and halophyte chloroplasts and whether this contributes to the superior salt tolerance of halophytes. The available literature indicates that halophytes can overcome stomatal limitation by switching to CO2 concentrating mechanisms and increasing the number of chloroplasts per cell under saline conditions. Furthermore, salt entry into the chloroplast stroma may be critical for grana formation and photosystem II activity in halophytes but not in glycophytes. Salt also inhibits some stromal enzymes (e.g. fructose-1,6-bisphosphatase) to a lesser extent in halophyte species. Halophytes accumulate more chloride in chloroplasts than glycophytes and appear to use sodium in functional roles. We propose the molecular identities of candidate transporters that move sodium, chloride and potassium across chloroplast membranes and discuss how their operation may regulate photochemistry and photosystem I and II activity in chloroplasts.
Collapse
Affiliation(s)
- Jayakumar Bose
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Rana Munns
- Australian Research Council Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Barry Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Stephen D Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
40
|
Ajigboye OO, Lu C, Murchie EH, Schlatter C, Swart G, Ray RV. Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:49-61. [PMID: 28364804 DOI: 10.1016/j.pestbp.2016.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 06/07/2023]
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides have been shown to increase PSII efficiency and photosynthesis under drought stress in the absence of disease to enhance the biomass and yield of winter wheat. However, the molecular mechanism of improved photosynthetic efficiency observed in SDHI-treated wheat has not been previously elucidated. Here we used a combination of chlorophyll fluorescence, gas exchange and gene expression analysis, to aid our understanding of the basis of the physiological responses of wheat seedlings under drought conditions to sedaxane, a novel SDHI seed treatment. We show that sedaxane increased the efficiency of PSII photochemistry, reduced non-photochemical quenching and improved the photosynthesis and biomass in wheat correlating with systemic changes in the expression of genes involved in defense, chlorophyll synthesis and cell wall modification. We applied a coexpression network-based approach using differentially expressed genes of leaves, roots and pregerminated seeds from our wheat array datasets to identify the most important hub genes, with top ranked correlation (higher gene association value and z-score) involved in cell wall expansion and strengthening, wax and pigment biosynthesis and defense. The results indicate that sedaxane confers tolerant responses of wheat plants grown under drought conditions by redirecting metabolites from defense/stress responses towards growth and adaptive development.
Collapse
Affiliation(s)
- Olubukola O Ajigboye
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Chungui Lu
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | | | - Gina Swart
- Syngenta Crop Protection, Schwarzwaldallee 215, 4058 Basel, Switzerland
| | - Rumiana V Ray
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| |
Collapse
|
41
|
Abernathy MH, Yu J, Ma F, Liberton M, Ungerer J, Hollinshead WD, Gopalakrishnan S, He L, Maranas CD, Pakrasi HB, Allen DK, Tang YJ. Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:273. [PMID: 29177008 PMCID: PMC5691832 DOI: 10.1186/s13068-017-0958-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/06/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Synechococcus elongatus UTEX 2973 is the fastest growing cyanobacterium characterized to date. Its genome was found to be 99.8% identical to S. elongatus 7942 yet it grows twice as fast. Current genome-to-phenome mapping is still poorly performed for non-model organisms. Even for species with identical genomes, cell phenotypes can be strikingly different. To understand Synechococcus 2973's fast-growth phenotype and its metabolic features advantageous to photo-biorefineries, 13C isotopically nonstationary metabolic flux analysis (INST-MFA), biomass compositional analysis, gene knockouts, and metabolite profiling were performed on both strains under various growth conditions. RESULTS The Synechococcus 2973 flux maps show substantial carbon flow through the Calvin cycle, glycolysis, photorespiration and pyruvate kinase, but minimal flux through the malic enzyme and oxidative pentose phosphate pathways under high light/CO2 conditions. During fast growth, its pool sizes of key metabolites in central pathways were lower than suboptimal growth. Synechococcus 2973 demonstrated similar flux ratios to Synechococcus 7942 (under fast growth conditions), but exhibited greater carbon assimilation, higher NADPH concentrations, higher energy charge (relative ATP ratio over ADP and AMP), less accumulation of glycogen, and potentially metabolite channeling. Furthermore, Synechococcus 2973 has very limited flux through the TCA pathway with small pool sizes of acetyl-CoA/TCA intermediates under all growth conditions. CONCLUSIONS This study employed flux analysis to investigate phenotypic heterogeneity among two cyanobacterial strains with near-identical genome background. The flux/metabolite profiling, biomass composition analysis, and genetic modification results elucidate a highly effective metabolic topology for CO2 assimilatory and biosynthesis in Synechococcus 2973. Comparisons across multiple Synechococcus strains indicate faster metabolism is also driven by proportional increases in both photosynthesis and key central pathway fluxes. Moreover, the flux distribution in Synechococcus 2973 supports the use of its strong sugar phosphate pathways for optimal bio-productions. The integrated methodologies in this study can be applied for characterizing non-model microbial metabolism.
