1
|
Smirnova I, Wu F, Brzezinski P. Stimulation of cytochrome c oxidase activity by detergents. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149509. [PMID: 39251013 DOI: 10.1016/j.bbabio.2024.149509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Cytochrome c oxidase (CytcO) is an integral membrane protein, which catalyzes four-electron reduction of oxygen linked to proton uptake and pumping. Amphipathic molecules bind in sites near the so-called K proton pathway of CytcO to reversibly modulate its activity. However, purification of CytcO for mechanistic studies typically involves the use of detergents, which may interfere with binding of these regulatory molecules. Here, we investigated the CytcO enzymatic activity as well as intramolecular electron transfer linked to proton transfer upon addition of different detergents to bovine heart mitoplasts. The CytcO activity increased upon addition of alkyl glucosides (DDM and DM) and the steroid analog GDN. The maximum stimulating effect was observed for DDM and DM, and the half-stimulating effect correlated with their CMC values. With GDN the stimulation effect was smaller and occurred at a concentration higher than CMC. A kinetic analysis suggests that the stimulation of activity is due to removal of a ligand bound near the K proton pathway, which indicates that in the native membrane this site is occupied to yield a lower than maximal possible CytcO activity. Possible functional consequences are discussed.
Collapse
Affiliation(s)
- Irina Smirnova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fei Wu
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
2
|
Deutschmann S, Täuber ST, Rimle L, Biner O, Schori M, Stanic AM, von Ballmoos C. Modulating Liposome Surface Charge for Maximized ATP Regeneration in Synthetic Nanovesicles. ACS Synth Biol 2024; 13:4061-4073. [PMID: 39592139 DOI: 10.1021/acssynbio.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
In vitro reconstructed minimal respiratory chains are powerful tools to investigate molecular interactions between the different enzyme components and how they are influenced by their environment. One such system is the coreconstitution of the terminal cytochrome bo3 oxidase and the ATP synthase from Escherichia coli into liposomes, where the ATP synthase activity is driven through a proton motive force (pmf) created by the bo3 oxidase. The proton pumping activity of the bo3 oxidase is initiated using the artificial electron mediator short-chain ubiquinone and electron source DTT. Here, we extend this system and use either complex II or NDH-2 and succinate or NADH, respectively, as electron entry points employing the natural long-chain ubiquinone Q8 or Q10. By testing different lipid compositions, we identify that negatively charged lipids are a prerequisite to allow effective NDH-2 activity. Simultaneously, negatively charged lipids decrease the overall pmf formation and ATP synthesis rates. We find that orientation of the bo3 oxidase in liposomal membranes is governed by electrostatic interactions between enzyme and membrane surface, where positively charged lipids yield the desired bo3 oxidase orientation but hinder reduction of the quinone pool by NDH-2. To overcome this conundrum, we exploit ionizable lipids, which are either neutral or positively charged depending on the pH value. We first coreconstituted bo3 oxidase and ATP synthase into temporarily positively charged liposomes, followed by fusion with negatively charged empty liposomes at low pH. An increase of the pH to physiological values renders these proteoliposomes overall negatively charged, making them compatible with quinone reduction via NDH-2. Using this strategy, we not only succeeded in orienting the bo3 oxidase essentially unidirectionally into liposomes but also found up to 3-fold increased ATP synthesis rates through the usage of natural, long-chain quinones in combination with the substrate NADH compared to the synthetic electron donor/mediator pair.
Collapse
Affiliation(s)
- Sabina Deutschmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Stefan Theodore Täuber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Lukas Rimle
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Olivier Biner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Martin Schori
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Ana-Marija Stanic
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
3
|
Coronado S, Herrera J, Pino MG, Martín S, Ballesteros-Rueda L, Cea P. Advancements in Engineering Planar Model Cell Membranes: Current Techniques, Applications, and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1489. [PMID: 39330645 PMCID: PMC11434481 DOI: 10.3390/nano14181489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Cell membranes are crucial elements in living organisms, serving as protective barriers and providing structural support for cells. They regulate numerous exchange and communication processes between cells and their environment, including interactions with other cells, tissues, ions, xenobiotics, and drugs. However, the complexity and heterogeneity of cell membranes-comprising two asymmetric layers with varying compositions across different cell types and states (e.g., healthy vs. diseased)-along with the challenges of manipulating real cell membranes represent significant obstacles for in vivo studies. To address these challenges, researchers have developed various methodologies to create model cell membranes or membrane fragments, including mono- or bilayers organized in planar systems. These models facilitate fundamental studies on membrane component interactions as well as the interactions of membrane components with external agents, such as drugs, nanoparticles (NPs), or biomarkers. The applications of model cell membranes have extended beyond basic research, encompassing areas such as biosensing and nanoparticle camouflage to evade immune detection. In this review, we highlight advancements in the engineering of planar model cell membranes, focusing on the nanoarchitectonic tools used for their fabrication. We also discuss approaches for incorporating challenging materials, such as proteins and enzymes, into these models. Finally, we present our view on future perspectives in the field of planar model cell membranes.
Collapse
Affiliation(s)
- Sara Coronado
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Johan Herrera
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - María Graciela Pino
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Santiago Martín
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luz Ballesteros-Rueda
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Cater RJ, Mukherjee D, Gil-Iturbe E, Erramilli SK, Chen T, Koo K, Santander N, Reckers A, Kloss B, Gawda T, Choy BC, Zhang Z, Katewa A, Larpthaveesarp A, Huang EJ, Mooney SWJ, Clarke OB, Yee SW, Giacomini KM, Kossiakoff AA, Quick M, Arnold T, Mancia F. Structural and molecular basis of choline uptake into the brain by FLVCR2. Nature 2024; 629:704-709. [PMID: 38693257 PMCID: PMC11168207 DOI: 10.1038/s41586-024-07326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/15/2024] [Indexed: 05/03/2024]
Abstract
Choline is an essential nutrient that the human body needs in vast quantities for cell membrane synthesis, epigenetic modification and neurotransmission. The brain has a particularly high demand for choline, but how it enters the brain remains unknown1-3. The major facilitator superfamily transporter FLVCR1 (also known as MFSD7B or SLC49A1) was recently determined to be a choline transporter but is not highly expressed at the blood-brain barrier, whereas the related protein FLVCR2 (also known as MFSD7C or SLC49A2) is expressed in endothelial cells at the blood-brain barrier4-7. Previous studies have shown that mutations in human Flvcr2 cause cerebral vascular abnormalities, hydrocephalus and embryonic lethality, but the physiological role of FLVCR2 is unknown4,5. Here we demonstrate both in vivo and in vitro that FLVCR2 is a BBB choline transporter and is responsible for the majority of choline uptake into the brain. We also determine the structures of choline-bound FLVCR2 in both inward-facing and outward-facing states using cryo-electron microscopy. These results reveal how the brain obtains choline and provide molecular-level insights into how FLVCR2 binds choline in an aromatic cage and mediates its uptake. Our work could provide a novel framework for the targeted delivery of therapeutic agents into the brain.
Collapse
Affiliation(s)
- Rosemary J Cater
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.
| | - Dibyanti Mukherjee
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ting Chen
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Katie Koo
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Nicolás Santander
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Andrew Reckers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Brian Kloss
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Tomasz Gawda
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Brendon C Choy
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Zhening Zhang
- Cryo-Electron Microscopy Center, Columbia University, New York, NY, USA
| | - Aditya Katewa
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Amara Larpthaveesarp
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Pathology Service, San Francisco VA Medical Center, San Francisco, CA, USA
| | | | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Matthias Quick
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, Area Neuroscience-Molecular Therapeutics, New York, NY, USA
| | - Thomas Arnold
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Hanafy MS, Cui Z. Connexin-Containing Vesicles for Drug Delivery. AAPS J 2024; 26:20. [PMID: 38267725 DOI: 10.1208/s12248-024-00889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Connexin is a transmembrane protein present on the cell membrane of most cell types. Connexins assemble into a hexameric hemichannel known as connexon that pairs with another hemichannel present on a neighboring cell to form gap junction that acts as a channel or pore for the transport of ions and small molecules between the cytoplasm of the two cells. Extracellular vesicles released from connexin-expressing cells could carry connexin hemichannels on their surface and couple with another connexin hemichannel on a distant recipient cell to allow the transfer of the intravesicular content directly into the cytoplasm. Connexin-containing vesicles can be potentially utilized for intracellular drug delivery. In this review, we introduced cell-derived, connexin-containing extracellular vesicles and cell-free connexin-containing liposomes, methods of preparing them, procedures to load cargos in them, factors regulating the connexin hemichannel activity, (potential) applications of connexin-containing vesicles in drug delivery, and finally the challenges and future directions in realizing the promises of this platform delivery system for (intracellular) drug delivery.
