1
|
Mencel ML, Bittner GD. Repair of traumatic lesions to the plasmalemma of neurons and other cells: Commonalities, conflicts, and controversies. Front Physiol 2023; 14:1114779. [PMID: 37008019 PMCID: PMC10050709 DOI: 10.3389/fphys.2023.1114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
Neuroscientists and Cell Biologists have known for many decades that eukaryotic cells, including neurons, are surrounded by a plasmalemma/axolemma consisting of a phospholipid bilayer that regulates trans-membrane diffusion of ions (including calcium) and other substances. Cells often incur plasmalemmal damage via traumatic injury and various diseases. If the damaged plasmalemma is not rapidly repaired within minutes, activation of apoptotic pathways by calcium influx often results in cell death. We review publications reporting what is less-well known (and not yet covered in neuroscience or cell biology textbooks): that calcium influx at the lesion sites ranging from small nm-sized holes to complete axonal transection activates parallel biochemical pathways that induce vesicles/membrane-bound structures to migrate and interact to restore original barrier properties and eventual reestablishment of the plasmalemma. We assess the reliability of, and problems with, various measures (e.g., membrane voltage, input resistance, current flow, tracer dyes, confocal microscopy, transmission and scanning electron microscopy) used individually and in combination to assess plasmalemmal sealing in various cell types (e.g., invertebrate giant axons, oocytes, hippocampal and other mammalian neurons). We identify controversies such as plug versus patch hypotheses that attempt to account for currently available data on the subcellular mechanisms of plasmalemmal repair/sealing. We describe current research gaps and potential future developments, such as much more extensive correlations of biochemical/biophysical measures with sub-cellular micromorphology. We compare and contrast naturally occurring sealing with recently-discovered artificially-induced plasmalemmal sealing by polyethylene glycol (PEG) that bypasses all natural pathways for membrane repair. We assess other recent developments such as adaptive membrane responses in neighboring cells following injury to an adjacent cell. Finally, we speculate how a better understanding of the mechanisms involved in natural and artificial plasmalemmal sealing is needed to develop better clinical treatments for muscular dystrophies, stroke and other ischemic conditions, and various cancers.
Collapse
Affiliation(s)
- Marshal L. Mencel
- Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - George D. Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
- *Correspondence: George D. Bittner,
| |
Collapse
|
2
|
Lam JGT, Song C, Seveau S. High-throughput Measurement of Plasma Membrane Resealing Efficiency in Mammalian Cells. J Vis Exp 2019. [PMID: 30663635 DOI: 10.3791/58351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In their physiological environment, mammalian cells are often subjected to mechanical and biochemical stresses that result in plasma membrane damage. In response to these damages, complex molecular machineries rapidly reseal the plasma membrane to restore its barrier function and maintain cell survival. Despite 60 years of research in this field, we still lack a thorough understanding of the cell resealing machinery. With the goal of identifying cellular components that control plasma membrane resealing or drugs that can improve resealing, we have developed a fluorescence-based high-throughput assay that measures the plasma membrane resealing efficiency in mammalian cells cultured in microplates. As a model system for plasma membrane damage, cells are exposed to the bacterial pore-forming toxin listeriolysin O (LLO), which forms large 30-50 nm diameter proteinaceous pores in cholesterol-containing membranes. The use of a temperature-controlled multi-mode microplate reader allows for rapid and sensitive spectrofluorometric measurements in combination with brightfield and fluorescence microscopy imaging of living cells. Kinetic analysis of the fluorescence intensity emitted by a membrane impermeant nucleic acid-binding fluorochrome reflects the extent of membrane wounding and resealing at the cell population level, allowing for the calculation of the cell resealing efficiency. Fluorescence microscopy imaging allows for the enumeration of cells, which constitutively express a fluorescent chimera of the nuclear protein histone 2B, in each well of the microplate to account for potential variations in their number and allows for eventual identification of distinct cell populations. This high-throughput assay is a powerful tool expected to expand our understanding of membrane repair mechanisms via screening for host genes or exogenously added compounds that control plasma membrane resealing.
Collapse
Affiliation(s)
- Jonathan G T Lam
- Department of Microbial Infection and Immunity, The Ohio State University; Department of Microbiology, The Ohio State University; Infectious Diseases Institute, The Ohio State University
| | - Chi Song
- Division of Biostatistics, College of Public Health, The Ohio State University
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, The Ohio State University; Department of Microbiology, The Ohio State University; Infectious Diseases Institute, The Ohio State University;
| |
Collapse
|
3
|
Walters ET. Nociceptive Biology of Molluscs and Arthropods: Evolutionary Clues About Functions and Mechanisms Potentially Related to Pain. Front Physiol 2018; 9:1049. [PMID: 30123137 PMCID: PMC6085516 DOI: 10.3389/fphys.2018.01049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023] Open
Abstract
Important insights into the selection pressures and core molecular modules contributing to the evolution of pain-related processes have come from studies of nociceptive systems in several molluscan and arthropod species. These phyla, and the chordates that include humans, last shared a common ancestor approximately 550 million years ago. Since then, animals in these phyla have continued to be subject to traumatic injury, often from predators, which has led to similar adaptive behaviors (e.g., withdrawal, escape, recuperative behavior) and physiological responses to injury in each group. Comparisons across these taxa provide clues about the contributions of convergent evolution and of conservation of ancient adaptive mechanisms to general nociceptive and pain-related functions. Primary nociceptors have been investigated extensively in a few molluscan and arthropod species, with studies of long-lasting nociceptive sensitization in the gastropod, Aplysia, and the insect, Drosophila, being especially fruitful. In Aplysia, nociceptive sensitization has been investigated as a model for aversive memory and for hyperalgesia. Neuromodulator-induced, activity-dependent, and axotomy-induced plasticity mechanisms have been defined in synapses, cell bodies, and axons of Aplysia primary nociceptors. Studies of nociceptive sensitization in Drosophila larvae have revealed numerous molecular contributors in primary nociceptors and interacting cells. Interestingly, molecular contributors examined thus far in Aplysia and Drosophila are largely different, but both sets overlap extensively with those in mammalian pain-related pathways. In contrast to results from Aplysia and Drosophila, nociceptive sensitization examined in moth larvae (Manduca) disclosed central hyperactivity but no obvious peripheral sensitization of nociceptive responses. Squid (Doryteuthis) show injury-induced sensitization manifested as behavioral hypersensitivity to tactile and especially visual stimuli, and as hypersensitivity and spontaneous activity in nociceptor terminals. Temporary blockade of nociceptor activity during injury subsequently increased mortality when injured squid were exposed to fish predators, providing the first demonstration in any animal of the adaptiveness of nociceptive sensitization. Immediate responses to noxious stimulation and nociceptive sensitization have also been examined behaviorally and physiologically in a snail (Helix), octopus (Adopus), crayfish (Astacus), hermit crab (Pagurus), and shore crab (Hemigrapsus). Molluscs and arthropods have systems that suppress nociceptive responses, but whether opioid systems play antinociceptive roles in these phyla is uncertain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Poellmann MJ, Lee RC. Repair and Regeneration of the Wounded Cell Membrane. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0031-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Abstract
When a nerve fiber is transected, the proximal stump must reseal before the processes of axon sprouting and axon regrowth can begin. Studies have shown that the open end of a cut axon rapidly constricts as the intracellular compartment becomes exposed to Ca 2+ and other ions in the extracellular fluid. Until recently, it was thought that a functional seal was subsequently produced by fusion of the axon membrane at the point of con striction. Such an event, however, has never been observed. In contrast to this simple hypothesis, a recent study indicates that the cut ends of squid and earthworm giant nerve fibers only partially close after transection, leaving significant holes that prevent functional resealing. In the giant myelinated axon of the earthworm, the hole is plugged by densely packed vesicles made within the axon shortly after transection. Because earthworm giant axons, like mammalian axons, are capable of regrowing after transection, this phenomena may provide a model of nerve fiber resealing in mammals. The Neuroscientist 1:253-254, 1995
Collapse
|
6
|
Tuck E, Cavalli V. Roles of membrane trafficking in nerve repair and regeneration. Commun Integr Biol 2011; 3:209-14. [PMID: 20714395 DOI: 10.4161/cib.3.3.11555] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 02/14/2010] [Indexed: 02/06/2023] Open
Abstract
Successful axonal repair following injury is critical for nerve regeneration and functional recovery. Nerve repair relies on three functionally distinct events involving membrane trafficking. First, axonally transported vesicles accumulate, while others are generated at the cut end to restore a selective barrier to the severed axon. Then, retrograde transport of vesicles along microtubules informs the cell body that damage has occurred in the distal axon. Finally, membrane addition to a newly formed growth cone, or to the axonal membrane is required to promote axonal re-growth and elongation. Yet, how these membrane trafficking events are regulated and what are the identities of the molecules and organelles involved remains largely unknown. Several potential factors have been recently identified. Members of the SNARE machinery appear to regulate fusion of vesicles in a calcium-dependent manner to promote axolemmal resealing. Retrograde transport of endosomes powered by the dynein-dynactin molecular motor complex represents a potential injury-signaling platform. Several classes of secretory and endocytic vesicles may coordinate axonal membrane extension and re-growth. Here we discuss recent advances in understanding the mechanisms of the membrane trafficking involved in nerve repair.
