1
|
Silva ECC, Masui DC, Furriel RPM, Mantelatto FLM, McNamara JC, Barrabin H, Leone FA, Scofano HM, Fontes CFL. Regulation by the exogenous polyamine spermidine of Na,K-ATPase activity from the gills of the euryhaline swimming crab Callinectes danae (Brachyura, Portunidae). Comp Biochem Physiol B Biochem Mol Biol 2008; 149:622-9. [PMID: 18272416 DOI: 10.1016/j.cbpb.2007.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/28/2007] [Accepted: 12/28/2007] [Indexed: 11/25/2022]
Abstract
Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine>spermidine>putrescine. Spermidine affected K(0.5) values for Na(+) with minor alterations in K(0.5) values for K(+) and NH(4)(+), causing a decrease in maximal velocities under saturating Na(+), K(+) and NH(4)(+) concentrations. Phosphorylation measurements in the presence of 20 microM ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na(+), both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na(+), the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na(+) at the Na(+)-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments.
Collapse
Affiliation(s)
- E C C Silva
- Instituto de Bioquímica Médica, Laboratório de Estrutura e Regulação de Proteínas e ATPases, Programa de Biologia Estrutural, CCS, Bloco H, 2 andar, sala 26, 21941-590, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Thomas LE, Burguillos L, del Castillo JR. Backdoor phosphorylation of basolateral plasma membranes of small intestinal epithelial cells: characterization of a furosemide-induced phosphoprotein related to the second sodium pump. Arch Biochem Biophys 2003; 419:190-7. [PMID: 14592462 DOI: 10.1016/j.abb.2003.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Enterocyte has two different Na+-stimulated ATPases, the ouabain-sensitive Na+/K+ ATPase and a furosemide-inhibitable Na+ ATPase. To identify the polypeptide associated with the Na+-ATPase, 32Pi phosphorylation into basolateral membranes of enterocyte was investigated. Both, ouabain and furosemide induced Mg2+-dependent, vanadate-sensitive 32Pi incorporation into a 100kDa polypeptide. K(m) for Pi was 17.7+/-1.82 microM and 16.8+/-0.69 microM for ouabain-induced and furosemide-induced phosphorylation, respectively. K(m) for furosemide was 1.3+/-0.21 mM. Furosemide-induced 32Pi incorporation was sensitive to alkaline pH and hydroxylamine suggesting an acyl-phosphate bond. Na+ and K+ inhibited 32Pi incorporation induced by ouabain. In contrast, Na+ stimulated furosemide-induced phosphorylation with a K(m) of 16.5+/-5.59 mM while K+ had no effect. Purified Na+/K+ ATPase only presented ouabain-induced phosphoprotein, indicating that furosemide-induced phosphorylation is not related to this enzyme and appears to correspond to a new member of P-type ATPases associated with the second Na+ pump.
Collapse
Affiliation(s)
- Luz E Thomas
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, 1020-A Caracas, Venezuela
| | | | | |
Collapse
|
3
|
Villas-Boas Tribuzy A, Fontes CFL, Nørby JG, Barrabin H. Dimethyl sulfoxide-induced conformational state of Na(+)/K(+)-ATPase studied by proteolytic cleavage. Arch Biochem Biophys 2002; 399:89-95. [PMID: 11883907 DOI: 10.1006/abbi.2001.2752] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of dimethyl sulfoxide (Me(2)SO) on substrate affinity for phosphorylation by inorganic phosphate, on phosphorylation by ATP in the absence of Na(+), and on ouabain binding to the free form of the Na(+)/K(+)-ATPase have been attributed to changes in solvation of the active site or Me(2)SO-induced changes in the structure of the enzyme. Here we used selective trypsin cleavage as a procedure to determine the conformations that the Na(+)/K(+)-ATPase acquires in Me(2)SO medium. In water or in Me(2)SO medium, Na(+)/K(+)-ATPase exhibited after partial proteolysis two distinct groups of fragments: (1) in the presence of 0.1 M Na(+) or 0.1 M Na(+) + 3 mM ADP (enzyme in the E1 state) cleavage produced a main fragment of about 76 kDa; and (2) in the presence of 20 mM K(+) (E2 state) a 58-kDa fragment plus two or three fragments of 39-41 kDa were obtained. Cleavage in Me(2)SO medium in the absence of Na(+) and K(+) exhibited the same breakdown pattern as that obtained in the presence of K(+), but a 43-kDa fragment was also observed. An increase in the K(+) concentration to 0.5 mM eliminated the 43-kDa fragment, while a 39- to 41-kDa doublet was accumulated. Both in water and in Me(2)SO medium, a strong enhancement of the 43-kDa band was observed in the presence of either P(i) + ouabain or vanadate, suggesting that the 43-kDa fragment is closely related to the conformation of the phosphorylated enzyme. These results indicate that Me(2)SO acts not only by promoting the release of water from the ATP site, but also by inducing a conformation closely related to the phosphorylated state, even when the enzyme is not phosphorylated.
Collapse
|
4
|
Rose AM, Qazzaz HM, Zolotarjova N, Mellett BJ, Martin AW, Valdes Jr R. Sodium Pump Isoforms in Xenotransplantation: Importance of Biochemical Compatibility. Clin Chem 2000. [DOI: 10.1093/clinchem/46.2.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBackground: Xenotransplantation of pig hearts to humans could be hampered by the reportedly reduced affinity for digoxin of pig heart. We examined the hypothesis that expression of the individual α-subunit isoforms of the sodium pump [Na+,K+-ATPase (NKA)], the receptor for the plant-derived cardiac glycosides, may be responsible for this difference.Methods: We used a NKA-inhibition assay in combination with Western analysis, immunohistochemistry, and phosphorylation of the NKA α subunit to identify the distribution and expression of α isoforms in four chambers of porcine and human hearts.Results: We confirmed that tissue from porcine heart is less sensitive to digitalis (IC50 = 1740 nmol/L) when compared with human heart (IC50 = 840 nmol/L), whereas porcine cerebral cortex-mix had an affinity comparable to that of human heart (IC50 = 910 nmol/L). Our data show that porcine cerebral cortex-mix and human heart contain all three α isoforms, whereas porcine heart expresses only the α1 isoform.Conclusions: The different expressions of sodium pump isoforms in human vs porcine cardiac tissues suggests that porcine hearts may not be pharmacologically or endocrinologically compatible when used in humans. Studies of both pharmacologic and endocrinologic tissue compatibility are needed prior to selection of organs for xenotransplantation.
