1
|
Anwer MS, Stieger B. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. PFLUGERS ARCHIV : EUROPEAN JOURNAL OF PHYSIOLOGY 2013. [PMID: 24196564 DOI: 10.1007/s00424‐013‐1367‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na(+)-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide [NTCP]) and SLC10A2 (apical sodium-dependent bile salt transporter [ASBT]) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes.
Collapse
Affiliation(s)
- M Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA, 01536, USA,
| | | |
Collapse
|
2
|
Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch 2013; 466:77-89. [PMID: 24196564 DOI: 10.1007/s00424-013-1367-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 12/19/2022]
Abstract
The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na(+)-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide [NTCP]) and SLC10A2 (apical sodium-dependent bile salt transporter [ASBT]) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes.
Collapse
|
3
|
Ramasamy U, Anwer MS, Schonhoff CM. Cysteine 96 of Ntcp is responsible for NO-mediated inhibition of taurocholate uptake. Am J Physiol Gastrointest Liver Physiol 2013; 305:G513-9. [PMID: 23886862 PMCID: PMC3798720 DOI: 10.1152/ajpgi.00089.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Na(+) taurocholate (TC) cotransporting polypeptide Ntcp/NTCP mediates TC uptake across the sinusoidal membrane of hepatocytes. Previously, we demonstrated that nitric oxide (NO) inhibits TC uptake through S-nitrosylation of a cysteine residue. Our current aim was to determine which of the eight cysteine residues of Ntcp is responsible for NO-mediated S-nitrosylation and inhibition of TC uptake. Thus, we tested the effect of NO on TC uptake in HuH-7 cells transiently transfected with cysteine-to-alanine mutant Ntcp constructs. Of the eight mutants tested, only C44A Ntcp displayed decreased total and plasma membrane (PM) levels that were also reflected in decreased TC uptake. C266A Ntcp showed a decrease in TC uptake that was not explained by a decrease in total expression or PM localization, indicating that C266 is required for optimal uptake. We speculated that NO would target C266 since a previous report had shown the thiol reactive compound [2-(trimethylammonium) ethyl] methanethiosulfonate bromide (MTSET) inhibits TC uptake by wild-type NTCP but not by C266A NTCP. We confirmed that MTSET targets C266 of Ntcp, but, surprisingly, we found that C266 was not responsible for NO-mediated inhibition of TC uptake. Instead, we found that C96 was targeted by NO since C96A Ntcp was insensitive to NO-mediated inhibition of TC uptake. We also found that wild-type but not C96A Ntcp is S-nitrosylated by NO, suggesting that C96 is important in regulating Ntcp function in response to elevated levels of NO.
Collapse
Affiliation(s)
- Umadevi Ramasamy
- Dept. of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA, 01536.
| | | | | |
Collapse
|
4
|
Schonhoff CM, Ramasamy U, Anwer MS. Nitric oxide-mediated inhibition of taurocholate uptake involves S-nitrosylation of NTCP. Am J Physiol Gastrointest Liver Physiol 2011; 300:G364-70. [PMID: 21109590 PMCID: PMC3043645 DOI: 10.1152/ajpgi.00170.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The sodium-taurocholate (TC) cotransporting polypeptide (NTCP) facilitates bile formation by mediating sinusoidal Na(+)-TC cotransport. During sepsis-induced cholestasis, there is a decrease in NTCP-dependent uptake of bile acids and an increase in nitric oxide (NO) levels in hepatocytes. In rat hepatocytes NO inhibits Na(+)-dependent uptake of taurocholate. The aim of this study was to extend these findings to human NTCP and to further investigate the mechanism by which NO inhibits TC uptake. Using a human hepatoma cell line stably expressing NTCP (HuH-NTCP), we performed experiments with the NO donors sodium nitroprusside and S-nitrosocysteine and demonstrated that NO inhibits TC uptake in these cells. Kinetic analyses revealed that NO significantly decreased the V(max) but not the K(m) of TC uptake by NTCP, indicating noncompetitive inhibition. NO decreased the amount of NTCP in the plasma membrane, providing a molecular mechanism for the noncompetitive inhibition of TC uptake. One way that NO can modify protein function is through a posttranslational modification known as S-nitrosylation: the binding of NO to cysteine thiols. Using a biotin switch technique we observed that NTCP is S-nitrosylated under conditions in which NO inhibits TC uptake. Moreover, dithiothreitol reversed NO-mediated inhibition of TC uptake and S-nitrosylation of NTCP, indicating that NO inhibits TC uptake via modification of cysteine thiols. In addition, NO treatment led to a decrease in Ntcp phosphorylation. Taken together these results indicate that the inhibition of TC uptake by NO involves S-nitrosylation of NTCP.