Collapse
Affiliation(s)
- Elizabeth Tuck
- Department of Anatomy and Neurobiology; Washington University in St. Louis; St. Louis, MO USA
| | | |
Collapse
|
7
|
Bloom OE, Morgan JR. Membrane trafficking events underlying axon repair, growth, and regeneration. Mol Cell Neurosci 2011; 48:339-48. [PMID: 21539917 DOI: 10.1016/j.mcn.2011.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022] Open
Abstract
Two central challenges for the field of neurobiology are to understand how axons grow and make proper synaptic connections under normal conditions and how they repair their membranes and mount regenerative responses after injury. At the most reductionist level, the first step toward addressing these challenges is to delineate the cellular and molecular processes by which an axon extends from its cell body. Underlying axon extension are questions of appropriate timing and mechanisms that establish or maintain the axon's polarity, initiate growth cone formation, and promote axon outgrowth and synapse formation. After injury, the problem is even more complicated because the neuron must also repair its damaged membrane, redistribute or manufacture what it needs in order to survive, and grow and form new synapses within a more mature, complex environment. While other reviews have focused extensively on the signaling events and cytoskeletal rearrangements that support axon outgrowth and regeneration, we focus this review instead on the underlying membrane trafficking events underlying these processes. Though the mechanisms are still under active investigation, the key roles played by membrane trafficking events during axon repair, growth, and regeneration have been elucidated through elegant comparative studies in both invertebrate and vertebrate organisms. Taken together, a model emerges indicating that the critical requirements for ensuring proper membrane sealing and axon extension include iterative bouts of SNARE mediated exocytosis, endocytosis, and functional links between vesicles and the actin cytoskeleton, similar to the mechanisms utilized during synaptic transmission. This article is part of a Special Issue entitled 'Neuronal Function'.
Collapse
Affiliation(s)
- Ona E Bloom
- The Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | | |
Collapse
|
8
|
Farkas O, Lifshitz J, Povlishock JT. Mechanoporation induced by diffuse traumatic brain injury: an irreversible or reversible response to injury? J Neurosci 2006; 26:3130-40. [PMID: 16554464 PMCID: PMC6674089 DOI: 10.1523/jneurosci.5119-05.2006] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diffuse traumatic brain injury (DTBI) is associated with neuronal plasmalemmal disruption, leading to either necrosis or reactive change without cell death. This study examined whether enduring membrane perturbation consistently occurs, leading to cell death, or if there is the potential for transient perturbation followed by resealing/recovery. We also examined the relationship of these events to calpain-mediated spectrin proteolysis (CMSP). To assess plasmalemmal disruption, rats (n = 21) received intracerebroventricular infusion 2 h before DTBI of a normally excluded 10 kDa fluorophore-labeled dextran. To reveal plasmalemmal resealing or enduring disruption, rats were infused with another labeled dextran 2 h (n = 10) or 6 h (n = 11) after injury. Immunohistochemistry for the 150 kDa spectrin breakdown product evaluated the concomitant role of CMSP. Neocortical neurons were followed with confocal and electron microscopy. After DTBI at 4 and 8 h, 55% of all tracer-flooded neurons contained both dextrans, demonstrating enduring plasmalemmal leakage, with many demonstrating necrosis. At 4 h, 12.0% and at 8 h, 15.7% of the dual tracer-flooded neurons showed CMSP, yet, these demonstrated less advanced cellular change. At 4 h, 39.0% and at 8 h, 24.4% of all tracer-flooded neurons revealed only preinjury dextran uptake, consistent with membrane resealing, whereas 7.6 and 11.1%, respectively, showed CMSP. At 4 h, 35% and at 8 h, 33% of neurons demonstrated CMSP without dextran flooding. At 4 h, 5.5% and at 8 h, 20.9% of tracer-flooded neurons revealed only postinjury dextran uptake, consistent with delayed membrane perturbation, with 55.0 and 35.4%, respectively, showing CMSP. These studies illustrate that DTBI evokes evolving plasmalemmal changes that highlight mechanical and potential secondary events in membrane poration.
Collapse
|
9
|
Abstract
OBJECTIVE To concisely review the field of cell plasma membrane disruption (torn cell surface) and repair. MAIN POINTS Plasma membrane disruption is a common form of cell injury under physiologic conditions, after trauma, in certain muscular dystrophies, and during certain forms of clinical intervention. Rapid repair of a disruption is essential to cell survival and involves a complex and active cell response that includes membrane fusion and cytoskeletal activation. Tissues, such as cardiac and skeletal muscle, adapt to a disruption injury by hypertrophying. Cells adapt by increasing the efficiency of their resealing response. CONCLUSION Plasma membrane disruption is an important cellular event in both health and disease. The disruption repair mechanism is now well understood at the cellular level, but much remains to be learned at the molecular level. Cell and tissue level adaptational responses to the disruption either prevent its further occurrence or facilitate future repairs. Therapeutically useful drugs might result if, using this accumulating knowledge, chemical agents can be developed that can enhance repair or adaptive responses.