Collapse
Affiliation(s)
- Andrea M Rose
- Departments of Pathology and Laboratory Medicine and
| | | | | | | | | | - Roland Valdes Jr
- Departments of Pathology and Laboratory Medicine and
- Biochemistry and Molecular Biology, University of Louisville, School of Medicine, Louisville, KY 40292
| |
Collapse
|
5
|
Asami M, Sekihara T, Hanaoka T, Goya T, Matsui H, Hayashi Y. Quantification of the Na+/K(+)-pump in solubilized tissue by the ouabain binding method coupled with high-performance gel chromatography. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1240:55-64. [PMID: 7495849 DOI: 10.1016/0005-2736(95)00146-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Membrane-bound Na+/K(+)-ATPase purified from dog kidney outer medulla was solubilized with octaethylene glycol n-dodecyl ether (C12E8) and incubated with [3H]ouabain in the presence of NaCl. ATP and MgCl2 for 10 min at 0 degrees C. The resulting enzyme was separated, by high-performance gel chromatography executed at 0.2 degrees C. Mainly into its (alpha beta)2-diprotomer and alpha beta-protomer, which both bound stoichiometrically to [3H]ouabain. The amounts of ouabain that bound to the tissue itself and its microsomes could be estimated in the same way, as [3H]ouabain was found to bind only to the diprotomer and protomer they possessed. The amounts of ouabain that bound to them in the solubilized state were at least 5-times higher than those that did so when they were non-solubilized, suggesting that the surfactant rendered the enzyme accessible to ouabain. When the solubilized tissue (138 mg ml-1 wet tissue) was reacted with ouabain in the presence of 0.1 M NaCl and 4.8 mM MgCl2 for 10 min at 0 degrees C, maximal ouabain binding was attained in the presence of 18.3 microM [3H]ouabain, 1.2 mM ATP and 3 to 5 mg ml-1 C12E8, which was common to the outer medulla and human colon cancer cells. The present method enabled the pump number in protein and tissue samples in the range 7.2 x 10(-9) (purified pump) to 1.5 x 10(-12) (cancer tissue) mol/mg protein to be estimated within 2 h.
Collapse
Affiliation(s)
- M Asami
- Second Department of Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Kuntzweiler TA, Wallick ET, Johnson CL, Lingrel JB. Amino acid replacement of Asp369 in the sheep alpha 1 isoform eliminates ATP and phosphate stimulation of [3H]ouabain binding to the Na+, K(+)-ATPase without altering the cation binding properties of the enzyme. J Biol Chem 1995; 270:16206-12. [PMID: 7608186 DOI: 10.1074/jbc.270.27.16206] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Modification of aspartic acid 369 in the sheep alpha 1 Na+,K(+)-ATPase to asparagine results in a membrane-associated form of Na+,K(+)-ATPase that can bind [3H]ouabain with high affinity in the presence of Mg2+ alone (KD = 20.4 +/- 2.6 nM). Ouabain binding to the D369N mutant is not stimulated by inorganic phosphate, confirming that Asp369 is both the catalytic phosphorylation site and the only Pi interaction site which stimulates ouabain binding. Cation inhibition of Mg(2+)-stimulated ouabain binding to the D369N mutant demonstrated that three Na+ and two K+ ions inhibit [3H]ouabain binding and suggests that this inhibition must occur via a cation-sensitive conformational change which does not directly involve dephosphorylation of the enzyme. In the presence of 10 mM Mg2+, ATP stimulates ouabain binding to the wild type protein, (AC50 = 21.4 +/- 2.7 microM) but inhibits the binding to the D369N mutant (IC50 = 2.52 +/- 0.17 microM) indicating that the mutation does not destroy the high affinity site for MgATP but does change the nature of the protein conformation normally induced by a nucleotide-Na+,K(+)-ATPase interaction. Increasing the Mg2+ from 1 to 10 mM did not alter the AC50 or IC50 values for ATP and reveals that the Mg2+ interaction which stimulates ouabain binding in the absence of nucleotide involves a distinct divalent cation site not associated with the binding of the magnesium-nucleotide complex. Thus, altering the catalytic phosphorylation site of Na+,K(+)-ATPase does not affect the expression of the ouabain-sensitive protein in the membrane fraction of NIH 3T3 cells and does not disrupt the binding of Na+, K+, Mg2+, ouabain, or ATP to the enzyme. However, the D369N substitution does inhibit the formation of a nucleotide-protein complex with high affinity for ouabain.
Collapse
Affiliation(s)
- T A Kuntzweiler
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Ohio 45267-0524, USA
| | | | | | | |
Collapse
|
7
|
Swarts HG, Moes M, Schuurmans Stekhoven FM, De Pont JJ. Vanadate-sensitive phosphatidate phosphohydrolase activity in a purified rabbit kidney Na,K-ATPase preparation. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1107:143-9. [PMID: 1319739 DOI: 10.1016/0005-2736(92)90340-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reconstitution of purified rabbit kidney Na,K-ATPase in phosphatidylcholine/phosphatidic acid liposomes resulted in the absence of ATP in a time-, temperature- and protein-dependent formation of inorganic phosphate. This formation of inorganic phosphate could be attributed to a phosphatidate phosphohydrolase activity present in the Na,K-ATPase preparation. A close interaction of the enzyme with the substrate phosphatidic acid was important, since no or little Pi production was observed under any of the following conditions: without reconstitution, after reconstitution in the absence of phosphatidic acid, with low concentrations of detergent or at low lipid/protein ratios. The hydrolysis of phosphatidic acid was not influenced by the Na,K-ATPase inhibitor ouabain but was completely inhibited by the P-type ATPase inhibitor vanadate. Besides Pi diacylglycerol was also formed, confirming that a phosphatidate hydrolase activity was involved. Since the phosphatidate phosphohydrolase activity was rather heat- and N-ethylmaleimide-insensitive, we conclude that the phosphatidic acid hydrolysis was not due to Na,K-ATPase itself but to a membrane-bound phosphatidate phosphohydrolase, present as an impurity in the purified rabbit kidney Na,K-ATPase preparations.
Collapse
Affiliation(s)
- H G Swarts
- Department of Biochemistry, University of Nijmegen, Netherlands
| | | | | | | |
Collapse
|
8
|
Van der Hijden HT, Koster HP, Swarts HG, De Pont JJ. Phosphorylation of H+/K(+)-ATPase by inorganic phosphate. The role of K+ and SCH 28080. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1061:141-8. [PMID: 1847826 DOI: 10.1016/0005-2736(91)90278-g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of K+ on the phosphorylation of H+/K(+)-ATPase with inorganic phosphate were studied using H+/K(+)-ATPase purified from porcine gastric mucosa. The phosphoenzyme formed by phosphorylation with Pi was identical with the phosphoenzyme formed with ATP. The maximal phosphorylation level obtained with Pi was equal to that obtained with ATP. The Pi phosphorylation reaction of H+/K(+)-ATPase was, like that of Na+/K(+)-ATPase, a relatively slow reaction. The rates of phosphorylation and dephosphorylation were both increased by low concentrations of K+, which resulted in hardly any effect on the phosphorylation level. A decrease of the steady-state phosphorylation level was caused by higher concentrations of K+ in a noncompetitive manner, whereas no further increase in the dephosphorylation rate was observed. The decreasing effect was caused by a slow binding of K+ to the enzyme. All above-mentioned K+ effects were abolished by the specific H+/K(+)-ATPase inhibitor SCH 28080 (2-methyl-8-[phenyl-methoxy]imidazo-[1-2-a]pyrine-3-acetonitrile). Additionally, SCH 28080 caused a 2-fold increase in the affinity of H+/K(+)-ATPase for Pi. A model for the reaction cycle of H+/K(+)-ATPase fitting the data is postulated.