Collapse
Affiliation(s)
- Christopher M. Schonhoff
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Umadevi Ramasamy
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - M. Sawkat Anwer
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| |
Collapse
|
5
|
Geyer J, Wilke T, Petzinger E. The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch Pharmacol 2006; 372:413-31. [PMID: 16541252 DOI: 10.1007/s00210-006-0043-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 01/31/2006] [Indexed: 12/18/2022]
Abstract
The solute carrier family 10 (SLC10) comprises two sodium-dependent bile acid transporters, i.e. the Na(+)/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2). These carriers are essentially involved in the maintenance of the enterohepatic circulation of bile acids mediating the first step of active bile acid transport through the membrane barriers in the liver (NTCP) and intestine (ASBT). Recently, four new members of the SLC10 family were described and referred to as P3 (SLC10A3), P4 (SLC10A4), P5 (SLC10A5) and sodium-dependent organic anion transporter (SOAT; SLC10A6). Experimental data supporting carrier function of P3, P4, and P5 is currently not available. However, as demonstrated for SOAT, not all members of the SLC10 family are bile acid transporters. SOAT specifically transports steroid sulfates such as oestrone-3-sulfate and dehydroepiandrosterone sulfate in a sodium-dependent manner, and is considered to play an important role for the cellular delivery of these prohormones in testes, placenta, adrenal gland and probably other peripheral tissues. ASBT and SOAT are the most homologous members of the SLC10 family, with high sequence similarity ( approximately 70%) and almost identical gene structures. Phylogenetic analyses of the SLC10 family revealed that ASBT and SOAT genes emerged from a common ancestor gene. Structure-activity relationships of NTCP, ASBT and SOAT are discussed at the amino acid sequence level. Based on the high structural homology between ASBT and SOAT, pharmacological inhibitors of the ASBT, which are currently being tested in clinical trials for cholesterol-lowering therapy, should be evaluated for their cross-reactivity with SOAT.
Collapse
Affiliation(s)
- J Geyer
- Institut für Pharmakologie und Toxikologie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 107, 35392, Giessen, Germany.
| | | | | |
Collapse
|
6
|
Zahner D, Eckhardt U, Petzinger E. Transport of taurocholate by mutants of negatively charged amino acids, cysteines, and threonines of the rat liver sodium-dependent taurocholate cotransporting polypeptide Ntcp. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1117-27. [PMID: 12631271 DOI: 10.1046/j.1432-1033.2003.03463.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The relevance of functional amino acids for taurocholate transport by the sodium-dependent taurocholate cotransporting polypeptide Ntcp was determined by site-directed mutagenesis. cRNA from 28 single-points mutants of the rat liver Ntcp clone was expressed in Xenopus laevis oocytes. Mutations were generated in five conserved negatively charged amino acids (aspartates and glutamates) which were present in nine members of the SBAT-family, in two nonconserved negatively charged amino acids, in all eight Ntcp-cysteines, and in two threonines from a protein kinase C consensus region of the Ntcp C-terminus. Functional amino acids were Asp115, Glu257, and Cys266, which were found to be essential for the maintenance of taurocholic acid transport. Asp115 is located in the large intracellular loop III, whereas Glu257 and Cys266 are located in the large extracellular loop VI. Four mutations of threonines from the C-terminus of the Ntcp by alanines or tyrosines showed no effects on sodium-dependent taurocholate transport. Introduction of the FLAG(R) motif into several transport negative point mutations demonstrated that all mutated proteins besides one were present within the cell membrane of the oocytes and provided proof that an insertion defect has not caused transport deficiency by these Ntcp mutants. The latter was observed only with the transport negative mutant Asp24Asn. In conclusion, loop amino acids are required for sodium-dependent substrate translocation by the Ntcp.