Collapse
Affiliation(s)
- Katsuya Miyake
- Department of Cellular Biology and Anatomy and the Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, 30912, USA
| | | |
Collapse
|
10
|
Fishman HM, Bittner GD. Vesicle-mediated restoration of a plasmalemmal barrier in severed axons. Physiology (Bethesda) 2003; 18:115-8. [PMID: 12750447 DOI: 10.1152/nips.01429.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca(2+)-induced endocytotic vesicles undergo protein-mediated interactions to restore a selectively permeable barrier and propagated action potentials in severed invertebrate giant axons. Similar barrier-restoration phenomena observed in cultured mammalian cells with transected neurites suggest that cellular/molecular mechanisms that repair plasmalemmal damage are phylogenetically conserved.
Collapse
Affiliation(s)
- Harvey M Fishman
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555-0641, USA
| | | |
Collapse
|
11
|
Transplantation of olfactory mucosa minimizes axonal branching and promotes the recovery of vibrissae motor performance after facial nerve repair in rats. J Neurosci 2002. [PMID: 12177208 DOI: 10.1523/jneurosci.22-16-07121.2002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The occurrence of abnormally associated movements is inevitable after facial nerve transection. The reason for this post-paralytic syndrome is poor guidance of regrowing axons, whereby a given muscle group is reinnervated by misrouted axonal branches. Olfactory ensheathing glia have been shown to reduce axonal sprouting and stimulate axonal regeneration after transplantation into the spinal cord. In the present study, we asked whether transplantation of olfactory mucosa (OM) would also reduce sprouting of a damaged peripheral pure motor nerve. The adult facial nerve was transected, and the effect of the OM placed at the lesion site was analyzed with regard to the accuracy of target reinnervation, axonal sprouting of motoneurons, and vibrissal motor performance. Accuracy of target reinnervation and axonal sprouting were studied using preoperative/postoperative labeling and triple retrograde labeling of facial motoneurons, respectively. The vibrissal motor performance was monitored using a video-based motion analysis. We show here that implantation of OM, compared with simple facial-facial anastomosis, (1) improved the protraction, amplitude, angular velocity, and acceleration of vibrissal movements up to 80% of the control values, (2) reduced the percentage of branching motoneurons from 76 to 39%, and (3) improved the accuracy of reinnervation from 22 to 49%. Moreover, we present evidence, that transplanted OM but not buccal mucous membrane induced a sustained upregulation of trophic factors at the lesion site. It is concluded that transplantation of OM to the transected facial nerve significantly improves nerve regeneration.
Collapse
|
12
|
Streppel M, Azzolin N, Dohm S, Guntinas-Lichius O, Haas C, Grothe C, Wevers A, Neiss WF, Angelov DN. Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve lesion. Eur J Neurosci 2002; 15:1327-42. [PMID: 11994127 DOI: 10.1046/j.1460-9568.2002.01971.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A major reason for the insufficient recovery of function after motor nerve injury are the numerous axonal branches which often re-innervate muscles with completely different functions. We hypothesized that a neutralization of diffusable neurotrophic factors at the lesion site in rats could reduce the branching of transected axons. Following analysis of local protein expression by immunocytochemistry and by in situ hybridization, we transected the facial nerve trunk of adult rats and inserted both ends into a silicon tube containing (i) collagen gel with neutralizing concentrations of antibodies to NGF, BDNF, bFGF, IGF-I, CNTF and GDNF; (ii) five-fold higher concentrations of the antibodies and (iii) combination of antibodies. Two months later, retrograde labelling was used to estimate the portion of motoneurons the axons of which had branched and projected into three major branches of the facial trunk. After control entubulation in collagen gel containing non-immune mouse IgG 85% of all motoneurons projecting along the zygomatic branch sprouted and sent at least one twin axon to the buccal and/or marginal-mandibular branches of the facial nerve. Neutralizing concentrations of anti-NGF, anti-BDNF and anti-IGF-I significantly reduced sprouting. The most pronounced effect was achieved after application of anti-BDNF, which reduced the portion of branched neurons to 18%. All effects after a single application of antibodies were concentration-dependent and superior to those observed after combined treatment. This first report on improved quality of reinnervation by antibody-therapy implies that, in rats, the post-transectional collateral axonal branching can be reduced without obvious harmful effects on neuronal survival and axonal elongation.
Collapse
Affiliation(s)
- M Streppel
- Anatomical Institute, University of Cologne, 50931 Cologne, FR Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The simplest cell-like structure, the lipid bilayer vesicle, can respond to mechanical deformation by elastic membrane dilation/thinning and curvature changes. When a protein is inserted in the lipid bilayer, an energetic cost may arise because of hydrophobic mismatch between the protein and bilayer. Localized changes in bilayer thickness and curvature may compensate for this mismatch. The peptides alamethicin and gramicidin and the bacterial membrane protein MscL form mechanically gated (MG) channels when inserted in lipid bilayers. Their mechanosensitivity may arise because channel opening is associated with a change in the protein's membrane-occupied area, its hydrophobic mismatch with the bilayer, excluded water volume, or a combination of these effects. As a consequence, bilayer dilation/thinning or changes in local membrane curvature may shift the equilibrium between channel conformations. Recent evidence indicates that MG channels in specific animal cell types (e.g., Xenopus oocytes) are also gated directly by bilayer tension. However, animal cells lack the rigid cell wall that protects bacteria and plants cells from excessive expansion of their bilayer. Instead, a cortical cytoskeleton (CSK) provides a structural framework that allows the animal cell to maintain a stable excess membrane area (i.e., for its volume occupied by a sphere) in the form of membrane folds, ruffles, and microvilli. This excess membrane provides an immediate membrane reserve that may protect the bilayer from sudden changes in bilayer tension. Contractile elements within the CSK may locally slacken or tighten bilayer tension to regulate mechanosensitivity, whereas membrane blebbing and tight seal patch formation, by using up membrane reserves, may increase membrane mechanosensitivity. In specific cases, extracellular and/or CSK proteins (i.e., tethers) may transmit mechanical forces to the process (e.g., hair cell MG channels, MS intracellular Ca(2+) release, and transmitter release) without increasing tension in the lipid bilayer.
Collapse
Affiliation(s)
- O P Hamill
- Physiology and Biophysics, University Of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
14
|
Detrait E, Eddleman CS, Yoo S, Fukuda M, Nguyen MP, Bittner GD, Fishman HM. Axolemmal repair requires proteins that mediate synaptic vesicle fusion. JOURNAL OF NEUROBIOLOGY 2000; 44:382-91. [PMID: 10945894 DOI: 10.1002/1097-4695(20000915)44:4<382::aid-neu2>3.0.co;2-q] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A damaged cell membrane is repaired by a seal that restricts entry or exit of molecules and ions to that of the level passing through an undamaged membrane. Seal formation requires elevation of intracellular Ca(2+) and, very likely, protein-mediated fusion of membranes. Ca(2+) also regulates the interaction between synaptotagmin (Syt) and syntaxin (Syx), which is thought to mediate fusion of synaptic vesicles with the axolemma, allowing transmitter release at synapses. To determine whether synaptic proteins have a role in sealing axolemmal damage, we injected squid and crayfish giant axons with an antibody that inhibits squid Syt from binding Ca(2+), or with another antibody that inhibits the Ca(2+)-dependent interaction of squid Syx with the Ca(2+)-binding domain of Syt. Axons injected with antibody to Syt did not seal, as assessed at axonal cut ends by the exclusion of extracellular hydrophilic fluorescent dye using confocal microscopy, and by the decay of extracellular injury current compared to levels measured in uninjured axons using a vibrating probe technique. In contrast, axons injected with either denatured antibody to Syt or preimmune IgG did seal. Similarly, axons injected with antibody to Syx did not seal, but did seal when injected with either denatured antibody to Syx or preimmune IgG. These results indicate an essential involvement of Syt and Syx in the repair (sealing) of severed axons. We suggest that vesicles, which accumulate and interact at the injury site, re-establish axolemmal continuity by Ca(2+)-induced fusions mediated by proteins such as those involved in neurotransmitter release.