Collapse
Affiliation(s)
- Mary H. Abernathy
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130 USA
| | - Jingjie Yu
- Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Fangfang Ma
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO 63130 USA
| | - Justin Ungerer
- Department of Biology, Washington University, St. Louis, MO 63130 USA
| | - Whitney D. Hollinshead
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130 USA
| | - Saratram Gopalakrishnan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Lian He
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130 USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Himadri B. Pakrasi
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130 USA
- Department of Biology, Washington University, St. Louis, MO 63130 USA
| | - Doug K. Allen
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- United States Department of Agriculture, Agricultural Research Service, St. Louis, MO 63132 USA
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130 USA
| |
Collapse
|
42
|
Liao KL, Jones RD, McCarter P, Tunc-Ozdemir M, Draper JA, Elston TC, Kramer D, Jones AM. A shadow detector for photosynthesis efficiency. J Theor Biol 2016; 414:231-244. [PMID: 27923735 DOI: 10.1016/j.jtbi.2016.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/06/2016] [Accepted: 11/29/2016] [Indexed: 12/23/2022]
Abstract
Plants tolerate large variations in the intensity of the light environment by controlling the efficiency of solar to chemical energy conversion. To do this, plants have a mechanism to detect the intensity, duration, and change in light as they experience moving shadows, flickering light, and cloud cover. Sugars are the primary products of CO2 fixation, a metabolic pathway that is rate limited by this solar energy conversion. We propose that sugar is a signal encoding information about the intensity, duration and change in the light environment. We previously showed that the Arabidopsis heterotrimeric G protein complex including its receptor-like Regulator of G signaling protein, AtRGS1, detects both the concentration and the exposure time of sugars (Fu et al., 2014. Cell 156: 1084-1095). This unique property, designated dose-duration reciprocity, is a behavior that emerges from the system architecture / system motif. Here, we show that another property of the signaling system is to detect large changes in light while at the same time, filtering types of fluctuation in light that do not affect photosynthesis efficiency. When AtRGS1 is genetically ablated, photosynthesis efficiency is reduced in a changing- but not a constant-light environment. Mathematical modeling revealed that information about changes in the light environment is encoded in the amount of free AtRGS1 that becomes compartmentalized following stimulation. We propose that this property determines when to adjust photosynthetic efficiency in an environment where light intensity changes abruptly caused by moving shadows on top of a background of light changing gradually from sun rise to sun set and fluctuating light such as that caused by fluttering leaves.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Roger D Jones
- Center for Complex Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Patrick McCarter
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James A Draper
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - David Kramer
- Plant Research Laboratory Michigan State University, East Lansing, MI, USA
| | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
43
|
Sukhov V. Electrical signals as mechanism of photosynthesis regulation in plants. PHOTOSYNTHESIS RESEARCH 2016; 130:373-387. [PMID: 27154573 DOI: 10.1007/s11120-016-0270-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/26/2016] [Indexed: 05/24/2023]
Abstract
This review summarizes current works concerning the effects of electrical signals (ESs) on photosynthesis, the mechanisms of the effects, and its physiological role in plants. Local irritations of plants induce various photosynthetic responses in intact leaves, including fast and long-term inactivation of photosynthesis, and its activation. Irritation-induced ESs, including action potential, variation potential, and system potential, probably causes the photosynthetic responses in intact leaves. Probable mechanisms of induction of fast inactivation of photosynthesis are associated with Ca2+- and (or) H+-influxes during ESs generation; long-term inactivation of photosynthesis might be caused by Ca2+- and (or) H+-influxes, production of abscisic and jasmonic acids, and inactivation of phloem H+-sucrose symporters. It is probable that subsequent development of inactivation of photosynthesis is mainly associated with decreased CO2 influx and inactivation of the photosynthetic dark reactions, which induces decreased photochemical quantum yields of photosystems I and II and increased non-photochemical quenching of photosystem II fluorescence and cyclic electron flow around photosystem I. However, other pathways of the ESs influence on the photosynthetic light reactions are also possible. One of them might be associated with ES-connected acidification of chloroplast stroma inducing ferredoxin-NADP+ reductase accumulation at the thylakoids in Tic62 and TROL complexes. Mechanisms of ES-induced activation of photosynthesis require further investigation. The probable ultimate effect of ES-induced photosynthetic responses in plant life is the increased photosynthetic machinery resistance to stressors, including high and low temperatures, and enhanced whole-plant resistance to environmental factors at least during 1 h after irritation.
