1
|
Clarke RJ. Electrostatic switch mechanisms of membrane protein trafficking and regulation. Biophys Rev 2023; 15:1967-1985. [PMID: 38192346 PMCID: PMC10771482 DOI: 10.1007/s12551-023-01166-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024] Open
Abstract
Lipid-protein interactions are normally classified as either specific or general. Specific interactions refer to lipid binding to specific binding sites within a membrane protein, thereby modulating the protein's thermal stability or kinetics. General interactions refer to indirect effects whereby lipids affect membrane proteins by modulating the membrane's physical properties, e.g., its fluidity, thickness, or dipole potential. It is not widely recognized that there is a third distinct type of lipid-protein interaction. Intrinsically disordered N- or C-termini of membrane proteins can interact directly but nonspecifically with the surrounding membrane. Many peripheral membrane proteins are held to the cytoplasmic surface of the plasma membrane via a cooperative combination of two forces: hydrophobic anchoring and electrostatic attraction. An acyl chain, e.g., myristoyl, added post-translationally to one of the protein's termini inserts itself into the lipid matrix and helps hold peripheral membrane proteins onto the membrane. Electrostatic attraction occurs between positively charged basic amino acid residues (lysine and arginine) on one of the protein's terminal tails and negatively charged phospholipid head groups, such as phosphatidylserine. Phosphorylation of either serine or tyrosine residues on the terminal tails via regulatory protein kinases allows for an electrostatic switch mechanism to control trafficking of the protein. Kinase action reduces the positive charge on the protein's tail, weakening the electrostatic attraction and releasing the protein from the membrane. A similar mechanism regulates many integral membrane proteins, but here only electrostatic interactions are involved, and the electrostatic switch modulates protein activity by altering the stabilities of different protein conformational states.
Collapse
Affiliation(s)
- Ronald J. Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006 Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006 Australia
| |
Collapse
|
2
|
Lev B, Chennath M, Cranfield CG, Cornelius F, Allen TW, Clarke RJ. Involvement of the alpha-subunit N-terminus in the mechanism of the Na +,K +-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119539. [PMID: 37479188 DOI: 10.1016/j.bbamcr.2023.119539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Previous studies have shown that cytoplasmic K+ release and the associated E2 → E1 conformational change of the Na+,K+-ATPase is a major rate-determining step of the enzyme's ion pumping cycle and hence a prime site of acute regulatory intervention. From the ionic strength dependence of the enzyme's distribution between the E2 and E1 states, it has also been found that E2 is stabilized by an electrostatic attraction. Any disruption of this electrostatic attraction would, thus, have profound effects on the rate of ion pumping. The aim of this paper is to identify the location of this interaction. Using enhanced-sampling molecular dynamics simulations with a predicted N-terminal structure added to the X-ray crystal structure of the Na+,K+-ATPase, a previously postulated salt bridge between Lys32 and Glu233 (rat sequence numbering) of the enzyme's α-subunit can be excluded. The residues never approach closely enough to form a salt bridge. In contrast, strong interactions with anionic lipid head groups were seen. To investigate the possibility of a protein-lipid interaction experimentally, the surface charge density of Na+,K+-ATPase-containing membrane fragments was estimated from zeta potential measurements to be 0.019 (± 0.001) C m-2. This is in good agreement with the charge density previously determined to be responsible for stabilization of the E2 state of 0.023 (± 0.009) C m-2 and the membrane charge density estimated here from published electron-microscopic images of 0.018C m-2. The results are, therefore, consistent with an interaction of the Na+,K+-ATPase α-subunit N-terminus with negatively-charged lipid head groups of the neighbouring cytoplasmic membrane surface as the origin of the electrostatic interaction stabilising the E2 state.
Collapse
Affiliation(s)
- B Lev
- School of Science, RMIT University, Melbourne, Vic, 3001, Australia
| | - M Chennath
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - C G Cranfield
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - F Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus, C, Denmark
| | - T W Allen
- School of Science, RMIT University, Melbourne, Vic, 3001, Australia
| | - R J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Hossain KR, Clayton D, Goodchild SC, Rodger A, Payne RJ, Cornelius F, Clarke RJ. Order-disorder transitions of cytoplasmic N-termini in the mechanisms of P-type ATPases. Faraday Discuss 2021; 232:172-187. [PMID: 34549220 DOI: 10.1039/d0fd00040j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane protein structure and function are modulated via interactions with their lipid environment. This is particularly true for integral membrane pumps, the P-type ATPases. These ATPases play vital roles in cell physiology, where they are associated with the transport of cations and lipids, thereby generating and maintaining crucial (electro-)chemical potential gradients across the membrane. Several pumps (Na+, K+-ATPase, H+, K+-ATPase and the plasma membrane Ca2+-ATPase) which are located in the asymmetric animal plasma membrane have been found to possess polybasic (lysine-rich) domains on their cytoplasmic surfaces, which are thought to act as phosphatidylserine (PS) binding domains. In contrast, the sarcoplasmic reticulum Ca2+-ATPase, located within an intracellular organelle membrane, does not possess such a domain. Here we focus on the lysine-rich N-termini of the plasma-membrane-bound Na+, K+- and H+, K+-ATPases. Synthetic peptides corresponding to the N-termini of these proteins were found, via quartz crystal microbalance and circular dichroism measurements, to interact via an electrostatic interaction with PS-containing membranes, thereby undergoing an increase in helical or other secondary structure content. As well as influencing ion pumping activity, it is proposed that this interaction could provide a mechanism for sensing the lipid asymmetry of the plasma membrane, which changes drastically when a cell undergoes apoptosis, i.e. programmed cell death. Thus, polybasic regions of plasma membrane-bound ion pumps could potentially perform the function of a "death sensor", signalling to a cell to reduce pumping activity and save energy.
Collapse
Affiliation(s)
| | - Daniel Clayton
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | - Sophia C Goodchild
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Alison Rodger
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Richard J Payne
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Petrovich GD, Corradi GR, Pavan CH, Noli Truant S, Adamo HP. Highly exposed segment of the Spf1p P5A-ATPase near transmembrane M5 detected by limited proteolysis. PLoS One 2021; 16:e0245679. [PMID: 33507968 PMCID: PMC7842927 DOI: 10.1371/journal.pone.0245679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/05/2021] [Indexed: 11/20/2022] Open
Abstract
The yeast Spf1p protein is a primary transporter that belongs to group 5 of the large family of P-ATPases. Loss of Spf1p function produces ER stress with alterations of metal ion and sterol homeostasis and protein folding, glycosylation and membrane insertion. The amino acid sequence of Spf1p shows the characteristic P-ATPase domains A, N, and P and the transmembrane segments M1-M10. In addition, Spf1p exhibits unique structures at its N-terminus (N-T region), including two putative additional transmembrane domains, and a large insertion connecting the P domain with transmembrane segment M5 (D region). Here we used limited proteolysis to examine the structure of Spf1p. A short exposure of Spf1p to trypsin or proteinase K resulted in the cleavage at the N and C terminal regions of the protein and abrogated the formation of the catalytic phosphoenzyme and the ATPase activity. In contrast, limited proteolysis of Spf1p with chymotrypsin generated a large N-terminal fragment containing most of the M4-M5 cytosolic loop, and a minor fragment containing the C-terminal region. If lipids were present during chymotryptic proteolysis, phosphoenzyme formation and ATPase activity were preserved. ATP slowed Spf1p proteolysis without detectable changes of the generated fragments. The analysis of the proteolytic peptides by mass spectrometry and Edman degradation indicated that the preferential chymotryptic site was localized near the cytosolic end of M5. The susceptibility to proteolysis suggests an unexpected exposure of this region of Spf1p that may be an intrinsic feature of P5A-ATPases.
Collapse
Affiliation(s)
- Guido D. Petrovich
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo R. Corradi
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos H. Pavan
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofia Noli Truant
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Prof. Dr. Ricardo A. Margni (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hugo P. Adamo
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
5
|
Clarke R, Hossain K, Cao K. Physiological roles of transverse lipid asymmetry of animal membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183382. [DOI: 10.1016/j.bbamem.2020.183382] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
|
6
|
Hossain KR, Li X, Zhang T, Paula S, Cornelius F, Clarke RJ. Polarity of the ATP binding site of the Na +,K +-ATPase, gastric H +,K +-ATPase and sarcoplasmic reticulum Ca 2+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183138. [PMID: 31790695 DOI: 10.1016/j.bbamem.2019.183138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 11/18/2022]
Abstract
A fluorescence ratiometric method utilizing the probe eosin Y is presented for estimating the ATP binding site polarity of P-type ATPases in different conformational states. The method has been calibrated by measurements in a series of alcohols and tested using complexation of eosin Y with methyl-β-cyclodextrin. The results obtained with the Na+,K+-, H+,K+- and sarcoplasmic reticulum Ca2+-ATPases indicate that the ATP binding site, to which eosin is known to bind, is significantly more polar in the case of the Na+,K+- and H+,K+-ATPases compared to the Ca2+-ATPase. This result was found to be consistent with docking calculations of eosin with the E2 conformational state of the Na+,K+-ATPase and the Ca2+-ATPase. Fluorescence experiments showed that eosin binds significantly more strongly to the E1 conformation of the Na+,K+-ATPase than the E2 conformation, but in the case of the Ca2+-ATPase both fluorescence experiments and docking calculations showed no significant difference in binding affinity between the two conformations. This result could be due to the fact that, in contrast to the Na+,K+- and H+,K+-ATPases, the E2-E1 transition of the Ca2+-ATPase does not involve the movement of a lysine-rich N-terminal tail which may affect the overall enzyme conformation. Consistent with this hypothesis, the eosin affinity of the E1 conformation of the Na+,K+-ATPase was significantly reduced after N-terminal truncation. It is suggested that changes in conformational entropy of the N-terminal tail of the Na+, K+- and the H+,K+-ATPases during the E2-E1 transition could affect the thermodynamic stability of the E1 conformation and hence its ATP binding affinity.