Collapse
Affiliation(s)
- E Detrait
- Department of Physiology & Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0641, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Howard MJ, David G, Barrett JN. Resealing of transected myelinated mammalian axons in vivo: evidence for involvement of calpain. Neuroscience 1999; 93:807-15. [PMID: 10465464 DOI: 10.1016/s0306-4522(99)00195-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The mechanisms underlying resealing of transected myelinated rat dorsal root axons were investigated in vivo using an assay based on exclusion of a hydrophilic dye (Lucifer Yellow-biocytin conjugate). Smaller caliber axons (<5 microm outer diameter) resealed faster than larger axons. Resealing was Ca2+ dependent, requiring micromolar levels of extracellular [Ca2+] to proceed, and further accelerated in 1 mM Ca2+. Two hours after transection, 84% of axons had resealed in saline containing 2 mM Ca2+, 28% had resealed in saline containing no added Ca2+ and only 3% had resealed in the Ca2+ buffer BAPTA (3 mM). The enhancing effect of Ca2+ could be overcome by both non-specific cysteine protease inhibitors (e.g., leupeptin) and inhibitors specific for the calpain family of Ca2+ -activated proteases. Resealing in 2 mM Ca2+ was not inhibited by an inhibitor of phospholipase A2. Resealing in low [Ca2+] was not enhanced by agents which disrupt microtubules, but was enhanced by dimethylsulfoxide (0.5-5%). These results suggest that activation of endogenous calpain-like proteases by elevated intra-axonal [Ca2+] contributes importantly to membrane resealing in transected myelinated mammalian axons in vivo.
Collapse
Affiliation(s)
- M J Howard
- Department of Physiology and Biophysics, University of Miami School of Medicine, FL 33101, USA
| | | | | |
Collapse
|
16
|
Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury. J Neurosci 1998. [PMID: 9592084 DOI: 10.1523/jneurosci.18-11-04029.1998] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vesicles and/or other membranous structures that form after axolemmal damage have recently been shown to repair (seal) the axolemma of various nerve axons. To determine the origin of such membranous structures, (1) we internally dialyzed isolated intact squid giant axons (GAs) and showed that elevation of intracellular Ca2+ >100 microM produced membranous structures similar to those in axons transected in Ca2+-containing physiological saline; (2) we exposed GA axoplasm to Ca2+-containing salines and observed that membranous structures did not form after removing the axolemma and glial sheath but did form in severed GAs after >99% of their axoplasm was removed by internal perfusion; (3) we examined transected GAs and crayfish medial giant axons (MGAs) with time-lapse confocal fluorescence microscopy and showed that many injury-induced vesicles formed by endocytosis of the axolemma; (4) we examined the cut ends of GAs and MGAs with electron microscopy and showed that most membranous structures were single-walled at short (5-15 min) post-transection times, whereas more were double- and multi-walled and of probable glial origin after longer (30-150 min) post-transection times; and (5) we examined differential interference contrast and confocal images and showed that large and small lesions evoked similar injury responses in which barriers to dye diffusion formed amid an accumulation of vesicles and other membranous structures. These and other data suggest that Ca2+ inflow at large or small axolemmal lesions induces various membranous structures (including endocytotic vesicles) of glial or axonal origin to form, accumulate, and interact with each other, preformed vesicles, and/or the axolemma to repair the axolemmal damage.
Collapse
|
17
|
Ballinger ML, Blanchette AR, Krause TL, Smyers ME, Fishman HM, Bittner GD. Delaminating myelin membranes help seal the cut ends of severed earthworm giant axons. JOURNAL OF NEUROBIOLOGY 1997; 33:945-60. [PMID: 9407015 DOI: 10.1002/(sici)1097-4695(199712)33:7<945::aid-neu6>3.0.co;2-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transected axons are often assumed to seal by collapse and fusion of the axolemmal leaflets at their cut ends. Using photomicroscopy and electronmicroscopy of fixed tissues and differential interference contrast and confocal fluorescence imaging of living tissues, we examined the proximal and distal cut ends of the pseudomyelinated medial giant axon of the earthworm, Lumbricus terrestris, at 5-60 min post-transection in physiological salines and Ca2+-free salines. In physiological salines, the axolemmal leaflets at the cut ends do not completely collapse, much less fuse, for at least 60 min post-transection. In fact, the axolemma is disrupted for 20-100 microm from the cut end at 5-60 min post-transection. However, a barrier to dye diffusion is observed when hydrophilic or styryl dyes are placed in the bath at 15-30 min post-transection. At 30-60 min post-transection, this barrier to dye diffusion near the cut end is formed amid an accumulation of some single-layered and many multilayered vesicles and other membranous material, much of which resembles delaminated pseudomyelin of the glial sheath. In Ca2+-free salines, this single and multilayered membranous material does not accumulate, and a dye diffusion barrier is not observed. These and other data are consistent with the hypothesis that plasmalemmal damage in eukaryotic cells is repaired by Ca2+-induced vesicles arising from invaginations or evaginations of membranes of various origin which form junctional contacts or fuse with each other and/or the plasmalemma.
Collapse
Affiliation(s)
- M L Ballinger
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555-0641, USA
| | | | | | | | | | | |
Collapse
|
18
|
Gallant PE, Galbraith JA. Axonal structure and function after axolemmal leakage in the squid giant axon. J Neurotrauma 1997; 14:811-22. [PMID: 9421453 DOI: 10.1089/neu.1997.14.811] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Membrane leakage is a common consequence of traumatic nerve injury. In order to measure the early secondary effects of different levels of membrane leakage on axonal structure and function we studied the squid giant axon after electroporation at field strengths of 0.5, 1.0, 1.6, or 3.3 kV/cm. Immediately after mild electroporation at 0.5 kV/cm, 40% of the axons had no action potentials, but by 1 h all of the mildly electroporated axons had recovered their action potentials. Many large organelles (mitochondria) were swollen, however, and their transport was reduced by 62% 1 h after this mild electroporation. One hour after moderate electroporation at 1.0 kV/cm, most of the axons had no action potentials, most large organelles were swollen, and their transport was reduced by 98%, whereas small organelle transport was reduced by 75%. Finally at severe electroporation levels of 1.65-3.0 kV/cm all conduction and transport was lost and the gel-like axoplasmic structure was clumped or liquefied. The structural damage and transport block seen after severe and moderate poration were early secondary injuries that could be prevented by placing the porated axons in an intracellular-type medium (low in Ca2+, Na+, and Cl-) immediately after poration. In moderately, but not severely, porated axons this protection of organelle transport and structure persisted, and action potential conduction returned when the axons were returned to the previously injurious extracellular-type medium. This suggests that the primary damage, the axolemmal leak, was repaired while the moderately porated axons were in the protective intracellular-type medium.