Collapse
|
9
|
Buxbaum E, Schoner W. Phosphate binding and ATP-binding sites coexist in Na+/K(+)-transporting ATPase, as demonstrated by the inactivating MgPO4 complex analogue Co(NH3)4PO4. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 195:407-19. [PMID: 1847680 DOI: 10.1111/j.1432-1033.1991.tb15720.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tetrammine cobalt(III) phosphate [Co(NH3)4PO4] inactivates Na+/K(+)-ATPase in the E2 conformational state, dependent on time and concentration, according to Eqn (1): Co(NH3)4PO4 + E2 Kd in equilibrium E2.Co(NH3)4PO4k2----E'2.Co(NH3)4PO4. The inactivation rate constant k2 for the formation of a stable E'2.Co(NH3)4PO4 at 37 degrees C was 0.057 min-1; the dissociation constant, Kd = 300 microM. The activation energy for the inactivation process was 149 kJ/mol. ATP and the uncleavable adenosine 5'-[beta, gamma-methylene]triphosphate competed with Co(NH3)4PO4 for its binding site with Ks = 0.41 mM and 5 mM, respectively. MgPO4 competed with Co(NH3)4PO4 linearly, with Ks = 50 microM, as did phosphate (Ks = 16 mM) and Mg2+ (Ks = 160 microM). It is concluded that the MgPO4 analogue binds to the MgPO4-binding subsite of the low-affinity ATP-binding site (of the E2 conformation). Also, Na+ (Ks = 860 microM) protected the enzyme against inactivation in a competitive manner. From the intersecting (slope and intercept linear) noncompetitive effect of Na+ against the inactivation by Co(NH3)4PO4, apparent affinities of K+ for the free enzyme of 41 microM, and for the E.Co(NH3)4PO4 complex of 720 microM, were calculated. Binding of Co(NH3)4PO4 to the enzyme inactivated Na+/K(+)-ATPase and K(+)-activated phosphatase, and, moreover, prevented the occlusion of 86Rb+; however, the activity of the Na(+)-ATPase, the phosphorylation capacity of the high-affinity ATP-binding site and the ATP/ADP-exchange reaction remained unchanged. With Co(NH3)432PO4 a binding capacity of 135 pmol unit enzyme was found. Phosphorylation and complete inactivation of the enzyme with Co(NH3)432PO4 or the 32P-labelled tetramminecobalt ATP ([gamma-32P]Co(NH3)4ATP) at the low-affinity ATP-binding site, allowed (independent of the purity of the Na+/K(+)-ATPase preparation) a further incorporation of radioactivity from 32P-labelled tetraaquachromium(III) ATP ([gamma-32P]CrATP) to the high-affinity ATP-binding site with unchanged phosphorylation capacity. However, inactivation and phosphorylation of Na+/K(+)-ATPase by [gamma-32P]CrATP prevented the binding of Co(NH3)4 32PO4 or [gamma-32P]Co(NH3)4ATP to the enzyme. [gamma-32P]CO(NH3)4ATP and Co(NH3)432PO4 are mutually exclusive. The data are consistent with the assumption of a cooperation of catalytic subunits within an (alpha,beta)2-diprotomer, which change their interactions during the Na+/K(+)-pumping process. Our findings seem not to support a symmetrical Repke and Stein model of enzyme action.
Collapse
Affiliation(s)
- E Buxbaum
- Institut für Biochemie und Endokrinologie, Justus-Liebig-Universität Giessen, Federal Republic of Germany
| | | |
Collapse
|
10
|
Swarts HG, Schuurmans Stekhoven FM, De Pont JJ. Binding of unsaturated fatty acids to Na+, K(+)-ATPase leading to inhibition and inactivation. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1024:32-40. [PMID: 2159804 DOI: 10.1016/0005-2736(90)90205-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of free fatty acids on the mechanism of action of Na+, K(+)-ATPase were studied. Unsaturated free fatty acids (palmitoleic acid, oleic acid, linoleic acid and arachidonic acid) inhibited the Na+, K(+)-ATPase activity within a narrow range, while saturated and methylated fatty acids had little or no effect. The following effects of oleic acid were found: (1) The affinity for K+ on the overall ATPase and the p-nitrophenylphosphatase reaction as well as the maximal activities were decreased. (2) The Na(+)-ATPase activity was also inhibited but the '0'-ATPase activity was hardly changed. (3) The steady-state ATP phosphorylation level in the presence of Na+ was not influenced. (4) The dephosphorylation rate constant of the phosphointermediate was slightly decreased, resulting in elevated phosphorylation levels in the absence of Na+. (5) The inhibitory effect of ATP on the dephosphorylation rate was not affected. (6) The K+ sensitivity of the phosphoenzyme in the presence as well as in the absence of Na+ was decreased. (7) Ouabain binding was inhibited. Both the affinity and the number of binding sites were lowered. In addition it was found that Na+, K(+)-ATPase binds oleic acid linearly with the fatty acid concentration up to more than 100 mol oleic acid per mol alpha beta oligomer of Na+, K(+)-ATPase. Prolonged incubation with oleic acid led to irreversible inactivation of the enzyme. This inactivation was dependent on the reaction conditions: ligands, temperature, enzyme concentration, time and fatty acid concentration. The combined presence of inactivation (long term effects) and the effects on the (K(+)-activated) dephosphorylation (short term effects) explain the mixed type inhibition of free fatty acids as observed in assays for K(+)-activated ATPase, K(+)-activated p-nitrophenylphosphatase and ouabain binding. It also explains the sharp inhibition curve in the Na+, K(+)-ATPase activity test.