Collapse
Affiliation(s)
- Vladimir Sukhov
- Department of Biophysics, N. I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, Nizhny Novgorod, Russia, 603950.
| |
Collapse
|
44
|
Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production. Sci Rep 2016; 6:35115. [PMID: 27725774 PMCID: PMC5057122 DOI: 10.1038/srep35115] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/26/2016] [Indexed: 11/26/2022] Open
Abstract
Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD+-dependent aminoaldehyde dehydrogenase (AMADH). Here, two AMADH homologs were chosen (AtALDH10A8 and AtALDH10A9) as candidates for encoding 4-aminobutanal dehydrogenase activity for GABA synthesis. The two genes were cloned and soluble recombinant proteins were produced in Escherichia coli. The pH optima for activity and catalytic efficiency of recombinant AtALDH10A8 with 3-aminopropanal as substrate was 10.5 and 8.5, respectively, whereas the optima for AtALDH10A9 were approximately 9.5. Maximal activity and catalytic efficiency were obtained with NAD+ and 3-aminopropanal, followed by 4-aminobutanal; negligible activity was obtained with betaine aldehyde. NAD+ reduction was accompanied by the production of GABA and β-alanine, respectively, with 4-aminobutanal and 3-aminopropanal as substrates. Transient co-expression systems using Arabidopsis cell suspension protoplasts or onion epidermal cells and several organelle markers revealed that AtALDH10A9 was peroxisomal, but AtALDH10A8 was cytosolic, although the N-terminal 140 amino acid sequence of AtALDH10A8 localized to the plastid. Root growth of single loss-of-function mutants was more sensitive to salinity than wild-type plants, and this was accompanied by reduced GABA accumulation.
Collapse
|
45
|
pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism. Proc Natl Acad Sci U S A 2016; 113:E5354-62. [PMID: 27551079 DOI: 10.1073/pnas.1525145113] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Many carbon-fixing bacteria rely on a CO2 concentrating mechanism (CCM) to elevate the CO2 concentration around the carboxylating enzyme ribulose bisphosphate carboxylase/oxygenase (RuBisCO). The CCM is postulated to simultaneously enhance the rate of carboxylation and minimize oxygenation, a competitive reaction with O2 also catalyzed by RuBisCO. To achieve this effect, the CCM combines two features: active transport of inorganic carbon into the cell and colocalization of carbonic anhydrase and RuBisCO inside proteinaceous microcompartments called carboxysomes. Understanding the significance of the various CCM components requires reconciling biochemical intuition with a quantitative description of the system. To this end, we have developed a mathematical model of the CCM to analyze its energetic costs and the inherent intertwining of physiology and pH. We find that intracellular pH greatly affects the cost of inorganic carbon accumulation. At low pH the inorganic carbon pool contains more of the highly cell-permeable H2CO3, necessitating a substantial expenditure of energy on transport to maintain internal inorganic carbon levels. An intracellular pH ≈8 reduces leakage, making the CCM significantly more energetically efficient. This pH prediction coincides well with our measurement of intracellular pH in a model cyanobacterium. We also demonstrate that CO2 retention in the carboxysome is necessary, whereas selective uptake of HCO3 (-) into the carboxysome would not appreciably enhance energetic efficiency. Altogether, integration of pH produces a model that is quantitatively consistent with cyanobacterial physiology, emphasizing that pH cannot be neglected when describing biological systems interacting with inorganic carbon pools.