Collapse
Affiliation(s)
- K R Hossain
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - X Li
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - T Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - S Paula
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - F Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - R J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Gorman A, Hossain KR, Cornelius F, Clarke RJ. Penetration of phospholipid membranes by poly-l-lysine depends on cholesterol and phospholipid composition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183128. [PMID: 31734310 DOI: 10.1016/j.bbamem.2019.183128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Clusters of positively-charged basic amino acid residues, particularly lysine, are known to promote the interaction of many peripheral membrane proteins with the cytoplasmic surface of the plasma membrane via electrostatic interactions. In this work, cholesterol's effects on the interaction between lysine residues and membranes have been studied. Using poly-l-lysine (PLL) and vesicles as models to mimic the interaction between lysine-rich protein domains and the plasma membrane, light scattering measurements indicated cholesterol enhanced the electrostatic interaction through indirectly affecting the negatively charged phospholipid dioleoylphosphatidylserine, DOPS. Addition of PLL to lipid vesicles containing DOPS showed an initial increase in static light scattering (SLS), attributed to binding of PLL to the vesicle surface, followed by a slower continuously declining SLS signal, which, from comparison with fluorescent dye leakage studies could be attributed to vesicle lysis. Although electrostatic interactions between PLL and the membrane were not necessary for penetration to occur, cholesterol promoted membrane disruption of negatively charged vesicles, possibly by increasing the electrostatic interactions between PLL and the membrane. In contrast, cholesterol lowered the susceptibility of uncharged vesicles (formed using dioleoylphosphatidylcholine, DOPC) to PLL penetration. This can be explained by the absence of electrostatic interactions and cholesterol's known ability to increase membrane thickness and mechanical strength. Thus, the ability of cationic peptides to penetrate membranes including cholesterol is likely to depend on the membrane's PS:PC ratio.
Collapse
Affiliation(s)
- Amy Gorman
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | | | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
8
|
Qi Y, Yang C, Jiang Z, Wang Y, Zhu F, Li T, Wan X, Xu Y, Xie Z, Li D, Pierre SV. Epicatechin-3-Gallate Signaling and Protection against Cardiac Ischemia/Reperfusion Injury. J Pharmacol Exp Ther 2019; 371:663-674. [DOI: 10.1124/jpet.119.260117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
|
9
|
Garcia A, Lev B, Hossain KR, Gorman A, Diaz D, Pham THN, Cornelius F, Allen TW, Clarke RJ. Cholesterol depletion inhibits Na +,K +-ATPase activity in a near-native membrane environment. J Biol Chem 2019; 294:5956-5969. [PMID: 30770471 PMCID: PMC6463725 DOI: 10.1074/jbc.ra118.006223] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/08/2019] [Indexed: 12/28/2022] Open
Abstract
Cholesterol's effects on Na+,K+-ATPase reconstituted in phospholipid vesicles have been extensively studied. However, previous studies have reported both cholesterol-mediated stimulation and inhibition of Na+,K+-ATPase activity. Here, using partial reaction kinetics determined via stopped-flow experiments, we studied cholesterol's effect on Na+,K+-ATPase in a near-native environment in which purified membrane fragments were depleted of cholesterol with methyl-β-cyclodextrin (mβCD). The mβCD-treated Na+,K+-ATPase had significantly reduced overall activity and exhibited decreased observed rate constants for ATP phosphorylation (ENa3+ → E2P, i.e. phosphorylation by ATP and Na+ occlusion from the cytoplasm) and K+ deocclusion with subsequent intracellular Na+ binding (E2K2+ → E1Na3+). However, cholesterol depletion did not affect the observed rate constant for K+ occlusion by phosphorylated Na+,K+-ATPase on the extracellular face and subsequent dephosphorylation (E2P → E2K2+). Thus, partial reactions involving cation binding and release at the protein's intracellular side were most dependent on cholesterol. Fluorescence measurements with the probe eosin indicated that cholesterol depletion stabilizes the unphosphorylated E2 state relative to E1, and the cholesterol depletion-induced slowing of ATP phosphorylation kinetics was consistent with partial conversion of Na+,K+-ATPase into the E2 state, requiring a slow E2 → E1 transition before the phosphorylation. Molecular dynamics simulations of Na+,K+-ATPase in membranes with 40 mol % cholesterol revealed cholesterol interaction sites that differ markedly among protein conformations. They further indicated state-dependent effects on membrane shape, with the E2 state being likely disfavored in cholesterol-rich bilayers relative to the E1P state because of a greater hydrophobic mismatch. In summary, cholesterol extraction from membranes significantly decreases Na+,K+-ATPase steady-state activity.
Collapse
Affiliation(s)
- Alvaro Garcia
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Bogdan Lev
- the School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Khondker R Hossain
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Amy Gorman
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; the Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Dil Diaz
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Flemming Cornelius
- the Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Toby W Allen
- the School of Science, RMIT University, Melbourne, VIC 3001, Australia; the Department of Chemistry, University of California, Davis, California 95616
| | - Ronald J Clarke
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
10
|
Diaz D, Clarke RJ. Evolutionary Analysis of the Lysine-Rich N-terminal Cytoplasmic Domains of the Gastric H +,K +-ATPase and the Na +,K +-ATPase. J Membr Biol 2018; 251:653-666. [PMID: 30056551 DOI: 10.1007/s00232-018-0043-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
The catalytic α-subunits of both the Na+,K+-ATPase and the gastric H+,K+-ATPase possess lysine-rich N-termini which project into the cytoplasm. Due to conflicting experimental results, it is currently unclear whether the N-termini play a role in ion pump function or regulation, and, if they do, by what mechanism. Comparison of the lysine frequencies of the N-termini of both proteins with those of all of their extramembrane domains showed that the N-terminal lysine frequencies are far higher than one would expect simply from exposure to the aqueous solvent. The lysine frequency was found to vary significantly between different vertebrate classes, but this is due predominantly to a change in N-terminal length. As evidenced by a comparison between fish and mammals, an evolutionary trend towards an increase of the length of the N-terminus of the H+,K+-ATPase on going from an ancestral fish to mammals could be identified. This evolutionary trend supports the hypothesis that the N-terminus is important in ion pump function or regulation. In placental mammals, one of the lysines is replaced by serine (Ser-27), which is a target for protein kinase C. In most other animal species, a lysine occupies this position and hence no protein kinase C target is present. Interaction with protein kinase C is thus not the primary role of the lysine-rich N-terminus. The disordered structure of the N-terminus may, via increased flexibility, facilitate interaction with another binding partner, e.g. the surrounding membrane, or help to stabilise particular enzyme conformations via the increased entropy it produces.
Collapse
Affiliation(s)
- Dil Diaz
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia. .,The University of Sydney Nano Institute, Sydney, NSW, 2006, Australia.
| |
Collapse
|
11
|
Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Jiang Q, Garcia A, Han M, Cornelius F, Apell HJ, Khandelia H, Clarke RJ. Electrostatic Stabilization Plays a Central Role in Autoinhibitory Regulation of the Na +,K +-ATPase. Biophys J 2017; 112:288-299. [PMID: 28122215 DOI: 10.1016/j.bpj.2016.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022] Open
Abstract
The Na+,K+-ATPase is present in the plasma membrane of all animal cells. It plays a crucial role in maintaining the Na+ and K+ electrochemical potential gradients across the membrane, which are essential in numerous physiological processes, e.g., nerve, muscle, and kidney function. Its cellular activity must, therefore, be under tight metabolic control. Consideration of eosin fluorescence and stopped-flow kinetic data indicates that the enzyme's E2 conformation is stabilized by electrostatic interactions, most likely between the N-terminus of the protein's catalytic α-subunit and the adjacent membrane. The electrostatic interactions can be screened by increasing ionic strength, leading to a more evenly balanced equilibrium between the E1 and E2 conformations. This represents an ideal situation for effective regulation of the Na+,K+-ATPase's enzymatic activity, because protein modifications, which perturb this equilibrium in either direction, can then easily lead to activation or inhibition. The effect of ionic strength on the E1:E2 distribution and the enzyme's kinetics can be mathematically described by the Gouy-Chapman theory of the electrical double layer. Weakening of the electrostatic interactions and a shift toward E1 causes a significant increase in the rate of phosphorylation of the enzyme by ATP. Electrostatic stabilization of the Na+,K+-ATPase's E2 conformation, thus, could play an important role in regulating the enzyme's physiological catalytic turnover.
Collapse
Affiliation(s)
| | - Alvaro Garcia
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia; Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Minwoo Han
- MEMPHYS, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | | | | | - Himanshu Khandelia
- MEMPHYS, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Ronald J Clarke
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Garcia A, Pratap PR, Lüpfert C, Cornelius F, Jacquemin D, Lev B, Allen TW, Clarke RJ. The voltage-sensitive dye RH421 detects a Na + ,K + -ATPase conformational change at the membrane surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:813-823. [DOI: 10.1016/j.bbamem.2017.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
|
14
|
Mahmmoud YA, Shattock M, Cornelius F, Pavlovic D. Inhibition of K+ transport through Na+, K+-ATPase by capsazepine: role of membrane span 10 of the α-subunit in the modulation of ion gating. PLoS One 2014; 9:e96909. [PMID: 24816799 PMCID: PMC4016139 DOI: 10.1371/journal.pone.0096909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/14/2014] [Indexed: 11/25/2022] Open
Abstract
Capsazepine (CPZ) inhibits Na+,K+-ATPase-mediated K+-dependent ATP hydrolysis with no effect on Na+-ATPase activity. In this study we have investigated the functional effects of CPZ on Na+,K+-ATPase in intact cells. We have also used well established biochemical and biophysical techniques to understand how CPZ modifies the catalytic subunit of Na+,K+-ATPase. In isolated rat cardiomyocytes, CPZ abolished Na+,K+-ATPase current in the presence of extracellular K+. In contrast, CPZ stimulated pump current in the absence of extracellular K+. Similar conclusions were attained using HEK293 cells loaded with the Na+ sensitive dye Asante NaTRIUM green. Proteolytic cleavage of pig kidney Na+,K+-ATPase indicated that CPZ stabilizes ion interaction with the K+ sites. The distal part of membrane span 10 (M10) of the α-subunit was exposed to trypsin cleavage in the presence of guanidinum ions, which function as Na+ congener at the Na+ specific site. This effect of guanidinium was amplified by treatment with CPZ. Fluorescence of the membrane potential sensitive dye, oxonol VI, was measured following addition of substrates to reconstituted inside-out Na+,K+-ATPase. CPZ increased oxonol VI fluorescence in the absence of K+, reflecting increased Na+ efflux through the pump. Surprisingly, CPZ induced an ATP-independent increase in fluorescence in the presence of high extravesicular K+, likely indicating opening of an intracellular pathway selective for K+. As revealed by the recent crystal structure of the E1.AlF4-.ADP.3Na+ form of the pig kidney Na+,K+-ATPase, movements of M5 of the α-subunit, which regulate ion selectivity, are controlled by the C-terminal tail that extends from M10. We propose that movements of M10 and its cytoplasmic extension is affected by CPZ, thereby regulating ion selectivity and transport through the K+ sites in Na+,K+-ATPase.