Collapse
Affiliation(s)
- Mahmoud S Hanafy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
6
|
Falaise C, Khlifi S, Bauduin P, Schmid P, Degrouard J, Leforestier A, Shepard W, Marrot J, Haouas M, Landy D, Mellot-Draznieks C, Cadot E. Cooperative Self-Assembly Process Involving Giant Toroidal Polyoxometalate as a Membrane Building Block in Nanoscale Vesicles. J Am Chem Soc 2024; 146:1501-1511. [PMID: 38189235 DOI: 10.1021/jacs.3c11004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of organic amphiphilic species into various aggregates such as spherical or elongated micelles and cylinders up to the formation of lyotropic hexagonal or lamellar phases results from cooperative processes orchestrated by the hydrophobic effect, while those involving ionic inorganic polynuclear entities and nonionic organic components are still intriguing. Herein, we report on the supramolecular behavior of giant toroidal molybdenum blue-type polyoxometalate, namely, the {Mo154} species in the presence of n-octyl-β-glucoside (C8G1), widely used as a surfactant in biochemistry. Structural investigations were carried out using a set of complementary multiscale methods including single-crystal X-ray diffraction analysis supported by molecular modeling, small-angle X-ray scattering and cryo-TEM observations. In addition, liquid NMR, viscosimetry, surface tension measurement, and isothermal titration calorimetry provided further information to decipher the complex aggregation pathway. Elucidation of the assembly process reveals a rich scenario where the presence of the large {Mo154} anion disrupts the self-assembly of the C8G1, well-known to produce micelles, and induces striking successive phase transitions from fluid-to-gel and from gel-to-fluid. Herein, intimate organic-inorganic primary interactions arising from the superchaotropic nature of the {Mo154} lead to versatile nanoscopic hybrid C8G1-{Mo154} aggregates including crystalline discrete assemblies, smectic lamellar liquid crystals, and large uni- or multilamellar vesicles where the large torus {Mo154} acts a trans-membrane component.
Collapse
Affiliation(s)
- Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Soumaya Khlifi
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Pierre Bauduin
- ICSM, CEA, CNRS, ENSCM, Université Montpellier, Marcoule 34199, France
| | - Philipp Schmid
- ICSM, CEA, CNRS, ENSCM, Université Montpellier, Marcoule 34199, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Amélie Leforestier
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), ULCO, Dunkerque 59140, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, Paris, Cedex 05 75231, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| |
Collapse
|
7
|
Herrera SA, Justesen BH, Dieudonné T, Montigny C, Nissen P, Lenoir G, Günther Pomorski T. Direct evidence of lipid transport by the Drs2-Cdc50 flippase upon truncation of its terminal regions. Protein Sci 2023; 33:e4855. [PMID: 38063271 PMCID: PMC10895448 DOI: 10.1002/pro.4855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 02/27/2024]
Abstract
P4-ATPases in complex with Cdc50 subunits are lipid flippases that couple ATP hydrolysis with lipid transport to the cytoplasmic leaflet of membranes to create lipid asymmetry. Such vectorial transport has been shown to contribute to vesicle formation in the late secretory pathway. Some flippases are regulated by autoinhibitory regions that can be destabilized by protein kinase-mediated phosphorylation and possibly by binding of cytosolic proteins. In addition, the binding of lipids to flippases may also induce conformational changes required for the activity of these transporters. Here, we address the role of phosphatidylinositol-4-phosphate (PI4P) and the terminal autoinhibitory tails on the lipid flipping activity of the yeast lipid flippase Drs2-Cdc50. By functionally reconstituting the full-length and truncated forms of Drs2 in a 1:1 complex with the Cdc50 subunit, we provide compelling evidence that lipid flippase activity is exclusively detected for the truncated Drs2 variant and is dependent on the presence of the phosphoinositide PI4P. These findings highlight the critical role of phosphoinositides as lipid co-factors in the regulation of lipid transport by the Drs2-Cdc50 flippase.
Collapse
Affiliation(s)
- Sara Abad Herrera
- Department of Molecular Biochemistry, Faculty of Chemistry and BiochemistryRuhr University BochumBochumGermany
| | - Bo Højen Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and BiochemistryRuhr University BochumBochumGermany
| | - Thibaud Dieudonné
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Cédric Montigny
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Guillaume Lenoir
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and BiochemistryRuhr University BochumBochumGermany
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
8
|
Harris M, Dolan RF, Bryce JR, Ewusi JG, Cook GA. In Vitro Glycosylation of the Membrane Protein γ-Sarcoglycan in Nanodiscs. ACS OMEGA 2023; 8:40904-40910. [PMID: 37929139 PMCID: PMC10620887 DOI: 10.1021/acsomega.3c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Membrane glycoproteins are proteins that reside in the membranes of cells and are post-translationally modified to have sugars attached to their amino acid side chains. Studies of this subset of proteins in their native states are becoming more important since they have been linked to numerous human diseases. However, these proteins are difficult to study due to their hydrophobic nature and their propensity to aggregate. Using membrane mimetics allows us to solubilize these proteins, which, in turn, allows us to perform glycosylation in vitro to study the effects of the modification on protein structure, dynamics, and interactions. Here, the membrane glycoprotein γ-sarcoglycan was incorporated into nanodiscs composed of long-chain lipids and membrane scaffold proteins to perform N-linked glycosylation in which an enzyme attaches a sugar to the asparagine side chain within the glycosylation site. We previously performed glycosylation of membrane proteins in vitro when the protein had been solubilized using different detergents and short-chain lipids. This work demonstrates successful glycosylation of a full-length membrane protein in nanodiscs providing a more biologically relevant sample to study the effects of the modification.
Collapse
Affiliation(s)
- Michael
S. Harris
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Rachel F. Dolan
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - James R. Bryce
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jonas G. Ewusi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Gabriel A. Cook
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
9
|
Cater RJ, Mukherjee D, Iturbe EG, Erramilli SK, Chen T, Koo K, Grez NS, Reckers A, Kloss B, Gawda T, Choy BC, Zheng Z, Clarke OB, Yee SW, Kossiakoff AA, Quick M, Arnold T, Mancia F. Structural and molecular basis of choline uptake into the brain by FLVCR2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561059. [PMID: 37873173 PMCID: PMC10592973 DOI: 10.1101/2023.10.05.561059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Choline is an essential nutrient that the human body needs in vast quantities for cell membrane synthesis, epigenetic modification, and neurotransmission. The brain has a particularly high demand for choline, but how it enters the brain has eluded the field for over fifty years. The MFS transporter FLVCR1 was recently determined to be a choline transporter, and while this protein is not highly expressed at the blood-brain barrier (BBB), its relative FLVCR2 is. Previous studies have shown that mutations in human Flvcr2 cause cerebral vascular abnormalities, hydrocephalus, and embryonic lethality, but the physiological role of FLVCR2 is unknown. Here, we demonstrate both in vivo and in vitro that FLVCR2 is a BBB choline transporter and is responsible for the majority of choline uptake into the brain. We also determine the structures of choline-bound FLVCR2 in the inward- and outward-facing states using cryo-electron microscopy to 2.49 and 2.77 Å resolution, respectively. These results reveal how the brain obtains choline and provide molecular-level insights into how FLVCR2 binds choline in an aromatic cage and mediates its uptake. Our work could provide a novel framework for the targeted delivery of neurotherapeutics into the brain.
Collapse
|
10
|
Müller W, Beales PA, Muniz AR, Jeuken LJC. Unraveling the Phase Behavior, Mechanical Stability, and Protein Reconstitution Properties of Polymer-Lipid Hybrid Vesicles. Biomacromolecules 2023; 24:4156-4169. [PMID: 37539954 PMCID: PMC10498451 DOI: 10.1021/acs.biomac.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Hybrid vesicles consisting of natural phospholipids and synthetic amphiphilic copolymers have shown remarkable material properties and potential for biotechnology, combining the robustness of polymers with the biocompatibility of phospholipid membranes. To predict and optimize the mixing behavior of lipids and copolymers, as well as understand the interaction between the hybrid membrane and macromolecules like membrane proteins, a comprehensive understanding at the molecular level is essential. This can be achieved by a combination of molecular dynamics simulations and experiments. Here, simulations of POPC and PBD22-b-PEO14 hybrid membranes are shown, uncovering different copolymer configurations depending on the polymer-to-lipid ratio. High polymer concentrations created thicker membranes with an extended polymer conformation, while high lipid content led to the collapse of the polymer chain. High concentrations of polymer were further correlated with a decreased area compression modulus and altered lateral pressure profiles, hypothesized to result in the experimentally observed improvement in membrane protein reconstitution and resistance toward destabilization by detergents. Finally, simulations of a WALP peptide embedded in the bilayer showed that only membranes with up to 50% polymer content favored a transmembrane configuration. These simulations correlate with previous and new experimental results and provide a deeper understanding of the properties of lipid-copolymer hybrid membranes.
Collapse
Affiliation(s)
- Wagner
A. Müller
- Department
of Chemical Engineering, Universidade Federal
do Rio Grande do Sul, Porto
Alegre 90035-003, Brazil
| | - Paul A. Beales
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - André R. Muniz
- Department
of Chemical Engineering, Universidade Federal
do Rio Grande do Sul, Porto
Alegre 90035-003, Brazil
| | - Lars J. C. Jeuken
- Leiden
Institute of Chemistry, University Leiden, PO Box 9502, 2300RA Leiden, The
Netherlands
| |
Collapse
|
11
|
Herrera SA, Günther Pomorski T. Reconstitution of ATP-dependent lipid transporters: gaining insight into molecular characteristics, regulation, and mechanisms. Biosci Rep 2023; 43:BSR20221268. [PMID: 37417269 PMCID: PMC10412526 DOI: 10.1042/bsr20221268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Lipid transporters play a crucial role in supporting essential cellular processes such as organelle assembly, vesicular trafficking, and lipid homeostasis by driving lipid transport across membranes. Cryo-electron microscopy has recently resolved the structures of several ATP-dependent lipid transporters, but functional characterization remains a major challenge. Although studies of detergent-purified proteins have advanced our understanding of these transporters, in vitro evidence for lipid transport is still limited to a few ATP-dependent lipid transporters. Reconstitution into model membranes, such as liposomes, is a suitable approach to study lipid transporters in vitro and to investigate their key molecular features. In this review, we discuss the current approaches for reconstituting ATP-driven lipid transporters into large liposomes and common techniques used to study lipid transport in proteoliposomes. We also highlight the existing knowledge on the regulatory mechanisms that modulate the activity of lipid transporters, and finally, we address the limitations of the current approaches and future perspectives in this field.