Collapse
|
46
|
Bautista-Chamizo E, De Orte MR, DelValls TÁ, Riba I. Simulating CO₂ leakages from CCS to determine Zn toxicity using the marine microalgae Pleurochrysis roscoffensis. CHEMOSPHERE 2016; 144:955-965. [PMID: 26432538 DOI: 10.1016/j.chemosphere.2015.09.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Due to the current climate change and ocean acidification, a new technology for CO2 mitigation has been proposed, the Carbon dioxide Capture and Storage (CCS). However, there is an ecological risk associated with potential CO2 leakages from the sub-seabed storages sites. To evaluate the effects related to CO2 leakages, laboratory-scales experiments were performed using the marine microalgae Pleurochrysis roscoffensis. Five Zn concentrations were tested at different pHs to study Zn toxicity under acidified conditions. Seawater was collected and submitted to acidification by means of CO2 injection and by HCl addition. Results showed differences between both acidification techniques: while microalgae growth was enhanced by CO2 supply, reaching the optimal growth at pH 6.5 and full inhibition at pH 5.5, HCl acidification growth was inhibited at pH 6.5. Although small concentrations of Zn were positive for P. roscoffensis growth, Zn toxicity increased at lower pHs, and more severely on samples acidified with HCl. The conclusions obtained in this work are useful to address the potential effects on the marine ecosystem related to changes in metal bioavailability during CO2 leakages scenarios.
Collapse
Affiliation(s)
- Esther Bautista-Chamizo
- Departamento de Química-Física, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, UNESCO/UNITWIN Wicop, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain.
| | - Manoela Romanó De Orte
- Departamento de Ciências do Mar, Campus Baixada Santista, Universidade Federal de Sãao Paulo, Av. Alm. Sandanha da Gama, 89-Ponta da Praia, CEP 11030-400 Santos, SP, Brazil.
| | - Tomás Ángel DelValls
- Departamento de Química-Física, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, UNESCO/UNITWIN Wicop, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain.
| | - Inmaculada Riba
- Departamento de Química-Física, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, UNESCO/UNITWIN Wicop, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
47
|
Höhner R, Aboukila A, Kunz HH, Venema K. Proton Gradients and Proton-Dependent Transport Processes in the Chloroplast. FRONTIERS IN PLANT SCIENCE 2016; 7:218. [PMID: 26973667 PMCID: PMC4770017 DOI: 10.3389/fpls.2016.00218] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/08/2016] [Indexed: 05/04/2023]
Abstract
Proton gradients are fundamental to chloroplast function. Across thylakoid membranes, the light induced -proton gradient is essential for ATP synthesis. As a result of proton pumping into the thylakoid lumen, an alkaline stromal pH develops, which is required for full activation of pH-dependent Calvin Benson cycle enzymes. This implies that a pH gradient between the cytosol (pH 7) and the stroma (pH 8) is established upon illumination. To maintain this pH gradient chloroplasts actively extrude protons. More than 30 years ago it was already established that these proton fluxes are electrically counterbalanced by Mg(2+), K(+), or Cl(-) fluxes, but only recently the first transport systems that regulate the pH gradient were identified. Notably several (Na(+),K(+))/H(+) antiporter systems where identified, that play a role in pH gradient regulation, ion homeostasis, osmoregulation, or coupling of secondary active transport. The established pH gradients are important to drive uptake of essential ions and solutes, but not many transporters involved have been identified to date. In this mini review we summarize the current status in the field and the open questions that need to be addressed in order to understand how pH gradients are maintained, how this is interconnected with other transport processes and what this means for chloroplast function.
Collapse
Affiliation(s)
- Ricarda Höhner
- Plant Physiology, School of Biological Sciences, Washington State University, PullmanWA, USA
| | - Ali Aboukila
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estacion Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Hans-Henning Kunz
- Plant Physiology, School of Biological Sciences, Washington State University, PullmanWA, USA
- *Correspondence: Hans-Henning Kunz, Kees Venema,
| | - Kees Venema
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estacion Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Hans-Henning Kunz, Kees Venema,
| |
Collapse
|
48
|
Conway JR, Beaulieu AL, Beaulieu NL, Mazer SJ, Keller AA. Environmental Stresses Increase Photosynthetic Disruption by Metal Oxide Nanomaterials in a Soil-Grown Plant. ACS NANO 2015; 9:11737-11749. [PMID: 26505090 DOI: 10.1021/acsnano.5b03091] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite an increasing number of studies over the past decade examining the interactions between plants and engineered nanomaterials (ENMs), very few have investigated the influence of environmental conditions on ENM uptake and toxicity, particularly throughout the entire plant life cycle. In this study, soil-grown herbaceous annual plants (Clarkia unguiculata) were exposed to TiO2, CeO2, or Cu(OH)2 ENMs at different concentrations under distinct light and nutrient levels for 8 weeks. Biweekly fluorescence and gas exchange measurements were recorded, and tissue samples from mature plants were analyzed for metal content. During peak growth, exposure to TiO2 and CeO2 decreased photosynthetic rate and CO2 assimilation efficiency of plants grown under high light and nutrient conditions, possibly by disrupting energy transfer from photosystem II (PSII) to the Calvin cycle. Exposure Cu(OH)2 particles also disrupted photosynthesis but only in plants grown under the most stressful conditions (high light, limited nutrient) likely by preventing the oxidation of a primary PSII reaction center. TiO2 and CeO2 followed similar uptake and distribution patterns with concentrations being highest in roots followed by leaves then stems, while Cu(OH)2 was present at highest concentrations in leaves, likely as ionic Cu. ENM accumulation was highly dependent on both light and nutrient levels and a predictive regression model was developed from these data. These results show that abiotic conditions play an important role in mediating the uptake and physiological impacts of ENMs in terrestrial plants.