Collapse
Affiliation(s)
- Yasser A. Mahmmoud
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
- * E-mail:
| | - Michael Shattock
- Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Davor Pavlovic
- Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
15
|
Liu CC, Garcia A, Mahmmoud YA, Hamilton EJ, Galougahi KK, Fry NAS, Figtree GA, Cornelius F, Clarke RJ, Rasmussen HH. Susceptibility of β1 Na+-K+ pump subunit to glutathionylation and oxidative inhibition depends on conformational state of pump. J Biol Chem 2012; 287:12353-64. [PMID: 22354969 DOI: 10.1074/jbc.m112.340893] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathionylation of cysteine 46 of the β1 subunit of the Na(+)-K(+) pump causes pump inhibition. However, the crystal structure, known in a state analogous to an E2·2K(+)·P(i) configuration, indicates that the side chain of cysteine 46 is exposed to the lipid bulk phase of the membrane and not expected to be accessible to the cytosolic glutathione. We have examined whether glutathionylation depends on the conformational changes in the Na(+)-K(+) pump cycle as described by the Albers-Post scheme. We measured β1 subunit glutathionylation and function of Na(+)-K(+)-ATPase in membrane fragments and in ventricular myocytes. Signals for glutathionylation in Na(+)-K(+)-ATPase-enriched membrane fragments suspended in solutions that preferentially induce E1ATP and E1Na(3) conformations were much larger than signals in solutions that induce the E2 conformation. Ouabain further reduced glutathionylation in E2 and eliminated an increase seen with exposure to the oxidant peroxynitrite (ONOO(-)). Inhibition of Na(+)-K(+)-ATPase activity after exposure to ONOO(-) was greater when the enzyme had been in the E1Na(3) than the E2 conformation. We exposed myocytes to different extracellular K(+) concentrations to vary the membrane potential and hence voltage-dependent conformational poise. K(+) concentrations expected to shift the poise toward E2 species reduced glutathionylation, and ouabain eliminated a ONOO(-)-induced increase. Angiotensin II-induced NADPH oxidase-dependent Na(+)-K(+) pump inhibition was eliminated by conditions expected to shift the poise toward the E2 species. We conclude that susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump.
Collapse
Affiliation(s)
- Chia-Chi Liu
- North Shore Heart Research Group, Kolling Institute, St Leonards, New South Wales 2065, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Savegnago L, Jesse CR, Nogueira CW. Structural modifications into diphenyl diselenide molecule do not cause toxicity in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 27:271-276. [PMID: 21783951 DOI: 10.1016/j.etap.2008.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/03/2008] [Accepted: 11/09/2008] [Indexed: 05/31/2023]
Abstract
The aim of the present study was to evaluate toxicological parameters of following compounds: 1a (4,4'-dichloro-diphenyl diselenide [(ClPhSe)(2)]), 1b (3,3'-ditrifluoromethyl-diphenyl diselenide [(F(3)CPhSe)(2)]) and 1c (4,4'-dimethoxyl-diphenyl diselenide [(CH(3)OPhSe)(2)]). Calculated lethal dose (LD(50)) values for mice exposed, by oral route, to a single application of compounds 1a, 1b or 1c were estimated to be >381, 278 and >372mg/kg, respectively. Compounds 1a and 1b significantly reduced body weight gain as well as food and water intake in mice. δ-Aminolevulinate dehydratase (δ-ALA-D) and catalase activities were inhibited in mice which received the highest dose of compounds 1a or 1b. Exposure to compounds 1a, 1b and 1c did not modify lipid peroxidation, vitamin C levels, cerebral Na(+)/K(+)-ATPase activity and the biochemical parameters evaluated. The important point for medicinal chemistry is that the structural modifications are not introducing toxicity for the compounds in mice.
Collapse
Affiliation(s)
- Lucielli Savegnago
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | | | | |
Collapse
|
17
|
Mahmmoud YA. Stabilization of trypsin by association to plasma membranes: Implications for tryptic cleavage of membrane-bound Na,K-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1720:110-6. [PMID: 16356471 DOI: 10.1016/j.bbamem.2005.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 10/26/2005] [Accepted: 11/01/2005] [Indexed: 11/24/2022]
Abstract
Tryptic cleavage has been a potential method for studying the structure and mechanism of many membrane transport proteins. Here, we report tight association of trypsin to pig kidney plasma membranes enriched in Na,K-ATPase. Trypsin also associated with protein-free vesicles prepared from plasma membrane lipids. Membrane-associated trypsin was found to be highly resistant to autolysis and insensitive to inhibition by PMSF. Na,K-ATPase substrate ions differentially influenced the level of trypsin membrane association. Thus, NaCl significantly increased trypsin membrane association compared to KCl. The ions seem to exert direct effects on the membrane independent of their effects on protein conformation. Bicarbonate anions, which detach peripheral membrane proteins, efficiently released trypsin from the membrane. Trypsin membrane association was found to enhance the cleavage of the Na,K-ATPase gamma-subunit. Comparison between membranes from shark rectal gland and pig kidney showed that trypsin association was significantly higher in the former. This was found to be partly due to the presence of higher cholesterol levels in the membrane. In conclusion, the differential membrane association of trypsin may affect the outcome of proteolytic cleavage of membrane-bound proteins.
Collapse
Affiliation(s)
- Yasser A Mahmmoud
- Department of Biophysics, Institute of Physiology and Biophysics, University of Aarhus, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
18
|
Kaneko Y, Cloix JF, Herrera VL, Ruiz-Opazo N. Corroboration of Dahl S Q276L alpha1Na,K-ATPase protein sequence: impact on affinities for ligands and on E1 conformation. J Hypertens 2005; 23:745-52. [PMID: 15775778 DOI: 10.1097/01.hjh.0000163142.89835.c7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Multifactorial analyses support the hypothesis that alpha1Na,K-ATPase is a hypertension susceptibility gene in Dahl S rats. However, two studies report non-detection of the A1079T transversion underlying the Q276L substitution in Dahl S alpha1Na,K-ATPase questioning the validity of ATP1A1 as a hypertension susceptibility gene. To resolve this discordance, we investigated the issue at the protein level. DESIGN AND METHODS We employed protein blot analysis using Q276L- and Q276-specific; antipeptide-specific antibodies; tested differential chymotrypsin cleavage efficiency, measured differential Na and K affinities of alpha1Na,K-ATPases in Dahl S and Dahl R renal membranes and determined amino acid sequences of purified Dahl S alpha1Na,K-ATPase chymotryptic-digest peptides. RESULTS We detected Q276L variant protein in Dahl S rats; and Q276 wild-type variant in Dahl R, spontaneously hypertensive (SHR), Lewis and Wistar-Kyoto (WKY) rat kidney membranes. Q276L variant exhibits less chymotrypsin cleavage efficiency than the Q276 wild-type variant, consistent with the substitution of hydrophobic L for hydrophilic Q. Kinetic studies of kidney membranes detect increased Na affinity and decreased K affinity in renal Dahl S alpha1Na,K-ATPase compared with Dahl R. Protein sequencing of high pressure liquid chromatography (HPLC)-purified chymotrypsin digested 77 kDa peptide confirms Q276L substitution in the Dahl S alpha1Na,K-ATPase. CONCLUSIONS Data demonstrate the existence and functional significance of the Q276L variant in Dahl S rats.
Collapse
Affiliation(s)
- Yuji Kaneko
- Section of Molecular Medicine, Department of Medicine, Boston University School of Medicine, 700 Albany Street, W-609, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
19
|
Füzesi M, Gottschalk KE, Lindzen M, Shainskaya A, Küster B, Garty H, Karlish SJD. Covalent Cross-links between the γ Subunit (FXYD2) and α and β Subunits of Na,K-ATPase. J Biol Chem 2005; 280:18291-301. [PMID: 15743768 DOI: 10.1074/jbc.m500080200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study describes specific intramolecular covalent cross-linking of the gamma to alpha and gamma to beta subunits of pig kidney Na,K-ATPase and rat gamma to alpha co-expressed in HeLa cells. For this purpose pig gammaa and gammab sequences were determined by cloning and mass spectrometry. Three bifunctional reagents were used: N-hydroxysuccinimidyl-4-azidosalicylic acid (NHS-ASA), disuccinimidyl tartrate (DST), and 1-ethyl-3-[3dimethylaminopropyl]carbodiimide (EDC). NHS-ASA induced alpha-gamma, DST induced alpha-gamma and beta-gamma, and EDC induced primarily beta-gamma cross-links. Specific proteolytic and Fe(2+)-catalyzed cleavages located NHS-ASA- and DST-induced alpha-gamma cross-links on the cytoplasmic surface of the alpha subunit, downstream of His(283) and upstream of Val(440). Additional considerations indicated that the DST-induced and NHS-ASA-induced cross-links involve either Lys(347) or Lys(352) in the S4 stalk segment. Mutational analysis of the rat gamma subunit expressed in HeLa cells showed that the DST-induced cross-link involves Lys(55) and Lys(56) in the cytoplasmic segment. DST and EDC induced two beta-gamma cross-links, a major one at the extracellular surface within the segment Gly(143)-Ser(302) of the beta subunit and another within Ala(1)-Arg(142). Based on the cross-linking and other data on alpha-gamma proximities, we modeled interactions of the transmembrane alpha-helix and an unstructured cytoplasmic segment SKRLRCGGKKHR of gamma with a homology model of the pig alpha1 subunit. According to the model, the transmembrane segment fits in a groove between M2, M6, and M9, and the cytoplasmic segment interacts with loops L6/7 and L8/9 and stalk S5.
Collapse
Affiliation(s)
- Maria Füzesi
- Department of Biological Chemistry and Biological Mass Spectrometry Facility, Weizmann Institute of Science, Rehovoth, 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
20
|
Jorgensen PL, Hakansson KO, Karlish SJD. Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu Rev Physiol 2003; 65:817-49. [PMID: 12524462 DOI: 10.1146/annurev.physiol.65.092101.142558] [Citation(s) in RCA: 384] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cell membrane Na,K-ATPase is a member of the P-type family of active cation transport proteins. Recently the molecular structure of the related sarcoplasmic reticulum Ca-ATPase in an E1 conformation has been determined at 2.6 A resolution. Furthermore, theoretical models of the Ca-ATPase in E2 conformations are available. As a result of these developments, these structural data have allowed construction of homology models that address the central questions of mechanism of active cation transport by all P-type cation pumps. This review relates recent evidence on functional sites of Na,K-ATPase for the substrate (ATP), the essential cofactor (Mg(2+) ions), and the transported cations (Na(+) and K(+)) to the molecular structure. The essential elements of the Ca-ATPase structure, including 10 transmembrane helices and well-defined N, P, and A cytoplasmic domains, are common to all PII-type pumps such as Na,K-ATPase and H,K-ATPases. However, for Na,K-ATPase and H,K-ATPase, which consist of both alpha- and beta-subunits, there may be some detailed differences in regions of subunit interactions. Mutagenesis, proteolytic cleavage, and transition metal-catalyzed oxidative cleavages are providing much evidence about residues involved in binding of Na(+), K(+), ATP, and Mg(2+) ions and changes accompanying E1-E2 or E1-P-E2-P conformational transitions. We discuss this evidence in relation to N, P, and A cytoplasmic domain interactions, and long-range interactions between the active site and the Na(+) and K(+) sites in the transmembrane segments, for the different steps of the catalytic cycle.