Collapse
Affiliation(s)
- P E Gallant
- Laboratory of Neurobiology, NINDS, National Institutes of Health, Bethesda, Maryland 20892-4062, USA
| | | |
Collapse
|
19
|
Terasaki M, Miyake K, McNeil PL. Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle-vesicle fusion events. J Cell Biol 1997; 139:63-74. [PMID: 9314529 PMCID: PMC2139822 DOI: 10.1083/jcb.139.1.63] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A microneedle puncture of the fibroblast or sea urchin egg surface rapidly evokes a localized exocytotic reaction that may be required for the rapid resealing that follows this breach in plasma membrane integrity (Steinhardt, R.A,. G. Bi, and J.M. Alderton. 1994. Science (Wash. DC). 263:390-393). How this exocytotic reaction facilitates the resealing process is unknown. We found that starfish oocytes and sea urchin eggs rapidly reseal much larger disruptions than those produced with a microneedle. When an approximately 40 by 10 microm surface patch was torn off, entry of fluorescein stachyose (FS; 1, 000 mol wt) or fluorescein dextran (FDx; 10,000 mol wt) from extracellular sea water (SW) was not detected by confocal microscopy. Moreover, only a brief (approximately 5-10 s) rise in cytosolic Ca2+ was detected at the wound site. Several lines of evidence indicate that intracellular membranes are the primary source of the membrane recruited for this massive resealing event. When we injected FS-containing SW deep into the cells, a vesicle formed immediately, entrapping within its confines most of the FS. DiI staining and EM confirmed that the barrier delimiting injected SW was a membrane bilayer. The threshold for vesicle formation was approximately 3 mM Ca2+ (SW is approximately 10 mM Ca2+). The capacity of intracellular membranes for sealing off SW was further demonstrated by extruding egg cytoplasm from a micropipet into SW. A boundary immediately formed around such cytoplasm, entrapping FDx or FS dissolved in it. This entrapment did not occur in Ca2+ -free SW (CFSW). When egg cytoplasm stratified by centrifugation was exposed to SW, only the yolk platelet-rich domain formed a membrane, suggesting that the yolk platelet is a critical element in this response and that the ER is not required. We propose that plasma membrane disruption evokes Ca2+ regulated vesicle-vesicle (including endocytic compartments but possibly excluding ER) fusion reactions. The function in resealing of this cytoplasmic fusion reaction is to form a replacement bilayer patch. This patch is added to the discontinuous surface bilayer by exocytotic fusion events.
Collapse
Affiliation(s)
- M Terasaki
- Department of Physiology, University of Connecticut Health Center, Farmington 06032, USA.
| | | | | |
Collapse
|
20
|
Schmied R, Ambron RT. A nuclear localization signal targets proteins to the retrograde transport system, thereby evading uptake into organelles in aplysia axons. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-4695(199708)33:2<151::aid-neu4>3.0.co;2-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Gatzinsky KP, Persson GH, Berthold CH. Removal of retrogradely transported material from rat lumbosacral alpha-motor axons by paranodal axon-Schwann cell networks. Glia 1997; 20:115-26. [PMID: 9179596 DOI: 10.1002/(sici)1098-1136(199706)20:2<115::aid-glia3>3.0.co;2-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this study was to investigate the potential ability of Schwann cells to sequester axonally transported material via so called axon-Schwann cell networks (ASNs). These are entities consisting of sheets of Schwann cell adaxonal plasma membrane that invade the axon and segregate portions of axoplasm in paranodes of large myelinated mammalian nerve fibres. Rat hindlimb alpha-motor axons were examined in the L4-S1 ventral roots using light/fluorescence, confocal laser, and electron microscopy for detection of retrogradely transported red-fluorescent latex nanospheres taken up at a sciatic nerve crush, and intramuscularly injected horseradish peroxidase endocytosed by intact synaptic terminals. Survival times after tracer administration ranged from 27 hours to 4 weeks. During their retrograde transport toward the motor neuron perikarya, organelles carrying nanospheres/peroxidase accumulated at nodes of Ranvier, where they often appeared in close association with the paranodal myelin sheath. Serial section electron microscopy showed that many of the tracer-containing bodies were situated within ASN complexes, thereby being segregated from the main axon. Four weeks after nanosphere administration, several node-paranode regions still showed ASN-associated aggregations of spheres, some of which were situated in the adaxonal Schwann cell cytoplasm. The data establish the ability of Schwann cells to segregate material from motor axons with intact myelin sheaths, using the ASN as mediator. Taken together with our earlier observations that ASNs in alpha-motor axons are also rich in lysosomes, this process would allow a local elimination and secluded degradation of retrogradely transported foreign substances and degenerate organelles before reaching the motor neuron perikarya. In addition, ASNs may serve as sites for disposal of indigestable material.
Collapse
Affiliation(s)
- K P Gatzinsky
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | |
Collapse
|
22
|
Godell CM, Smyers ME, Eddleman CS, Ballinger ML, Fishman HM, Bittner GD. Calpain activity promotes the sealing of severed giant axons. Proc Natl Acad Sci U S A 1997; 94:4751-6. [PMID: 9114063 PMCID: PMC20796 DOI: 10.1073/pnas.94.9.4751] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/1996] [Accepted: 02/28/1997] [Indexed: 02/04/2023] Open
Abstract
A barrier (seal) must form at the cut ends of a severed axon if a neuron is to survive and eventually regenerate. Following severance of crayfish medial giant axons in physiological saline, vesicles accumulate at the cut end and form a barrier (seal) to ion and dye diffusion. In contrast, squid giant axons do not seal, even though injury-induced vesicles form after axonal transection and accumulate at cut axonal ends. Neither axon seals in Ca2+-free salines. The addition of calpain to the bath saline induces the sealing of squid giant axons, whereas the addition of inhibitors of calpain activity inhibits the sealing of crayfish medial giant axons. These complementary effects involving calpain in two different axons suggest that endogenous calpain activity promotes plasmalemmal repair by vesicles or other membranes which form a plug or a continuous membrane barrier to seal cut axonal ends.