Collapse
Affiliation(s)
- H G Swarts
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
11
|
Apell HJ, Häring V, Roudna M. Na,K-ATPase in artificial lipid vesicles. Comparison of Na,K and Na-only pumping mode. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1023:81-90. [PMID: 2156565 DOI: 10.1016/0005-2736(90)90012-d] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Na,K-ATPase from rabbit kidney outer medulla was reconstituted in large unilamellar lipid vesicles by detergent dialysis. Vesicles prepared in the presence or absence of potassium allowed to study two different transport modes: the (physiological) Na,K-mode in buffers containing Na+ and K+ and the Na-only mode in buffers containing Na+ but no K+. The ATP hydrolysis activity was obtained by determination of the liberated inorganic phosphate, Pi, and the inward directed Na+ flux was measured by 22Na-tracer flux. Electrogenic transport properties were studied using the membrane potential sensitive fluorescence-dye oxonol VI. The ratio upsilon(Na,K)/upsilon(Na) of the turnover rates in the Na,K-mode and in the Na-only mode is 6.6 +/- 2.0 under otherwise identical conditions and nonlimiting Na+ concentrations. Strong evidence is found that the Na-only mode exhibits a stoichiometry of 3Na+cyt/2Na+ext/1ATP, i.e. the extracellular (= intravesicular) Na+ has a potassium-like effect. In the Na-only mode one high-affinity binding side for ATP (KM congruent to 50 nM) was found, in the Na,K-mode a high- and low-affinity binding side with equilibrium dissociation constants, KM, of 60 nM and 13 microM, respectively. The sensitivity against the noncompetitively inhibiting ADP (KI = 6 microM) is higher by a factor of 20 in the Na-only mode compared to the Na,K-mode. From the temperature dependence of the pumping activity in both transport modes, activation energies of 160 kJ/mol for the Na,K-mode and 110 kJ/mol for the Na-only mode were determined.
Collapse
Affiliation(s)
- H J Apell
- Department of Biology, University of Konstanz, F.R.G
| | | | | |
Collapse
|
12
|
Van Uem TJ, Peters WH, De Pont JJ. A monoclonal antibody against pig gastric H+/K(+)-ATPase, which binds to the cytosolic E1.K+ form. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1023:56-62. [PMID: 2156563 DOI: 10.1016/0005-2736(90)90009-d] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monoclonal antibodies were raised against a purified membrane fraction from hog gastric mucosa containing H+/K(+)-ATPase. The properties of one of these monoclonal antibodies (5B6) were further evaluated. On immunoblot it recognized the 95 kDa peptide of the H+/K(+)-ATPase-rich membrane fraction. The K(+)-ATPase activity was inhibited by 65% under standard assay conditions (pH 7.0). At pH 6.0 and 8.0 this enzyme activity was inhibited by 40% and 100%, respectively. The maximal inhibition in inside-out vesicles was also 65% at pH 7.0. The inhibition was uncompetitive with respect to K+ and noncompetitive with respect to ATP. Mg2(+)-ATPase activity and K(+)-dependent p-nitrophenylphosphatase activity were not influenced. The monoclonal antibody lowered the steady-state phosphorylation level at pH 6.0, 7.0 and 8.0 by 30%, 40% and 60% respectively. The rate of the K(+)-stimulated dephosphorylation step was not inhibited. These findings demonstrate that 5-B6 recognizes the E1.K+ dephosphoenzyme at the cytosolic side.
Collapse
Affiliation(s)
- T J Van Uem
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
13
|
Affiliation(s)
- H J Apell
- Department of Biology, University of Konstanz, Federal Republic of Germany
| |
Collapse
|
14
|
Läuger P, Apell HJ. Voltage dependence of partial reactions of the Na+/K+ pump: predictions from microscopic models. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 945:1-10. [PMID: 2846066 DOI: 10.1016/0005-2736(88)90355-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A theoretical treatment of the voltage dependence of electroneutral Na+-Na+ and K+-K+ exchange mediated by the Na+/K+ pump is given. The analysis is based on the Post-Albers reaction scheme in which the overall transport process is described as a sequence of conformational transitions and ion-binding and ion-release steps. The voltage dependence of the exchange rate is determined by a set of 'dielectric coefficients' reflecting the magnitude of charge translocations associated with individual reaction steps. Charge movement may result from conformational changes of the transport protein and/or from migration of ions in an access channel connecting the binding sites with the aqueous medium. It is shown that valuable mechanistic information may be obtained by studying the voltage dependence of transport rates at different (saturating and nonsaturating) ion concentrations.
Collapse
Affiliation(s)
- P Läuger
- Department of Biology, University of Konstanz, F.R.G
| | | |
Collapse
|
15
|
Schuurmans Stekhoven FM, Swarts HG, Lam GK, Zou YS, De Pont JJ. Phosphorylation of (Na+ + K+)-ATPase; stimulation and inhibition by substituted and unsubstituted amines. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 937:161-76. [PMID: 2825806 DOI: 10.1016/0005-2736(88)90238-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
(1) In view of a previously established stimulation of steady-state phosphorylation of (Na+ + K+)-ATPase by imidazole and its inhibition by tris(hydroxymethyl)aminomethane, the effect of (structure, chemical composition and charge of) a number of primary, secondary and tertiary amines (including imidazole derivatives) has been investigated. (2) Primary amines are predominantly inhibitory and diamines are more inhibitory than monoamines. The strongest inhibition is exerted by ethylenediamine (I50 in 50 mM imidazole = 25 microM, vs. 60 mM for n-propylamine). Increasing the distance between the two amino groups from 3.7 to 8.7 A increases the I50 180-fold. The optimal distance of 3-4 A indicates a similar distance between two ligand(presumably Na+)-binding sites on the enzyme. (3) Screening or substitution of the central N-atom decreases inhibition by the nitrogen compound. Triple substitution by propyl or allyl groups leads to maximal activation, amounting to about 90% of the Na+-activation level. Triethyl substitution gives suboptimal activation and tributyl substitution leads to inhibition. Substitution by polar or negatively charged carboxyl groups diminishes or even abolishes inhibition and also diminishes or abolishes activation. (4) Although occasionally positive charge is not required for inhibition, it is prerequisite for activation. Within certain families of compounds (e.g., ethylenediamine and imidazole derivatives) inhibition or activation increases with pKa, hence with positive charge. (5) The above data are interpreted in terms of inhibition, which is competitive to Na+, being governed by Coulomb interaction. Activation, on the other hand, is predominantly determined by lipophilic (van der Waals or pi-pi electron) interactions, excluding water from the phosphorylation site, hence decreasing phosphoenzyme hydrolysis and increasing the phosphoenzyme level. The requirement of charge (though hidden by substitution) implies weak additional electrostatic interaction.