Collapse
Affiliation(s)
- Peter L Jorgensen
- Biomembrane Center, August Krogh Institute, Copenhagen University, Universitetsparken 13, 2100 Copenhagen OE, Denmark.
| | | | | |
Collapse
|
21
|
Krüger A, Mahmmoud YA, Cornelius F. Protein kinase C phosphorylation directed at novel C-terminal sites in Na,K-ATPase. Ann N Y Acad Sci 2003; 986:541-2. [PMID: 12763883 DOI: 10.1111/j.1749-6632.2003.tb07247.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Anders Krüger
- Department of Biophysics, University of Aarhus, Denmark
| | | | | |
Collapse
|
22
|
Tadini-Buoninsegni F, Nassi P, Nediani C, Dolfi A, Guidelli R. Investigation of Na(+),K(+)-ATPase on a solid supported membrane: the role of acylphosphatase on the ion transport mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1611:70-80. [PMID: 12659947 DOI: 10.1016/s0005-2736(02)00722-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Charge translocation by Na(+),K(+)-ATPase was investigated by adsorbing membrane fragments containing Na(+),K(+)-ATPase from pig kidney on a solid supported membrane (SSM). Upon adsorption, the ion pumps were activated by performing ATP concentration jumps at the surface of the SSM, and the capacitive current transients generated by Na(+),K(+)-ATPase were measured under potentiostatic conditions. To study the behavior of the ion pump under multiple turnover conditions, ATP concentration jump experiments were carried out in the presence of Na(+) and K(+) ions. Current transients induced by ATP concentration jumps were also recorded in the presence of the enzyme alpha-chymotrypsin. The effect of acylphosphatase (AcP), a cytosolic enzyme that may affect the functioning of Na(+),K(+)-ATPase by hydrolyzing its acylphosphorylated intermediate, was investigated by performing ATP concentration jumps both in the presence and in the absence of AcP. In the presence of Na(+) but not of K(+), the addition of AcP causes the charge translocated as a consequence of ATP concentration jumps to decrease by about 50% over the pH range from 6 to 7, and to increase by about 20% at pH 8. Conversely, no appreciable effect of pH upon the translocated charge is observed in the absence of AcP. The above behavior suggests that protons are involved in the AcP-catalyzed dephosphorylation of the acylphosphorylated intermediate of Na(+),K(+)-ATPase.
Collapse
|
23
|
Cornelius F, Mahmmoud YA. Direct activation of gastric H,K-ATPase by N-terminal protein kinase C phosphorylation. Comparison of the acute regulation mechanisms of H,K-ATPase and Na,K-ATPase. Biophys J 2003; 84:1690-700. [PMID: 12609871 PMCID: PMC1302738 DOI: 10.1016/s0006-3495(03)74977-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this study we compared the protein kinase dependent regulation of gastric H,K-ATPase and Na,K-ATPase. The protein kinase A/protein kinase C (PKA/PKC) phosphorylation profile of H,K-ATPase was very similar to the one found in the Na,K-ATPase. PKC phosphorylation was taking place in the N-terminal part of the alpha-subunit with a stoichiometry of approximately 0.6 mol Pi/mole alpha-subunit. PKA phosphorylation was in the C-terminal part and required detergent, as is also found for the Na,K-ATPase. The stoichiometry of PKA-induced phosphorylation was approximately 0.7 mol Pi/mole alpha-subunit. Controlled proteolysis of the N-terminus abolished PKC phosphorylation of native H,K-ATPase. However, after detergent treatment additional C-terminal PKC sites became exposed located at the beginning of the M5M6 hairpin and at the cytoplasmic L89 loop close to the inner face of the plasma membrane. N-terminal PKC phosphorylation of native H,K-ATPase alpha-subunit was found to stimulate the maximal enzyme activity by 40-80% at saturating ATP, depending on pH. Thus, a direct modulation of enzyme activity by PKC phosphorylation could be demonstrated that may be additional to the well-known regulation of acid secretion by recruitment of H,K-ATPase to the apical membranes of the parietal cells. Moreover, a distinct difference in the regulation of H,K-ATPase and Na,K-ATPase is the apparent absence of any small regulatory proteins associated with the H,K-ATPase.
Collapse
|
24
|
Wu CH, Vasilets LA, Takeda K, Kawamura M, Schwarz W. Functional role of the N-terminus of Na(+),K(+)-ATPase alpha-subunit as an inactivation gate of palytoxin-induced pump channel. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:55-62. [PMID: 12507758 DOI: 10.1016/s0005-2736(02)00653-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The N-terminus of the Na(+),K(+)-ATPase alpha-subunit shows some homology to that of Shaker-B K(+) channels; the latter has been shown to mediate the N-type channel inactivation in a ball-and-chain mechanism. When the Torpedo Na(+),K(+)-ATPase is expressed in Xenopus oocytes and the pump is transformed into an ion channel with palytoxin (PTX), the channel exhibits a time-dependent inactivation gating at positive potentials. The inactivation gating is eliminated when the N-terminus is truncated by deleting the first 35 amino acids after the initial methionine. The inactivation gating is restored when a synthetic N-terminal peptide is applied to the truncated pumps at the intracellular surface. Truncated pumps generate no electrogenic current and exhibit an altered stoichiometry for active transport. Thus, the N-terminus of the alpha-subunit appears to act like an inactivation gate and performs a critical step in the Na(+),K(+)-ATPase pumping function.
Collapse
Affiliation(s)
- Chau H Wu
- Department of Molecular Pharmacology and Biological Chemistry (S-215), The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA.
| | | | | | | | | |
Collapse
|
25
|
Segall L, Lane LK, Blostein R. New insights into the role of the N terminus in conformational transitions of the Na,K-ATPase. J Biol Chem 2002; 277:35202-9. [PMID: 12110690 DOI: 10.1074/jbc.m206115200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The deletion of 32 residues from the N terminus of the alpha1 catalytic subunit of the rat Na,K-ATPase (mutant alpha1M32) shifts the E(1)/E(2) conformational equilibrium toward E(1), and the combination of this deletion with mutation E233K in the M2-M3 loop acts synergistically to shift the conformation further toward E(1) (Boxenbaum, N., Daly, S. E., Javaid, Z. Z., Lane, L. K., and Blostein, R. (1998) J. Biol. Chem. 273, 23086-23092). To delimit the region of the cytoplasmic N terminus involved in these interactions, the consequences of a series of N-terminal deletions of alpha1 beyond Delta32 were evaluated. Criteria to assess shifts in conformational equilibrium were based on effects of perturbation of the entire catalytic cycle ((i) sensitivity to vanadate inhibition, (ii) K(+) sensitivity of Na-ATPase measured at micromolar ATP, (iii) changes in K'(ATP), and (iv) catalytic turnover), as well as estimates of the rates of the conformational transitions of phospho- and dephosphoenzyme (E(1)P --> E(2)P and E(2)(K(+)) --> E(1) + K(+)). The results show that, compared with alpha1M32, the deletion of up to 40 residues (alpha1M40) further shifts the poise toward E(1). Remarkably, further deletions (mutants alpha1M46, alpha1M49, and alpha1M56) reverse the effect, such that these mutants increasingly resemble the wild type alpha1. These results suggest novel intramolecular interactions involving domains within the N terminus that impact the manner in which the N terminus/M2-M3 loop regulatory domain interacts with the M4-M5 catalytic loop to effect E(1) <--> E(2) transitions.
Collapse
Affiliation(s)
- Laura Segall
- Department of Biochemistry, McGill University, Quebec H3G 1A4, Canada
| | | | | |
Collapse
|
26
|
Toyoshima C, Nomura H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 2002; 418:605-11. [PMID: 12167852 DOI: 10.1038/nature00944] [Citation(s) in RCA: 669] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In skeletal muscle, calcium ions are transported (pumped) against a concentration gradient from the cytoplasm into the sarcoplasmic reticulum, an intracellular organelle. This causes muscle cells to relax after cytosolic calcium increases during excitation. The Ca(2+) ATPase that carries out this pumping is a representative P-type ion-transporting ATPase. Here we describe the structure of this ion pump at 3.1 A resolution in a Ca(2+)-free (E2) state, and compare it with that determined previously for the Ca(2+)-bound (E1Ca(2+)) state. The structure of the enzyme stabilized by thapsigargin, a potent inhibitor, shows large conformation differences from that in E1Ca(2+). Three cytoplasmic domains gather to form a single headpiece, and six of the ten transmembrane helices exhibit large-scale rearrangements. These rearrangements ensure the release of calcium ions into the lumen of sarcoplasmic reticulum and, on the cytoplasmic side, create a pathway for entry of new calcium ions.
Collapse
Affiliation(s)
- Chikashi Toyoshima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | |
Collapse
|
27
|
Mahmmoud YA, Cornelius F. Protein kinase C phosphorylation of purified Na,K-ATPase: C-terminal phosphorylation sites at the alpha- and gamma-subunits close to the inner face of the plasma membrane. Biophys J 2002; 82:1907-19. [PMID: 11916849 PMCID: PMC1301987 DOI: 10.1016/s0006-3495(02)75540-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The alpha-subunit of the Na,K-ATPase is phosphorylated at specific sites by protein kinases A and C. Phosphorylation by protein kinase C (PKC) is restricted to the N terminus and takes place to a low stoichiometry, except in rat. Here we show that the alpha-subunit of shark Na,K-ATPase can be phosphorylated by PKC at C-terminal sites to stoichiometric levels in the presence of detergents. Two novel phosphorylation sites are possible candidates for this PKC phosphorylation: Thr-938 in the M8/M9 loop located very close to the PKA site, and Ser-774, in the proximal part of the M5/M6 hairpin. Both sites are highly conserved in all known alpha-subunits, indicating a physiological role. A similar pattern of detergent-mediated phosphorylation by PKC was found in pig kidney Na,K-ATPase alpha-subunit. Interestingly, the kidney-specific gamma-subunit was phosphorylated by PKC in the presence of detergent. The close proximity of the novel PKC sites to the membrane suggests that targeting proteins to tether PKC into the membrane phase is important in controlling the in vivo phosphorylation of this novel class of membrane-adjacent PKC sites. It is suggested that in purified preparations where functional targeting may be impaired detergents are needed to expose the sites.