Collapse
Affiliation(s)
- Daniel Zahner
- Institute of Pharmacology and Toxicology, Justus-Liebig-University Giessen, Germany
| | | | | |
Collapse
|
7
|
Gregus Z, Gyurasics A, Csanaky I, Pintér Z. Effects of methylmercury and organic acid mercurials on the disposition of exogenous selenium in rats. Toxicol Appl Pharmacol 2001; 174:177-87. [PMID: 11446833 DOI: 10.1006/taap.2001.9204] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interaction of methylmercury (MM), an environmental and industrial toxicant, with selenium is well known but incompletely understood. Therefore, the effects of MM (10 micromol/kg i.v.) on the disposition of exogenous selenium were compared with those of other organic mercurials (merbromine, mercuribenzene sulfonic acid, and mercuribenzoic acid) in anesthetized bile duct-cannulated rats injected with sodium [(75)Se]selenite (10 micromol/kg i.v.). The mercurial organic acids (10 micromol/kg i.v.) differed strikingly from MM in their influence on selenium disposition. They promoted renal and hepatic accumulation as well as biliary excretion of selenium but decreased distribution to the muscle, testis, and brain as well as the pulmonary excretion of selenium. In contrast, MM altered selenium distribution in an opposite fashion: it diminished the biliary output of selenium and enhanced selenium exhalation. GC-MS analysis verified that this latter paradoxical effect resulted from increased exhalation of dimethyl selenide. Further studies indicated that the MM-induced increase in pulmonary excretion of dimethyl selenide cannot be due to a diminished conversion of this volatile selenium compound to trimethylselenonium ion (TMSe(+)), because MM influenced neither the urinary excretion nor the hepatic and renal concentration of TMSe(+) in selenite-injected rats. Compared to the selenite-exposed rats, the selenite plus MM-injected animals exhibited a significant rise in the hepatic level of S-adenosylmethionine (SAME), the endogenous methyl donor in selenium methylation, and the ratio of SAME to S-adenosylhomocysteine. Based on these and others' observations, it is hypothesized that MM may increase hepatic availability of SAME in selenite-dosed rats by counteracting selenite-induced inactivation of SAME synthetase, thereby facilitating SAME synthesis, and/or by acting as a methyl donor in formation of dimethyl selenide, thereby sparing SAME. In summary, the toxicologically and ecologically relevant interaction of MM and selenite is not mimicked by organic acid mercurials, possibly because it results in formation of lipophilic Hg- and Se-containing common compound(s) and because it also appears to involve methyl transfer from MM to selenium.
Collapse
Affiliation(s)
- Z Gregus
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Pécs, Hungary.
| | | | | | | |
Collapse
|
8
|
Abstract
Taurine, 2-aminoethanesulphonic acid, is a -amino acid required for mammalian development. Although the human fetus accumulates taurine in many tissues, it has limited capacity for synthesis. The majority of fetal taurine is derived from the mother via placental transfer. The objective of this study was to analyse the functional groups involved in the taurine transport system of human placental brush-border membranes. Sulphydryl modifying reagents N-ethylmaleimide (NEM) and pyridyldithioethyl-amine (PDA) caused a dose-dependent inhibition of taurine uptake by brush-border membrane vesicles. Inhibition by PDA was reversible upon reduction by dithiothreitol but not by glutathione indicating that sulphydryl group(s) are located within the bilayer. Preincubation of brush-border membranes with taurine but not with taurocholate, before exposure to NEM, protected taurine transport function. Labelling studies using NEM and chemical cross-linking indicated that a 37.5 kDa protein was protected. These results demonstrate that sulphydryls located within the membrane bilayer are important for taurine transport in human placental brush-border membranes and suggest that a 37.5 kDa protein may be associated with Na(+)-dependent regulation of the taurine transporter.
