1
|
Gagnon KA, Huang J, Hix OT, Hui VW, Hinds A, Bullitt E, Eyckmans J, Kotton DN, Chen CS. Multicompartment duct platform to study epithelial-endothelial crosstalk associated with lung adenocarcinoma. APL Bioeng 2024; 8:026126. [PMID: 38911024 PMCID: PMC11191334 DOI: 10.1063/5.0207228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Previous lung-on-chip devices have facilitated significant advances in our understanding of lung biology and pathology. Here, we describe a novel lung-on-a-chip model in which human induced pluripotent stem cell-derived alveolar epithelial type II cells (iAT2s) form polarized duct-like lumens alongside engineered perfused vessels lined with human umbilical vein endothelium, all within a 3D, physiologically relevant microenvironment. Using this model, we investigated the morphologic and signaling consequences of the KRASG12D mutation, a commonly identified oncogene in human lung adenocarcinoma (LUAD). We show that expression of the mutant KRASG12D isoform in iAT2s leads to a hyperproliferative response and morphologic dysregulation in the epithelial monolayer. Interestingly, the mutant epithelia also drive an angiogenic response in the adjacent vasculature that is mediated by enhanced secretion of the pro-angiogenic factor soluble uPAR. These results demonstrate the functionality of a multi-cellular in vitro platform capable of modeling mutation-specific behavioral and signaling changes associated with lung adenocarcinoma.
Collapse
Affiliation(s)
| | | | | | - Veronica W. Hui
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University Chobian & Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Esther Bullitt
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobian & Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
2
|
Sun YL, Hennessey EE, Heins H, Yang P, Villacorta-Martin C, Kwan J, Gopalan K, James M, Emili A, Cole FS, Wambach JA, Kotton DN. Human pluripotent stem cell modeling of alveolar type 2 cell dysfunction caused by ABCA3 mutations. J Clin Invest 2024; 134:e164274. [PMID: 38226623 PMCID: PMC10786693 DOI: 10.1172/jci164274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
Mutations in ATP-binding cassette A3 (ABCA3), a phospholipid transporter critical for surfactant homeostasis in pulmonary alveolar type II epithelial cells (AEC2s), are the most common genetic causes of childhood interstitial lung disease (chILD). Treatments for patients with pathological variants of ABCA3 mutations are limited, in part due to a lack of understanding of disease pathogenesis resulting from an inability to access primary AEC2s from affected children. Here, we report the generation of AEC2s from affected patient induced pluripotent stem cells (iPSCs) carrying homozygous versions of multiple ABCA3 mutations. We generated syngeneic CRISPR/Cas9 gene-corrected and uncorrected iPSCs and ABCA3-mutant knockin ABCA3:GFP fusion reporter lines for in vitro disease modeling. We observed an expected decreased capacity for surfactant secretion in ABCA3-mutant iPSC-derived AEC2s (iAEC2s), but we also found an unexpected epithelial-intrinsic aberrant phenotype in mutant iAEC2s, presenting as diminished progenitor potential, increased NFκB signaling, and the production of pro-inflammatory cytokines. The ABCA3:GFP fusion reporter permitted mutant-specific, quantifiable characterization of lamellar body size and ABCA3 protein trafficking, functional features that are perturbed depending on ABCA3 mutation type. Our disease model provides a platform for understanding ABCA3 mutation-mediated mechanisms of alveolar epithelial cell dysfunction that may trigger chILD pathogenesis.
Collapse
Affiliation(s)
- Yuliang L. Sun
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Erin E. Hennessey
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hillary Heins
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri, USA
| | - Ping Yang
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Julian Kwan
- Departments of Biology and Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Krithi Gopalan
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Marianne James
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Andrew Emili
- Departments of Biology and Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - F. Sessions Cole
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri, USA
| | - Jennifer A. Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Leibe R, Fritsch-Decker S, Gussmann F, Wagbo AM, Wadhwani P, Diabaté S, Wenzel W, Ulrich AS, Weiss C. Key Role of Choline Head Groups in Large Unilamellar Phospholipid Vesicles for the Interaction with and Rupture by Silica Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207593. [PMID: 37098631 DOI: 10.1002/smll.202207593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
For highly abundant silica nanomaterials, detrimental effects on proteins and phospholipids are postulated as critical molecular initiating events that involve hydrogen-bonding, hydrophobic, and/or hydrophilic interactions. Here, large unilamellar vesicles with various well-defined phospholipid compositions are used as biomimetic models to recapitulate membranolysis, a process known to be induced by silica nanoparticles in human cells. Differential analysis of the dominant phospholipids determined in membranes of alveolar lung epithelial cells demonstrates that the quaternary ammonium head groups of phosphatidylcholine and sphingomyelin play a critical and dose-dependent role in vesicle binding and rupture by amorphous colloidal silica nanoparticles. Surface modification by either protein adsorption or by covalent coupling of carboxyl groups suppresses the disintegration of these lipid vesicles, as well as membranolysis in human A549 lung epithelial cells by the silica nanoparticles. Furthermore, molecular modeling suggests a preferential affinity of silanol groups for choline head groups, which is also modulated by the pH value. Biomimetic lipid vesicles can thus be used to better understand specific phospholipid-nanoparticle interactions at the molecular level to support the rational design of safe advanced materials.
Collapse
Affiliation(s)
- Regina Leibe
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Susanne Fritsch-Decker
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Florian Gussmann
- Institute of Nanotechnology (INT), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ane Marit Wagbo
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Silvia Diabaté
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Villasclaras P, Jaén C, van Drooge BL, Grimalt JO, Tauler R, Bedia C. Phenotypic and Metabolomic Characterization of 3D Lung Cell Cultures Exposed to Airborne Particulate Matter from Three Air Quality Network Stations in Catalonia. TOXICS 2022; 10:632. [PMID: 36355924 PMCID: PMC9695742 DOI: 10.3390/toxics10110632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Air pollution constitutes an environmental problem that it is known to cause many serious adverse effects on the cardiovascular and respiratory systems. The chemical characterization of particulate matter (PM) is key for a better understanding of the associations between chemistry and toxicological effects. In this work, the chemical composition and biological effects of fifteen PM10 air filter samples from three air quality stations in Catalonia with contrasting air quality backgrounds were investigated. Three-dimensional (3D) lung cancer cell cultures were exposed to these sample extracts, and cytotoxicity, reactive oxygen species (ROS) induction, metabolomics, and lipidomics were explored. The factor analysis method Multivariate Curve Resolution-Alternating Least-Squares (MCR-ALS) was employed for an integrated interpretation of the associations between chemical composition and biological effects, which could be related to urban traffic emission, biomass burning smoke, and secondary aerosols. In this pilot study, a novel strategy combining new approach methodologies and chemometrics provided new insights into the biomolecular changes in lung cells associated with different sources of air pollution. This approach can be applied in further research on air pollution toxicity to improve our understanding of the causality between chemistry and its effects.