Collapse
Affiliation(s)
- Sara Abad Herrera
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
12
|
Paweletz LC, Holtbrügge SL, Löb M, De Vecchis D, Schäfer LV, Günther Pomorski T, Justesen BH. Anionic Phospholipids Stimulate the Proton Pumping Activity of the Plant Plasma Membrane P-Type H +-ATPase. Int J Mol Sci 2023; 24:13106. [PMID: 37685912 PMCID: PMC10488199 DOI: 10.3390/ijms241713106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The activity of membrane proteins depends strongly on the surrounding lipid environment. Here, we characterize the lipid stimulation of the plant plasma membrane H+-ATPase Arabidopsis thaliana H+-ATPase isoform 2 (AHA2) upon purification and reconstitution into liposomes of defined lipid compositions. We show that the proton pumping activity of AHA2 is stimulated by anionic phospholipids, especially by phosphatidylserine. This activation was independent of the cytoplasmic C-terminal regulatory domain of the pump. Molecular dynamics simulations revealed several preferential contact sites for anionic phospholipids in the transmembrane domain of AHA2. These contact sites are partially conserved in functionally different P-type ATPases from different organisms, suggesting a general regulation mechanism by the membrane lipid environment. Our findings highlight the fact that anionic lipids play an important role in the control of H+-ATPase activity.
Collapse
Affiliation(s)
- Laura C. Paweletz
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
| | - Simon L. Holtbrügge
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (S.L.H.); (D.D.V.)
| | - Malina Löb
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
| | - Dario De Vecchis
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (S.L.H.); (D.D.V.)
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (S.L.H.); (D.D.V.)
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Bo Højen Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
| |
Collapse
|
13
|
Lin AJ, Sihorwala AZ, Belardi B. Engineering Tissue-Scale Properties with Synthetic Cells: Forging One from Many. ACS Synth Biol 2023; 12:1889-1907. [PMID: 37417657 PMCID: PMC11017731 DOI: 10.1021/acssynbio.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In metazoans, living cells achieve capabilities beyond individual cell functionality by assembling into multicellular tissue structures. These higher-order structures represent dynamic, heterogeneous, and responsive systems that have evolved to regenerate and coordinate their actions over large distances. Recent advances in constructing micrometer-sized vesicles, or synthetic cells, now point to a future where construction of synthetic tissue can be pursued, a boon to pressing material needs in biomedical implants, drug delivery systems, adhesives, filters, and storage devices, among others. To fully realize the potential of synthetic tissue, inspiration has been and will continue to be drawn from new molecular findings on its natural counterpart. In this review, we describe advances in introducing tissue-scale features into synthetic cell assemblies. Beyond mere complexation, synthetic cells have been fashioned with a variety of natural and engineered molecular components that serve as initial steps toward morphological control and patterning, intercellular communication, replication, and responsiveness in synthetic tissue. Particular attention has been paid to the dynamics, spatial constraints, and mechanical strengths of interactions that drive the synthesis of this next-generation material, describing how multiple synthetic cells can act as one.
Collapse
Affiliation(s)
- Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Veit S, Paweletz LC, Günther Pomorski T. Determination of membrane protein orientation upon liposomal reconstitution down to the single vesicle level. Biol Chem 2023; 404:647-661. [PMID: 36857289 DOI: 10.1515/hsz-2022-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023]
Abstract
Reconstitution of membrane proteins into liposomal membranes represents a key technique in enabling functional analysis under well-defined conditions. In this review, we provide a brief introduction to selected methods that have been developed to determine membrane protein orientation after reconstitution in liposomes, including approaches based on proteolytic digestion with proteases, site-specific labeling, fluorescence quenching and activity assays. In addition, we briefly highlight new strategies based on single vesicle analysis to address the problem of sample heterogeneity.
Collapse
Affiliation(s)
- Sarina Veit
- Department of Molecular Biochemistry , Faculty of Chemistry and Biochemistry , NC 7/174, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Laura Charlotte Paweletz
- Department of Molecular Biochemistry , Faculty of Chemistry and Biochemistry , NC 7/174, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry , Faculty of Chemistry and Biochemistry , NC 7/174, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
15
|
Seneviratne R, Coates G, Xu Z, Cornell CE, Thompson RF, Sadeghpour A, Maskell DP, Jeuken LJC, Rappolt M, Beales PA. High Resolution Membrane Structures within Hybrid Lipid-Polymer Vesicles Revealed by Combining X-Ray Scattering and Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206267. [PMID: 36866488 DOI: 10.1002/smll.202206267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/26/2023] [Indexed: 06/02/2023]
Abstract
Hybrid vesicles consisting of phospholipids and block-copolymers are increasingly finding applications in science and technology. Herein, small angle X-ray scattering (SAXS) and cryo-electron tomography (cryo-ET) are used to obtain detailed structural information about hybrid vesicles with different ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and poly(1,2-butadiene-block-ethylene oxide) (PBd22 -PEO14 , Ms = 1800 g mol-1 ). Using single particle analysis (SPA) the authors are able to further interpret the information gained from SAXS and cryo-ET experiments, showing that increasing PBd22 -PEO14 mole fraction increases the membrane thickness from 52 Å for a pure lipid system to 97 Å for pure PBd22 -PEO14 vesicles. Two vesicle populations with different membrane thicknesses in hybrid vesicle samples are found. As these lipids and polymers are reported to homogeneously mix, bistability is inferred between weak and strong interdigitation regimes of PBd22 -PEO14 within the hybrid membranes. It is hypothesized that membranes of intermediate structure are not energetically favorable. Therefore, each vesicle exists in one of these two membrane structures, which are assumed to have comparable free energies. The authors conclude that, by combining biophysical methods, accurate determination of the influence of composition on the structural properties of hybrid membranes is achieved, revealing that two distinct membranes structures can coexist in homogeneously mixed lipid-polymer hybrid vesicles.
Collapse
Affiliation(s)
- Rashmi Seneviratne
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Georgina Coates
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Zexi Xu
- School of Food Science and Nutrition, School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Caitlin E Cornell
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Rebecca F Thompson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Maskell
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University, PC Box 9502, Leiden, 2300 RA, Netherlands
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
16
|
Petrovskaya LE, Lukashev EP, Mamedov MD, Kryukova EA, Balashov SP, Dolgikh DA, Rubin AB, Kirpichnikov MP, Siletsky SA. Oriented Insertion of ESR-Containing Hybrid Proteins in Proteoliposomes. Int J Mol Sci 2023; 24:ijms24087369. [PMID: 37108532 PMCID: PMC10138546 DOI: 10.3390/ijms24087369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial rhodopsins comprise a diverse family of retinal-containing membrane proteins that convert absorbed light energy to transmembrane ion transport or sensory signals. Incorporation of these proteins in proteoliposomes allows their properties to be studied in a native-like environment; however, unidirectional protein orientation in the artificial membranes is rarely observed. We aimed to obtain proteoliposomes with unidirectional orientation using a proton-pumping retinal protein from Exiguobacterium sibiricum, ESR, as a model. Three ESR hybrids with soluble protein domains (mCherry or thioredoxin at the C-terminus and Caf1M chaperone at the N-terminus) were obtained and characterized. The photocycle of the hybrid proteins incorporated in proteoliposomes demonstrated a higher pKa of the M state accumulation compared to that of the wild-type ESR. Large negative electrogenic phases and an increase in the relative amplitude of kinetic components in the microsecond time range in the kinetics of membrane potential generation of ESR-Cherry and ESR-Trx indicate a decrease in the efficiency of transmembrane proton transport. On the contrary, Caf-ESR demonstrates a native-like kinetics of membrane potential generation and the corresponding electrogenic stages. Our experiments show that the hybrid with Caf1M promotes the unidirectional orientation of ESR in proteoliposomes.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Evgeniy P Lukashev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Dmitry A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Andrei B Rubin
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
17
|
Albanese P, Mavelli F, Altamura E. Light energy transduction in liposome-based artificial cells. Front Bioeng Biotechnol 2023; 11:1161730. [PMID: 37064236 PMCID: PMC10091278 DOI: 10.3389/fbioe.2023.1161730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
In this work we review the latest strategies for the bottom-up assembly of energetically autonomous artificial cells capable of transducing light energy into chemical energy and support internalized metabolic pathways. Such entities are built by taking inspiration from the photosynthetic machineries found in nature which are purified and reconstituted directly in the membrane of artificial compartments or encapsulated in form of organelle-like structures. Specifically, we report and discuss recent examples based on liposome-technology and multi-compartment (nested) architectures pointing out the importance of this matter for the artificial cell synthesis research field and some limitations and perspectives of the bottom-up approach.