Collapse
Affiliation(s)
- R Dumaswala
- Division of Pediatric Gastroenterology and Nutrition, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | |
Collapse
|
9
|
|
10
|
Barth A, Fleck C, Klinger W. Development of organic anion transport in the liver. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 1996; 48:421-32. [PMID: 8765687 DOI: 10.1016/s0940-2993(96)80052-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A Barth
- Institute of Pharmacology and Toxicology, Friedrich Schiller University Jena, Germany
| | | | | |
Collapse
|
11
|
Loe DW, Almquist KC, Deeley RG, Cole SP. Multidrug resistance protein (MRP)-mediated transport of leukotriene C4 and chemotherapeutic agents in membrane vesicles. Demonstration of glutathione-dependent vincristine transport. J Biol Chem 1996; 271:9675-82. [PMID: 8621643 DOI: 10.1074/jbc.271.16.9675] [Citation(s) in RCA: 398] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The 190-kDa multidrug resistance protein (MRP) has recently been associated with the transport of cysteinyl leukotrienes and several glutathione (GSH) S-conjugates. In the present study, we have examined the transport of leukotriene C4 (LTC4) in membrane vesicles from MRP-transfected HeLa cells (T14), as well as drug-selected H69AR lung cancer cells which express high levels of MRP. V(max) and K(m) values for LTC4 transport by membrane vesicles from T14 cells were 529 +/- 176 pmol mg(-1) min(-1) and 105 +/- 31 nM, respectively. At 50 nM LTC4, the K(m) (ATP) was 70 micron. Transport in T14 vesicles was osmotically-sensitive and was supported by various nucleoside triphosphates but not by non- or slowly-hydrolyzable ATP analogs. LTC4 transport rates in membrane vesicles derived from H69AR cells and their parental and revertant variants were consistent with their relative levels of MRP expression. A 190-kDa protein in T14 membrane vesicles was photolabeled by [3H]LTC4 and immunoprecipitation with MRP-specific monoclonal antibodies (mAbs) confirmed that this protein was MRP. LTC4 transport was inhibited by an MRP-specific mAb (QCRL-3) directed against an intracellular conformational epitope of MRP, but not by a mAb (QCRL-1) which recognizes a linear epitope. Photolabeling with [3H]LTC4 was also inhibitable by mAb QCRL-3 but not mAb QCRL-1. GSH did not inhibit LTC4 transport. However, the ability of alkylated GSH derivatives to inhibit transport increased markedly with the length of the alkyl group. S-Decylglutathione was a potent competitive inhibitor of [3H]LTC4 transport (K(i(app)) 116 nM), suggesting that the two compounds bind to the same, or closely related, site(s) on MRP. Chemotherapeutic agents including colchicine, doxorubicin, and daunorubicin were poor inhibitors of [3H]LTC4 transport. Taxol, VP-16, vincristine, and vinblastine were also poor inhibitors of LTC4 transport but inhibition by these compounds was enhanced by GSH. Uptake of [3H]vincristine into T14 membrane vesicles in the absence of GSH was low and not dependent on ATP. However, in the presence of GSH, ATP-dependent vincristine transport was observed. Levels of transport increased with concentrations of GSH up to 5 mM. The identification of an MRP-specific mAb that inhibits LTC4 transport and prevents photolabeling of MRP by LTC4, provides conclusive evidence of the ability of MRP to transport cysteinyl leukotrienes. Our studies also demonstrate that MRP is capable of mediating ATP-dependent transport of vincristine and that transport is GSH-dependent.
Collapse
Affiliation(s)
- D W Loe
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
12
|
Scholl A, Gent M, Daniel H. Alanine transport across the human placental brush border membrane and the role of SH groups in carrier function. ZEITSCHRIFT FUR ERNAHRUNGSWISSENSCHAFT 1995; 34:285-92. [PMID: 8585244 DOI: 10.1007/bf01625340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have determined the kinetic characteristics of alanine transport into brush border membrane vesicles (BBMV) of human full term placenta and identified functional groups of the carrier proteins that are important for transport function. Alanine influx into BBMV was found to be mediated by two transport systems with different kinetic features and distinct substrate specificities. An uphill operating electrogenic Na(+)-dependent cotransport system could be kinetically separated from a Na(+)-independent facilitated diffusion system. The Na(+)-dependent transporter mediates Na(+)-alanine cotransport with a 1:1 flux coupling ratio (Hill coefficient 1.13 +/- 0.12) and a Km for alanine of 0.45 +/- 0.06 mmol/l. Half-maximal stimulation of Na(+)-dependent alanine influx was observed at a Na+ concentration (NaCl) of 51.4 +/- 1.3 mmol/l. A variety of group specific reagents were used to identify functional groups in the transport proteins. Only compounds reacting with SH-residues (NEM, DTNB, PCMBS) or NH2-groups (PITC) were found to affect Na+ dependent and Na+ independent alanine transport. The EC50 value for inhibition of alanine influx by PCMBS was 450 +/- 48 mumol/l. Chemical modifications of SH-groups by PCMBS caused a significant reduction (p < 0.005) in the Vmax for Na(+)-dependent alanine influx from 0.57 +/- 0.06 to 0.16 +/- 0.05 nmol.mg protein-1.10s-1 without affecting significantly the Km value. Inhibition by PCMBS was reversed by treatment of BBMV with DTT. When the substrate binding site of the transporter was protected by alanine or leucine, PCMBS still, blocked transport function, indicating that the crucial SH groups are not located within the substrate binding site of the transport proteins.