Collapse
|
5
|
Chary A, Groff K, Stucki AO, Contal S, Stoffels C, Cambier S, Sharma M, Gutleb AC, Clippinger AJ. Maximizing the relevance and reproducibility of A549 cell culture using FBS-free media. Toxicol In Vitro 2022; 83:105423. [PMID: 35753526 DOI: 10.1016/j.tiv.2022.105423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Scientists are using in vitro methods to answer important research questions and implementing strategies to maximize the reliability and human relevance of these methods. One strategy is to replace the use of fetal bovine serum (FBS)-an undefined and variable mixture of biomolecules-in cell culture media with chemically defined or xeno-free medium. In this study, A549 cells, a human lung alveolar-like cell line commonly used in respiratory research, were transitioned from a culture medium containing FBS to media without FBS. A successful transition was determined based on analysis of cell morphology and functionality. Following transition to commercially available CnT-Prime Airway (CELLnTEC) or X-VIVO™ 10 (Lonza) medium, the cells were characterized by microscopic evaluation and calculation of doubling time. Their genotype, morphology, and functionality were assessed by monitoring the expression of gene markers for lung cell types, surfactant production, cytokine release, the presence of multilamellar bodies, and cell viability following sodium dodecyl sulphate exposure. Our results showed that A549 cells successfully transitioned to FBS-free media under submerged and air-liquid-interface conditions. Cells grown in X-VIVO™ 10 medium mimicked cellular characteristics of FBS-supplemented media while those grown in CnT-Prime Airway medium demonstrated characteristics possibly more reflective of normal human alveolar epithelial cells.
Collapse
Affiliation(s)
- Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Katherine Groff
- PETA Science Consortium International e.V., Friolzheimer Str. 3, 70499 Stuttgart, Germany.
| | - Andreas O Stucki
- PETA Science Consortium International e.V., Friolzheimer Str. 3, 70499 Stuttgart, Germany.
| | - Servane Contal
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Charlotte Stoffels
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg; University of Luxembourg, 2 Av. de l'Universite, 4365 Esch-sur-Alzette, Luxembourg.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Monita Sharma
- PETA Science Consortium International e.V., Friolzheimer Str. 3, 70499 Stuttgart, Germany.
| | - Arno C Gutleb
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Amy J Clippinger
- PETA Science Consortium International e.V., Friolzheimer Str. 3, 70499 Stuttgart, Germany.
| |
Collapse
|
6
|
Araki M, Ito K, Takatori S, Ito G, Tomita T. BORCS6 is involved in the enlargement of lung lamellar bodies in Lrrk2 knockout mice. Hum Mol Genet 2021; 30:1618-1631. [PMID: 34077533 DOI: 10.1093/hmg/ddab146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson disease. It has been shown that Lrrk2 knockout (KO) rodents have enlarged lamellar bodies (LBs) in their alveolar epithelial type II cells, although the underlying mechanisms remain unclear. Here we performed proteomic analyses on LBs isolated from Lrrk2 KO mice and found that the LB proteome is substantially different in Lrrk2 KO mice compared with wild-type mice. In Lrrk2 KO LBs, several Rab proteins were increased, and subunit proteins of BLOC-1-related complex (BORC) were decreased. The amount of surfactant protein C was significantly decreased in the bronchoalveolar lavage fluid obtained from Lrrk2 KO mice, suggesting that LB exocytosis is impaired in Lrrk2 KO mice. We also found that the enlargement of LBs is recapitulated in A549 cells upon KO of LRRK2 or by treating cells with LRRK2 inhibitors. Using this model, we show that KO of BORCS6, a BORC subunit gene, but not other BORC genes, causes LB enlargement. Our findings implicate the LRRK2-BORCS6 pathway in the maintenance of LB morphology.
Collapse
Affiliation(s)
- Miho Araki
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kyohei Ito
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Genta Ito
- Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Human Lung Stem Cell-Based Alveolospheres Provide Insights into SARS-CoV-2-Mediated Interferon Responses and Pneumocyte Dysfunction. Cell Stem Cell 2020; 27:890-904.e8. [PMID: 33128895 PMCID: PMC7577733 DOI: 10.1016/j.stem.2020.10.005] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022]
Abstract
Coronavirus infection causes diffuse alveolar damage leading to acute respiratory distress syndrome. The absence of ex vivo models of human alveolar epithelium is hindering an understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here, we report a feeder-free, scalable, chemically defined, and modular alveolosphere culture system for the propagation and differentiation of human alveolar type 2 cells/pneumocytes derived from primary lung tissue. Cultured pneumocytes express the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor angiotensin-converting enzyme receptor type-2 (ACE2) and can be infected with virus. Transcriptome and histological analysis of infected alveolospheres mirror features of COVID-19 lungs, including emergence of interferon (IFN)-mediated inflammatory responses, loss of surfactant proteins, and apoptosis. Treatment of alveolospheres with IFNs recapitulates features of virus infection, including cell death. In contrast, alveolospheres pretreated with low-dose IFNs show a reduction in viral replication, suggesting the prophylactic effectiveness of IFNs against SARS-CoV-2. Human stem cell-based alveolospheres, thus, provide novel insights into COVID-19 pathogenesis and can serve as a model for understanding human respiratory diseases.
Collapse
|
8
|
Abo KM, Ma L, Matte T, Huang J, Alysandratos KD, Werder RB, Mithal A, Beermann ML, Lindstrom-Vautrin J, Mostoslavsky G, Ikonomou L, Kotton DN, Hawkins F, Wilson A, Villacorta-Martin C. Human iPSC-derived alveolar and airway epithelial cells can be cultured at air-liquid interface and express SARS-CoV-2 host factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.03.132639. [PMID: 32577635 PMCID: PMC7302183 DOI: 10.1101/2020.06.03.132639] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Development of an anti-SARS-CoV-2 therapeutic is hindered by the lack of physiologically relevant model systems that can recapitulate host-viral interactions in human cell types, specifically the epithelium of the lung. Here, we compare induced pluripotent stem cell (iPSC)-derived alveolar and airway epithelial cells to primary lung epithelial cell controls, focusing on expression levels of genes relevant for COVID-19 disease modeling. iPSC-derived alveolar epithelial type II-like cells (iAT2s) and iPSC-derived airway epithelial lineages express key transcripts associated with lung identity in the majority of cells produced in culture. They express ACE2 and TMPRSS2, transcripts encoding essential host factors required for SARS-CoV-2 infection, in a minor subset of each cell sub-lineage, similar to frequencies observed in primary cells. In order to prepare human culture systems that are amenable to modeling viral infection of both the proximal and distal lung epithelium, we adapt iPSC-derived alveolar and airway epithelial cells to two-dimensional air-liquid interface cultures. These engineered human lung cell systems represent sharable, physiologically relevant platforms for SARS-CoV-2 infection modeling and may therefore expedite the development of an effective pharmacologic intervention for COVID-19.
Collapse
Affiliation(s)
- Kristine M. Abo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Liang Ma
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Taylor Matte
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Konstantinos D. Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Rhiannon B. Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aditya Mithal
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Section of Gastroenterology and Department of Medicine at Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Mary Lou Beermann
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Section of Gastroenterology and Department of Medicine at Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Laertis Ikonomou
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Finn Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
9
|
Adams W, Bhowmick R, Bou Ghanem EN, Wade K, Shchepetov M, Weiser JN, McCormick BA, Tweten RK, Leong JM. Pneumolysin Induces 12-Lipoxygenase-Dependent Neutrophil Migration during Streptococcus pneumoniae Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:101-111. [PMID: 31776202 PMCID: PMC7195902 DOI: 10.4049/jimmunol.1800748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/16/2019] [Indexed: 12/23/2022]
Abstract
Streptococcus pneumoniae is a major cause of pneumonia, wherein infection of respiratory mucosa drives a robust influx of neutrophils. We have previously shown that S. pneumoniae infection of the respiratory epithelium induces the production of the 12-lipoxygenase (12-LOX)-dependent lipid inflammatory mediator hepoxilin A3, which promotes recruitment of neutrophils into the airways, tissue damage, and lethal septicemia. Pneumolysin (PLY), a member of the cholesterol-dependent cytolysin (CDC) family, is a major S. pneumoniae virulence factor that generates ∼25-nm diameter pores in eukaryotic membranes and promotes acute inflammation, tissue damage, and bacteremia. We show that a PLY-deficient S. pneumoniae mutant was impaired in triggering human neutrophil transepithelial migration in vitro. Ectopic production of PLY endowed the nonpathogenic Bacillus subtilis with the ability to trigger neutrophil recruitment across human-cultured monolayers. Purified PLY, several other CDC family members, and the α-toxin of Clostridium septicum, which generates pores with cross-sectional areas nearly 300 times smaller than CDCs, reproduced this robust neutrophil transmigration. PLY non-pore-forming point mutants that are trapped at various stages of pore assembly did not recruit neutrophils. PLY triggered neutrophil recruitment in a 12-LOX-dependent manner in vitro. Instillation of wild-type PLY but not inactive derivatives into the lungs of mice induced robust 12-LOX-dependent neutrophil migration into the airways, although residual inflammation induced by PLY in 12-LOX-deficient mice indicates that 12-LOX-independent pathways also contribute to PLY-triggered pulmonary inflammation. These data indicate that PLY is an important factor in promoting hepoxilin A3-dependent neutrophil recruitment across pulmonary epithelium in a pore-dependent fashion.