Collapse
Affiliation(s)
- Yasser A Mahmmoud
- Department of Biophysics, University of Aarhus, Aarhus, DK-8000 Denmark
| | | |
Collapse
|
28
|
Villas-Boas Tribuzy A, Fontes CFL, Nørby JG, Barrabin H. Dimethyl sulfoxide-induced conformational state of Na(+)/K(+)-ATPase studied by proteolytic cleavage. Arch Biochem Biophys 2002; 399:89-95. [PMID: 11883907 DOI: 10.1006/abbi.2001.2752] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of dimethyl sulfoxide (Me(2)SO) on substrate affinity for phosphorylation by inorganic phosphate, on phosphorylation by ATP in the absence of Na(+), and on ouabain binding to the free form of the Na(+)/K(+)-ATPase have been attributed to changes in solvation of the active site or Me(2)SO-induced changes in the structure of the enzyme. Here we used selective trypsin cleavage as a procedure to determine the conformations that the Na(+)/K(+)-ATPase acquires in Me(2)SO medium. In water or in Me(2)SO medium, Na(+)/K(+)-ATPase exhibited after partial proteolysis two distinct groups of fragments: (1) in the presence of 0.1 M Na(+) or 0.1 M Na(+) + 3 mM ADP (enzyme in the E1 state) cleavage produced a main fragment of about 76 kDa; and (2) in the presence of 20 mM K(+) (E2 state) a 58-kDa fragment plus two or three fragments of 39-41 kDa were obtained. Cleavage in Me(2)SO medium in the absence of Na(+) and K(+) exhibited the same breakdown pattern as that obtained in the presence of K(+), but a 43-kDa fragment was also observed. An increase in the K(+) concentration to 0.5 mM eliminated the 43-kDa fragment, while a 39- to 41-kDa doublet was accumulated. Both in water and in Me(2)SO medium, a strong enhancement of the 43-kDa band was observed in the presence of either P(i) + ouabain or vanadate, suggesting that the 43-kDa fragment is closely related to the conformation of the phosphorylated enzyme. These results indicate that Me(2)SO acts not only by promoting the release of water from the ATP site, but also by inducing a conformation closely related to the phosphorylated state, even when the enzyme is not phosphorylated.
Collapse
|
29
|
Jorgensen PL, Jorgensen JR, Pedersen PA. Role of conserved TGDGVND-loop in Mg2+ binding, phosphorylation, and energy transfer in Na,K-ATPase. J Bioenerg Biomembr 2001; 33:367-77. [PMID: 11762912 DOI: 10.1023/a:1010611322024] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the P-domain, the 369-DKTGTLT and the 709-GDGVNDSPALKK segment are highly conserved during evolution of P-type E1-E2-ATPase pumps irrespective of their cation specificities. The focus of this article is on evaluation of the role of the amino acid residues in the P domain of the alpha subunit of Na,K-ATPase for the E1P[3Na]--> E2P[2Na] conversion, the K+-activated dephosphorylation, and the transmission of these changes to and from the cation binding sites. Mutations of residues in the TGDGVND loop show that Asp710 is essential, and Asn713 is important, for Mg2+ binding and formation of the high-energy MgE1P[3Na] intermediate. In contrast Asp710 and Asp713 do not contribute to Mg2+ binding in the E2P-ouabain complex. Transition to E2P thus involves a shift of Mg2+ coordination away from Asp710 and Asn713 and the two residues become more important for K+-activated hydrolysis of the acyl phosphate bond at Asp369. Transmission of structural changes between the P-domain and cation sites in the membrane domain is evaluated in light of the protein structure, and the information from proteolytic or metal-catalyzed cleavage and mutagenesis studies.
Collapse
Affiliation(s)
- P L Jorgensen
- Biomembrane Research Center, August Krogh Institute, Copenhagen University, Denmark.
| | | | | |
Collapse
|
30
|
Sweadner KJ, Donnet C. Structural similarities of Na,K-ATPase and SERCA, the Ca(2+)-ATPase of the sarcoplasmic reticulum. Biochem J 2001; 356:685-704. [PMID: 11389677 PMCID: PMC1221896 DOI: 10.1042/0264-6021:3560685] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The crystal structure of SERCA1a (skeletal-muscle sarcoplasmic-reticulum/endoplasmic-reticulum Ca(2+)-ATPase) has recently been determined at 2.6 A (note 1 A = 0.1 nm) resolution [Toyoshima, Nakasako, Nomura and Ogawa (2000) Nature (London) 405, 647-655]. Other P-type ATPases are thought to share key features of the ATP hydrolysis site and a central core of transmembrane helices. Outside of these most-conserved segments, structural similarities are less certain, and predicted transmembrane topology differs between subclasses. In the present review the homologous regions of several representative P-type ATPases are aligned with the SERCA sequence and mapped on to the SERCA structure for comparison. Homology between SERCA and the Na,K-ATPase is more extensive than with any other ATPase, even PMCA, the Ca(2+)-ATPase of plasma membrane. Structural features of the Na,K-ATPase are projected on to the Ca(2+)-ATPase crystal structure to assess the likelihood that they share the same fold. Homology extends through all ten transmembrane spans, and most insertions and deletions are predicted to be at the surface. The locations of specific residues are examined, such as proteolytic cleavage sites, intramolecular cross-linking sites, and the binding sites of certain other proteins. On the whole, the similarity supports a shared fold, with some particular exceptions.
Collapse
Affiliation(s)
- K J Sweadner
- Neuroscience Center, Massachusetts General Hospital, 149-6118, 149 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
31
|
Donnet C, Arystarkhova E, Sweadner KJ. Thermal denaturation of the Na,K-ATPase provides evidence for alpha-alpha oligomeric interaction and gamma subunit association with the C-terminal domain. J Biol Chem 2001; 276:7357-65. [PMID: 11099502 DOI: 10.1074/jbc.m009131200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thermal denaturation can help elucidate protein domain substructure. We previously showed that the Na,K-ATPase partially unfolded when heated to 55 degrees C (Arystarkhova, E., Gibbons, D. L., and Sweadner, K. J. (1995) J. Biol. Chem. 270, 8785-8796). The beta subunit unfolded without leaving the membrane, but three transmembrane spans (M8-M10) and the C terminus of the alpha subunit were extruded, while the rest of alpha retained its normal topology with respect to the lipid bilayer. Here we investigated thermal denaturation further, with several salient results. First, trypsin sensitivity at both surfaces of alpha was increased, but not sensitivity to V8 protease, suggesting that the cytoplasmic domains and extruded domain were less tightly packed but still retained secondary structure. Second, thermal denaturation was accompanied by SDS-resistant aggregation of alpha subunits as dimers, trimers, and tetramers without beta or gamma subunits. This implies specific alpha-alpha contact. Third, the gamma subunit, like the C-terminal spans of alpha, was selectively lost from the membrane. This suggests its association with M8-M10 rather than the more firmly anchored transmembrane spans. The picture that emerges is of a Na,K-ATPase complex of alpha, beta, and gamma subunits in which alpha can associate in assemblies as large as tetramers via its cytoplasmic domain, while beta and gamma subunits associate with alpha primarily in its C-terminal portion, which has a unique structure and thermal instability.
Collapse
Affiliation(s)
- C Donnet
- Laboratory of Membrane Biology, Neuroscience Center, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | |
Collapse
|
32
|
Féraille E, Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 2001; 81:345-418. [PMID: 11152761 DOI: 10.1152/physrev.2001.81.1.345] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tubular reabsorption of filtered sodium is quantitatively the main contribution of kidneys to salt and water homeostasis. The transcellular reabsorption of sodium proceeds by a two-step mechanism: Na(+)-K(+)-ATPase-energized basolateral active extrusion of sodium permits passive apical entry through various sodium transport systems. In the past 15 years, most of the renal sodium transport systems (Na(+)-K(+)-ATPase, channels, cotransporters, and exchangers) have been characterized at a molecular level. Coupled to the methods developed during the 1965-1985 decades to circumvent kidney heterogeneity and analyze sodium transport at the level of single nephron segments, cloning of the transporters allowed us to move our understanding of hormone regulation of sodium transport from a cellular to a molecular level. The main purpose of this review is to analyze how molecular events at the transporter level account for the physiological changes in tubular handling of sodium promoted by hormones. In recent years, it also became obvious that intracellular signaling pathways interacted with each other, leading to synergisms or antagonisms. A second aim of this review is therefore to analyze the integrated network of signaling pathways underlying hormone action. Given the central role of Na(+)-K(+)-ATPase in sodium reabsorption, the first part of this review focuses on its structural and functional properties, with a special mention of the specificity of Na(+)-K(+)-ATPase expressed in renal tubule. In a second part, the general mechanisms of hormone signaling are briefly introduced before a more detailed discussion of the nephron segment-specific expression of hormone receptors and signaling pathways. The three following parts integrate the molecular and physiological aspects of the hormonal regulation of sodium transport processes in three nephron segments: the proximal tubule, the thick ascending limb of Henle's loop, and the collecting duct.
Collapse
Affiliation(s)
- E Féraille
- Division of Nephrology, Geneva University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
33
|
Asano S, Miwa K, Yashiro H, Tabuchi Y, Takeguchi N. Significance of lysine/glycine cluster structure in gastric H+,K+-ATPase. THE JAPANESE JOURNAL OF PHYSIOLOGY 2000; 50:419-28. [PMID: 11082540 DOI: 10.2170/jjphysiol.50.419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gastric H+,K+-ATPase consists of alpha- and beta-subunits. The catalytic alpha-subunit contains a very unique structure consisting of lysine and glycine clusters, KKK(or KKKK)AG(G/R)GGGK-(K/R)K, in the amino-terminal cytoplasmic region. This structure is well conserved in all gastric H+,K+-ATPases from different animal species, and was postulated to be the site controlling the access of cations (or proton) to its binding site. In this report, we studied the role of this unique structure by expressing several H+,K+-ATPase mutants of the alpha-subunit together with the wild-type beta-subunit in HEK-293 cells. Even after replacing all the positively-charged amino acid residues (six lysines and one arginine) in the cluster with alanine or removing all the glycine residues in the cluster, the mutants preserved the H+,K+-ATPase activity, and showed similar affinity for ATP and K+ as well as similar pH profiles as those of wild-type H+,K+-ATPase, indicating that the cluster is not indispensable for H+,K+-ATPase activity and not directly involved in determination of the affinity for cation (proton).