Collapse
Affiliation(s)
- A Scholl
- AG Biochemie der Ernährung, Institut für Ernährungswissenschaft, Justus-Liebig-Universität Giessen
| | | | | |
Collapse
|
13
|
Blumrich M, Pack R, Oesch F, Petzinger E, Steinberg P. Deficiency of bile acid transport and synthesis in oval cells from carcinogen-fed rats. Hepatology 1994; 19:722-7. [PMID: 8119699 DOI: 10.1002/hep.1840190326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Freshly isolated oval cells, which we obtained from the livers of rats fed a choline-deficient/DL-ethionine-supplemented diet, did not transport bile acids. Compared with freshly isolated rat hepatocytes they took up only negligible amounts of [3H]taurocholate or [14C]cholate. The cells bound small amounts of radioactive bile acids. This portion of the total cell-associated radioactivity was enhanced on membrane permeabilization. In contrast to cultured liver parenchymal cells from untreated rats, no bile acid synthesis was detected in cultured oval cells. Cultured oval cells also lost the ability to conjugate exogenously added cholate (100 mumol/L) with taurine or glycine. However, when liver parenchymal cells were isolated from carcinogen-fed rats, bile acid uptake was diminished compared with that in hepatocytes from control animals. In particular, the maximum values of taurocholate and cholate uptake were decreased by 75% and 50%, respectively, whereas the Michaelis-Menten constant values were not altered. The study demonstrates that (a) oval cells lack typical liver parenchymal cell-specific properties such as bile acid uptake, bile acid synthesis and conjugation of bile acids with taurine/glycine and therefore do not contribute to bile acid dependent bile formation (b) proliferating in livers of rats fed a choline-deficient/DL-ethionine-supplemented diet are part of the bile duct epithelial cell compartment); and (c) bile acid uptake is reduced in liver parenchymal cells of rats fed a choline deficient/DL-ethionine-supplemented diet, and this effect is due to a decrease in transport capacity without a decrease in transport affinity.
Collapse
Affiliation(s)
- M Blumrich
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | | | | | | | | |
Collapse
|
14
|
Petzinger E. Transport of organic anions in the liver. An update on bile acid, fatty acid, monocarboxylate, anionic amino acid, cholephilic organic anion, and anionic drug transport. Rev Physiol Biochem Pharmacol 1994; 123:47-211. [PMID: 8209137 DOI: 10.1007/bfb0030903] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E Petzinger
- Institute of Pharmacology and Toxicology, University Giessen, Germany
| |
Collapse
|
15
|
Honscha W, Ottallah M, Kistner A, Platte H, Petzinger E. A membrane-bound form of protein disulfide isomerase (PDI) and the hepatic uptake of organic anions. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1153:175-83. [PMID: 8274487 DOI: 10.1016/0005-2736(93)90403-m] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Protein disulfide isomerase (PDI) was considered to be involved in the hepatic uptake of certain organic anions because the protein is photoaffinity labeled by photolabile derivatives of the bile acid taurocholate. Several lines of evidences including photoaffinity labeling experiments indicated a close relationship between the uptake of bile acids and the organic anion bumetanide. The possible involvement of PDI in hepatic transport processes of these organic anions was tested with polyclonal antibodies raised against a PDI-beta-galactosidase fusion protein. Western blot analysis and immunofluorescence of intact hepatocytes showed that protein disulfide isomerase is located in sinusoidal rat liver plasma membranes. This protein is immunologically identical with microsomal PDI prepared from bovine liver. The plasma membrane form of PDI is, however, not labeled by photoactivated bumetanide as revealed by two-dimensional gel electrophoresis. These results indicate that, although a membrane-bound form of the PDI is present in the sinusoidal plasma membrane of rat hepatocytes, this protein is not involved in the hepatocellular uptake of the organic anion bumetanide.