Collapse
Affiliation(s)
- C M Godell
- Department of Physiology and Biophysics, University of Texas, Medical Branch, 301 University Boulevard, Galveston, TX 77555-0641, USA
| | | | | | | | | | | |
Collapse
|
23
|
Eddleman CS, Ballinger ML, Smyers ME, Godell CM, Fishman HM, Bittner GD. Repair of plasmalemmal lesions by vesicles. Proc Natl Acad Sci U S A 1997; 94:4745-50. [PMID: 9114062 PMCID: PMC20795 DOI: 10.1073/pnas.94.9.4745] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/1996] [Accepted: 02/28/1997] [Indexed: 02/04/2023] Open
Abstract
Crayfish medial giant axons (MGAs) transected in physiological saline form vesicles which interact with each other, pre-existing vesicles, and/or with the plasmalemma to form an electrical and a physical barrier that seals a cut axonal end within 60 min. The formation of this barrier (seal) was assessed by measuring the decay of injury current at the cut end; its location at the cut end was determined by the exclusion of fluorescent hydrophilic dye at the cut end. When a membrane-incorporating styryl dye was placed in the bath prior to axonal transection and a hydrophilic dye was placed in the bath just after axonal transection, many vesicles near the barrier at the cut axonal end had their limiting membrane labeled with the styryl dye and their contents labeled with the hydrophilic dye, indicating that these vesicles originated from the axolemma by endocytosis. This barrier does not form in Ca2+-free salines. Similar collections of vesicles have been observed at regions of plasmalemmal damage in many cell types. From these and other data, we propose that plasmalemmal lesions in most eukaryotic cells (including axons) are repaired by vesicles, at least some of which arise by endocytosis induced by Ca2+ inflow resulting from the plasmalemmal damage. We describe several models by which vesicles could interact with each other and/or with intact or damaged regions of the plasmalemma to repair small (1-30 microm) plasmalemmal holes or a complete transection of the plasmalemma.
Collapse
Affiliation(s)
- C S Eddleman
- Department of Physiology and Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0641, USA
| | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- P L McNeil
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta 30912-2000, USA.
| | | |
Collapse
|
25
|
David G, Barrett JN, Barrett EF. Spatiotemporal gradients of intra-axonal [Na+] after transection and resealing in lizard peripheral myelinated axons. J Physiol 1997; 498 ( Pt 2):295-307. [PMID: 9032679 PMCID: PMC1159201 DOI: 10.1113/jphysiol.1997.sp021858] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Post-transection changes in intracellular Na+ ([Na+]i) were measured in lizard peripheral axons ionophoretically injected with the Na(+)-sensitive ratiometric dye, sodium-binding benzofuran isophthalate (SBFI). 2. Following axonal transection in physiological saline [Na+]i increased to more than 100 mM in a region that quickly extended hundreds of micrometers from the transection site. This post-transection increase in [Na+]i was similar when the bath contained 5 microM tetrodotoxin, but was absent in Na(+)-free solution. Depolarization of uncut axons in 50 mM K+ produced little or no elevation of [Na+]i until veratridine was added. These results suggest that the post-transection increase in [Na+]i was due mainly to Na+ entry via the cut end, rather than via depolarization-activated Na+ channels. 3. The spatiotemporal profile of the post-transection increase in [Na+]i could be accounted for by movement of Na+ from the cut end with an apparent diffusion coefficient of 1.3 x 10(-5) cm2 s-1. 4. [Na+]i began to decline toward resting levels by 20 +/- 15 min (mean +/- S.D.) post-transection, except in regions of the axon within 160 +/- 85 microns of the transection site, where [Na+]i remained high. The boundary between axonal regions in which [Na+]i did or did not recover probably defines a locus of resealing of the axonal membrane. 5. [Na+]i returned to resting values within about 1 h after resealing, even in axonal regions where the normal transmembrane [Na+] gradient had completely dissipated. The recovery of [Na+]i was faster and reached lower levels than expected by diffusional redistribution of Na+ along the axon. Partial recovery occurred even in an isolated internode, indicating that the internodal axolemma can actively extrude Na+.
Collapse
Affiliation(s)
- G David
- Department of Physiology and Biophysics R-430, University of Miami School of Medicine, FL 33101, USA.
| | | | | |
Collapse
|
26
|
Spira ME, Dormann A, Ashery U, Gabso M, Gitler D, Benbassat D, Oren R, Ziv NE. Use of Aplysia neurons for the study of cellular alterations and the resealing of transected axons in vitro. J Neurosci Methods 1996; 69:91-102. [PMID: 8912939 DOI: 10.1016/s0165-0270(96)00024-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present report describes the experimental advantages offered by the combined use of Aplysia neurons and contemporary techniques to analyze the cellular events associated with nerve injury in the form of axotomy. The experiments were performed by transecting, under visual control, the main axon of identified Aplysia neurons in primary culture while monitoring several related parameters. We found that in cultured Aplysia neurons axotomy leads to the elevation of the [Ca2+]i in both the proximal and distal axonal segments from a resting level of 100 nM up to the millimolar range for a duration of 3-5 min. This increase in [Ca2+]i led to identical alterations in the cytoarchitecture of the proximal and distal segments. The formation of a membrane seal over the transected ends by their constriction and the subsequent fusion of the membrane is a [Ca2+]i-dependent process and is triggered by the elevation of [Ca2+]i to the microM level. Seal formation was followed by down-regulation of the [Ca2+]i to control levels. Following the formation of the membrane seal an increase in membrane retrieval was observed. We hypothesize that the retrieved membrane serves as an immediately available membrane reservoir for growth cone extension.
Collapse
Affiliation(s)
- M E Spira
- Dept. of Neurobiology, Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rosenberg LJ, Lucas JH. Reduction of NaCl increases survival of mammalian spinal neurons subjected to dendrite transection injury. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00804-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Abstract
The nature of dye and electrical coupling between Schwann cells from the the squid giant axon, determined with microelectrodes, is described. Dye coupling (sensitive to dissection in sea water containing Ca
2+
) and electrical coupling exists between Schwann cells. The electrical length constant of the Schwann-cell sheath is 25 µm and 100 µm along the axon circumference and long axis respectively. Schwann-cell membrane resistance is ~ 500 Ω cm
2
(corrected for coupling between cells). The coupling ratio between cells is 1:0.3, and is reduced by 2 mm octanol (1:0.03) and increased by 2 mm Ba
2+
(1:0.45). We conclude that as Schwann cells are weakly coupled and have a relatively low membrane resistance they are unlikely to be involved in the spatial buffering of axonally released K
+
.
Collapse
|
29
|
Abstract
The rapid transition of a stationary axon into a motile growth cone requires the recruitment of membrane and its strategic insertion into the neurolemma. The source of membrane to support the initial rapid growth postaxotomy is not known. Using membrane capacitance measurements, we examined quantitative aspects of membrane dynamics following axotomy of cultured Aplysia neurons. Axotomy activates two processes in parallel: membrane retrieval and exocytosis. Unexpectedly, membrane retrieval is the dominant process in the majority of the experiments. Thus, while a growth cone is vigorously extending, the total neuronal surface area decreases. We suggest that the initial rapid extension phase of the newly formed growth cone postaxotomy is supported by a pool of intracellular membrane that is rapidly retrieved from the neurolemma.