Collapse
Affiliation(s)
- S Asano
- Molecular Genetics Research Center, Toyama Medical and Pharmaceutical University, Toyama, 930-0194 Japan.
| | | | | | | | | |
Collapse
|
34
|
Féraille E, Béguin P, Carranza ML, Gonin S, Rousselot M, Martin PY, Favre H, Geering K. Is phosphorylation of the alpha1 subunit at Ser-16 involved in the control of Na,K-ATPase activity by phorbol ester-activated protein kinase C? Mol Biol Cell 2000; 11:39-50. [PMID: 10637289 PMCID: PMC14755 DOI: 10.1091/mbc.11.1.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The alpha1 subunit of Na,K-ATPase is phosphorylated at Ser-16 by phorbol ester-sensitive protein kinase(s) C (PKC). The role of Ser-16 phosphorylation was analyzed in COS-7 cells stably expressing wild-type or mutant (T15A/S16A and S16D-E) ouabain-resistant Bufo alpha1 subunits. In cells incubated at 37 degrees C, phorbol 12, 13-dibutyrate (PDBu) inhibited the transport activity and decreased the cell surface expression of wild-type and mutant Na,K-pumps equally ( approximately 20-30%). This effect of PDBu was mimicked by arachidonic acid and was dependent on PKC, phospholipase A(2), and cytochrome P450-dependent monooxygenase. In contrast, incubation of cells at 18 degrees C suppressed the down-regulation of Na,K-pumps and revealed a phosphorylation-dependent stimulation of the transport activity of Na,K-ATPase. Na,K-ATPase from cells expressing alpha1-mutants mimicking Ser-16 phosphorylation (S16D or S16E) exhibited an increase in the apparent Na affinity. This finding was confirmed by the PDBu-induced increase in Na sensitivity of the activity of Na,K-ATPase measured in permeabilized nontransfected COS-7 cells. These results illustrate the complexity of the regulation of Na,K-ATPase alpha1 isozymes by phorbol ester-sensitive PKCs and reveal 1) a phosphorylation-independent decrease in cell surface expression and 2) a phosphorylation-dependent stimulation of the transport activity attributable to an increase in the apparent Na affinity.
Collapse
Affiliation(s)
- E Féraille
- Division de Néphrologie, Hôpital Cantonal Universitaire, CH-1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Féraille E, Carranza ML, Gonin S, Béguin P, Pedemonte C, Rousselot M, Caverzasio J, Geering K, Martin PY, Favre H. Insulin-induced stimulation of Na+,K(+)-ATPase activity in kidney proximal tubule cells depends on phosphorylation of the alpha-subunit at Tyr-10. Mol Biol Cell 1999; 10:2847-59. [PMID: 10473631 PMCID: PMC25522 DOI: 10.1091/mbc.10.9.2847] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphorylation of the alpha-subunit of Na+,K(+)-ATPase plays an important role in the regulation of this pump. Recent studies suggest that insulin, known to increase solute and fluid reabsorption in mammalian proximal convoluted tubule (PCT), is stimulating Na+,K(+)-ATPase activity through the tyrosine phosphorylation process. This study was therefore undertaken to evaluate the role of tyrosine phosphorylation of the Na+,K(+)-ATPase alpha-subunit in the action of insulin. In rat PCT, insulin and orthovanadate (a tyrosine phosphatase inhibitor) increased tyrosine phosphorylation level of the alpha-subunit more than twofold. Their effects were not additive, suggesting a common mechanism of action. Insulin-induced tyrosine phosphorylation was prevented by genistein, a tyrosine kinase inhibitor. The site of tyrosine phosphorylation was identified on Tyr-10 by controlled trypsinolysis in rat PCTs and by site-directed mutagenesis in opossum kidney cells transfected with rat alpha-subunit. The functional relevance of Tyr-10 phosphorylation was assessed by 1) the abolition of insulin-induced stimulation of the ouabain-sensitive (86)Rb uptake in opossum kidney cells expressing mutant rat alpha1-subunits wherein tyrosine was replaced by alanine or glutamine; and 2) the similarity of the time course and dose dependency of the insulin-induced increase in ouabain-sensitive (86)Rb uptake and tyrosine phosphorylation. These findings indicate that phosphorylation of the Na+,K(+)-ATPase alpha-subunit at Tyr-10 likely participates in the physiological control of sodium reabsorption in PCT.
Collapse
Affiliation(s)
- E Féraille
- Division de Néphrologie, Fondation pour Recherches Médicales, 1211 Genève 4, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vasilets LA, Postina R, Kirichenko SN. Mutations of Ser-23 of the alpha1 subunit of the rat Na+/K+-ATPase to negatively charged amino acid residues mimic the functional effect of PKC-mediated phosphorylation. FEBS Lett 1999; 455:8-12. [PMID: 10428461 DOI: 10.1016/s0014-5793(99)00851-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Na+/K+-ATPase is a target protein for protein kinase C (PKC). The PKC-mediated phosphorylation of the rat alpha1 subunit at Ser-23 results in the inhibition of its transport function. To understand the molecular basis of the inhibition by PKC, the Ser-23 in the rat alpha1 subunit has been replaced by negatively (Asp, Glu) or positively (Lys) charged, or uncharged (Gln, Ala) residues, and the mutants were expressed in Xenopus oocytes. Ouabain-specific 86Rb uptake and pump-generated current as well as sensitivity to ouabain and to external K+ have been investigated. When Ser-23 was replaced by the negatively charged residues, transport function was inhibited, and simultaneously synthesis of the alpha subunits was enhanced. In addition, if Ser-23 was substituted by Glu, the K(I) value for inhibition of transport by ouabain was drastically increased from 46.5 microM to 1.05 mM. The data suggest that insertion of a negative charge within the N-terminus of alpha subunit of the Na+/K+-ATPase due to phosphorylation of Ser-23 plays an important role in the PKC-mediated inhibition of transport function.
Collapse
Affiliation(s)
- L A Vasilets
- Max-Planck-Institute for Biophysics, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
37
|
Goldshleger R, Karlish SJ. The energy transduction mechanism of Na,K-ATPase studied with iron-catalyzed oxidative cleavage. J Biol Chem 1999; 274:16213-21. [PMID: 10347176 DOI: 10.1074/jbc.274.23.16213] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This paper extends our recent report on specific iron-catalyzed oxidative cleavages of renal Na,K-ATPase and effects of E1 left arrow over right arrow E2 conformational transitions (Goldshleger, R. , and Karlish, S. J. D. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 9596-9601). The experiments indicate that only peptide bonds close to a bound Fe2+ ion are cleaved, and provide evidence on proximity of the different cleavage positions in the native enzyme. A sequence HFIH near trans-membrane segment M3 appears to be involved in Fe2+ binding. Previously we hypothesized that E2 and E1 conformations are characterized by formation or relaxation of interactions within the alpha subunit at or near highly conserved sequences, TGES in the minor cytoplasmic loop and CSDK, MVTGD, and VNDSPALKK in the major cytoplasmic loop. This concept has been tested by examining iron-catalyzed cleavage in both non-phosphorylated and phosphorylated conformations and effects of phosphate, vanadate, and ouabain. The results imply that both E1 left arrow over right arrow E2 and E1P left arrow over right arrow E2P transitions are indeed associated with formation and relaxation of interactions between cytoplasmic domains, comprising the minor loop plus N-terminal tail leading into M1 and major loop, respectively. Furthermore, it appears that either non-covalently or covalently bound phosphate bind near CSDK and MVTGD, and Mg2+ ions may bind to residues within TGES and VNDSPALKK and to bound phosphate. Thus cytoplasmic domain interactions seem to occur within or near the active site. We discuss the relationship between structural changes in the cytoplasmic domain and movements of trans-membrane segments that lead to cation transport. Presumably conformation-dependent formation and relaxation of domain interactions underlie energy transduction in all P-type pumps.
Collapse
Affiliation(s)
- R Goldshleger
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
38
|
Fotis H, Tatjanenko LV, Vasilets LA. Phosphorylation of the alpha-subunits of the Na+/K+-ATPase from mammalian kidneys and Xenopus oocytes by cGMP-dependent protein kinase results in stimulation of ATPase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:904-10. [PMID: 10103022 DOI: 10.1046/j.1432-1327.1999.00237.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphorylation of Na+/K+-ATPase by cGMP-dependent protein kinase (PKG) has been studied in enzymes purified from pig, dog, sheep and rat kidneys, and in Xenopus oocytes. PKG phosphorylates the alpha-subunits of all animal species investigated. Phosphorylation of the beta-subunit was not observed. The stoichiometry of phosphorylation estimated for pig, sheep and dog renal Na+/K+-ATPase is 3.5, 2.2 and 2.1 mol Pi per mol alpha-subunit, respectively. Proteolytic fingerprinting of the pig alpha1-subunits phosphorylated by PKG using specific antibodies raised against N-terminus or C-terminus reveals that phosphorylation sites are located within the intracellular loop of the alpha-subunit between the 35 kDa N-terminal and 27 kDa C-terminal fragments. Phosphorylation sites within the alpha1-subunit of the purified Na+/K+-ATPase do not appear to be easily accessible for PKG since incorporation of Pi requires 0.2% of Triton X-100. Administration of cGMP and PKG in the presence of 5 mm ATP, which prevents inactivation of the Na+/K+-ATPase by detergent, leads to stimulation of hydrolytic activity by 61%. Administration of 50 microm of cGMP or dbcGMP in yolk-free homogenates of Xenopus oocytes leads to stimulation of ouabain-dependent ATPase activity by 130-198% and to incorporation of 33P into the alpha-subunit without the detergent. Hence, PKG plays regulatory role in active transmembraneous transport of Na+ and K+ via phosphorylation of the catalytic subunit of the Na+/K+-ATPase.