Collapse
Affiliation(s)
- Walter Adams
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192
| | - Rudra Bhowmick
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - Elsa N Bou Ghanem
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - Kristin Wade
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Mikhail Shchepetov
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016; and
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111;
| |
Collapse
|
10
|
Movia D, Bazou D, Prina-Mello A. ALI multilayered co-cultures mimic biochemical mechanisms of the cancer cell-fibroblast cross-talk involved in NSCLC MultiDrug Resistance. BMC Cancer 2019; 19:854. [PMID: 31464606 PMCID: PMC6714313 DOI: 10.1186/s12885-019-6038-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related deaths worldwide. This study focuses on its most common form, Non-Small-Cell Lung Cancer (NSCLC). No cure exists for advanced NSCLC, and patient prognosis is extremely poor. Efforts are currently being made to develop effective inhaled NSCLC therapies. However, at present, reliable preclinical models to support the development of inhaled anti-cancer drugs do not exist. This is due to the oversimplified nature of currently available in vitro models, and the significant interspecies differences between animals and humans. Methods We have recently established 3D Multilayered Cell Cultures (MCCs) of human NSCLC (A549) cells grown at the Air-Liquid Interface (ALI) as the first in vitro tool for screening the efficacy of inhaled anti-cancer drugs. Here, we present an improved in vitro model formed by growing A549 cells and human fibroblasts (MRC-5 cell line) as an ALI multilayered co-culture. The model was characterized over 14-day growth and tested for its response to four benchmarking chemotherapeutics. Results ALI multilayered co-cultures showed an increased resistance to the four drugs tested as compared to ALI multilayered mono-cultures. The signalling pathways involved in the culture MultiDrug Resistance (MDR) were influenced by the cancer cell-fibroblast cross-talk, which was mediated through TGF-β1 release and subsequent activation of the PI3K/AKT/mTOR pathway. As per in vivo conditions, when inhibiting mTOR phosphorylation, MDR was triggered by activation of the MEK/ERK pathway activation and up-regulation in cIAP-1/2 expression. Conclusions Our study opens new research avenues for the development of alternatives to animal-based inhalation studies, impacting the development of anti-NSCLC drugs. Electronic supplementary material The online version of this article (10.1186/s12885-019-6038-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dania Movia
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, University of Dublin Trinity College, James's Street, D8, Dublin, Ireland.
| | - Despina Bazou
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Adriele Prina-Mello
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, University of Dublin Trinity College, James's Street, D8, Dublin, Ireland.,AMBER Centre, CRANN Institute, University of Dublin Trinity College, Dublin, Ireland
| |
Collapse
|
11
|
Tamò L, Hibaoui Y, Kallol S, Alves MP, Albrecht C, Hostettler KE, Feki A, Rougier JS, Abriel H, Knudsen L, Gazdhar A, Geiser T. Generation of an alveolar epithelial type II cell line from induced pluripotent stem cells. Am J Physiol Lung Cell Mol Physiol 2018; 315:L921-L932. [DOI: 10.1152/ajplung.00357.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Differentiation of primary alveolar type II epithelial cells (AEC II) to AEC type I in culture is a major barrier in the study of the alveolar epithelium in vitro. The establishment of an AEC II cell line derived from induced pluripotent stem cells (iPSC) represents a novel opportunity to study alveolar epithelial cell biology, for instance, in the context of lung injury, fibrosis, and repair. In the present study, we generated long-lasting AEC II from iPSC (LL-iPSC-AEC II). LL-iPSC-AEC II displayed morphological characteristics of AEC II, including growth in a cobblestone monolayer, the presence of lamellar bodies, and microvilli, as shown by electron microscopy. Also, LL-iPSC-AEC II expressed AEC type II proteins, such as cytokeratin, surfactant protein C, and LysoTracker DND 26 (a marker for lamellar bodies). Furthermore, the LL-iPSC-AEC II exhibited functional properties of AEC II by an increase of transepithelial electrical resistance over time, secretion of inflammatory mediators in biologically relevant quantities (IL-6 and IL-8), and efficient in vitro alveolar epithelial wound repair. Consistent with the AEC II phenotype, the cell line showed the ability to uptake and release surfactant protein B, to secrete phospholipids, and to differentiate into AEC type I. In summary, we established a long-lasting, but finite AEC type II cell line derived from iPSC as a novel cellular model to study alveolar epithelial cell biology in lung health and disease.
Collapse
Affiliation(s)
- Luca Tamò
- Department of Pulmonary Medicine, University Hospital Bern, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Youssef Hibaoui
- Department of Gynecology and Obstetrics, University Hospital Geneva, Geneva, Switzerland
| | - Sampada Kallol
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Marco P. Alves
- Department of Pediatric Pneumology, University Hospital Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology, Bern, Switzerland
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Swiss National Center of Competence in Research, National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Katrin E. Hostettler
- Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Anis Feki
- Department of Gynecology and Obstetrics, Cantonal Hospital Fribourg, Fribourg, Switzerland
| | | | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Swiss National Center of Competence in Research, National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Lee H, Lee J, Hong SH, Rahman I, Yang SR. Inhibition of RAGE Attenuates Cigarette Smoke-Induced Lung Epithelial Cell Damage via RAGE-Mediated Nrf2/DAMP Signaling. Front Pharmacol 2018; 9:684. [PMID: 30013476 PMCID: PMC6036614 DOI: 10.3389/fphar.2018.00684] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
The oxidative stress and cellular apoptosis by environmental factor including cigarette smoke induces alveolar airway remodeling leading to chronic obstructive pulmonary disease (COPD). Recently, the receptor for advanced glycan end products (RAGE) which is highly expressed in alveolar epithelium is emerging as a biomarker for COPD susceptibility or progression. However, it still remains unknown how RAGE plays a role in cigarette smoke extract (CSE)-exposed human alveolar type II epithelial cell line. Therefore, we determined the efficacy of RAGE-specific antagonist FPS-ZM1 in response to CSE-induced lung epithelial cells. CSE induced the elevated generation of RONS and release of pro-inflammatory cytokines, and impaired the cellular antioxidant defense system. Further, CSE induced the alteration of RAGE distribution via the activation of redox-sensitive DAMP (Damage-associated molecular patterns) signaling through Nrf2 in cells. Although pre-treatment with SB202190 (p38 inhibitor) or SP600125 (JNK inhibitor) failed to recover the alteration of RAGE distribution, treatment of FPS-ZM1 significantly exhibited anti-inflammatory and anti-oxidative/nitrosative effects, also inhibited the activation of redox-sensitive DAMP signaling through Nrf2 (nuclear factor erythroid 2-related factor 2) migration in the presence of CSE. Taken together, our data demonstrate that RAGE and Nrf2 play a pivotal role in maintenance of alveolar epithelial integrity.