Collapse
Affiliation(s)
- Paola Albanese
- Department of Earth, Environmental and Physical Sciences, University of Siena, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, Siena, Italy
| | - Fabio Mavelli
- Department of Chemistry, University of Bari, Bari, Italy
- *Correspondence: Fabio Mavelli, ; Emiliano Altamura,
| | - Emiliano Altamura
- Department of Chemistry, University of Bari, Bari, Italy
- *Correspondence: Fabio Mavelli, ; Emiliano Altamura,
| |
Collapse
|
18
|
Godoy-Hernandez A, Asseri AH, Purugganan AJ, Jiko C, de Ram C, Lill H, Pabst M, Mitsuoka K, Gerle C, Bald D, McMillan DGG. Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions. ACS CENTRAL SCIENCE 2023; 9:494-507. [PMID: 36968527 PMCID: PMC10037447 DOI: 10.1021/acscentsci.2c01170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 06/18/2023]
Abstract
Functional reintegration into lipid environments represents a major challenge for in vitro investigation of integral membrane proteins (IMPs). Here, we report a new approach, termed LMNG Auto-insertion Reintegration (LAiR), for reintegration of IMPs into lipid bilayers within minutes. The resulting proteoliposomes displayed an unprecedented capability to maintain proton gradients and long-term stability. LAiR allowed for monitoring catalysis of a membrane-bound, physiologically relevant polyisoprenoid quinone substrate by Escherichia coli cytochromes bo 3 (cbo 3) and bd (cbd) under control of the proton motive force. LAiR also facilitated bulk-phase detection and physiological assessment of the "proton leak" in cbo 3, a controversial catalytic state that previously was only approachable at the single-molecule level. LAiR maintained the multisubunit integrity and higher-order oligomeric states of the delicate mammalian F-ATP synthase. Given that LAiR can be applied to both liposomes and planar membrane bilayers and is compatible with IMPs and lipids from prokaryotic and eukaryotic sources, we anticipate LAiR to be applied broadly across basic research, pharmaceutical applications, and biotechnology.
Collapse
Affiliation(s)
- Albert Godoy-Hernandez
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Amer H. Asseri
- Biochemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Aiden J. Purugganan
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Chimari Jiko
- Institute
for Integrated Radiation and Nuclear Science, Kyoto University, Kyoto, 606-8501, Japan
| | - Carol de Ram
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Holger Lill
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Martin Pabst
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Kaoru Mitsuoka
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 565-0871, Japan
| | - Christoph Gerle
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Life
Science Research Infrastructure Group, RIKEN
SPring-8 Center, Kouto, Hyogo 679-5148, Japan
| | - Dirk Bald
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Duncan G. G. McMillan
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo
City, Tokyo 113-8654, Japan
| |
Collapse
|
19
|
Biophysical quantification of unitary solute and solvent permeabilities to enable translation to membrane science. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Zaborowska M, Matyszewska D, Bilewicz R. Model Lipid Raft Membranes for Embedding Integral Membrane Proteins: Reconstitution of HMG-CoA Reductase and Its Inhibition by Statins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13888-13897. [PMID: 36335466 PMCID: PMC9671039 DOI: 10.1021/acs.langmuir.2c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
For the first time, HMG-CoA reductase, the membrane protein responsible for cholesterol synthesis, was incorporated into a lipid membrane consisting of DOPC:Chol:SM at a 1:1:1 molar ratio, which mimics the lipid rafts of cell membranes. The membrane containing the protein was generated in the form of either a proteoliposomes or a film obtained by spreading the proteoliposomes at the air-water interface to prepare a protein-rich and stable lipid layer over time. The lipid vesicle parameters were characterized using dynamic light scattering (DLS) and fluorescence microscopy. The incorporation of HMG-CoA reductase was reflected in the increased size of the proteoliposomes compared to that of the empty liposomes of model rafts. Enzyme reconstitution was confirmed by measuring the activity of NADPH, which participates in the catalytic process. The thin lipid raft films formed by spreading liposomes and proteoliposomes at the air-water interface were investigated using the Langmuir technique. The activities of the HMG-CoA reductase films were preserved over time, and the two lipid raft systems, nanoparticles and films, were exposed to solutions of fluvastatin, a HMG-CoA reductase inhibitor commonly used in the treatment of hypercholesterolemia. Both lipid raft systems constructed were useful membrane models for the determination of reductase activity and for monitoring the statin inhibitory effects and may be used for investigating other integral membrane proteins during exposure to inhibitors/activators considered to be potential drugs.
Collapse
Affiliation(s)
| | - Dorota Matyszewska
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089Warsaw, Poland
| | - Renata Bilewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02093Warsaw, Poland
| |
Collapse
|
21
|
Kosmidis E, Shuttle CG, Preobraschenski J, Ganzella M, Johnson PJ, Veshaguri S, Holmkvist J, Møller MP, Marantos O, Marcoline F, Grabe M, Pedersen JL, Jahn R, Stamou D. Regulation of the mammalian-brain V-ATPase through ultraslow mode-switching. Nature 2022; 611:827-834. [PMID: 36418452 PMCID: PMC11212661 DOI: 10.1038/s41586-022-05472-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Vacuolar-type adenosine triphosphatases (V-ATPases)1-3 are electrogenic rotary mechanoenzymes structurally related to F-type ATP synthases4,5. They hydrolyse ATP to establish electrochemical proton gradients for a plethora of cellular processes1,3. In neurons, the loading of all neurotransmitters into synaptic vesicles is energized by about one V-ATPase molecule per synaptic vesicle6,7. To shed light on this bona fide single-molecule biological process, we investigated electrogenic proton-pumping by single mammalian-brain V-ATPases in single synaptic vesicles. Here we show that V-ATPases do not pump continuously in time, as suggested by observing the rotation of bacterial homologues8 and assuming strict ATP-proton coupling. Instead, they stochastically switch between three ultralong-lived modes: proton-pumping, inactive and proton-leaky. Notably, direct observation of pumping revealed that physiologically relevant concentrations of ATP do not regulate the intrinsic pumping rate. ATP regulates V-ATPase activity through the switching probability of the proton-pumping mode. By contrast, electrochemical proton gradients regulate the pumping rate and the switching of the pumping and inactive modes. A direct consequence of mode-switching is all-or-none stochastic fluctuations in the electrochemical gradient of synaptic vesicles that would be expected to introduce stochasticity in proton-driven secondary active loading of neurotransmitters and may thus have important implications for neurotransmission. This work reveals and emphasizes the mechanistic and biological importance of ultraslow mode-switching.
Collapse
Affiliation(s)
- Eleftherios Kosmidis
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Christopher G Shuttle
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Julia Preobraschenski
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Peter J Johnson
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Mathematics, University of Manchester, Manchester, UK
| | - Salome Veshaguri
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Novozymes A/S, Kgs Lyngby, Denmark
| | - Jesper Holmkvist
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Mads P Møller
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Orestis Marantos
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Frank Marcoline
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Jesper L Pedersen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dimitrios Stamou
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022; 122:16294-16328. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| |
Collapse
|
23
|
QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins. Nat Commun 2022; 13:5501. [PMID: 36127376 PMCID: PMC9489792 DOI: 10.1038/s41467-022-33084-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Rhodopsins had long been considered non-fluorescent until a peculiar voltage-sensitive fluorescence was reported for archaerhodopsin-3 (Arch3) derivatives. These proteins named QuasArs have been used for imaging membrane voltage changes in cell cultures and small animals. However due to the low fluorescence intensity, these constructs require use of much higher light intensity than other optogenetic tools. To develop the next generation of sensors, it is indispensable to first understand the molecular basis of the fluorescence and its modulation by the membrane voltage. Based on spectroscopic studies of fluorescent Arch3 derivatives, we propose a unique photo-reaction scheme with extended excited-state lifetimes and inefficient photoisomerization. Molecular dynamics simulations of Arch3, of the Arch3 fluorescent derivative Archon1, and of several its mutants have revealed different voltage-dependent changes of the hydrogen-bonding networks including the protonated retinal Schiff-base and adjacent residues. Experimental observations suggest that under negative voltage, these changes modulate retinal Schiff base deprotonation and promote a decrease in the populations of fluorescent species. Finally, we identified molecular constraints that further improve fluorescence quantum yield and voltage sensitivity. The authors present an in-depth investigation of excited state dynamics and molecular mechanism of the voltage sensing in microbial rhodopsins. Using a combination of spectroscopic investigations and molecular dynamics simulations, the study proposes the voltage-modulated deprotonation of the chromophore as the key event in the voltage sensing. Thus, molecular constraints that may further improve the fluorescence quantum yield and the voltage sensitivity are presented.
Collapse
|
24
|
Veit S, Paweletz LC, Bohr SSR, Menon AK, Hatzakis NS, Pomorski TG. Single Vesicle Fluorescence-Bleaching Assay for Multi-Parameter Analysis of Proteoliposomes by Total Internal Reflection Fluorescence Microscopy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29659-29667. [PMID: 35748880 PMCID: PMC11194769 DOI: 10.1021/acsami.2c07454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reconstitution of membrane proteins into model membranes is an essential approach for their functional analysis under chemically defined conditions. Established model-membrane systems used in ensemble average measurements are limited by sample heterogeneity and insufficient knowledge of lipid and protein content at the single vesicle level, which limits quantitative analysis of vesicle properties and prevents their correlation with protein activity. Here, we describe a versatile total internal reflection fluorescence microscopy-based bleaching protocol that permits parallel analysis of multiple parameters (physical size, tightness, unilamellarity, membrane protein content, and orientation) of individual proteoliposomes prepared with fluorescently tagged membrane proteins and lipid markers. The approach makes use of commercially available fluorophores including the commonly used nitrobenzoxadiazole dye and may be applied to deduce functional molecular characteristics of many types of reconstituted fluorescently tagged membrane proteins.