Collapse
Affiliation(s)
- H Fotis
- Max-Planck-Institute for Biophysics, Frankfurt/Main, Germany
| | | | | |
Collapse
|
39
|
Ward DG, Cavieres JD. Affinity labeling of two nucleotide sites on Na,K-ATPase using 2'(3')-O-(2,4,6-trinitrophenyl)8-azidoadenosine 5'-[alpha-32P]diphosphate (TNP-8N3-[alpha-32P]ADP) as a photoactivatable probe. Label incorporation before and after blocking the high affinity ATP site with fluorescein isothiocyanate. J Biol Chem 1998; 273:33759-65. [PMID: 9837964 DOI: 10.1074/jbc.273.50.33759] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP and its analogues act on the minimal functional unit of Na, K-ATPase, the alpha beta protomer, with high and low affinity effects. Fluorescein isothiocyanate (FITC) irreversibly blocks the high affinity, or catalytic, ATP site, and yet the surviving K+-phosphatase activity of soluble FITC-modified alphabeta protomers can be photoinactivated by 2'(3')-O-trinitrophenyl (TNP)-8N3-ADP (Ward, D. G., and Cavieres, J. D. (1998) J. Biol. Chem. 273, 14277-14284). We have now used TNP-8N3-[alpha-32P]ADP as a photoaffinity label for Na,K-ATPase. The native enzyme can be photolabeled at 5 microM TNP-8N3-[alpha-32P]ADP, and ATP or FITC treatment prevents labeling of the alpha chain. At 25 microM, however, TNP-8N3-[alpha-32P]ADP can be incorporated in the FITC-modified alpha chain, concurrently with the inactivation of the K+-phosphatase activity, to an extrapolated level of 0.5-1.2 mol of 32P-probe per mol of alpha chain. Photoinactivation and labeling are prevented by TNP-ADP, vanadate, or strophanthidin and are promoted by Na+ or Mg2+, but not K+. The cation effects suggest that the fluorescein-modified enzyme incorporates the TNP-8N3-[alpha-32P]ADP. Mg complex preferentially, and the free probe when in the E1 enzyme form and after occupation of a low-affinity Na+ site. Partial trypsinolysis reveals that the point of TNP-8N3-[alpha-32P]ADP attachment is on the C-terminal 58-kDa fragment of the FITC-modified alpha chain. The affinity labeling of the fluorescein enzyme by TNP-8N3-[alpha-32P]ADP endorses the view that two nucleotide sites can be occupied simultaneously in each alpha subunit of Na,K-ATPase.
Collapse
Affiliation(s)
- D G Ward
- Transport ATPase Laboratory, Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | |
Collapse
|
40
|
Petrosian SA, Carr DL, Guerrero G, Pressley TA. Mutagenesis disrupts posttranslational processing of the Na,K-ATPase catalytic subunit. Arch Biochem Biophys 1998; 357:249-58. [PMID: 9735165 DOI: 10.1006/abbi.1998.0816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first 5 amino acids of the catalytic alpha 1 isoform from Na,K-ATPase are cleaved enzymatically during or after translation. To evaluate the structural requirements for that cleavage, we constructed amino-terminal mutants of alpha 1 in which an epitope tag from the c-myc oncogene product was added. Immunoblots of isolated membranes from transfected monkey kidney cells revealed binding of an antibody specific for the first 9 residues of the alpha 1 nascent protein. Because this antibody does not recognize the shorter sequence corresponding to the processed polypeptide, these results indicate that the epitope tag prevented normal processing, a conclusion confirmed by the observed binding of an anti-myc antibody. In contrast, membranes from cells expressing deletion mutants that lack residues 10-24 and 10-31 of the nascent chain failed to bind the amino-terminal-directed antibody, suggesting that the mutants were cleaved normally and that amino acids downstream of the first 9 are not required for proteolysis. Amino-terminal mutants produced in other laboratories have shown an anomalous stimulation of ATPase activity by K+ when measured in low ATP concentrations. The myc-tagged and downstream deletion mutants were sensitive to K+ in the range from 0.05 to 5 mM, similar to wild-type enzyme, despite the differences in posttranslational processing. A mutant missing the first 40 residues of the nascent chain, however, displayed an activation by K+. These results suggest that amino-terminal processing of the alpha 1 isoform was prevented by mutation, yet that processing had little influence on the kinetic parameter most likely to be influenced by such changes.
Collapse
Affiliation(s)
- S A Petrosian
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock 79430, USA
| | | | | | | |
Collapse
|
41
|
Ivanov A, Askari A, Modyanov NN. Structural analysis of the products of chymotryptic cleavage of the E1 form of Na,K-ATPase alpha-subunit: identification of the N-terminal fragments containing the transmembrane H1-H2 domain. FEBS Lett 1997; 420:107-11. [PMID: 9450559 DOI: 10.1016/s0014-5793(97)01493-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chymotryptic cleavage of the Na,K-ATPase in NaCl medium abolishes ATPase activity and alters other functional parameters. The structure of this modified enzyme is uncertain since only one product of selective proteolysis, the 83-kDa fragment of the alpha-subunit (Ala267-C-terminus) has been identified previously. Here, we applied additional tryptic digestion followed by oxidative cross-linking to identify the products originating from the N-terminal part of the alpha-subunit. These fragments start at Ala72 or Thr74 and contain the transmembrane H1-H2 domain. Formation of cross-linked product between alpha-fragments containing H1-H2 and H7-H10 demonstrate that the structural integrity of the membrane moiety is preserved. We also determined that secondary cleavage of the 83-kDa fragment leads to the formation of C-terminal 48-kDa alpha-fragments with multiple N-termini at Ile582, Ser583, Met584 and Ile585.
Collapse
Affiliation(s)
- A Ivanov
- Department of Pharmacology, Medical College of Ohio, Toledo 43614, USA
| | | | | |
Collapse
|
42
|
Rakowski RF, Bezanilla F, De Weer P, Gadsby DC, Holmgren M, Wagg J. Charge translocation by the Na/K pump. Ann N Y Acad Sci 1997; 834:231-43. [PMID: 9405811 DOI: 10.1111/j.1749-6632.1997.tb52254.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R F Rakowski
- Department of Physiology and Biophysics, Finch University of Health Sciences, Chicago Medical School, Illinois 60064, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Daly SE, Lane LK, Blostein R. Structure/function analysis of the amino-terminal region of the 1 and 2 subunits of Na,K-ATPase. J Biol Chem 1996; 271:23683-9. [PMID: 8798590 DOI: 10.1074/jbc.271.39.23683] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The alpha2 isoform of the Na,K-ATPase exhibits kinetic behavior distinct from that of the alpha1 isoform. The distinctive behavior is apparent when the reaction is carried out under conditions (micromolar ATP concentration) in which the K+ deocclusion pathway of the reaction cycle is rate-limiting; the alpha1 activity is inhibited by K+, whereas alpha2 is stimulated. When 32 NH2-terminal amino acid residues are removed from alpha1, the kinetic behavior of the mutant enzyme (alpha1M32) is similar to that of alpha2 (Daly, S. E., Lane, L. K., and Blostein, R. (1994) J. Biol. Chem. 269, 23944-23948). In the current study, the region of the alpha1 NH2 terminus involved in modulating this kinetic behavior has been localized to the highly charged sequence comprising residues 24-32. Within this nonapeptide, differences between alpha1 and alpha2 are conservative and are confined to residues 25-27. The behavior of two chimeric enzymes: (i) alpha1 with the first 32 residues identical to the alpha2 sequence, alpha1 (1-32alpha2), and (ii) alpha2 with the first 32 residues identical to the alpha1 sequence, alpha2(1-32alpha1), indicates that the distinctive kinetic behavior of alpha1 and alpha2 is not due to the 24-32 NH2-terminal domain, per se, but rather to its interaction with other, isoform-specific region(s) of the alpha1 protein. We also demonstrate that the distinct K+ activation profiles of either alpha2 or alpha1M32, compared to alpha1 is due to a faster release of K+ from the K+-occluded enzyme, and to a higher affinity for ATP. This was determined in studies using two approaches: (i) kinetic analysis of the reaction modeled according to a branched pathway of K+ deocclusion through low and high affinity ATP pathways and, (ii) measurements of the (rapid) phosphorylation of the enzyme (E1 conformation) by [gamma-32P]ATP following the rate-limiting formation of the K+-free enzyme from the K+-occluded state (E2(K) --> E1 + K+). The observed kinetic differences between alpha2 and alpha1 suggest that these Na,K-ATPase isoforms differ in the steady-state distribution of E1 and E2 conformational states.
Collapse
Affiliation(s)
- S E Daly
- Department of Medicine, McGill University, Montreal, Canada
| | | | | |
Collapse
|
44
|
Liu G, Xie Z, Modyanov NN, Askari A. Restoration of phosphorylation capacity to the dormant half of the alpha-subunits of Na+, K(+)-ATPase. FEBS Lett 1996; 390:323-6. [PMID: 8706887 DOI: 10.1016/0014-5793(96)00687-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Purified kidney Na+, K(+)-ATPase whose alpha-subunit is cleaved by chymotrypsin at Leu266-Ala267, loses ATPase activity but forms the phosphoenzyme intermediate (EP) from ATP. When EP formation was correlated with extent of alpha-cleavage in the course of proteolysis, total EP increased with time before it declined. The magnitude of this rise indicated doubling of the number of phosphorylation sites after cleavage. Together with previous findings, these data establish that half of the alpha-subunits of oligomeric membrane-bound enzyme are dormant and that interaction of the N-terminal domain of alpha-subunit with its phosphorylation domain causes this half-site reactivity. Evidently, disruption of this interaction by proteolysis abolishes overall activity while it opens access to phosphorylation sites of all alpha-subunits.
Collapse
Affiliation(s)
- G Liu
- Department of Pharmacology, Medical College of Ohio, Toledo 43699-0008, USA
| | | | | | | |
Collapse
|
45
|
Carranza ML, Féraille E, Favre H. Protein kinase C-dependent phosphorylation of Na(+)-K(+)-ATPase alpha-subunit in rat kidney cortical tubules. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C136-43. [PMID: 8760039 DOI: 10.1152/ajpcell.1996.271.1.c136] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that, in oxygenated rat kidney proximal convoluted tubules (PCT), activation of protein kinase C (PKC) by phorbol 12,13-dibutyrate (PDBu) directly stimulates Na(+)-K(+)-adenosinetriphosphatase (ATPase) activity. PKC modulation of Na(+)-K(+)-ATPase activity by phosphorylation of its alpha-subunit was the postulated mechanism. The present study was therefore designed to investigate the relationship between PKC-mediated phosphorylation of the catalytic alpha-subunit and the cation transport activity of the Na(+)-K(+)-ATPase. In a suspension of rat kidney cortical tubules, activation of PKC by 10(-7) M PDBu increased the level of phosphorylation of the Na(+)-K(+)-ATPase alpha-subunit and stimulated the ouabain-sensitive 86Rb uptake by 47 and 42%, respectively. Time and dose dependence of the PDBu-induced increase in Na(+)-K(+)-ATPase activity and phosphorylation was strongly linearly correlated. The effects of PDBu on phosphorylation and activity of Na(+)-K(+)-ATPase were prevented by GF-109203X, a specific PKC inhibitor, whereas H-89, a specific PKA inhibitor, was ineffective. These results demonstrate that PKC activation induces phosphorylation of the catalytic alpha-subunit of Na(+)-K(+)-ATPase, which may participate in the stimulation of its cation transport activity in the rat PCT.