Collapse
Affiliation(s)
- Hanbyeol Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, South Korea
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea,*Correspondence: Se-Ran Yang,
| |
Collapse
|
13
|
Ohneck EJ, Arivett BA, Fiester SE, Wood CR, Metz ML, Simeone GM, Actis LA. Mucin acts as a nutrient source and a signal for the differential expression of genes coding for cellular processes and virulence factors in Acinetobacter baumannii. PLoS One 2018; 13:e0190599. [PMID: 29309434 PMCID: PMC5757984 DOI: 10.1371/journal.pone.0190599] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022] Open
Abstract
The capacity of Acinetobacter baumannii to persist and cause infections depends on its interaction with abiotic and biotic surfaces, including those found on medical devices and host mucosal surfaces. However, the extracellular stimuli affecting these interactions are poorly understood. Based on our previous observations, we hypothesized that mucin, a glycoprotein secreted by lung epithelial cells, particularly during respiratory infections, significantly alters A. baumannii's physiology and its interaction with the surrounding environment. Biofilm, virulence and growth assays showed that mucin enhances the interaction of A. baumannii ATCC 19606T with abiotic and biotic surfaces and its cytolytic activity against epithelial cells while serving as a nutrient source. The global effect of mucin on the physiology and virulence of this pathogen is supported by RNA-Seq data showing that its presence in a low nutrient medium results in the differential transcription of 427 predicted protein-coding genes. The reduced expression of ion acquisition genes and the increased transcription of genes coding for energy production together with the detection of mucin degradation indicate that this host glycoprotein is a nutrient source. The increased expression of genes coding for adherence and biofilm biogenesis on abiotic and biotic surfaces, the degradation of phenylacetic acid and the production of an active type VI secretion system further supports the role mucin plays in virulence. Taken together, our observations indicate that A. baumannii recognizes mucin as an environmental signal, which triggers a response cascade that allows this pathogen to acquire critical nutrients and promotes host-pathogen interactions that play a role in the pathogenesis of bacterial infections.
Collapse
Affiliation(s)
- Emily J. Ohneck
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Brock A. Arivett
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Steven E. Fiester
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Cecily R. Wood
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Maeva L. Metz
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Gabriella M. Simeone
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| |
Collapse
|
14
|
Chowdhury S, Eldridge WJ, Wax A, Izatt JA. Structured illumination microscopy for dual-modality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction. BIOMEDICAL OPTICS EXPRESS 2017; 8:5776-5793. [PMID: 29296504 PMCID: PMC5745119 DOI: 10.1364/boe.8.005776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 05/20/2023]
Abstract
Though structured illumination (SI) microscopy is a popular imaging technique conventionally associated with fluorescent super-resolution, recent works have suggested its applicability towards sub-diffraction resolution coherent imaging with quantitative endogenous biological contrast. Here, we demonstrate that SI can efficiently integrate together the principles of fluorescent super-resolution and coherent synthetic aperture to achieve 3D dual-modality sub-diffraction resolution, fluorescence and refractive-index (RI) visualizations of biological samples. We experimentally demonstrate this framework by introducing a SI microscope capable of 3D sub-diffraction resolution fluorescence and RI imaging, and verify its biological visualization capabilities by experimentally reconstructing 3D RI/fluorescence visualizations of fluorescent calibration microspheres as well as alveolar basal epithelial adenocarcinoma (A549) and human colorectal adenocarcinmoa (HT-29) cells, fluorescently stained for F-actin. This demonstration may suggest SI as an especially promising imaging technique to enable future biological studies that explore synergistically operating biophysical/biochemical and molecular mechanisms at sub-diffraction resolutions.
Collapse
Affiliation(s)
- Shwetadwip Chowdhury
- Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, 1427 FCIEMAS, 101 Science Drive Box 90281, Durham, North Carolina 27708, USA
| | - Will J. Eldridge
- Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, 1427 FCIEMAS, 101 Science Drive Box 90281, Durham, North Carolina 27708, USA
| | - Adam Wax
- Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, 1427 FCIEMAS, 101 Science Drive Box 90281, Durham, North Carolina 27708, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, 1427 FCIEMAS, 101 Science Drive Box 90281, Durham, North Carolina 27708, USA
| |
Collapse
|
15
|
Cytosolic Phospholipase A 2α Promotes Pulmonary Inflammation and Systemic Disease during Streptococcus pneumoniae Infection. Infect Immun 2017; 85:IAI.00280-17. [PMID: 28808157 DOI: 10.1128/iai.00280-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
Pulmonary infection by Streptococcus pneumoniae is characterized by a robust alveolar infiltration of neutrophils (polymorphonuclear cells [PMNs]) that can promote systemic spread of the infection if not resolved. We previously showed that 12-lipoxygenase (12-LOX), which is required to generate the PMN chemoattractant hepoxilin A3 (HXA3) from arachidonic acid (AA), promotes acute pulmonary inflammation and systemic infection after lung challenge with S. pneumoniae As phospholipase A2 (PLA2) promotes the release of AA, we investigated the role of PLA2 in local and systemic disease during S. pneumoniae infection. The group IVA cytosolic isoform of PLA2 (cPLA2α) was activated upon S. pneumoniae infection of cultured lung epithelial cells and was critical for AA release from membrane phospholipids. Pharmacological inhibition of this enzyme blocked S. pneumoniae-induced PMN transepithelial migration in vitro Genetic ablation of the cPLA2 isoform cPLA2α dramatically reduced lung inflammation in mice upon high-dose pulmonary challenge with S. pneumoniae The cPLA2α-deficient mice also suffered no bacteremia and survived a pulmonary challenge that was lethal to wild-type mice. Our data suggest that cPLA2α plays a crucial role in eliciting pulmonary inflammation during pneumococcal infection and is required for lethal systemic infection following S. pneumoniae lung challenge.
Collapse
|
16
|
Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, Na CL, Weaver TE, Vedaie M, Hurley K, Hinds A, Russo SJ, Kook S, Zacharias W, Ochs M, Traber K, Quinton LJ, Crane A, Davis BR, White FV, Wambach J, Whitsett JA, Cole FS, Morrisey EE, Guttentag SH, Beers MF, Kotton DN. Differentiation of Human Pluripotent Stem Cells into Functional Lung Alveolar Epithelial Cells. Cell Stem Cell 2017; 21:472-488.e10. [PMID: 28965766 PMCID: PMC5755620 DOI: 10.1016/j.stem.2017.08.014] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/21/2017] [Accepted: 08/18/2017] [Indexed: 02/01/2023]
Abstract
Lung alveoli, which are unique to air-breathing organisms, have been challenging to generate from pluripotent stem cells (PSCs) in part because there are limited model systems available to provide the necessary developmental roadmaps for in vitro differentiation. Here we report the generation of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, from human PSCs. Using multicolored fluorescent reporter lines, we track and purify human SFTPC+ alveolar progenitors as they emerge from endodermal precursors in response to stimulation of Wnt and FGF signaling. Purified PSC-derived SFTPC+ cells form monolayered epithelial "alveolospheres" in 3D cultures without the need for mesenchymal support, exhibit self-renewal capacity, and display additional AEC2 functional capacities. Footprint-free CRISPR-based gene correction of PSCs derived from patients carrying a homozygous surfactant mutation (SFTPB121ins2) restores surfactant processing in AEC2s. Thus, PSC-derived AEC2s provide a platform for disease modeling and future functional regeneration of the distal lung.