Collapse
|
16
|
|
17
|
Swarts HG, Zwartjes HA, Schuurmans Stekhoven FM, de Pont JJ. Pb2+ and imidazole-activated phosphorylation by ATP of (Na+ + K+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 903:525-32. [PMID: 2822109 DOI: 10.1016/0005-2736(87)90060-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In order to study whether Pb2+ and imidazole increase the ATP phosphorylation level of (Na+ + K+)-ATPase by the same mechanism, the effects of both compounds on phosphorylation and dephosphorylation reactions of the enzyme have been studied. Imidazole in the presence of Mg2+ increases steady-state phosphorylation of (Na+ + K+)-ATPase by decreasing, in a competitive way, the K+-sensitivity of the formed phospho-enzyme (E-P . Mg). If Pb2+ is present during phosphorylation, the rate of phosphorylation increases and a K+- and ADP-insensitive phosphointermediate (E-P . Pb) is formed. Pb2+ has no effect on the K+-sensitivity of E-P . Mg and EDTA is unable to affect the K+-insensitivity of E-P . Pb. These effects indicate that Pb2+ acts before or during phosphorylation with the enzyme. Binding of Na+ to E-P . Pb does not restore K+-sensitivity either. However, increasing Na+ during phosphorylation in the presence of Pb2+ leads to formation of the K+-sensitive intermediate (E-P . Mg), indicating that E-P . Pb is formed via a side path of the Albers-Post scheme. ATP and ADP decrease the dephosphorylation rate of both E-P . Mg and E-P . Pb. Above optimal concentration, Pb2+ also decreases the steady-state phosphorylation level both in the absence and in the presence of Na+. This inhibitory effect of Pb2+ is antagonized by Mg2+.
Collapse
Affiliation(s)
- H G Swarts
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
18
|
Schuurmans Stekhoven FM, Swarts HG, de Pont JJ, Bonting SL. Sodium and buffer cations inhibit dephosphorylation of (Na+ + K+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 855:375-82. [PMID: 3004581 DOI: 10.1016/0005-2736(86)90083-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Effects of various cations on the dephosphorylation of (Na+ + K+)-ATPase, phosphorylated by ATP in 50 mM imidazole buffer (pH 7.0) at 22 degrees C without added Na+, have been studied. The dephosphorylation in imidazole buffer without added K+ is extremely sensitive to K+-activation (Km K+ = 1 microM), less sensitive to Mg2+-activation (Km Mg2+ = 0.1 mM) and Na+-activation (Km Na+ = 63 mM). Imidazole and Na+ effectively inhibit K+-activated dephosphorylation in linear competitive fashion (Ki imidazole 7.5 mM, Ki Na+ 4.6 mM). The Ki for Na+ is independent of the imidazole concentration, indicating different and non-interacting inhibitory sites for Na+ and imidazole. Imidazole inhibits Mg2+-activated dephosphorylation just as effective as K+-activated dephosphorylation, as judged from the Ki values for imidazole in the two processes. Tris buffer and choline chloride, like imidazole, inhibit dephosphorylation in the presence of residual K+ (less than 1 microM), but less effectively in terms of I50 values and extent of inhibition. Tris inhibits to the same extent as choline. This indicates different inhibitory sites for Tris or choline and for imidazole. These findings indicate that high steady-state phosphorylation levels in Na+-free imidazole buffer are due to the induction of a phosphorylating enzyme conformation and to the inhibition of (K+ + Mg2+)-stimulated dephosphorylation.
Collapse
|
19
|
Schuurmans Stekhoven FM, Swarts HG, Helmich-de Jong ML, de Pont JJ, Bonting SL. Free protons do not substitute for sodium ions in buffer-mediated phosphorylation of (Na+ + K+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 854:21-30. [PMID: 3002461 DOI: 10.1016/0005-2736(86)90060-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In view of our recent finding of imidazole-activation of the phosphorylation of (Na+ + K+)-ATPase and the suggestion by others of an activating role of protons, in lieu of sodium ions, in the overall hydrolytic and phosphorylation processes of the enzyme, we have investigated the effect of pH on the phosphorylation process. No indication of proton activation is found. Rather, phosphorylation at low pH in the absence of Na+ is dependent on the buffer concentration. Imidazole-H+ stimulated phosphorylation at pH 5 reaches the same maximal steady-state level as Na+-stimulated phosphorylation. Low pH also elicits Tris-H+ stimulated phosphorylation, but due to a simultaneous inhibitory effect of this buffer the maximal steady-state level is no more than 50% of the Na+-stimulated phosphorylation level. Protons inhibit rather than activate phosphorylation. Upon decreasing the pH from 7 to 5, we observe for all ligands, whether activating or inhibiting phosphorylation (ATP, Na+, protonated imidazole, Mg2+ and K+), a decrease in affinity (largest for Mg2+) and a decrease in the maximal steady-state phosphorylation capacity. The effects of Na+ and imidazole-H+ on the phosphorylation step have been compared with those on the E2----E1 conformational change, which leads to the phosphorylation step. The different pH-dependence of the affinities for Na+ and protonated buffer in the E2----E1 transition suggests that there are separate activation sites with different pK values for Na+ and the buffer cation. The above findings rule out a role of free protons as a substitution for Na+ in the phosphorylation process.
Collapse
|
20
|
Helmich-de Jong ML, van Emst-de Vries SE, De Pont JJ, Schuurmans Stekhoven FM, Bonting SL. Direct evidence for an ADP-sensitive phosphointermediate of (K+ + H+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 821:377-83. [PMID: 3000444 DOI: 10.1016/0005-2736(85)90041-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Direct evidence for the occurrence of an ADP-sensitive phosphoenzyme of (K+ + H+)-ATPase, the proton-pumping system of the gastric parietal cell is presented. The enzyme is phosphorylated with 5 microM [gamma-32P]ATP in 50 mM imidazole-HCl (pH 7.0) and in the presence of 7-15 microM Mg2+. Addition of 5 mM ADP to this preparation greatly accelerates its hydrolysis. We have been able to establish this by stopping the phosphorylation with radioactive ATP, by adding 1 mM non-radioactive ATP, which leads to a slow monoexponential process of dephosphorylation of 32P-labeled enzyme. The relative proportion of the ADP-sensitive phosphoenzyme is 22% of the total phosphoenzyme. Values for the rate constants of breakdown and interconversion of the two phosphoenzyme forms have been determined.