Collapse
Affiliation(s)
- Sarina Veit
- Department
of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Laura Charlotte Paweletz
- Department
of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Søren S.-R. Bohr
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Anant K. Menon
- Department
of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| | - Nikos S. Hatzakis
- Department
of Chemistry & Nano-Science Center, University of Copenhagen, Copenhagen DK-2100, Denmark
- NovoNordisk
Foundation Center for Protein Research,Copenhagen DK-2200, Denmark
| | - Thomas Günther Pomorski
- Department
of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
- Department
of Plant and Environmental Sciences, University
of Copenhagen,Frederiksberg C DK-1871, Denmark
| |
Collapse
|
25
|
Han WB, Kang DH, Kim TS. 3D Artificial Cell Membranes as Versatile Platforms for Biological Applications. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Carvalho BG, Ceccato BT, Michelon M, Han SW, de la Torre LG. Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application. Pharmaceutics 2022; 14:141. [PMID: 35057037 PMCID: PMC8781930 DOI: 10.3390/pharmaceutics14010141] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Microfluidics is an emerging technology that can be employed as a powerful tool for designing lipid nano-microsized structures for biological applications. Those lipid structures can be used as carrying vehicles for a wide range of drugs and genetic materials. Microfluidic technology also allows the design of sustainable processes with less financial demand, while it can be scaled up using parallelization to increase production. From this perspective, this article reviews the recent advances in the synthesis of lipid-based nanostructures through microfluidics (liposomes, lipoplexes, lipid nanoparticles, core-shell nanoparticles, and biomimetic nanovesicles). Besides that, this review describes the recent microfluidic approaches to produce lipid micro-sized structures as giant unilamellar vesicles. New strategies are also described for the controlled release of the lipid payloads using microgels and droplet-based microfluidics. To address the importance of microfluidics for lipid-nanoparticle screening, an overview of how microfluidic systems can be used to mimic the cellular environment is also presented. Future trends and perspectives in designing novel nano and micro scales are also discussed herein.
Collapse
Affiliation(s)
- Bruna G. Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| | - Bruno T. Ceccato
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| | - Mariano Michelon
- School of Chemical and Food Engineering, Federal University of Rio Grande (FURG), Rio Grande 96203-900, Brazil;
| | - Sang W. Han
- Center for Cell Therapy and Molecular, Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04044-010, Brazil;
| | - Lucimara G. de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| |
Collapse
|
27
|
Kirchhoff H. Proteoliposomes for Studying Lipid-protein Interactions in Membranes in vitro. Bio Protoc 2021; 11:e4197. [PMID: 34761069 DOI: 10.21769/bioprotoc.4197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/21/2021] [Indexed: 11/02/2022] Open
Abstract
Lipids in biomembranes can control the structure and, therefore, the functionality of membrane-embedded protein complexes. Unraveling how the lipid composition determines the mode of operation of membrane proteins provides mechanistic insights into their functionality. We applied a proteoliposome technique for studying how proteins function in biomembranes. The incorporation of isolated membrane proteins in preformed liposomes made from a well-defined lipid composition (proteoliposomes) is a powerful tool for studying lipid-protein interactions. Over several decades, the proteoliposome technique was employed for many different membrane proteins. Recently, it was recognized that different lipid compositions control the light-harvesting functionality of the major photosynthetic light-harvesting complex II (LHCII) isolated from plant thylakoid membranes in vitro. This technique allows systematic examination of the role of so-called non-bilayer lipids on light-harvesting characteristics of LHCII. This protocol describes the isolation of LHCII from leaves and details a four-step procedure to incorporate the detergent-solubilized membrane protein in large unilamellar vesicles (LUV). The protocol was optimized to ensure a very high lipid/protein ratio, designed to specifically examine lipid-protein interactions by minimizing LHCII aggregation. The procedure provides structurally and functionally highly intact LHCII in a detergent-free lipid bilayer with a defined composition.
Collapse
Affiliation(s)
- Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| |
Collapse
|
28
|
Zhou F, Yang Y, Chemuru S, Cui W, Liu S, Gross M, Li W. Footprinting Mass Spectrometry of Membrane Proteins: Ferroportin Reconstituted in Saposin A Picodiscs. Anal Chem 2021; 93:11370-11378. [PMID: 34383472 DOI: 10.1021/acs.analchem.1c02325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane proteins participate in a broad range of cellular processes and represent more than 60% of drug targets. One approach to their structural analyses is mass spectrometry (MS)-based footprinting including hydrogen/deuterium exchange (HDX), fast photochemical oxidation of proteins (FPOP), and residue-specific chemical modification. Studying membrane proteins usually requires their isolation from the native lipid environment, after which they often become unstable. To overcome this problem, we are pursuing a novel methodology of incorporating membrane proteins into saposin A picodiscs for MS footprinting. We apply different footprinting approaches to a model membrane protein, mouse ferroportin, in picodiscs and achieve high coverage that enables the analysis of the ferroportin structure. FPOP footprinting shows extensive labeling of the extramembrane regions of ferroportin and protection at its transmembrane regions, suggesting that the membrane folding of ferroportin is maintained throughout the labeling process. In contrast, an amphipathic reagent, N-ethylmaleimide (NEM), efficiently labels cysteine residues in both extramembrane and transmembrane regions, thereby affording complementary footprinting coverage. Finally, optimization of sample treatment gives a peptic-map of ferroportin in picodiscs with 92% sequence coverage, setting the stage for HDX. These results, taken together, show that picodiscs are a new platform broadly applicable to mass spectrometry studies of membrane proteins.
Collapse
Affiliation(s)
- Fengbo Zhou
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Yihu Yang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Saketh Chemuru
- Department of Chemistry, Washington University, St. Louis, Missouri 63110, United States
| | - Weidong Cui
- Department of Chemistry, Washington University, St. Louis, Missouri 63110, United States
| | - Shixuan Liu
- Department of Chemistry, Washington University, St. Louis, Missouri 63110, United States
| | - Michael Gross
- Department of Chemistry, Washington University, St. Louis, Missouri 63110, United States
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
29
|
Cecchetti C, Strauss J, Stohrer C, Naylor C, Pryor E, Hobbs J, Tanley S, Goldman A, Byrne B. A novel high-throughput screen for identifying lipids that stabilise membrane proteins in detergent based solution. PLoS One 2021; 16:e0254118. [PMID: 34252116 PMCID: PMC8274869 DOI: 10.1371/journal.pone.0254118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022] Open
Abstract
Membrane proteins have a range of crucial biological functions and are the target of about 60% of all prescribed drugs. For most studies, they need to be extracted out of the lipid-bilayer, e.g. by detergent solubilisation, leading to the loss of native lipids, which may disturb important protein-lipid/bilayer interactions and thus functional and structural integrity. Relipidation of membrane proteins has proven extremely successful for studying challenging targets, but the identification of suitable lipids can be expensive and laborious. Therefore, we developed a screen to aid the high-throughput identification of beneficial lipids. The screen covers a large lipid space and was designed to be suitable for a range of stability assessment methods. Here, we demonstrate its use as a tool for identifying stabilising lipids for three membrane proteins: a bacterial pyrophosphatase (Tm-PPase), a fungal purine transporter (UapA) and a human GPCR (A2AR). A2AR is stabilised by cholesteryl hemisuccinate, a lipid well known to stabilise GPCRs, validating the approach. Additionally, our screen also identified a range of new lipids which stabilised our test proteins, providing a starting point for further investigation and demonstrating its value as a novel tool for membrane protein research. The pre-dispensed screen will be made commercially available to the scientific community in future and has a number of potential applications in the field.
Collapse
Affiliation(s)
- Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jannik Strauss
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Claudia Stohrer
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Edward Pryor
- Anatrace, Maumee, Ohio, United States of America
| | | | | | - Adrian Goldman
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- MIBS, Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail: (AG); (BB)
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (AG); (BB)
| |
Collapse
|
30
|
Ahmad R, Kleineberg C, Nasirimarekani V, Su YJ, Goli Pozveh S, Bae A, Sundmacher K, Bodenschatz E, Guido I, Vidaković-koch T, Gholami A. Light-Powered Reactivation of Flagella and Contraction of Microtubule Networks: Toward Building an Artificial Cell. ACS Synth Biol 2021; 10:1490-1504. [PMID: 33761235 PMCID: PMC8218302 DOI: 10.1021/acssynbio.1c00071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Artificial systems
capable of self-sustained movement with self-sufficient
energy are of high interest with respect to the development of many
challenging applications, including medical treatments, but also technical
applications. The bottom-up assembly of such systems in the context
of synthetic biology is still a challenging task. In this work, we
demonstrate the biocompatibility and efficiency of an artificial light-driven
energy module and a motility functional unit by integrating light-switchable
photosynthetic vesicles with demembranated flagella. The flagellar
propulsion is coupled to the beating frequency, and dynamic ATP synthesis
in response to illumination allows us to control beating frequency
of flagella in a light-dependent manner. In addition, we verified
the functionality of light-powered synthetic vesicles in in
vitro motility assays by encapsulating microtubules assembled
with force-generating kinesin-1 motors and the energy module to investigate
the dynamics of a contractile filamentous network in cell-like compartments
by optical stimulation. Integration of this photosynthetic system
with various biological building blocks such as cytoskeletal filaments
and molecular motors may contribute to the bottom-up synthesis of
artificial cells that are able to undergo motor-driven morphological
deformations and exhibit directional motion in a light-controllable
fashion.
Collapse
Affiliation(s)
- Raheel Ahmad
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Christin Kleineberg
- Max-Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Vahid Nasirimarekani
- Microfluidics & BIOMICS Cluster UPV/EHU, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Yu-Jung Su
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Samira Goli Pozveh
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Albert Bae
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Kai Sundmacher
- Max-Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- Otto von Guericke University, Universitaetsplatz 2, 39106 Magdeburg, Germany
| | - Eberhard Bodenschatz
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Isabella Guido
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Tanja Vidaković-koch
- Max-Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Azam Gholami
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| |
Collapse
|
31
|
Modeling the saturation of detergent association in mixed liposome systems. Colloids Surf B Biointerfaces 2021; 206:111927. [PMID: 34216851 DOI: 10.1016/j.colsurfb.2021.111927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
Cells tune the lipid types present in their membranes to adjust for thermal and chemical stability, as well as to promote association and dissociation of small molecules and bound proteins. Understanding the influence of lipid type on molecule association would open doors for targeted cell therapies, in particular when molecular association is observed in the presence of competing membranes. For this reason, we modeled and experimentally observed the association of a small molecule with two membrane types present by measuring the association of the detergent Triton X-100 with two types of liposomes, egg phosphatidylcholine (ePC) liposomes and egg phosphatidic acid (ePA) liposomes, at varying ratios. We called this mixed liposomes, as each liposome population was formed from a different lipid type. Absorbance spectrometry was used to observe the stages of detergent association with mixed liposomes and to determine the detergent concentration at which the liposomes were fully saturated. A saturation model was also derived that predicts the detergent associated with each liposome type when the lipid bilayers are fully saturated with detergent. The techinical input parameters for the model are the detergent to lipid ratio and the relative absorbance intensity for each of the pure liposome species at saturation. With that, the association of detergent with any mixture of those liposome types at saturation can be determined.