Collapse
Affiliation(s)
- Anjali Jacob
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael Morley
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Finn Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Katherine B McCauley
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - J C Jean
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hillary Heins
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cheng-Lun Na
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Timothy E Weaver
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marall Vedaie
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Killian Hurley
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Scott J Russo
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seunghyi Kook
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, TN 37232, USA
| | - William Zacharias
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), REBIRTH Cluster of Excellence, 30625 Hannover, Germany
| | - Katrina Traber
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lee J Quinton
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ana Crane
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Brian R Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Frances V White
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Edward E Morrisey
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan H Guttentag
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, TN 37232, USA
| | - Michael F Beers
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
17
|
Kathiriya JJ, Nakra N, Nixon J, Patel PS, Vaghasiya V, Alhassani A, Tian Z, Allen-Gipson D, Davé V. Galectin-1 inhibition attenuates profibrotic signaling in hypoxia-induced pulmonary fibrosis. Cell Death Discov 2017; 3:17010. [PMID: 28417017 PMCID: PMC5385413 DOI: 10.1038/cddiscovery.2017.10] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by lung remodeling arising from epithelial injury, aberrant fibroblast growth, and excessive deposition of extracellular matrix. Repeated epithelial injury elicits abnormal wound repair and lung remodeling, often associated with alveolar collapse and edema, leading to focal hypoxia. Here, we demonstrate that hypoxia is a physiological insult that contributes to pulmonary fibrosis (PF) and define its molecular roles in profibrotic activation of lung epithelial cells. Hypoxia increased transcription of profibrotic genes and altered the proteomic signatures of lung epithelial cells. Network analysis of the hypoxic epithelial proteome revealed a crosstalk between transforming growth factor-β1 and FAK1 (focal adhesion kinase-1) signaling, which regulated transcription of galectin-1, a profibrotic molecule. Galectin-1 physically interacted with and activated FAK1 in lung epithelial cells. We developed a novel model of exacerbated PF wherein hypoxia, as a secondary insult, caused PF in mice injured with subclinical levels of bleomycin. Hypoxia elevated expression of phosphorylated FAK1, galectin-1, and α-smooth muscle actin and reduced caspase-3 activation, suggesting aberrant injury repair. Galectin-1 inhibition caused apoptosis in the lung parenchyma and reduced FAK1 activation, preventing the development of hypoxia-induced PF. Galectin-1 inhibition also attenuated fibrosis-associated lung function decline. Further, galectin-1 transcript levels were increased in the lungs of IPF patients. In summary, we have identified a profibrotic role of galectin-1 in hypoxia signaling driving PF.
Collapse
Affiliation(s)
- Jaymin J Kathiriya
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Niyati Nakra
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jenna Nixon
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Puja S Patel
- University of Miami, Coral Gables, FL 33124, USA
| | - Vijay Vaghasiya
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ahmed Alhassani
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Zhi Tian
- University of Miami, Coral Gables, FL 33124, USA
| | - Diane Allen-Gipson
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Cancer Biology and Evolution, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
18
|
Malacrida L, Astrada S, Briva A, Bollati-Fogolín M, Gratton E, Bagatolli LA. Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:2625-2635. [PMID: 27480804 PMCID: PMC5045802 DOI: 10.1016/j.bbamem.2016.07.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Using LAURDAN spectral imaging and spectral phasor analysis we concurrently studied the growth and hydration state of subcellular organelles (lamellar body-like, LB-like) from live A549 lung cancer cells at different post-confluence days. Our results reveal a time dependent two-step process governing the size and hydration of these intracellular LB-like structures. Specifically, a first step (days 1 to 7) is characterized by an increase in their size, followed by a second one (days 7 to 14) where the organelles display a decrease in their global hydration properties. Interestingly, our results also show that their hydration properties significantly differ from those observed in well-characterized artificial lamellar model membranes, challenging the notion that a pure lamellar membrane organization is present in these organelles at intracellular conditions. Finally, these LB-like structures show a significant increase in their hydration state upon secretion, suggesting a relevant role of entropy during this process.
Collapse
Affiliation(s)
- Leonel Malacrida
- Área de Investigación Respiratoria, Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Uruguay; Unidad de Bioquímica y Proteómica Analítica, Institut Pasteur de Montevideo, Uruguay; Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California at Irvine, Irvine, CA, USA.
| | - Soledad Astrada
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Uruguay
| | - Arturo Briva
- Área de Investigación Respiratoria, Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Uruguay
| | | | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California at Irvine, Irvine, CA, USA
| | - Luis A Bagatolli
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
19
|
Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype. PLoS One 2016; 11:e0164438. [PMID: 27792742 PMCID: PMC5085087 DOI: 10.1371/journal.pone.0164438] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line.
Collapse
|
20
|
Bajaj P, Harris JF, Huang JH, Nath P, Iyer R. Advances and Challenges in Recapitulating Human Pulmonary Systems: At the Cusp of Biology and Materials. ACS Biomater Sci Eng 2016; 2:473-488. [PMID: 33465851 DOI: 10.1021/acsbiomaterials.5b00480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of this review is to provide an overview of physiologically relevant microengineered lung-on-a-chip (LoC) platforms for a variety of different biomedical applications with emphasis on drug screening. First, a brief outline of lung anatomy and physiology is presented followed by discussion of the lung parenchyma and its extracellular matrix. Next, we point out the technical challenges in recapitulating the complexity of lung in conventional static two-dimensional microenvironments and the need for alternate lung platforms. The importance of scaling laws is also emphasized in designing these in vitro microengineered lung platforms. The review then discusses current LoC platforms that have been used for testing the efficacy of drugs or as model systems for investigating disorders of the lung parenchyma. Finally, the design parameters in developing an ideal physiologically relevant LoC platform are presented. As this emerging field of organ-on-a-chip can serve an alternative platform for animal testing of drugs or modeling human diseases in vitro, it has significant potential to impact the future of pharmaceutical research.
Collapse
Affiliation(s)
- Piyush Bajaj
- Information Systems and Modeling, §Bioscience Division, and ⊥Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jennifer F Harris
- Information Systems and Modeling, Bioscience Division, and ⊥Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jen-Huang Huang
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pulak Nath
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Rashi Iyer
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
21
|
McKenzie Z, Kendall M, Mackay RM, Tetley TD, Morgan C, Griffiths M, Clark HW, Madsen J. Nanoparticles modulate surfactant protein A and D mediated protection against influenza A infection in vitro. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140049. [PMID: 25533100 PMCID: PMC4275912 DOI: 10.1098/rstb.2014.0049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Numerous epidemiological and toxicological studies have indicated that respiratory infections are exacerbated following enhanced exposure to airborne particulates. Surfactant protein A (SP-A) and SP-D form an important part of the innate immune response in the lung and can interact with nanoparticles to modulate the cellular uptake of these particles. We hypothesize that this interaction will also affect the ability of these proteins to combat infections. TT1, A549 and differentiated THP-1 cells, representing the predominant cell types found in the alveolus namely alveolar type I (ATI) epithelial cells, ATII cells and macrophages, were used to examine the effect of two model nanoparticles, 100 nm amine modified (A-PS) and unmodified polystyrene (U-PS), on the ability of SP-A and SP-D to neutralize influenza A infections in vitro. Pre-incubation of low concentrations of U-PS with SP-A resulted in a reduction of SP-A anti-influenza activity in A549 cells, whereas at higher concentrations there was an increase in SP-A antiviral activity. This differential pattern of U-PS concentration on surfactant protein mediated protection against IAV was also shown with SP-D in TT1 cells. On the other hand, low concentrations of A-PS particles resulted in a reduction of SP-A activity in TT1 cells and a reduction in SP-D activity in A549 cells. These results indicate that nanoparticles can modulate the ability of SP-A and SP-D to combat viral challenges. Furthermore, the nanoparticle concentration, surface chemistry and cell type under investigation are important factors in determining the extent of these modulations.