Collapse
|
21
|
Fu YF, Schuurmans Stekhoven FM, Swarts HG, de Pont JJ, Bonting SL. The locus of nucleotide specificity in the reaction mechanism of (Na+ + K+)-ATPase determined with ATP and GTP as substrates. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 817:7-16. [PMID: 2988622 DOI: 10.1016/0005-2736(85)90062-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ATP and GTP have been compared as substrates for (Na+ + K+)-ATPase in Na+-activated hydrolysis, Na+-activated phosphorylation, and the E2K----E1K transition. Without added K+ the optimal Na+-activated hydrolysis rates in imidazole-HCl (pH 7.2) are equal, but are reached at different Na+ concentrations: 80 mM Na+ for GTP, 300 mM Na+ for ATP. The affinities of the substrates for the enzyme are widely different: Km for ATP 0.6 microM, for GTP 147 microM. The Mg-complexed nucleotides antagonize activation as well as inhibition by Na+, depending on the affinity and concentration of the substrate. The optimal 3-s phosphorylation levels in imidazole-HCl (pH 7.0) are equally high for the two substrates (3.6 nmol/mg protein). The Km value for ATP is 0.1-0.2 microM and for GTP it ranges from 50 to 170 microM, depending on the Na+ concentration. The affinity of Na+ for the enzyme in phosphorylation is lower with the lower affinity substrate: Km (Na+) is 1.1 mM with ATP and 3.6 mM with GTP. The GTP-phosphorylated intermediate exists, like the ATP-phosphorylated intermediate, in the E2P conformation. Addition of K+ increases the optimal hydrolytic activity 30-fold for ATP (at 100 mM Na+ + 10 mM K+) and 2-fold for GTP (at 100 mM Na+ + 0.16 mM K+). K+ greatly increases the Km values for both substrates (to 430 microM for ATP and 320 microM for GTP). Above 0.16 mM K+ inhibits GTP hydrolysis. GTP does not reverse the quenching effect of K+ on the fluorescence of the 5-iodoacetamidofluorescein-labeled enzyme. ATP fully reverses this effect, which represents the transition from E1K to E2K. Hence GTP is unable to drive the E2K----E1K transition.
Collapse
|
22
|
Schuurmans Stekhoven FM, Swarts HG, de Pont JJ, Bonting SL. Na+-like effect of imidazole on the phosphorylation of (Na+ + K+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 815:16-24. [PMID: 2985116 DOI: 10.1016/0005-2736(85)90468-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A high basal level of phosphorylation (approx. 70% of the optimal Na+-dependent phosphorylation level) is observed in 50 mM imidazole-HCl (pH 7.0), in the absence of added Na+ and K+ and the presence of 10-100 microM Mg2+. In 50 mM Tris-HCl (pH 7.0) the basal level is only 5%, irrespective of the Mg2+ concentration. Nevertheless, imidazole is a less effective activator of phosphorylation than Na+ (Km imidazole-H+ 5.9 mM, Km Na+ 2 mM under comparable conditions). Imidazole-activated phosphorylation is strongly pH dependent, being optimal at pH less than or equal to 7 and minimal at pH greater than or equal to 8, while Na+-activated phosphorylation is optimal at pH 7.4. This suggests that imidazole-H+ is the activating species. Imidazole facilitates Na+-stimulated phosphorylation. The Km for Na+ decreases from 0.63 mM at 5 mM imidazole-HCl to 0.21 mM at 50 mM imidazole-HCl (pH 7; 0.1 mM Mg2+ in all cases). Imidazole-activated phosphorylation is more sensitive to inhibition by K+ (I50 = 12.5 microM) than Na+-activated phosphorylation (I50 = 180 microM). Mg2+ antagonizes activation by imidazole-H+ and also inhibition by K+. The Ki value for Mg2+ (approx. 0.3 mM) is the same for the two antagonistic effects. Tris buffer (pH 7.0) inhibits imidazole-activated phosphorylation with an I50 value of 30 mM in 50 mM imidazole-HCl (pH 7.0) plus 0.1 mM Mg2+. We conclude that imidazole-H+, but not Tris-H+, can replace Na+ as an activator of ATP-dependent phosphorylation, primarily by shifting the E2----E1 transition to the right, leading to a phosphorylating E1 conformation which is different from that in Tris buffer.
Collapse
|
23
|
Lytton J, Lin JC, Guidotti G. Identification of two molecular forms of (Na+,K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(20)71224-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
24
|
Schuurmans Stekhoven FM, Swarts HG, Fu YF, Kuijpers GA, De Pont JJ, Bonting SL. Thiophosphorylation of (Na + K+)-ATPase yields an ADP-sensitive phosphointermediate. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 774:277-87. [PMID: 6331507 DOI: 10.1016/0005-2736(84)90302-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the gamma-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [gamma-S]ATP is 2.2 microM and for Na+ 4.2 mM at 22 degrees C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 microM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37 degrees C is only 1.13 mumol X (mg protein)-1 X h-1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0 degree C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5-6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s-1 vs. 180 s-1), spontaneous dethiophosphorylation (0.04 s-1 vs. 0.5 s-1) and K+-stimulated dethiophosphorylation (0.54 s-1 vs. 230 s-1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s-1, Km ADP = 48 microM at 0.1 mM ATP) and is relatively K+-insensitive. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75-90% in the ADP-sensitive E1-conformation.
Collapse
|
25
|
Schuurmans Stekhoven FM, Swarts HG, De Pont JJ, Bonting SL. Hydrolysis of adenylyl imidodiphosphate in the presence of Na+ + Mg2+ by (Na+ + K+)-activated ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 736:73-8. [PMID: 6317029 DOI: 10.1016/0005-2736(83)90171-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Contrary to what has usually been assumed, (Na+ + K+)-ATPase slowly hydrolyses AdoPP[NH]P in the presence of Na+ + Mg2+ to ADP-NH2 and Pi. The activity is ouabain-sensitive and is not detected in the absence of either Mg2+ or Na2+. The specific activity of the Na+ + Mg2+ dependent AdoPP[NH]P hydrolysis at 37 degrees C and pH 7.0 is 4% of that for ATP under identical conditions and only 0.07% of that for ATP in the presence of K+. The activity is not stimulated by K+, nor can K+ replace Na+ in its stimulatory action. This suggests that phosphorylation is rate-limiting. Stimulation by Na+ is positively cooperative with a Hill coefficient of 2.4; half-maximal stimulation occurs at 5-9 mM. The Km value for AdoPP[NH]P is 17 microM. At 0 degrees C and 21 degrees C the specific activity is 2 and 14%, respectively, of that at 37 degrees C. AMP, ADP and AdoPP[CH2]P are not detectably hydrolysed by (Na+ + K+)-ATPase in the presence of Na+ + Mg2+. In addition, AdoPP[NH]P undergoes spontaneous, non-enzymatic hydrolysis at pH 7.0 with rate constants at 0, 21 and 37 degrees C of 0.0006, 0.006 and 0.07 h-1, respectively. This effect is small compared to the effect of enzymatic hydrolysis under comparable conditions. Mg2+ present in excess of AdoPP[NH]P reduces the rate constant of the spontaneous hydrolysis to 0.005 h-1 at 37 degrees C, indicating that the MgAdoPP[NH]P complex is virtually stable to spontaneous hydrolysis, as is also the case for its enzymatic hydrolysis. A practical consequence of these findings is that AdoPP[NH]P binding studies in the presence of Na+ + Mg2+ with enzyme concentrations in the mg/ml range are not possible at temperatures above 0 degrees C. On the other hand, determination of affinity in the (Na+ + K+)-ATPase reaction by competition with ATP at low protein concentrations (microgram/ml range) remains possible without significant hydrolysis of AdoPP[NH]P even at 37 degrees C.