Collapse
Affiliation(s)
- W Honscha
- Institute of Pharmacology and Toxicology, University of Giessen, Germany
| | | | | | | | | |
Collapse
|
16
|
Blumrich M, Petzinger E. Two distinct types of SH-groups are necessary for bumetanide and bile acid uptake into isolated rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1149:278-84. [PMID: 8391841 DOI: 10.1016/0005-2736(93)90211-h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Substances that block SH-groups were studied in respect to their effects on the uptake of the loop diuretic bumetanide and the bile acids cholate and taurocholate into isolated rat hepatocytes. SH-blockers, e.g., p-chloromercuribenzenesulfonate (PCMBS), N-ethylmaleimide (NEM), dithiobis-nitropyridine (DTNP) and dithiobis-2-nitrobenzoic acid (DTNB) reduced bumetanide transport in a concentration-dependent manner. Inhibition of the organic mercurial PCMBS was reversed by the addition of 500 microM dithiothreitol (DTT), indicating an interaction of this substance with free SH-groups. NEM irreversibly blocked SH-groups by covalent binding and was the most effective inhibitor of bumetanide and cholate uptake. In contrast, PCMBS was the most effective inhibitor of taurocholate uptake. Photoaffinity studies with [3H]bumetanide and [3H]7,7-azotaurocholate were performed with isolated rat hepatocytes in the presence of PCMBS and DTNP. Binding of the photolabels was not reduced by SH-group blockers. Newly synthesized sulfhydryl-modifying reagents such as dithio-sulfonate-ethyl-nitrobenzoic acid (DTSNB) and dithio-octyl-nitrobenzoic acid (DTONB), are derivatives of the alkylating agent DTNB. DTSNB is regarded as a selective blocker for SH-groups in a hydrophilic environment, while DTONB is more lipophilic abd interacts with SH-groups in the transmembrane domain of transport proteins. The IC50-values of these blockers for bumetanide uptake (DTSNB 250 microM, DTONB 141 microM) and for cholate uptake (DTSNB 250 microM, DTONB 115 microM) were almost identical. These findings support the concept of a common uptake mechanism for cholate and bumetanide and indicate that two distinct moieties of SH-groups are required for the uptake of both organic anions. One of these is probably located on the outer surface and the other within the membrane of hepatocytes.
Collapse
Affiliation(s)
- M Blumrich
- Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Germany
| | | |
Collapse
|
17
|
Kramer W, Nicol SB, Girbig F, Gutjahr U, Kowalewski S, Fasold H. Characterization and chemical modification of the Na(+)-dependent bile-acid transport system in brush-border membrane vesicles from rabbit ileum. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1111:93-102. [PMID: 1390867 DOI: 10.1016/0005-2736(92)90278-t] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Na(+)-dependent uptake system for bile acids in the ileum from rabbit small intestine was characterized using brush-border membrane vesicles. The uptake of [3H]taurocholate into vesicles prepared from the terminal ileum showed an overshoot uptake in the presence of an inwardly-directed Na(+)-gradient ([Na+]out > [Na+]in), in contrast to vesicles prepared from the jejunum. The Na(+)-dependent [3H]taurocholate uptake was cis-inhibited by natural bile acid derivatives, whereas cholephilic organic compounds, such as phalloidin, bromosulphophthalein, bilirubin, indocyanine green or DIDS - all interfering with hepatic bile-acid uptake - did not show a significant inhibitory effect. Photoaffinity labeling of ileal membrane vesicles with 3,3-azo- and 7,7-azo-derivatives of taurocholate resulted in specific labeling of a membrane polypeptide with apparent molecular mass 90 kDa. Bile-acid derivatives inhibiting [3H]taurocholate uptake by ileal vesicles also inhibited labeling of the 90 kDa polypeptide, whereas compounds with no inhibitory effect on ileal bile-acid transport failed to show a significant effect on the labeling of the 90 kDa polypeptide. The involvement of functional amino-acid side-chains in Na(+)-dependent taurocholate uptake was investigated by chemical modification of ileal brush-border membrane vesicles with a variety of group-specific agents. It was found that (vicinal) thiol groups and amino groups are involved in active ileal bile-acid uptake, whereas carboxyl- and hydroxyl-containing amino acids, as well as tyrosine, histidine or arginine are not essential for Na(+)-dependent bile-acid transport activity. The irreversible inhibition of [3H]taurocholate transport by DTNB or NBD-chloride could be partially reversed by thiols like 2-mercaptoethanol or DTT. Furthermore, increasing concentrations of taurocholate during chemical modification with NBD-chloride were able to protect the ileal bile-acid transporter from inactivation. These findings suggest that a membrane polypeptide of apparent M(r) 90,000 is a component of the active Na(+)-dependent bile-acid reabsorption system in the terminal ileum from rabbit small intestine. Vicinal thiol groups and amino groups of the transport system are involved in Na(+)-dependent transport activity, whereas other functional amino acids are not essential for transport activity.