Collapse
Affiliation(s)
- Zofi McKenzie
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Michaela Kendall
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
| | - Rose-Marie Mackay
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Teresa D Tetley
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Cliff Morgan
- Leukocyte Biology, Imperial College London, Royal Brompton Campus, London SW3 6NP, UK
| | - Mark Griffiths
- Leukocyte Biology, Imperial College London, Royal Brompton Campus, London SW3 6NP, UK
| | - Howard W Clark
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Jens Madsen
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
22
|
Pavlicek RL, Fine-Coulson K, Gupta T, Quinn FD, Posey JE, Willby M, Castro-Garza J, Karls RK. Rv3351c, a Mycobacterium tuberculosis gene that affects bacterial growth and alveolar epithelial cell viability. Can J Microbiol 2015; 61:938-47. [PMID: 26492080 DOI: 10.1139/cjm-2015-0528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite the interactions known to occur between various lower respiratory tract pathogens and alveolar epithelial cells (AECs), few reports examine factors influencing the interplay between Mycobacterium tuberculosis bacilli and AECs during infection. Importantly, in vitro studies have demonstrated that the M. tuberculosis hbha and esxA gene products HBHA and ESAT6 directly or indirectly influence AEC survival. In this report, we identify Rv3351c as another M. tuberculosis gene that impacts the fate of both the pathogen and AEC host. Intracellular replication of an Rv3351c mutant in the human AEC type II pneumocyte cell line A549 was markedly reduced relative to the complemented mutant and parent strain. Deletion of Rv3351c diminished the release of lactate dehydrogenase and decreased uptake of trypan blue vital stain by host cells infected with M. tuberculosis bacilli, suggesting attenuated cytotoxic effects. Interestingly, an isogenic hbha mutant displayed reductions in AEC killing similar to those observed for the Rv3351c mutant. This opens the possibility that multiple M. tuberculosis gene products interact with AECs. We also observed that Rv3351c aids intracellular replication and survival of M. tuberculosis in macrophages. This places Rv3351c in the same standing as HBHA and ESAT6, which are important factors in AECs and macrophages. Defining the mechanism(s) by which Rv3351c functions to aid pathogen survival within the host may lead to new drug or vaccine targets.
Collapse
Affiliation(s)
- Rebecca L Pavlicek
- a Department of Infectious Diseases, University of Georgia, 220 Riverbend Road, Athens, GA 30602, USA
| | - Kari Fine-Coulson
- a Department of Infectious Diseases, University of Georgia, 220 Riverbend Road, Athens, GA 30602, USA
| | - Tuhina Gupta
- a Department of Infectious Diseases, University of Georgia, 220 Riverbend Road, Athens, GA 30602, USA
| | - Frederick D Quinn
- a Department of Infectious Diseases, University of Georgia, 220 Riverbend Road, Athens, GA 30602, USA
| | - James E Posey
- b Mycobacteriology Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Melisa Willby
- b Mycobacteriology Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jorge Castro-Garza
- c Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, N.L. 64720, Mexico
| | - Russell K Karls
- a Department of Infectious Diseases, University of Georgia, 220 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
23
|
Mahto SK, Tenenbaum-Katan J, Greenblum A, Rothen-Rutishauser B, Sznitman J. Microfluidic shear stress-regulated surfactant secretion in alveolar epithelial type II cells in vitro. Am J Physiol Lung Cell Mol Physiol 2014; 306:L672-83. [PMID: 24487389 DOI: 10.1152/ajplung.00106.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the role of flow-induced shear stress on the mechanisms regulating surfactant secretion in type II alveolar epithelial cells (ATII) using microfluidic models. Following flow stimulation spanning a range of wall shear stress (WSS) magnitudes, monolayers of ATII (MLE-12 and A549) cells were examined for surfactant secretion by evaluating essential steps of the process, including relative changes in the number of fusion events of lamellar bodies (LBs) with the plasma membrane (PM) and intracellular redistribution of LBs. F-actin cytoskeleton and calcium levels were analyzed in A549 cells subjected to WSS spanning 4-20 dyn/cm(2). Results reveal an enhancement in LB fusion events with the PM in MLE-12 cells upon flow stimulation, whereas A549 cells exhibit no foreseeable changes in the monitored number of fusion events for WSS levels ranging up to a threshold of ∼8 dyn/cm(2); above this threshold, we witness instead a decrease in LB fusion events in A549 cells. However, patterns of LB redistribution suggest that WSS can potentially serve as a stimulus for A549 cells to trigger the intracellular transport of LBs toward the cell periphery. This observation is accompanied by a fragmentation of F-actin, indicating that disorganization of the F-actin cytoskeleton might act as a limiting factor for LB fusion events. Moreover, we note a rise in cytosolic calcium ([Ca(2+)]c) levels following stimulation of A549 cells with WSS magnitudes ranging near or above the experimental threshold. Overall, WSS stimulation can influence key components of molecular machinery for regulated surfactant secretion in ATII cells in vitro.
Collapse
|
24
|
Bhowmick R, Maung N, Hurley BP, Ghanem EB, Gronert K, McCormick BA, Leong JM. Systemic disease during Streptococcus pneumoniae acute lung infection requires 12-lipoxygenase-dependent inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 191:5115-23. [PMID: 24089193 DOI: 10.4049/jimmunol.1300522] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute pulmonary infection by Streptococcus pneumoniae is characterized by high bacterial numbers in the lung, a robust alveolar influx of polymorphonuclear cells (PMNs), and a risk of systemic spread of the bacterium. We investigated host mediators of S. pneumoniae-induced PMN migration and the role of inflammation in septicemia following pneumococcal lung infection. Hepoxilin A3 (HXA3) is a PMN chemoattractant and a metabolite of the 12-lipoxygenase (12-LOX) pathway. We observed that S. pneumoniae infection induced the production of 12-LOX in cultured pulmonary epithelium and in the lungs of infected mice. Inhibition of the 12-LOX pathway prevented pathogen-induced PMN transepithelial migration in vitro and dramatically reduced lung inflammation upon high-dose pulmonary challenge with S. pneumoniae in vivo, thus implicating HXA3 in pneumococcus-induced pulmonary inflammation. PMN basolateral-to-apical transmigration in vitro significantly increased apical-to-basolateral transepithelial migration of bacteria. Mice suppressed in the expression of 12-LOX exhibited little or no bacteremia and survived an otherwise lethal pulmonary challenge. Our data suggest that pneumococcal pulmonary inflammation is required for high-level bacteremia and systemic infection, partly by disrupting lung epithelium through 12-LOX-dependent HXA3 production and subsequent PMN transepithelial migration.