Collapse
|
26
|
Chipman DM, Lev A. Modification of the conformational equilibria in the sodium and potassium dependent adenosinetriphosphatase with glutaraldehyde. Biochemistry 1983; 22:4450-9. [PMID: 6313040 DOI: 10.1021/bi00288a016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glutaraldehyde treatment of electroplax membrane preparations of Na,K-ATPase leads to irreversible changes in the enzymic behavior of the protein, which are not due to modification of the active site. When the glutaraldehyde treatment is carried out in a medium containing K+ and without Na+, the "K+-modified enzyme" so produced shows the following changes in enzymic properties: The steady-state phosphorylation by ATP and the rate of ATP-ADP exchange are decreased to approximately 40% of control, while Na,K-ATPase activity decreases to approximately 15% of control. Phosphatase activity is decreased very little, but the potassium activation parameters of the reaction are changed, from K0.5 approximately equal to 5 mM and nH = 1.9 in control to K0.5 approximately equal to 0.5 mM and nH = 1 in K+-modified enzyme. KI(app) for nucleotide inhibition of phosphatase activity is increased significantly. Changes in the cation dependence of the ATPase reaction are also observed. All of these effects can be explained by assuming that the cross-linking of surface groups in protein subunits when they are in conformation E2 shifts the intrinsic conformational equilibrium of the enzyme toward E2. We considered the simplest mathematical model for the coupling between K+ binding and the conformational equilibrium, with equivalent potassium sites that must be simultaneously in the same state. If one assumes that the potassium activation of phosphatase activity in the K+-modified enzyme reflects the affinity for K+ of E2, the behavior of the phosphatase activity in the native enzyme can be fit if there are only two potassium sites, whose affinity is 80-fold higher in E2 than in E1, and the equilibrium constant for E2 in equilibrium E1 is about 250. The same sites can explain the activation of dephosphorylation during ATP hydrolysis. Independent of the model chosen, potassium ions must be required for the catalytic action of form E2 and cannot be merely "allosteric activators". The enzyme modified with glutaraldehyde in a medium containing Na+ also has interesting properties, but their rationalization is less straightforward. The Na,K-ATPase activity is inhibited more than the "partial reactions", as in the K+-modified enzyme. We suggest that this is a generally expected result of modifications of the enzyme.
Collapse
|
27
|
Schuurmans Steknoven FM, Swarts HG, De Pont JJ, Bonting SL. Properties of the Mg2+-induced low-affinity nucleotide binding site of (Na+ + K+)-activated ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 732:607-19. [PMID: 6307376 DOI: 10.1016/0005-2736(83)90238-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Mg2+-induced low-affinity nucleotide binding by (Na+ + K+)-ATPase has been further investigated. Both heat treatment (50-65 degrees C) and treatment with N-ethylmaleimide reduce the binding capacity irreversibly without altering the Kd value. The rate constant of inactivation is about one-third of that for the high-affinity site and for the (Na+ + K+)-ATPase activity. Thermodynamic parameters (delta H degree and delta S degree) for the apparent affinity in the ATPase reaction (Km ATP) and for the true affinity in the binding of AdoPP[NH]P (Kd and Ki) differ greatly in sign and magnitude, indicating that one or more reaction steps following binding significantly contribute to the Km value, which thus is smaller than the Kd value. Ouabain does not affect the capacity of low-affinity nucleotide binding, but only increases the Kd value to an extent depending on the nucleotide used. GTP and CTP appear to be most sensitive, ATP and ADP intermediately sensitive and AdoPP[NH]P and AMP least sensitive to ouabain. Ouabain reduces the high-affinity nucleotide binding capacity without affecting the Kd value. The nucleotide specificity of the low-affinity binding site is the same for binding (competition with AdoPP[NH]P) and for the ATPase activity (competition with ATP): AdoPP[NH]P greater than ATP greater than ADP greater than AMP. The low-affinity nucleotide binding capacity is preserved in the ouabain-stabilized phosphorylated state, and the Kd value is not increased more than by ouabain alone. It is inferred that the low-affinity site is located on the enzyme, more specifically its alpha-subunit, and not on the surrounding phospholipids. It is situated outside the phosphorylation centre. The possible functional role of the low-affinity binding is discussed.
Collapse
|
28
|
Ligand Interactions with the Substrate Site of Na,K-ATPase: Nucleotides, Vanadate, and Phosphorylation. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/s0070-2161(08)60581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
29
|
Schlieper P, Steiner R. Effect of pH and different substrates on the electrokinetic properties of (Na+, K+)-ATPase vesicles. BIOPHYSICS OF STRUCTURE AND MECHANISM 1983; 9:193-206. [PMID: 6299420 DOI: 10.1007/bf00537816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Some biophysical properties of a (Na+, K+)-ATPase preparation from guinea-pig kidney have been analysed. The recently developed technique of laser Doppler spectroscopy was applied to measure particle mobility under electrophoretic conditions. The following results were obtained: 1. magnesium ions at pH 7.3 decrease the mobility of the ATPase containing vesicles by binding to negatively charged surface groups. At pH 3.3 the competitive binding of protons causes a shift of the mobility vs. [Mg2+] curve to higher values of [Mg2+], 2. binding of ATP at pH 7.3 (Kd = 0.9 X 10(-4) M for (mM 1 NaCl, 0.2 KCl, 0.1 MgCl2, 0.1 Tris) was measured as an increase in particle mobility depending also on [Mg2+]. At pH 3.3 also unspecific ATP-binding occurred, 3. ITP and GTP had the same Kd value as ATP; ADP a slightly lower one (Kd = 1.2 X 10(-4) M). Tris-H3PO4 (Kd = 2.6 X 10(-4) M) was also able to increase particle mobility, but only at higher concentrations and not to the same extent as ATP; AMP induced only very small changes, 4. from the mobility-pH curve an isoelectric point of 4.1 is derived (buffer: 1 mM NaCl, 0.2 mM KCl, 0.1 mM MgCl2, 0.1 mM Tris). In the presence of 0.9 mM ATP the isoelectric point is shifted to 3.2. As the electrophoretic mobility is directly proportional to the net charge of the vesicles, the results may be interpreted as changes in surface charge density, originating from both a conformational change of the ATPase polypeptide and a decrease in vesicle size.