Collapse
Affiliation(s)
- U Ashery
- Department of Neurobiology, Life Sciences Institute, The Hebrew University of Jerusalem, The Interuniversity Institute for Marine Sciences of Eliat, Israel
| | | | | |
Collapse
|
30
|
Miyake K, McNeil PL. Vesicle accumulation and exocytosis at sites of plasma membrane disruption. J Biophys Biochem Cytol 1995; 131:1737-45. [PMID: 8557741 PMCID: PMC2120668 DOI: 10.1083/jcb.131.6.1737] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Plasma membrane disruptions are resealed by an active molecular mechanism thought to be composed, in part, of kinesin, CaM kinase, snap-25, and synaptobrevin. We have used HRP to mark the cytoplasmic site of a mechanically induced plasma membrane disruption. Transmission electron microscopy revealed that vesicles of a variety of sizes rapidly (s) accumulate in large numbers within the cytoplasm surrounding the disruption site and that microvilli-like surface projections overlie this region. Scanning electron microscopy confirmed that tufts of microvilli rapidly appear on wounded cells. Three assays, employing the membrane specific dye FM1-43, provide quantitative evidence that disruption induces Ca(2+)-dependent exocytosis involving one or more of the endosomal/lysosomal compartments. Confocal microscopy revealed the presence in wounded cells of cortical domains that were strikingly depleted of FM dye fluorescence, suggesting that a local bolus of exocytosis is induced by wounding rather than global exocytosis. Finally, flow cytometry recorded a disruption-induced increase in cell forward scatter, suggesting that cell size increases after injury. These results provide the first direct support for the hypothesis that one or more internal membrane compartments accumulate at the disruption site and fuse there with the plasma membrane, resulting in the local addition of membrane to the surface of the mechanically wounded cell.
Collapse
Affiliation(s)
- K Miyake
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta 30912-2000, USA
| | | |
Collapse
|
31
|
Gallant PE, Hammar K, Reese TS. Cytoplasmic constriction and vesiculation after axotomy in the squid giant axon. JOURNAL OF NEUROCYTOLOGY 1995; 24:943-54. [PMID: 8719821 DOI: 10.1007/bf01215644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The squid giant axon responded to a transection injury by producing a gradient of cytoplasmic and vesicular changes at the cut end. At the immediate opening of the cut axon the cytoplasm was fragmented and dispersed and the vesicles in this region were in rapid Brownian movement. Approximately 0.1 mm further in, at the site of maximal axonal constriction, the axoplasm was condensed into a compact, constricted mass containing many large vesicles. The axoplasm was normal a few millimetres beyond this constricted, vesiculated end. It appears that transection triggered the transformation of normal axoplasm into a tightly constricted, highly vesiculated structure. This modified axoplasm at the cut end may slow the spread of damage and degeneration by preventing the bulk outflow of axoplasm, by slowing down the loss of intracellular molecules and by slowing down the influx of destructive extracellular ions (like calcium and chloride).
Collapse
Affiliation(s)
- P E Gallant
- Laboratory of Neurobiology, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
32
|
|
33
|
Krause TL, Magarshak Y, Fishman HM, Bittner GD. Membrane potential and input resistance are ambiguous measures of sealing of transected cable-like structures. Biophys J 1995; 68:795-9. [PMID: 7756546 PMCID: PMC1281803 DOI: 10.1016/s0006-3495(95)80255-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For many years, membrane potential (Vm) and input resistance have been used to characterize the electrophysiological nature of a seal (barrier) that forms at the cut end of a transected axon or other extended cytoplasmic structure. Data from a mathematical and an analog model of a transected axon and other theoretical considerations show that steady-state values of Vm and input resistance measured from any cable-like structure provide a very equivocal assessment of the electrical barrier (seal) at the cut end. Extracellular assessments of injury currents almost certainly provide a better electrophysiological measure of the status of plasma membrane sealing because measurements of these currents do not depend on the cable properties of extended cytoplasmic processes after transection.
Collapse
Affiliation(s)
- T L Krause
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555-0641, USA
| | | | | | | |
Collapse
|
34
|
Lieberman EM, Hargittai PT, Grossfeld RM. Electrophysiological and metabolic interactions between axons and glia in crayfish and squid. Prog Neurobiol 1994; 44:333-76. [PMID: 7886230 DOI: 10.1016/0301-0082(94)90032-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- E M Lieberman
- Department of Physiology, School of Medicine, East Carolina University, Greenville, NC 27858
| | | | | |
Collapse
|
35
|
Todora MA, Fishman HM, Krause TL, Bittner GD. Shortening of a severed squid giant axon is non-uniform and occurs in two phases. Neurosci Lett 1994; 179:57-9. [PMID: 7845625 DOI: 10.1016/0304-3940(94)90934-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The shortening of severed squid giant axons (GAs) in vitro was analyzed using video light microscopy. Axonal shortening occurred in two temporal phases along the length of the GA: a rapid initial phase during the first 3.5 min after severance followed by a slower phase lasting at least 30 min. The rate of shortening was greatest near the cut end and declined with distance from the cut end for at least 30 min after transection. Axonal shortening may help pack injury-induced vesicles [3] which facilitate sealing of the cut end [7] and/or retard the entry of various substances.
Collapse
Affiliation(s)
- M A Todora
- Department of Physiology and Biophysics, UTMB, Galveston 77555
| | | | | | | |
Collapse
|
36
|
Walters ET. Injury-related behavior and neuronal plasticity: an evolutionary perspective on sensitization, hyperalgesia, and analgesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1994; 36:325-427. [PMID: 7822120 DOI: 10.1016/s0074-7742(08)60307-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- E T Walters
- Department of Physiology and Cell Biology, University of Texas Medical School at Houston 77030
| |
Collapse
|
37
|
Ziv NE, Spira ME. Spatiotemporal distribution of Ca2+ following axotomy and throughout the recovery process of cultured Aplysia neurons. Eur J Neurosci 1993; 5:657-68. [PMID: 8261139 DOI: 10.1111/j.1460-9568.1993.tb00531.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study investigates the alterations in the spatiotemporal distribution pattern of the free intracellular Ca2+ concentration ([Ca2+]i) during axotomy and throughout the recovery process of cultured Aplysia neurons, and correlates these alterations with changes in the neurons input resistance and trans-membrane potential. For the experiments, the axons were transected while imaging the changes in [Ca2+]i with fura-2, and monitoring the neurons' resting potential and input resistance (Ri) with an intracellular microelectrode inserted into the cell body. The alterations in the spatiotemporal distribution pattern of [Ca2+]i were essentially the same in the proximal and the distal segments, and occurred in two distinct steps: concomitantly with the rupturing of the axolemma, as evidenced by membrane depolarization and a decrease in the input resistance, [Ca2+]i increased from resting levels of 0.05-0.1 microM to 1-1.5 microM along the entire axon. This is followed by a slower process in which a [Ca2+]i front propagates at a rate of 11-16 microns/s from the point of transection towards the intact ends, elevating [Ca2+]i to 3-18 microM. Following the resealing of the cut end 0.5-2 min post-axotomy, [Ca2+]i recovers in a typical pattern of a retreating front, travelling from the intact ends towards the cut regions. The [Ca2+]i recovers to the control level 7-10 min post-axotomy. In Ca(2+)-free artificial sea water (2.5 mM EGTA) axotomy does not lead to increased [Ca2+]i and a membrane seal is not formed over the cut end. Upon reperfusion with normal artificial sea water, [Ca2+]i is elevated at the tip of the cut axon and a membrane seal is formed. This experiment, together with the observations that injections of Ca2+, Mg2+ and Na+ into intact axons do not induce the release of Ca2+ from intracellular stores, indicates that Ca2+ influx through voltage gated Ca2+ channels and through the cut end are the primary sources of [Ca2+]i following axotomy. However, examination of the spatiotemporal distribution pattern of [Ca2+]i following axotomy and during the recovery process indicates that diffusion is not the dominating process in shaping the [Ca2+]i gradients. Other Ca2+ regulatory mechanisms seem to be very effective in limiting these gradients, thus enabling the neuron to survive the injury.