Collapse
Affiliation(s)
- W Kramer
- Hoechst Aktiengesellschaft, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Lundeen SG, Savage DC. Characterization of an extracellular factor that stimulates bile salt hydrolase activity inLactobacillussp. strain 100â100. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05300.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Said HM, Mohammadkhani R. Involvement of histidine residues and sulfhydryl groups in the function of the biotin transport carrier of rabbit intestinal brush-border membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1107:238-44. [PMID: 1504068 DOI: 10.1016/0005-2736(92)90410-n] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Possible involvement of histidine residues and sulfhydryl groups in the function of the intestinal brush-border membrane (BBM) transporter of biotin was investigated. This was done by examining the effects of pretreatment of BBM vesicle (BBMV) isolated from rabbit intestine with the histidine-specific reagent diethyl pyrocarbonate (DEPC) and the sulfhydryl group-specific reagents p-chloromercuribenzenesulfonic acid (p-CMBS) and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) on carrier-mediated biotin transport. Pretreatment of BBMV with DEPC caused significant inhibition in the initial rate of biotin transport without affecting the substrate uptake at equilibrium. Addition of biotin plus Na+ to vesicle suspensions prior to treatment with DEPC provided significant protection to biotin transport. Treatment of DEPC-pretreated vesicles with the reducing agents dithiothreitol and 2,3-dimercaptopropanol failed to reverse the inhibitory effect of DEPC on biotin transport. The inhibitory effect of DEPC was found to be mediated through a marked decrease in the number of the functional biotin transport carriers with no change in their affinity, as indicated by the severe inhibition in the Vmax but not the apparent Km of the biotin transport process, respectively. Pretreatment of BBMV with p-CMBS and NBD-Cl also caused significant inhibition in the initial rate of biotin transport without affecting the substrate uptake at equilibrium. Addition of biotin plus Na+ to vesicle suspensions prior to treatment with p-CMBS (or NBD-Cl) failed to protect biotin transport from inhibition. On the other hand, treatment of vesicles pretreated with p-CMBS (or NBD-Cl) with the reducing agents dithiothreitol and mercaptoethanol caused significant reversal in the inhibition of biotin transport. The inhibitory effects of p-CMBS (and NBD-Cl) on biotin transport was also found to be mediated through inhibition in the Vmax, but not the apparent Km, of biotin transport process. These results indicate the involvement of histidine residues and sulfhydryl groups in the normal function of the biotin transport system of rabbit intestinal BBM. Furthermore, the results also suggest that the histidine residues are probably located at (or near) the substrate-binding site while the sulfhydryl groups are located at a site other than the substrate binding region.
Collapse
Affiliation(s)
- H M Said
- Medical Research Service, Veterans Administration Medical Center, Long Beach, CA 90822
| | | |
Collapse
|
20
|
Fückel D, Petzinger E. Interaction of sulfonylureas with the transport of bile acids into hepatocytes. Eur J Pharmacol 1992; 213:393-404. [PMID: 1618280 DOI: 10.1016/0014-2999(92)90628-h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The sulfonylurea compounds glisoxepide and glibenclamide inhibit the uptake of bile acids into isolated rat hepatocytes. The Ki values for the inhibition of cholate uptake was 9 microM with glibenclamide and 200 microM with glisoxepide. The inhibition of cholate uptake by both sulfonylureas was noncompetitive. Uptake of the conjugated bile acid taurocholate was inhibited by glibenclamide, Ki = 75 microM. Again the inhibition was noncompetitive. Glisoxepide inhibited taurocholate uptake only in the absence of sodium ions. Under sodium-free conditions glisoxepide also strongly inhibited cholate uptake. The inhibition was competitive, Ki = 42 microM. Both bile acids interfered with the hepatocellular uptake of [3H]glisoxepide, with IC50 values of 375 and 467 microM for cholate and taurocholate, respectively. The uptake of [3H]glibenclamide was inhibited by cholate, IC50 = 328 microM, but not by taurocholate. Glisoxepide uptake was further inhibited by blockers of the hepatocellular monocarboxylate transporter, by the loop diuretic bumetanide, by 4,4'-diisothiocyano-2,2'-stilbenedisulfonate (DIDS) and by sulfate. Glibenclamide uptake was weakly inhibited by DIDS and by anthracene-9-carboxylic acid (A-9-C) but not by bumetanide and sulfate. Neither bromosulfophthalein nor the fatty acid oleate inhibited glisoxepide or glibenclamide uptake. These results are consistent with the transport of glisoxepide via the transport system for the unconjugated bile acid cholate. Glibenclamide uptake is mediated by a still unknown hepatocellular transport system.