Collapse
|
30
|
Foussard-Guilbert F, Ermias A, Laget P, Tanguy G, Girault M, Jallet P. Detergent effects of kinetic properties of (Na+ +K+)-ATPase from kidney membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 692:296-304. [PMID: 6293563 DOI: 10.1016/0005-2736(82)90534-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies on (Na+ +K+)-ATPase generally employ detergents such as SDS and deoxycholate. Under such conditions, the purified enzyme possesses high specific activity. The (Na+ +K+)-ATPase from kidney membranes was unmasked by deoxycholate and SDS as described by Jłrgensen and its kinetic properties were studied. The results suggest that these detergents induce some irreversible alterations in the kinetic properties of the native enzyme. Another detergent, saponin, unmasked the (Na+ +K+)-ATPase as effectively as did SDS, but it seems to affect the kinetic properties of the native enzyme to a lesser extent.
Collapse
|
31
|
Quantitation and characterization of the (Na+,K+)-adenosine triphosphatase in the rat adipocyte plasma membrane. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33658-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Development of insulin responsiveness of the glucose transporter and the (Na+,K+)-adenosine triphosphatase during in vitro adipocyte differentiation. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34526-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
Karlish SJ, Stein WD. Effects of atp or phosphate on passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles. J Physiol 1982; 328:317-31. [PMID: 6290647 PMCID: PMC1225660 DOI: 10.1113/jphysiol.1982.sp014266] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
1. The passive Rb fluxes mediated by the Na-K pump in reconstituted vesicles, described by Karlish & Stein (1982), are affected by ATP or by phosphate acting separately.2. Rb-Rb exchange through inside-out pumps is stimulated by ATP at low concentrations and is inhibited at high concentrations. There are mutual effects of Rb at cytoplasmic sites and ATP. The higher is the Rb concentration, the greater is the degree of stimulation and the less is the inhibition of exchange by ATP, and the higher are the concentrations of ATP required to produce effects. ATP stimulates Rb-Rb exchange maximally by about 5-fold.3. There are similar effects of ATP on zero-trans net Rb uptake through inside-out pumps. However, much lower degrees of stimulation and greater inhibition of the net flux by ATP are observed, and much lower concentrations of ATP are required for these effects, by comparison with those on Rb-Rb exchange.4. Rb uptake on inside-out pumps in Na-loaded vesicles shows only inhibition by ATP.5. Phosphate effects require the presence of Mg(0) ions. At low Mg(0) concentrations (up to 100 muM) phosphate moderately stimulates Rb uptake into Rb-free or Rb-loaded vesicles (about 50%), but has no effect on Rb uptake into Na-loaded vesicles. At millimolar concentrations of Mg(0) ions, phosphate strongly inhibits the Rb uptake into Rb-free or Na-loaded vesicles but has no effect on Rb uptake into Rb-loaded vesicles.6. The separate effects of ATP and of phosphate are explained in terms of the model proposed by Karlish & Stein (1982), modified to take into account stimulation of the conformational transition E(2)(Rb)(occ) --> E(1) Rb by ATP, and stimulation of the conformational transition E(2)(Rb)(occ) --> E(2) Rb by phosphate due to phosphorylation of the protein.
Collapse
|
34
|
Schuurmans Stekhoven FM, Swarts HG, De Pont JJ, Bonting SL. Studies on (Na+ + K+)-activated ATPase. XLV. Magnesium induces two low-affinity non-phosphorylating nucleotide binding sites per molecule. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 649:533-40. [PMID: 6274401 DOI: 10.1016/0005-2736(81)90157-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Klodos I, Nørby JG, Plesner IW. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. II. Kinetic characterization of phosphointermediates. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 643:463-82. [PMID: 6261817 DOI: 10.1016/0005-2736(81)90089-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(1) The kinetics of the phosphorylated enzymic intermediates of (Na+ + K+)-ATPase from ox brain, which are formed by incubation of the enzyme with 25 microM AT32P, 150 mM Na+ and 1 mM Mg2+, have been studied in dephosphorylation experiments at 1 degree C. The dephosphorylation of the 32P-labelled enzyme was initiated by addition of either 1 mM unlabelled ATP, 2.5 mM ADP or 1 mM unlabelled ATP + ADP in concentrations from 25 to 1000 microM. (2) In the absence of ADP the dephosphorylation curve was linear in a semilogarithmic plot almost from t = 0, whereas by addition of ADP a biphasic behaviour was obtained. The slope of the slow phase of dephosphorylation was virtually independent of the ADP concentration. (3) The results were analysed by the mathematical equation corresponding to the simplest possible model for the interconversion and breakdown of the phosphointermediates: (formula: see text) where alpha, beta, H and G are functions of all the rate constants and H and G furthermore are functions of the initial values for [E1P] and [E2P]. (4) The analysis confirmed the model and enabled the determination of all the rate constants. (5) k-1 was found to be equal to k'-1 + k"-1 . [ADP] indicating an ADP-independent 'spontaneous' dephosphorylation of E1P. The rate constant for this process was close to that for dephosphorylation of E2P, i.e., k'-1 congruent to k3. Also the value of k"-1 was determined. (6) k3 was found to be at least 10 . k-2. The implication of this for the role of the E1P to E2P transition in the Na+ + K+)-stimulated ATP hydrolysis will be discussed in detail in the following paper (Plesner, I.W., Plesner, L., Nørby, J.G. and Klodos, I. (1981) Biochim. Biophys. Acta 643, 483--494). (7) A refinement of the model, accounting for the effect of Na+ on the steady-state ratio between [E1P] and [E2P] is proposed: (formula: see text). At [Na+] = 150 mM as used here, E1P(Na) and E'1P are assumed to be in rapid equilibrium. (8) Comparison of our results with those of others underlines the general validity of the conclusions of the present paper.
Collapse
|
36
|
Peters WH, Swarts HG, de Pont JJ, Schuurmans Stekhoven FM, Bonting SL. (Na/ + K+)ATPase has one functioning phosphorylation site per alpha subunit. Nature 1981; 290:338-9. [PMID: 6259540 DOI: 10.1038/290338a0] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(Na+ + K+)ATPase contains two different subunits, a catalytic subunit (alpha) and a subunit with uncertain function (beta). The enzyme binds ATP, ouabain and vanadate, and can be phosphorylated by ATP as well as by inorganic phosphate. From the previously reported maximal binding and phosphorylation capacities of 3.5--4.3 nmol P per mg protein (based on Lowry protein determination) and the earlier molecular weight value of approximately 250,000, a molar binding and phosphorylation capacity of 0.87--1.07 mol per mol enzyme was derived. As it is generally agreed that the enzyme molecule contains two alpha subunits or even a multiple of two, it has been suggested that the enzyme operates by means of a so-called "half-of-the-sites mechanism" whereby only of the two alpha subunits can be phosphorylated at any one time. We now present evidence that every alpha subunit can be phosphorylated simultaneously, which rules out the operation of such a mechanism.
Collapse
|