Collapse
|
32
|
de la Mora E, Dezi M, Di Cicco A, Bigay J, Gautier R, Manzi J, Polidori J, Castaño-Díez D, Mesmin B, Antonny B, Lévy D. Nanoscale architecture of a VAP-A-OSBP tethering complex at membrane contact sites. Nat Commun 2021; 12:3459. [PMID: 34103503 PMCID: PMC8187361 DOI: 10.1038/s41467-021-23799-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Membrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.
Collapse
Affiliation(s)
- Eugenio de la Mora
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Sorbonne Université, Paris, France
| | - Manuela Dezi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.
- Sorbonne Université, Paris, France.
| | - Aurélie Di Cicco
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Sorbonne Université, Paris, France
| | - Joëlle Bigay
- CNRS UMR 7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Romain Gautier
- CNRS UMR 7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - John Manzi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Sorbonne Université, Paris, France
| | - Joël Polidori
- CNRS UMR 7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | - Bruno Mesmin
- CNRS UMR 7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Bruno Antonny
- CNRS UMR 7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| | - Daniel Lévy
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.
- Sorbonne Université, Paris, France.
| |
Collapse
|
33
|
Current problems and future avenues in proteoliposome research. Biochem Soc Trans 2021; 48:1473-1492. [PMID: 32830854 DOI: 10.1042/bst20190966] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Membrane proteins (MPs) are the gatekeepers between different biological compartments separated by lipid bilayers. Being receptors, channels, transporters, or primary pumps, they fulfill a wide variety of cellular functions and their importance is reflected in the increasing number of drugs that target MPs. Functional studies of MPs within a native cellular context, however, is difficult due to the innate complexity of the densely packed membranes. Over the past decades, detergent-based extraction and purification of MPs and their reconstitution into lipid mimetic systems has been a very powerful tool to simplify the experimental system. In this review, we focus on proteoliposomes that have become an indispensable experimental system for enzymes with a vectorial function, including many of the here described energy transducing MPs. We first address long standing questions on the difficulty of successful reconstitution and controlled orientation of MPs into liposomes. A special emphasis is given on coreconstitution of several MPs into the same bilayer. Second, we discuss recent progress in the development of fluorescent dyes that offer sensitive detection with high temporal resolution. Finally, we briefly cover the use of giant unilamellar vesicles for the investigation of complex enzymatic cascades, a very promising experimental tool considering our increasing knowledge of the interplay of different cellular components.
Collapse
|
34
|
Heath GR, Lin YC, Matin TR, Scheuring S. Structural dynamics of channels and transporters by high-speed atomic force microscopy. Methods Enzymol 2021; 652:127-159. [PMID: 34059280 DOI: 10.1016/bs.mie.2021.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Channels and transporters are vital for transmembrane transport of ions and solutes, and also of larger compounds such as lipids and macromolecules. Therefore, they are crucial in many biological processes such as sensing, signal transduction, and the regulation of the distribution of molecules. Dysfunctions of these membrane proteins are associated to numerous diseases, and their interaction with drugs is critical in medicine. Understanding the behavior of channels and transporters requires structural and dynamic information to decipher the molecular mechanisms underlying their function. High-Speed Atomic Force Microscopy (HS-AFM) now allows the study of single transmembrane channels and transporters in action under physiological conditions, i.e., at ambient temperature and pressure, in physiological buffer and in a membrane, and in a most direct, label-free manner. In this chapter, we discuss the HS-AFM sample preparation, application, and data analysis protocols to study the structural and conformational dynamics of membrane-embedded channels and transporters.
Collapse
Affiliation(s)
- George R Heath
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Yi-Chih Lin
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States
| | - Tina R Matin
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States; Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, United States.
| |
Collapse
|
35
|
Abstract
Salmonella is a human pathogen of worldwide importance, and coenzyme B12 is critical for the pathogenic lifestyle of this bacterium. The importance of the work reported here lies on the improvements to the methodology used to isolate cobamide synthase, a polytopic integral membrane protein that catalyzes the penultimate step of coenzyme B12 biosynthesis. Cobamides are cobalt-containing cyclic tetrapyrroles used by cells from all domains of life but only produced de novo by some bacteria and archaea. The “late steps” of the adenosylcobamide biosynthetic pathway are responsible for the assembly of the nucleotide loop and are required during de novo synthesis and precursor salvaging. These steps are characterized by activation of the corrin ring and lower ligand base, condensation of the activated precursors to adenosylcobamide phosphate, and removal of the phosphate, yielding a complete adenosylcobamide molecule. The condensation of the activated corrin ring and lower ligand base is performed by an integral membrane protein, cobamide (5′ phosphate) synthase (CobS), and represents an important convergence of two pathways necessary for nucleotide loop assembly. Interestingly, membrane association of this penultimate step is conserved among all cobamide producers, yet the physiological relevance of this association is not known. Here, we present the purification and biochemical characterization of the CobS enzyme of the enterobacterium Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, investigate its association with liposomes, and quantify the effect of the lipid bilayer on its enzymatic activity and substrate affinity. We report a purification scheme that yields pure CobS protein, allowing in vitro functional analysis. Additionally, we report a method for liposome reconstitution of CobS, allowing for physiologically relevant studies of this inner membrane protein in a phospholipid bilayer. In vitro and in vivo data reported here expand our understanding of CobS and the implications of membrane-associated adenosylcobamide biosynthesis.
Collapse
|
36
|
Shukla S, Baumgart T. Enzymatic trans-bilayer lipid transport: Mechanisms, efficiencies, slippage, and membrane curvature. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183534. [PMID: 33340491 PMCID: PMC8351443 DOI: 10.1016/j.bbamem.2020.183534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
The eukaryotic plasma membrane's lipid composition is found to be ubiquitously asymmetric comparing inner and outer leaflets. This membrane lipid asymmetry plays a crucial role in diverse cellular processes critical for cell survival. A specialized set of transmembrane proteins called translocases, or flippases, have evolved to maintain this membrane lipid asymmetry in an energy-dependent manner. One potential consequence of local variations in membrane lipid asymmetry is membrane remodeling, which is essential for cellular processes such as intracellular trafficking. Recently, there has been a surge in the identification and characterization of flippases, which has significantly advanced the understanding of their functional mechanisms. Furthermore, there are intriguing possibilities for a coupling between membrane curvature and flippase activity. In this review we highlight studies that link membrane shape and remodeling to differential stresses generated by the activity of lipid flippases with an emphasis on data obtained through model membrane systems. We review the common mechanistic models of flippase-mediated lipid flipping and discuss common techniques used to test lipid flippase activity. We then compare the existing data on lipid translocation rates by flippases and conclude with potential future directions for this field.
Collapse
Affiliation(s)
- Sankalp Shukla
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
37
|
Membrane properties of ether-type phosphatidylcholine bearing partially fluorinated C18-monoacetylenic chains and their applicability to membrane protein reconstitution matrices. Colloids Surf B Biointerfaces 2021; 198:111459. [DOI: 10.1016/j.colsurfb.2020.111459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
|
38
|
Wang N, Clark LD, Gao Y, Kozlov MM, Shemesh T, Rapoport TA. Mechanism of membrane-curvature generation by ER-tubule shaping proteins. Nat Commun 2021; 12:568. [PMID: 33495454 PMCID: PMC7835363 DOI: 10.1038/s41467-020-20625-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) network consists of tubules with high membrane curvature in cross-section, generated by the reticulons and REEPs. These proteins have two pairs of trans-membrane (TM) segments, followed by an amphipathic helix (APH), but how they induce curvature is poorly understood. Here, we show that REEPs form homodimers by interaction within the membrane. When overexpressed or reconstituted at high concentrations with phospholipids, REEPs cause extreme curvature through their TMs, generating lipoprotein particles instead of vesicles. The APH facilitates curvature generation, as its mutation prevents ER network formation of reconstituted proteoliposomes, and synthetic L- or D-amino acid peptides abolish ER network formation in Xenopus egg extracts. In Schizosaccharomyces japonicus, the APH is required for reticulon’s exclusive ER-tubule localization and restricted mobility. Thus, the TMs and APH cooperate to generate high membrane curvature. We propose that the formation of splayed REEP/reticulon dimers is responsible for ER tubule formation. The endoplasmic reticulum network consists of tubules with high membrane curvature in cross-section, generated by the reticulons and REEPs, but how they introduce curvature is poorly understood. Here authors show that REEPs form homodimers and use their amphipathic helix and trans-membrane segments to introduce high membrane curvature that can even lead to the formation of lipoprotein particles.