Collapse
Affiliation(s)
- Jon R Conway
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN) , Los Angeles, California 90095-7227, United States
| | - Arielle L Beaulieu
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN) , Los Angeles, California 90095-7227, United States
- Department of Environmental Studies, University of California , Santa Barbara, California 93106-5131, United States
| | - Nicole L Beaulieu
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN) , Los Angeles, California 90095-7227, United States
- Department of Environmental Studies, University of California , Santa Barbara, California 93106-5131, United States
| | - Susan J Mazer
- Department of Ecology, Evolution, and Marine Biology, University of California , Santa Barbara, California 93106-5131, United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN) , Los Angeles, California 90095-7227, United States
| |
Collapse
|
49
|
Pottosin I, Dobrovinskaya O. Ion Channels in Native Chloroplast Membranes: Challenges and Potential for Direct Patch-Clamp Studies. Front Physiol 2015; 6:396. [PMID: 26733887 PMCID: PMC4686732 DOI: 10.3389/fphys.2015.00396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022] Open
Abstract
Photosynthesis without any doubt depends on the activity of the chloroplast ion channels. The thylakoid ion channels participate in the fine partitioning of the light-generated proton-motive force (p.m.f.). By regulating, therefore, luminal pH, they affect the linear electron flow and non-photochemical quenching. Stromal ion homeostasis and signaling, on the other hand, depend on the activity of both thylakoid and envelope ion channels. Experimentally, intact chloroplasts and swollen thylakoids were proven to be suitable for direct measurements of the ion channels activity via conventional patch-clamp technique; yet, such studies became infrequent, although their potential is far from being exhausted. In this paper we wish to summarize existing challenges for direct patch-clamping of native chloroplast membranes as well as present available results on the activity of thylakoid Cl− (ClC?) and divalent cation-permeable channels, along with their tentative roles in the p.m.f. partitioning, volume regulation, and stromal Ca2+ and Mg2+ dynamics. Patch-clamping of the intact envelope revealed both large-conductance porin-like channels, likely located in the outer envelope membrane and smaller conductance channels, more compatible with the inner envelope location. Possible equivalent model for the sandwich-like arrangement of the two envelope membranes within the patch electrode will be discussed, along with peculiar properties of the fast-activated cation channel in the context of the stromal pH control.
Collapse
Affiliation(s)
- Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, Mexico
| | - Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, Mexico
| |
Collapse
|
50
|
Antal TK, Krendeleva TE, Tyystjärvi E. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production. PHOTOSYNTHESIS RESEARCH 2015; 125:357-81. [PMID: 25986411 DOI: 10.1007/s11120-015-0157-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/11/2015] [Indexed: 05/10/2023]
Abstract
A complex regulatory network in the chloroplast of green algae provides an efficient tool for maintenance of energy and redox balance in the cell under aerobic and anaerobic conditions. In this review, we discuss the structural and functional organizations of electron transport pathways in the chloroplast, and regulation of photosynthesis in the green microalga Chlamydomonas reinhardtii. The focus is on the regulatory mechanisms induced in response to nutrient deficiency stress and anoxia and especially on the role of a hydrogenase-mediated reaction in adaptation to highly reducing conditions and ATP deficiency in the cell.
Collapse
Affiliation(s)
- Taras K Antal
- Faculty of Biology, Moscow State University, Vorobyevi Gory, Moscow, 119992, Russia,
| | | | | |
Collapse
|