Collapse
Affiliation(s)
- D Fückel
- Institute of Pharmacology and Toxicology, University of Giessen, F.R.G
| | | |
Collapse
|
21
|
Burwen SJ, Schmucker DL, Jones AL. Subcellular and molecular mechanisms of bile secretion. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 135:269-313. [PMID: 1618608 DOI: 10.1016/s0074-7696(08)62043-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the liver's principal functions is the formation of bile, which is requisite for digestion of fat and elimination of detoxified drugs and metabolites. Bile is a complex fluid made up of water, electrolytes, bile acids, pigments, proteins, lipids, and a multitude of chemical breakdown products. In this review, we have summarized the source of various biliary components, the route by which they end up in bile, including the underlying subcellular and molecular mechanisms, and their contribution to bile formation. One of the reasons why bile formation is so complex is that there are many mechanisms with overlapping substrate specificities, i.e., many biochemically unrelated biliary constituents share common transport mechanisms. Additionally, biliary constituents may reach bile by more than one pathway. Some biliary components are critical for bile formation; others are of minor significance for bile formation but play a major physiological role. The major driving force for bile formation is the uptake and transcellular transport of bile salts by hepatocytes. The energy for bile formation comes from the sodium gradient created by the basolateral Na+/K(+)-ATPase, to which bile salt transport is coupled. The secretory pathway for bile salts involves uptake at the basolateral surface of the hepatocyte, vectorial transcellular movement, and transport across the canalicular membrane into the canalicular lumen. Hydrophilic bile salts are taken up via a sodium-dependent, saturable, carrier-mediated process coupled to the Na+/K(+)-ATPase. This uptake mechanism is also shared by other substrates, such as electroneutral lipids, cyclic oligopeptides, and a wide variety of drugs. Hydrophobic bile acids are taken up by a sodium-independent facilitated carrier-mediated mechanism in common with other organic ions, including sulfated bile acids, sulfobromophthalein, bilirubin, glutathione, and glucuronides, or by nonsaturable passive diffusion. Two major carrier proteins have been identified on the hepatocyte basolateral membrane: a 48-kDa protein that appears to be involved with Na(+)-dependent bile salt uptake, and a 54-kDa protein, thought to be associated with Na(+)-independent bile salt uptake. The intracellular transport of bile salts may involve cytosolic carrier proteins, of which several have been identified. Some evidence suggests a vesicular transport mechanism for bile salts. Since bile acids clearly do not enter the cell by endocytosis, formation of transport vesicles must be a more distal event in the transcellular translocation process. Some bile salts appear to be transported within the same unilamellar vesicles that are involved in the secretion of cholesterol and phospholipid.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S J Burwen
- Cell Biology and Aging Section, Veterans Administration Medical Center, San Francisco, California 94121
| | | | | |
Collapse
|
22
|
Ansari RA, Thakran RS, Berndt WO. Effects of mercuric chloride on renal plasma membrane function after depletion or elevation of renal glutathione. Toxicol Appl Pharmacol 1991; 111:364-72. [PMID: 1957319 DOI: 10.1016/0041-008x(91)90037-f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The role of renal nonprotein sulfhydryls (NPSH) in mercuric chloride-induced nephrotoxicity has been studied in various laboratories. Similarly, the importance of NPSH for mercuric ion accumulation by renal tissue also has been studied. In this study the potential role of NPSH was examined with respect to mercuric ion effects on membrane transport utilizing isolated membrane vesicles prepared from Sprague-Dawley rat kidneys. Sodium gradient-driven p-aminohippurate (PAH) transport in basolateral vesicles and glucose transport in brush border vesicles were studied. Depletion of NPSH, primarily glutathione (GSH), appeared to alter PAH but not glucose transport. HgCl2 (1 mg/kg) had no effect on either transport system in vesicles isolated from kidneys with normal GSH content, but it markedly disrupted both PAH and glucose transport in vesicles isolated from GSH-depleted rats. The most consistent effects were observed after GSH depletion with diethyl maleate plus buthionine sulfoximine. Elevation of renal GSH by administration of glutathione monoethyl ester blocked the effect of mercuric chloride (4 mg/kg) on glucose transport reported earlier. These data indicate that renal sulfhydryls not only modulate the effects of mercuric chloride, but they also may be important for normal physiological functioning of the PAH transport system.
Collapse
Affiliation(s)
- R A Ansari
- Department of Pharmacology, College of Medicine, University of Nebraska Medical Center, Omaha 68198-6810
| | | | | |
Collapse
|