Collapse
Affiliation(s)
- Ning Wang
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Lindsay D Clark
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan Gao
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tom Shemesh
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
39
|
Wipf D, Pfister C, Mounier A, Leborgne-Castel N, Frommer WB, Courty PE. Identification of Putative Interactors of Arabidopsis Sugar Transporters. TRENDS IN PLANT SCIENCE 2021; 26:13-22. [PMID: 33071187 DOI: 10.1016/j.tplants.2020.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/24/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Hexoses and disaccharides are the key carbon sources for essentially all physiological processes across kingdoms. In plants, sucrose, and in some cases raffinose and stachyose, are transported from the site of synthesis in leaves, the sources, to all other organs that depend on import, the sinks. Sugars also play key roles in interactions with beneficial and pathogenic microbes. Sugar transport is mediated by transport proteins that fall into super-families. Sugar transporter (ST) activity is tuned at different levels, including transcriptional and posttranslational levels. Understanding the ST interactome has a great potential to uncover important players in biologically and physiologically relevant processes, including, but not limited to Arabidopsis thaliana. Here, we combined ST interactions and coexpression studies to identify potentially relevant interaction networks.
Collapse
Affiliation(s)
- Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Carole Pfister
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Nathalie Leborgne-Castel
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
40
|
Ardalan A, Sowlati-Hashjin S, Uwumarenogie SO, Fish M, Mitchell J, Karttunen M, Smith MD, Jelokhani-Niaraki M. Functional Oligomeric Forms of Uncoupling Protein 2: Strong Evidence for Asymmetry in Protein and Lipid Bilayer Systems. J Phys Chem B 2020; 125:169-183. [PMID: 33373220 DOI: 10.1021/acs.jpcb.0c09422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Stoichiometry of uncoupling proteins (UCPs) and their coexistence as functional monomeric and associated forms in lipid membranes remain intriguing open questions. In this study, tertiary and quaternary structures of UCP2 were analyzed experimentally and through molecular dynamics (MD) simulations. UCP2 was overexpressed in the inner membrane of Escherichia coli, then purified and reconstituted in lipid vesicles. Structure and proton transport function of UCP2 were characterized by circular dichroism (CD) spectroscopy and fluorescence methods. Findings suggest a tetrameric functional form for UCP2. MD simulations conclude that tetrameric UCP2 is a dimer of dimers, is more stable than its monomeric and dimeric forms, is asymmetrical and induces asymmetry in the membrane's lipid structure, and a biphasic on-off switch between the dimeric units is its possible mode of transport. MD simulations also show that the water density inside the UCP2 monomer is asymmetric, with the cytoplasmic side having a higher water density and a wider radius. In contrast, the structurally comparable adenosine 5'-diphosphate (ADP)/adenosine 5'-triphosphate (ATP) carrier (AAC1) did not form tetramers, implying that tetramerization cannot be generalized to all mitochondrial carriers.
Collapse
Affiliation(s)
- Afshan Ardalan
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Shahin Sowlati-Hashjin
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7.,Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6K 3K7
| | - Stephanie O Uwumarenogie
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Michael Fish
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5.,Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Joel Mitchell
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 3K7.,Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6K 3K7.,Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - Masoud Jelokhani-Niaraki
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
41
|
Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Int J Mol Sci 2020; 22:ijms22010050. [PMID: 33374526 PMCID: PMC7793082 DOI: 10.3390/ijms22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins evolved to reside in the hydrophobic lipid bilayers of cellular membranes. Therefore, membrane proteins bridge the different aqueous compartments separated by the membrane, and furthermore, dynamically interact with their surrounding lipid environment. The latter not only stabilizes membrane proteins, but directly impacts their folding, structure and function. In order to be characterized with biophysical and structural biological methods, membrane proteins are typically extracted and subsequently purified from their native lipid environment. This approach requires that lipid membranes are replaced by suitable surrogates, which ideally closely mimic the native bilayer, in order to maintain the membrane proteins structural and functional integrity. In this review, we survey the currently available membrane mimetic environments ranging from detergent micelles to bicelles, nanodiscs, lipidic-cubic phase (LCP), liposomes, and polymersomes. We discuss their respective advantages and disadvantages as well as their suitability for downstream biophysical and structural characterization. Finally, we take a look at ongoing methodological developments, which aim for direct in-situ characterization of membrane proteins within native membranes instead of relying on membrane mimetics.
Collapse
|
42
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
43
|
Schmid YRF, Scheller L, Buchmann S, Dittrich PS. Calcium-Mediated Liposome Fusion to Engineer Giant Lipid Vesicles with Cytosolic Proteins and Reconstituted Mammalian Proteins. ACTA ACUST UNITED AC 2020; 4:e2000153. [PMID: 33084207 DOI: 10.1002/adbi.202000153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Giant unilamellar lipid vesicles (GUVs) are widely used as model membrane systems and provide an excellent basis to construct artificial cells. To construct more sophisticated artificial cells, proteins-in particular membrane proteins-need to be incorporated in GUVs. However, current methods for protein reconstitution have limited throughput or are not generally applicable for all proteins because they depend on detergent solubilization. This limitation is addressed here by introducing calcium-mediated membrane fusion to transfer proteins between negatively charged GUVs and cell-derived plasma membrane vesicles (CDVs), derived from HEK293T cells overexpressing a membrane receptor protein. Fusion conditions are optimized using large unilamellar vesicles and GUVs containing phosphatidylserines and fusogenic lipids. The approach is then applied to induce lipid mixing and subsequent transfer of the overexpressed membrane receptor from CDVs into GUVs. The membrane receptor is detected by immunofluorescence on GUVs that underwent lipid mixing with CDVs. Those GUVs also exhibit esterase activity because cytosolic esterases entrapped in the CDVs are transferred during membrane fusion. Thus, content mixing is demonstrated. Using CDVs circumvents the need to purify or solubilize proteins. Moreover, calcium-mediated fusion allows transfer of lipids, water-soluble and membrane bound proteins in one step, resulting in a semi-synthetic cell.
Collapse
Affiliation(s)
- Yannick R F Schmid
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Leo Scheller
- Department of Biosystems Science and Engineering, Biotechnology and Bioengineering Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Sebastian Buchmann
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| |
Collapse
|
44
|
Kleineberg C, Wölfer C, Abbasnia A, Pischel D, Bednarz C, Ivanov I, Heitkamp T, Börsch M, Sundmacher K, Vidaković‐Koch T. Light-Driven ATP Regeneration in Diblock/Grafted Hybrid Vesicles. Chembiochem 2020; 21:2149-2160. [PMID: 32187828 PMCID: PMC7496644 DOI: 10.1002/cbic.201900774] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/02/2020] [Indexed: 01/19/2023]
Abstract
Light-driven ATP regeneration systems combining ATP synthase and bacteriorhodopsin have been proposed as an energy supply in the field of synthetic biology. Energy is required to power biochemical reactions within artificially created reaction compartments like protocells, which are typically based on either lipid or polymer membranes. The insertion of membrane proteins into different hybrid membranes is delicate, and studies comparing these systems with liposomes are needed. Here we present a detailed study of membrane protein functionality in different hybrid compartments made of graft polymer PDMS-g-PEO and diblock copolymer PBd-PEO. Activity of more than 90 % in lipid/polymer-based hybrid vesicles could prove an excellent biocompatibility. A significant enhancement of long-term stability (80 % remaining activity after 42 days) could be demonstrated in polymer/polymer-based hybrids.
Collapse
Affiliation(s)
- Christin Kleineberg
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
| | - Christian Wölfer
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
| | - Amirhossein Abbasnia
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
| | - Dennis Pischel
- Otto von Guericke UniversityProcess Systems EngineeringUniversitätsplatz 239106MagdeburgGermany
| | - Claudia Bednarz
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
| | - Ivan Ivanov
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
| | - Thomas Heitkamp
- Jena University Hospital; Single-Molecule Microscopy GroupNonnenplan 2–407743JenaGermany
| | - Michael Börsch
- Jena University Hospital; Single-Molecule Microscopy GroupNonnenplan 2–407743JenaGermany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
- Otto von Guericke UniversityProcess Systems EngineeringUniversitätsplatz 239106MagdeburgGermany
| | - Tanja Vidaković‐Koch
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
| |
Collapse
|
45
|
Rottet S, Iqbal S, Beales PA, Lin A, Lee J, Rug M, Scott C, Callaghan R. Characterisation of Hybrid Polymersome Vesicles Containing the Efflux Pumps NaAtm1 or P-Glycoprotein. Polymers (Basel) 2020; 12:E1049. [PMID: 32375237 PMCID: PMC7284524 DOI: 10.3390/polym12051049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/18/2022] Open
Abstract
Investigative systems for purified membrane transporters are almost exclusively reliant on the use of phospholipid vesicles or liposomes. Liposomes provide an environment to support protein function; however, they also have numerous drawbacks and should not be considered as a "one-size fits all" system. The use of artificial vesicles comprising block co-polymers (polymersomes) offers considerable advantages in terms of structural stability; provision of sufficient lateral pressure; and low passive permeability, which is a particular issue for transport assays using hydrophobic compounds. The present investigation demonstrates strategies to reconstitute ATP binding cassette (ABC) transporters into hybrid vesicles combining phospholipids and the block co-polymer poly (butadiene)-poly (ethylene oxide). Two efflux pumps were chosen; namely the Novosphingobium aromaticivorans Atm1 protein and human P-glycoprotein (Pgp). Polymersomes were generated with one of two lipid partners, either purified palmitoyl-oleoyl-phosphatidylcholine, or a mixture of crude E. coli lipid extract and cholesterol. Hybrid polymersomes were characterised for size, structural homogeneity, stability to detergents, and permeability. Two transporters, NaAtm1 and P-gp, were successfully reconstituted into pre-formed and surfactant-destabilised hybrid polymersomes using a detergent adsorption strategy. Reconstitution of both proteins was confirmed by density gradient centrifugation and the hybrid polymersomes supported substrate dependent ATPase activity of both transporters. The hybrid polymersomes also displayed low passive permeability to a fluorescent probe (calcein acetomethoxyl-ester (C-AM)) and offer the potential for quantitative measurements of transport activity for hydrophobic compounds.