Collapse
Affiliation(s)
- Rudra Bhowmick
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Nang Maung
- Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bryan P Hurley
- Mucosal Immunology Laboratory, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Elsa Bou Ghanem
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California, Berkeley, CA 94720, USA
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
25
|
Kebaabetswe LP, Haick AK, Miura TA. Differentiated phenotypes of primary murine alveolar epithelial cells and their susceptibility to infection by respiratory viruses. Virus Res 2013; 175:110-9. [PMID: 23639425 PMCID: PMC3683362 DOI: 10.1016/j.virusres.2013.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 12/31/2022]
Abstract
Alveolar epithelial cells are important targets in severe respiratory viral infection. Murine ATI and ATII cultures are an in vitro model for viral pathogenesis. ATI cells are infected by IAV and MHV-1, not mouse-adapted SARS-CoV. ATII cells are infected by IAV, MHV-1, and mouse-adapted SARS-CoV. ATI and ATII cells express cytokines upon infection by respiratory viruses.
Severe respiratory viral infections are associated with spread to the alveoli of the lungs. There are multiple murine models of severe respiratory viral infections that have been used to identify viral and host factors that contribute to disease severity. Primary cultures of murine alveolar epithelial cells provide a robust in vitro model to perform mechanistic studies that can be correlated with in vivo studies to identify cell type-specific factors that contribute to pathology within the alveoli of the lung during viral infection. In this study, we established an in vitro model to compare the responses of type I (ATI) and type II (ATII) alveolar epithelial cells to infection by respiratory viruses used in murine models: mouse-adapted severe acute respiratory syndrome-associated coronavirus (SARS-CoV, v2163), murine coronavirus MHV-1, and influenza A (H1N1) virus, strain PR8. Murine alveolar cells cultured to maintain an ATII cell phenotype, determined by expression of LBP180, were susceptible to infection by all three viruses. In contrast, ATII cells that were cultured to trans-differentiate into an ATI-like cell phenotype were susceptible to MHV-1 and PR8, but not mouse-adapted SARS-CoV. Epithelial cells produce cytokines in response to viral infections, thereby activating immune responses. Thus, virus-induced cytokine expression was quantified in ATI and ATII cells. Both cell types had increased expression of IL-1β mRNA upon viral infection, though at different levels. While MHV-1 and PR8 induced expression of a number of shared cytokines in ATI cells, there were several cytokines whose expression was induced uniquely by MHV-1 infection. In summary, ATI and ATII cells exhibited differential susceptibilities and cytokine responses to infection by respiratory viruses. This in vitro model will be critical for future studies to determine the roles of these specialized cell types in the pathogenesis of respiratory viral infection.
Collapse
Affiliation(s)
| | | | - Tanya A. Miura
- Corresponding author at: 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051, USA. Tel.: +1 208 885 4940; fax: +1 208 885 7905.
| |
Collapse
|
26
|
Lau AN, Goodwin M, Kim CF, Weiss DJ. Stem cells and regenerative medicine in lung biology and diseases. Mol Ther 2012; 20:1116-30. [PMID: 22395528 DOI: 10.1038/mt.2012.37] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A number of novel approaches for repair and regeneration of injured lung have developed over the past several years. These include a better understanding of endogenous stem and progenitor cells in the lung that can function in reparative capacity as well as extensive exploration of the potential efficacy of administering exogenous stem or progenitor cells to function in lung repair. Recent advances in ex vivo lung engineering have also been increasingly applied to the lung. The current status of these approaches as well as initial clinical trials of cell therapies for lung diseases are reviewed below.
Collapse
Affiliation(s)
- Allison N Lau
- Department of Genetics, Stem Cell Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
27
|
Swain RJ, Kemp SJ, Goldstraw P, Tetley TD, Stevens MM. Assessment of cell line models of primary human cells by Raman spectral phenotyping. Biophys J 2010; 98:1703-11. [PMID: 20409492 DOI: 10.1016/j.bpj.2009.12.4289] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 11/27/2009] [Accepted: 12/09/2009] [Indexed: 12/19/2022] Open
Abstract
Researchers have previously questioned the suitability of cell lines as models for primary cells. In this study, we used Raman microspectroscopy to characterize live A549 cells from a unique molecular biochemical perspective to shed light on their suitability as a model for primary human pulmonary alveolar type II (ATII) cells. We also investigated a recently developed transduced type I (TT1) cell line as a model for alveolar type I (ATI) cells. Single-cell Raman spectra provide unique biomolecular fingerprints that can be used to characterize cellular phenotypes. A multivariate statistical analysis of Raman spectra indicated that the spectra of A549 and TT1 cells are characterized by significantly lower phospholipid content compared to ATII and ATI spectra because their cytoplasm contains fewer surfactant lamellar bodies. Furthermore, we found that A549 spectra are statistically more similar to ATI spectra than to ATII spectra. The spectral variation permitted phenotypic classification of cells based on Raman spectral signatures with >99% accuracy. These results suggest that A549 cells are not a good model for ATII cells, but TT1 cells do provide a reasonable model for ATI cells. The findings have far-reaching implications for the assessment of cell lines as suitable primary cellular models in live cultures.
Collapse
Affiliation(s)
- Robin J Swain
- Department of Materials, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Ballard PL, Lee JW, Fang X, Chapin C, Allen L, Segal MR, Fischer H, Illek B, Gonzales LW, Kolla V, Matthay MA. Regulated gene expression in cultured type II cells of adult human lung. Am J Physiol Lung Cell Mol Physiol 2010; 299:L36-50. [PMID: 20382749 DOI: 10.1152/ajplung.00427.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.
Collapse
Affiliation(s)
- Philip L Ballard
- Department of Pediatrics, University of California San Francisco, San Francisco, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abate W, Alghaithy AA, Parton J, Jones KP, Jackson SK. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. J Lipid Res 2010; 51:334-44. [PMID: 19648651 PMCID: PMC2803235 DOI: 10.1194/jlr.m000513] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/01/2009] [Indexed: 01/24/2023] Open
Abstract
In addition to providing mechanical stability, growing evidence suggests that surfactant lipid components can modulate inflammatory responses in the lung. However, little is known of the molecular mechanisms involved in the immunomodulatory action of surfactant lipids. This study investigates the effect of the lipid-rich surfactant preparations Survanta, Curosurf, and the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) on interleukin-8 (IL-8) gene and protein expression in human A549 lung epithelial cells using immunoassay and PCR techniques. To examine potential mechanisms of the surfactant lipid effects, Toll-like receptor 4 (TLR4) expression was analyzed by flow cytometry, and membrane lipid raft domains were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The lipid-rich surfactant preparations Survanta, Curosurf, and DPPC, at physiological concentrations, significantly downregulated lipopolysaccharide (LPS)-induced IL-8 expression in A549 cells both at the mRNA and protein levels. The surfactant preparations did not affect the cell surface expression of TLR4 or the binding of LPS to the cells. However, LPS treatment induced translocation of TLR4 into membrane lipid raft microdomains, and this translocation was inhibited by incubation of the cells with the surfactant lipid. This study provides important mechanistic details of the immune-modulating action of pulmonary surfactant lipids.