Collapse
Affiliation(s)
- N E Ziv
- Department of Neurobiology, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
38
|
van Egeraat JM, Stasaski R, Barach JP, Friedman RN, Wikswo JP. The biomagnetic signature of a crushed axon. A comparison of theory and experiment. Biophys J 1993; 64:1299-305. [PMID: 8494985 PMCID: PMC1262448 DOI: 10.1016/s0006-3495(93)81496-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The response of a crayfish medial giant axon to a nerve crush is examined with a biomagnetic current probe. The experimental data is interpreted with a theoretical model that incorporates both radial and axial ionic transport and membrane kinetics similar to those in the Hodgkin/Huxley model. Our experiments show that the effects of the crush are manifested statically as an elevation of the resting potential and dynamically as a reduction in the amplitude of the action current and potential, and are observable up to 10 mm from the crush. In addition, the normally biphasic action current becomes monophasic near the crush. The model reflects these observations accurately, and based on the experimental data, it predicts that the crush seals with a time constant of 45 s. The injury current density entering the axon through the crush is calculated to be initially on the order of 0.1 mA/mm2 and may last until the crush seals or until the concentration gradients between the intra- and extracellular spaces equilibrate.
Collapse
Affiliation(s)
- J M van Egeraat
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235
| | | | | | | | | |
Collapse
|
39
|
Yao K, Wu X, Thompson JE, Carlson JC. Isolation and characterization of deteriosomes from rat liver. J Cell Biochem 1993; 51:488-94. [PMID: 8496249 DOI: 10.1002/jcb.2400510414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Deteriosomes, a new class of microvesicles, have been isolated from rat liver tissue. These microvesicles are similar to those isolated previously from plant tissue [Yao et al., Proc Natl Acad Sci USA 88:2269-2273, 1991] in that they are nonsedimentable and enriched in membrane catabolites, particularly products of phospholipid degradation. Liver deteriosomes range in size from 0.05 microns to 0.11 microns in radius. They are also much more permeable than microsomal membrane vesicles indicating that the deteriosome bilayer is perturbed. The data are consistent with the proposal that deteriosomes are formed from membranes by microvesiculation and that they represent an intermediate stage of membrane deterioration. Furthermore, liver deteriosomes were found to contain phospholipase A2 activity. This suggests that they not only serve as a means of moving destabilizing macromolecular catabolites out of membranes into the cytosol but also possess enzymatic activity. The fact that the specific activity of phospholipase A2 is higher in deteriosomes than in deteriosome-free cytosol suggests that some of the enzymatic activity traditionally assumed to be cytosolic may in fact be associated with deteriosomes.
Collapse
Affiliation(s)
- K Yao
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
van Egeraat JM, Wikswo JP. A model for axonal propagation incorporating both radial and axial ionic transport. Biophys J 1993; 64:1287-98. [PMID: 8388269 PMCID: PMC1262447 DOI: 10.1016/s0006-3495(93)81495-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We present an axonal model that explicitly includes ionic diffusion in the intracellular, periaxonal, and extracellular spaces and that incorporates a Hodgkin-Huxley membrane, extended with potassium channel inactivation and active ion transport. Although ionic concentration changes may not be significant in the time course of one action potential, they are important when considering the long-term behavior (seconds to minutes) of an axon. We demonstrate this point with simulations of transected axons where ions are moving between the intra- and extracellular spaces through an opening that is sealing with time. The model predicts that sealing must occur within a critical time interval after the initial injury to prevent the entire axon from becoming permanently depolarized. This critical time interval becomes considerably shorter when active ion transport is disabled. Furthermore, the model can be used to study the effects of sodium and potassium channel inactivation; e.g., sodium inactivation must be almost complete (within 0.02%) to obtain simulation results that are realistic.
Collapse
Affiliation(s)
- J M van Egeraat
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235
| | | |
Collapse
|
41
|
Spira ME, Benbassat D, Dormann A. Resealing of the proximal and distal cut ends of transected axons: electrophysiological and ultrastructural analysis. JOURNAL OF NEUROBIOLOGY 1993; 24:300-16. [PMID: 8492108 DOI: 10.1002/neu.480240304] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The fates of the proximal and distal segments of transected axons differ. Whereas the proximal segment usually recovers from injury and regenerates, the distal segment degenerates. In the present report we studied the kinetics of the recovery processes of both proximal and distal axonal segments following axotomy and its temporal relations to the alterations in the cytoarchitecture of the injured neuron. The experiments were performed on primary cultured metacerebral neurons (MCn) isolated from Aplysia. We transected axons while monitoring the changes in transmembrane potential and input resistance (Rn) by inserting intracellular microelectrodes into the soma and axon. Correlation between the electrophysiological status of the injured axon and its ultrastructure was provided by rapid fixation of the neuron at selected times postaxotomy. Axotomy leads to membrane depolarization from a mean of -55.7 S.D. 12.8 mV to -12.7 S.D. 3.3 mV and decreased Rn from tens of M omega to 1-3 M omega. The transected axons remained depolarized for a period of 10-260 s for as long as the axoplasm was in direct contact with the bathing solution. Rapid repolarization and partial recovery of Rn was associated with the formation of a membrane seal over the cut ends by the constriction and subsequent fusion of the axolema. Prior to the formation of a membraneous barrier, electron-dense deposits aggregate at the tip of the cut axon and appear to form an axoplasmic "plug." Electrophysiological analysis revealed that this "plug" does not provide resistance for current flow and that the axoplasmic resistance is homogenously distributed. The kinetics of injury and recovery processes as well as the ultrastructural changes of the proximal and distal segments are identical suggesting that the different fates of the segments cannot be attributed to differences in the immediate response of the segments to axotomy.
Collapse
Affiliation(s)
- M E Spira
- Department of Neurobiology, Hebrew University of Jerusalem
| | | | | |
Collapse
|
42
|
Wonderlin WF, French RJ. Ion channels in transit: voltage-gated Na and K channels in axoplasmic organelles of the squid Loligo pealei. Proc Natl Acad Sci U S A 1991; 88:4391-5. [PMID: 1852006 PMCID: PMC51665 DOI: 10.1073/pnas.88.10.4391] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ion channels that give rise to the excitable properties of the neuronal plasma membrane are synthesized, transported, and degraded in cytoplasmic organelles. To determine whether plasma membrane ion channels from these organelles could be physiologically activated, we extruded axoplasm from squid giant axons, dissociated organelles from the cytoskeletal matrix, and fused the free organelles with planar lipid bilayers. Three classes of ion channels normally associated with the plasma membrane were identified based on conductance, selectivity, and gating properties determined from steady-state single-channel recordings: (i) voltage-dependent Na channels, (ii) voltage-dependent delayed rectifier K channels, and (iii) large, voltage-independent K channels. The identity of the delayed rectifier channels was confirmed by reconstructing the time course of activation from single-channel responses to depolarizing voltage steps applied across the bilayer. These observations suggest that several classes of plasma membrane ion channels are transported in cytoplasmic organelles in physiologically active forms.
Collapse
Affiliation(s)
- W F Wonderlin
- Department of Medical Physiology, University of Calgary, AB, Canada
| | | |
Collapse
|