Collapse
Affiliation(s)
- Sarah Rottet
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra 2601, Australia; (S.R.); (C.S.)
| | - Shagufta Iqbal
- Research School of Biology, and the Medical School, Australian National University, Canberra 2601, Australia; (S.I.); (A.L.)
| | - Paul A. Beales
- School of Chemistry Bragg Centre for Materials Research and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK;
| | - Anran Lin
- Research School of Biology, and the Medical School, Australian National University, Canberra 2601, Australia; (S.I.); (A.L.)
| | - Jiwon Lee
- Centre for Advanced Microscopy, Australian National University, Canberra 2601, Australia; (J.L.); (M.R.)
| | - Melanie Rug
- Centre for Advanced Microscopy, Australian National University, Canberra 2601, Australia; (J.L.); (M.R.)
| | - Colin Scott
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra 2601, Australia; (S.R.); (C.S.)
| | - Richard Callaghan
- Research School of Biology, and the Medical School, Australian National University, Canberra 2601, Australia; (S.I.); (A.L.)
| |
Collapse
|
46
|
Lloris-Garcerá P, Klinter S, Chen L, Skynner MJ, Löving R, Frauenfeld J. DirectMX - One-Step Reconstitution of Membrane Proteins From Crude Cell Membranes Into Salipro Nanoparticles. Front Bioeng Biotechnol 2020; 8:215. [PMID: 32266242 PMCID: PMC7096351 DOI: 10.3389/fbioe.2020.00215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/03/2020] [Indexed: 01/14/2023] Open
Abstract
Integral membrane proteins (IMPs) are central to many physiological processes and represent ∼60% of current drug targets. An intricate interplay with the lipid molecules in the cell membrane is known to influence the stability, structure and function of IMPs. Detergents are commonly used to solubilize and extract IMPs from cell membranes. However, due to the loss of the lipid environment, IMPs usually tend to be unstable and lose function in the continuous presence of detergent. To overcome this problem, various technologies have been developed, including protein engineering by mutagenesis to improve IMP stability, as well as methods to reconstitute IMPs into detergent-free entities, such as nanodiscs based on apolipoprotein A or its membrane scaffold protein (MSP) derivatives, amphipols, and styrene-maleic acid copolymer-lipid particles (SMALPs). Although significant progress has been made in this field, working with inherently unstable human IMP targets (e.g., GPCRs, ion channels and transporters) remains a challenging task. Here, we present a novel methodology, termed DirectMX (for direct membrane extraction), taking advantage of the saposin-lipoprotein (Salipro) nanoparticle technology to reconstitute fragile IMPs directly from human crude cell membranes. We demonstrate the applicability of the DirectMX methodology by the reconstitution of a human solute carrier transporter and a wild-type GPCR belonging to the human chemokine receptor (CKR) family. We envision that DirectMX bears the potential to enable studies of IMPs that so far remained inaccessible to other solubilization, stabilization or reconstitution methods.
Collapse
|
47
|
Baba T, Takagi T, Sumaru K, Kanamori T. Effect of the fluorination degree of partially fluorinated octyl-phosphocholine surfactants on their interfacial properties and interactions with purple membrane as a membrane protein model. Chem Phys Lipids 2020; 227:104870. [DOI: 10.1016/j.chemphyslip.2020.104870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022]
|
48
|
Hakim Elahi S, Abbaszadegan M, Conroy-Ben O. Engineered proteoliposome transporter for treatment of cesium contaminated water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135317. [PMID: 31812387 DOI: 10.1016/j.scitotenv.2019.135317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Radioactive cesium (137Cs) released from nuclear power plants and nuclear accidents continues to be a worldwide concern, and its removal from water remains a difficult problem. Here, we present the development of an innovative method to remove Cs+ present at low concentrations in water. To achieve this, a proteoliposome transporter was engineered, composed of a membrane-bound potassium uptake protein, Kup from E. coli, which was reconstituted into a liposome vesicle. Cs+ removal (10-100 µg/L) was demonstrated by incubating the constructed proteoliposome in lab-fortified water, followed by ultracentrifugation to remove captured Cs+. Inductively coupled plasma mass spectrometry (ICP-MS) results from testing water spiked with 100 µg/L Cs+ revealed that adding increasing volumes of proteoliposome solution (containing 0.015-1.2 mg of Kup membrane transporter) resulted in 0.29-12.7% removal in a linear fashion. Proteoliposome addition (containing 0.015-0.3 mg of Kup membrane transporter) to water spiked with 10 µg/L Cs+ resulted in 0.65-3.43% removal, while removal by protein-free liposomes was negligible at 0.03%. These results suggest that Kup transporters inserted into the liposomes are mainly responsible for the removal efficiencies. Consequently, a desired removal efficiency can be achieved by adding a higher volume of constructed proteoliposome and subsequently higher mg of Kup transporter to the contaminated water. This provides new insight on the effectiveness and applicability of proteoliposome transporters, and an alternative and a novel contribution to emerging technologies in removing cesium or other metal contaminants undergoing transmembrane transport.
Collapse
Affiliation(s)
- Sepideh Hakim Elahi
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, United States.
| | - Morteza Abbaszadegan
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, United States.
| | - Otakuye Conroy-Ben
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, United States.
| |
Collapse
|
49
|
Pan YZ, Liu X, Rizo J. Analysis of asymmetry in lipid and content mixing assays with reconstituted proteoliposomes containing the neuronal SNAREs. Sci Rep 2020; 10:2907. [PMID: 32076023 PMCID: PMC7031292 DOI: 10.1038/s41598-020-59740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Reconstitution assays with proteoliposomes provide a powerful tool to elucidate the mechanism of neurotransmitter release, but it is important to understand how these assays report on membrane fusion, and recent studies with yeast vacuolar SNAREs uncovered asymmetry in the results of lipid mixing assays. We have investigated whether such asymmetry also occurs in reconstitution assays with the neuronal SNAREs, using syntaxin-1-SNAP-25-containing liposomes and liposomes containing synaptobrevin (T and V liposomes, respectively), and fluorescent probes to monitor lipid and content mixing simultaneously. Switching the fluorescent probes placed on the T and V liposomes, we observed a striking asymmetry in both lipid and content mixing stimulated by a fragment spanning the two C2 domains of synaptotagmin-1, or by a peptide that spans the C-terminal half of the synaptobrevin SNARE motif. However, no such asymmetry was observed in assays performed in the presence of Munc18-1, Munc13-1, NSF and αSNAP, which coordinate the assembly-disassembly cycle of neuronal SNARE complexes. Our results show that switching fluorescent probes between the two types of liposomes provides a useful approach to better understand the reactions that occur between liposomes and detect heterogenous behavior in these reactions.
Collapse
Affiliation(s)
- Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States. .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States.
| |
Collapse
|
50
|
Markones M, Fippel A, Kaiser M, Drechsler C, Hunte C, Heerklotz H. Stairway to Asymmetry: Five Steps to Lipid-Asymmetric Proteoliposomes. Biophys J 2020; 118:294-302. [PMID: 31843262 PMCID: PMC6976795 DOI: 10.1016/j.bpj.2019.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Membrane proteins are embedded in a complex lipid environment that influences their structure and function. One key feature of nearly all biological membranes is a distinct lipid asymmetry. However, the influence of membrane asymmetry on proteins is poorly understood, and novel asymmetric proteoliposome systems are beneficial. To our knowledge, we present the first study on a multispanning protein incorporated in large unilamellar liposomes showing a stable lipid asymmetry. These asymmetric proteoliposomes contain the Na+/H+ antiporter NhaA from Salmonella Typhimurium. Asymmetry was introduced by partial, outside-only exchange of anionic phosphatidylglycerol (PG), mimicking this key asymmetry of bacterial membranes. Outer-leaflet and total fractions of PG were determined via ζ-potential (ζ) measurements after lipid exchange and after scrambling of asymmetry. ζ-Values were in good agreement with exclusive outside localization of PG. The electrogenic Na+/H+ antiporter was active in asymmetric liposomes, and it can be concluded that reconstitution and generation of asymmetry were successful. Lipid asymmetry was stable for more than 7 days at 23°C and thus enabled characterization of the Na+/H+ antiporter in an asymmetric lipid environment. We present and validate a simple five-step protocol that addresses key steps to be taken and pitfalls to be avoided for the preparation of asymmetric proteoliposomes: 1) optimization of desired lipid composition, 2) detergent-mediated protein reconstitution with subsequent detergent removal, 3) generation of lipid asymmetry by partial exchange of outer-leaflet lipid, 4) verification of lipid asymmetry and stability, and 5) determination of protein activity in the asymmetric lipid environment. This work offers guidance in designing asymmetric proteoliposomes that will enable researchers to compare functional and structural properties of membrane proteins in symmetric and asymmetric lipid environments.
Collapse
Affiliation(s)
- Marie Markones
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany; HSGS Hermann Staudinger Graduate School, University of Freiburg, Breisgau, Germany.
| | - Anika Fippel
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Breisgau, Germany; HSGS Hermann Staudinger Graduate School, University of Freiburg, Breisgau, Germany
| | - Michael Kaiser
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; HSGS Hermann Staudinger Graduate School, University of Freiburg, Breisgau, Germany
| | - Carina Drechsler
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany
| | - Carola Hunte
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany; Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Heiko Heerklotz
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|