Collapse
Affiliation(s)
- M L Carranza
- Division de Néphrologie, Hôpital Cantonal Universitaire, Geneva, Switzerland
| | | | | |
Collapse
|
46
|
Wang X, Jaisser F, Horisberger JD. Role in cation translocation of the N-terminus of the alpha-subunit of the Na(+)-K+ pump of Bufo. J Physiol 1996; 491 ( Pt 3):579-94. [PMID: 8815195 PMCID: PMC1158802 DOI: 10.1113/jphysiol.1996.sp021241] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. We have studied the effects on the physiological properties of the Na(+)-K+ pump of both 31- and 40-amino acid N-terminal truncated forms of the alpha-subunit of the Na(+)-K(+)-ATPase. 2. Na(+)-K+ pumps that were moderately ouabain resistant (K1 = 50 microM) were expressed in the Xenopus oocyte by injection of wild-type or truncated variants of the Bufo marinus Na(+)-K(+)-ATPase alpha-subunit cRNA with Bufo beta-subunit cRNA. The function of the Na(+)-K+ pump was studied by electrophysiological methods after Na+ loading and inhibition of the endogenous Xenopus Na(+)-K(+)-ATPase by exposure to a low concentration (0.2 microM) of ouabain. 3. The voltage-dependent potassium activation kinetics of the Na(+)-K+ pump current and the ouabain-sensitive proton-dependent inward current were studied using the two-electrode voltage-clamp technique. A novel technique involving permeabilization of part of the oocyte membrane with digitonin was developed to enable study of the pre-steady-state current following fast voltage perturbation. 4. By comparison with the wild type, the 40-amino acid N-terminal truncation induced a lower level of Na(+)-K+ pump current, a 2- to 3-fold reduction in the apparent external K+ affinity when measured in the presence of extracellular Na+, a relative increase in the proton-dependent inward current, and a reduction in the rate constant of the pre-steady-state current following a voltage step towards a positive membrane potential. The 31-amino acid truncation induced changes that were qualitatively similar but of smaller magnitude. 5. We have analysed these results using a kinetic model of the Na(+)-K+ pump cycle and have shown that all these effects can be explained by the change in a single rate constant in the cycle kinetics, namely a reduction in the rate of the main charge translocating part of the Na(+)-K+ pump cycle, i.e. the forward E1 to E2 conformational change, the deocclusion and release of Na+ to the external side. 6. The highly charged N-terminal segment seems to be directly involved in the mechanism that translocates Na+ ions across the membrane's electrical field.
Collapse
Affiliation(s)
- X Wang
- Institute of Pharmacology and Toxicology, University of Lausanne, Switzerland
| | | | | |
Collapse
|
47
|
Orosz DE, Hopfer U. Pathophysiological consequences of changes in the coupling ratio of Na,K-ATPase for renal sodium reabsorption and its implications for hypertension. Hypertension 1996; 27:219-27. [PMID: 8567044 DOI: 10.1161/01.hyp.27.2.219] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent reports indicate that alpha 1-Na,K-ATPase from Dahl salt-sensitive (DS) rats contains a glutamine for leucine substitution associated with increased Na-K coupling at unchanged maximal velocity. Genetic analyses suggest that alpha 1-Na,K-ATPase is a potential hypertension gene. Therefore, we investigated whether renal Na+ metabolism could constitute a pathophysiological link between the molecular/functional change in Na,K-ATPase and hypertension. We simulated the consequences of increased Na-K coupling on overall Na-bicarbonate reabsorption in a proximal tubular transport model that incorporates apical Na-H exchanger and basolateral Na-bicarbonate cotransporter, K+ channel, and Na,K-ATPase. As expected, increases in the levels of the former three transport pathways yielded higher Na+ reabsorption. In contrast, increases in the maximal velocity of the Na,K-ATPase with a normal 3:2 (Na-K) coupling ratio did not increase Na+ reabsorption when apical Na-H exchange activity was limiting overall absorption. However, an increase in the Na-K coupling from 3:2 to 3:1, reported for the mutant alpha 1-Na,K-ATPase in DS rats, was associated with greater Na+ reabsorption. This increase is a consequence of lower cytosolic pH and secondary stimulation of the Na-H exchanger at its allosteric H+ site. Decreased pH results from activation of Na-bicarbonate cotransport by Na,K-ATPase-dependent membrane hyperpolarization due to greater charge movement in 3:1 Na-K coupling. Thus, an increase in the Na-K coupling ratio results in an altered set point for cellular Na+ metabolism, with higher sodium reabsorption at unchanged Na,K-ATPase levels. The simulations thereby lend support for a unifying explanation for the salt sensitivity of DS rats, which has been proposed to stem from a mutation in the alpha 1-Na,K-ATPase.
Collapse
Affiliation(s)
- D E Orosz
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | |
Collapse
|
48
|
Sarvazyan NA, Modyanov NN, Askari A. Intersubunit and intrasubunit contact regions of Na+/K(+)-ATPase revealed by controlled proteolysis and chemical cross-linking. J Biol Chem 1995; 270:26528-32. [PMID: 7592871 DOI: 10.1074/jbc.270.44.26528] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To identify interfaces of alpha- and beta-subunits of Na+/K(+)-ATPase, and contact points between different regions of the same alpha-subunit, purified kidney enzyme preparations whose alpha-subunits were subjected to controlled proteolysis in different ways were solubilized with digitonin to disrupt intersubunit alpha,alpha-interactions, and oxidatively cross-linked. The following disulfide cross-linked products were identified by gel electrophoresis, staining with specific antibodies, and N-terminal analysis. 1) In the enzyme that was partially cleaved at Arg438-Ala439, the cross-linked products were an alpha,beta-dimer, a dimer of N-terminal and C-terminal alpha fragments, and a trimer of beta and the two alpha fragments. 2) From an extensively digested enzyme that contained the 22-kDa C-terminal and several smaller fragments of alpha, two cross-linked products were obtained. One was a dimer of the 22-kDa C-terminal peptide and an 11-kDa N-terminal peptide containing the first two intramembrane helices of alpha (H1-H2). The other was a trimer of beta, the 11-kDa, and the 22-kDa peptides. 3) The cross-linked products of a preparation partially cleaved at Leu266-Ala267 were an alpha,beta-dimer and a dimer of beta and the 83-kDa C-terminal fragment. Assuming the most likely 10-span model of alpha, these findings indicate that (a) the single intramembrane helix of beta is in contact with portions of H8-H10 intramembrane helices of alpha; and (b) there is close contact between N-terminal H1-H2 and C-terminal H8-H10 segments of alpha; with the most probable interacting helices being the H1,H10-pair and the H2,H8-pair.
Collapse
Affiliation(s)
- N A Sarvazyan
- Department of Pharmacology, Medical College of Ohio, Toledo 43699-0008, USA
| | | | | |
Collapse
|
49
|
Togawa K, Ishiguro T, Kaya S, Shimada A, Imagawa T, Taniguchi K. Reversible phosphorylation of both Tyr7 and Tyr10 in the alpha-chain of pig stomach H+,K(+)-ATPase by a membrane-bound kinase and a phosphatase. J Biol Chem 1995; 270:15475-8. [PMID: 7797539 DOI: 10.1074/jbc.270.26.15475] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
When pig stomach membrane H+,K(+)-ATPase preparations were incubated with [gamma-32P]ATP and Mg2+ with vanadate, 32P was incorporated into the alpha-chain of H+,K(+)-ATPase to a steady-state level of approximately 0.7 mol of phosphotyrosine (Tyr(P))/mol of phosphoenzyme intermediates. The addition of a membrane H+,K(+)-ATPase preparation with Mg2+ accelerated the liberation of 32P from Tyr(P) residues in the alpha-chain. Mild tosylphenylalanyl chloromethyl ketone-trypsin treatment solubilized 32P-containing peptides from the alpha-chain almost completely. A reverse-phase column chromatography of the supernatant gave two peaks of 32P-peptide with similar total radioactivities. The amino acid sequence of both peaks was shown to be Gly-Lys-Ala-Glu-Asn-Tyr-Glu-Leu-Tyr-Gln--, which is consistent with the amino-terminal sequence of the alpha-chain of H+,K(+)-ATPase deduced from cDNA from pig stomach except that the initial Met was absent. The comparison of the recovery of amino acid from each Edman cycle showed that the phosphorylation of Tyr10 occurred preceding the phosphorylation of Tyr7. These data and others suggested the presence of a novel membrane-bound enzyme system to participate in reversible phosphorylation of both Tyr residues in the alpha-chain of H+,K(+)-ATPase.
Collapse
Affiliation(s)
- K Togawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Morii M, Hamatani K, Takeguchi N. The proton pump inhibitor, E3810, binds to the N-terminal half of the alpha-subunit of gastric H+,K(+)-ATPase. Biochem Pharmacol 1995; 49:1729-34. [PMID: 7598734 DOI: 10.1016/0006-2952(95)00090-m] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
E3810 (2-([4-(3-methoxypropoxy)-3-methylpyridine-2-yl]methylsulphinyl )- 1H-benzimidazole sodium salt), an inhibitor of gastric proton pump (gastric H+,K(+)-ATPase), is activated in a luminal acidic environment of gastric glands and binds to a Cys residue of H+,K(+)-ATPase on its luminal side. It was found that bound E3810 is transformed into a strongly fluorescent compound by UV-light irradiation (excitation wavelength = 335 nm, emission wavelength = 470 nm). The location of Cys residue bound with E3810 in the alpha-subunit of hog gastric H+,K(+)-ATPase was estimated from the fluorescence labelling and limited tryptic digestion of the enzyme. Tryptic digestion in the presence of Mg-ATP produces N-terminal 67 kDa subfragment which contains the phosphorylation and fluorescein 5'-isothiocyanate binding sites and C-terminal 35 kDa subfragment. Trypsin digestion in the presence of KCl produces N-terminal 42 kDa and C-terminal 56 kDa subfragments. E3810 was found to bind to both N-terminal but not to any of two C-terminal subfragments. Taking the amino acid sequence and topology of this ATPase as well as the fact that the ratio of specific binding sites per alpha-subunit is one into consideration, the possibility that E3810 specifically binds to Cys322 residue of hog gastric H+,K(+)-ATPase is discussed.
Collapse
Affiliation(s)
- M Morii
- Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Japan
| | | | | |
Collapse
|