Collapse
Affiliation(s)
- Wondwossen Abate
- Centre for Research in Biomedicine, Faculty of Health and Life Science, University of the West of England, Bristol, UK
| | | | - Joan Parton
- Department of Medical Microbiology, School of Medicine, Cardiff University, Cardiff, UK
| | - Kenneth P. Jones
- School of Applied Sciences, University of Wales Institute Cardiff, Cardiff, UK
| | - Simon K. Jackson
- Centre for Research in Biomedicine, Faculty of Health and Life Science, University of the West of England, Bristol, UK
| |
Collapse
|
30
|
Lo B, Hansen S, Evans K, Heath JK, Wright JR. Alveolar epithelial type II cells induce T cell tolerance to specific antigen. THE JOURNAL OF IMMUNOLOGY 2008; 180:881-8. [PMID: 18178827 DOI: 10.4049/jimmunol.180.2.881] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The lungs face the immunologic challenge of rapidly eliminating inhaled pathogens while maintaining tolerance to innocuous Ags. A break in this immune homeostasis may result in pulmonary inflammatory diseases, such as allergies or asthma. The observation that alveolar epithelial type II cells (Type II) constitutively express the class II MHC led us to hypothesize that Type II cells play a role in the adaptive immune response. Because Type II cells do not express detectable levels of the costimulatory molecules CD80 and CD86, we propose that Type II cells suppress activation of naive T cells. Purified murine Type II cells were unable to activate T cells to specific Ag or in an alloreactive assay. Although IFN-gamma treatment up-regulated class II MHC expression, it did not alter the ability of the Type II cells to activate T cells. Rather, the Type II cells were able to suppress T cells from subsequent activation to specific Ag in an Ag-dependent manner. Priming T cells with Type II cells and Ag resulted in T cells that were suppressed to further activation, even after removal from the Type II cells. Thus, Type II cells of the lung help tolerate T cells to nonpathogenic environmental Ags.
Collapse
Affiliation(s)
- Bernice Lo
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
31
|
Dobbs LG, Johnson MD. Alveolar epithelial transport in the adult lung. Respir Physiol Neurobiol 2007; 159:283-300. [PMID: 17689299 DOI: 10.1016/j.resp.2007.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 05/31/2007] [Accepted: 06/18/2007] [Indexed: 01/11/2023]
Abstract
The alveolar surface comprises >99% of the internal surface area of the lungs. At birth, the fetal lung rapidly converts from a state of net fluid secretion, which is necessary for normal fetal lung development, to a state in which there is a minimal amount of alveolar liquid. The alveolar surface epithelium facing the air compartment is composed of TI and TII cells. The morphometric characteristics of both cell types are fairly constant over a range of mammalian species varying in body weight by a factor of approximately 50,000. From the conservation of size and shape across species, one may infer that both TI and TII cells also have important conserved functions. The regulation of alveolar ion and liquid transport has been extensively investigated using a variety of experimental models, including whole animal, isolated lung, isolated cell, and cultured cell model systems, each with their inherent strengths and weaknesses. The results obtained with different model systems and a variety of different species point to both interesting parallels and some surprising differences. Sometimes it has been difficult to reconcile results obtained with different model systems. In this section, the primary focus will be on aspects of alveolar ion and liquid transport under normal physiologic conditions, emphasizing newer data and describing evolving paradigms of lung ion and fluid transport. We will highlight some of the unanswered questions, outline the similarities and differences in results obtained with different model systems, and describe some of the complex and interweaving regulatory networks.
Collapse
Affiliation(s)
- Leland G Dobbs
- Department of Medicine, University of California San Francisco, San Francisco, CA 94118, USA.
| | | |
Collapse
|
32
|
Wang J, Edeen K, Manzer R, Chang Y, Wang S, Chen X, Funk CJ, Cosgrove GP, Fang X, Mason RJ. Differentiated human alveolar epithelial cells and reversibility of their phenotype in vitro. Am J Respir Cell Mol Biol 2007; 36:661-8. [PMID: 17255555 PMCID: PMC1899340 DOI: 10.1165/rcmb.2006-0410oc] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cultures of differentiating fetal human type II cells have been available for many years. However, studies with differentiated adult human type II cells are limited. We used a published method for type II cell isolation and developed primary culture systems for maintenance of differentiated adult human alveolar epithelial cells for in vitro studies. Human type II cells cultured on Matrigel (basolateral access) or a mixture of Matrigel and rat tail collagen (apical access) in the presence of keratinocyte growth factor, isobutylmethylxanthine, 8-bromo-cyclicAMP, and dexamethasone (KIAD) expressed the differentiated type II cell phenotype as measured by the expression of surfactant protein (SP)-A, SP-B, SP-C, and fatty acid synthase and their morphologic appearance. These cells contain lamellar inclusion bodies and have apical microvilli. In both systems the cells appear well differentiated. In the apical access system, type II cell differentiation markers initially decreased and then recovered over 6 d in culture. Lipid synthesis was also increased by the addition of KIAD. In contrast, type II cells cultured on rat tail collagen (or tissue culture plastic) slowly lose their lamellar inclusions and expression of the surfactant proteins and increase the expression of type I cell markers. The expression of the phenotypes is regulated by the culture conditions and is, in part, reversible in vitro.
Collapse
Affiliation(s)
- Jieru Wang
- Department of Medicine, National Jewish and Medical Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Steimer A, Haltner E, Lehr CM. Cell culture models of the respiratory tract relevant to pulmonary drug delivery. ACTA ACUST UNITED AC 2005; 18:137-82. [PMID: 15966771 DOI: 10.1089/jam.2005.18.137] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The respiratory tract holds promise as an alternative site of drug delivery due to fast absorption and rapid onset of drug action, with avoidance of hepatic and intestinal first-pass metabolism as an additional benefit compared to oral drug delivery. At present, the pharmaceutical industry increasingly relies on appropriate in vitro models for the faster evaluation of drug absorption and metabolism as an alternative to animal testing. This article reviews the various existing cell culture systems that may be applied as in vitro models of the human air-blood barrier, for instance, in order to enable the screening of large numbers of new drug candidates at low cost with high reliability and within a short time span. Apart from such screening, cell culture-based in vitro systems may also contribute to improve our understanding of the mechanisms of drug transport across such epithelial tissues, and the mechanisms of action how advanced drug carriers, such as nanoparticles or liposomes, can help to overcome these barriers. After all, the increasing use and acceptance of such in vitro models may lead to a significant acceleration of the drug development process by facilitating the progress into clinical studies and product registration.
Collapse
Affiliation(s)
- A Steimer
- Across Barriers GmbH, Department R&D Cell & Tissue Based Systems, Science Park Saar, Saarbrücken, Germany
| | | | | |
Collapse
|
34
|
Lenfant C. De la recherche à la santé respiratoire. Rev Mal Respir 2005; 22:215-8. [PMID: 16092159 DOI: 10.1016/s0761-8425(05)85474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Hermanns MI, Unger RE, Kehe K, Peters K, Kirkpatrick CJ. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. J Transl Med 2004; 84:736-52. [PMID: 15077120 DOI: 10.1038/labinvest.3700081] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have established a coculture system of human distal lung epithelial cells and human microvascular endothelial cells in order to study the cellular interactions of epithelium and endothelium at the alveolocapillary barrier in both pathogenesis and recovery from acute lung injury. The aim was to determine conditions for the development of functional cellular junctions and the formation of a tight epithelial barrier similar to that observed in vivo. The in vitro coculture system consisted of monolayers of human lung epithelial cell lines (A549 or NCI H441) and primary human pulmonary microvascular endothelial cells (HPMEC) on opposite sides of a permeable filter membrane. A549 failed to show sufficient differentiation with respect to formation of a tight epithelial barrier with intact cell-cell junctions. Stimulated with dexamethasone, the cocultures of NCI H441 and HPMEC established contact-inhibited differentiated monolayers, with NCI H441 showing a continuous, circumferential immunostaining of the tight junctional protein, ZO-1 and the adherens junction protein, E-cadherin. The generation of a polarized epithelial cell monolayer with typical junctional structures was confirmed by transmission electron microscopy. Dexamethasone treatment resulted in average transbilayer electrical resistance (TER) values of 500 Omega cm(2) after 10-12 days of cocultivation and correlated with a reduced flux of the hydrophilic permeability marker, sodium-fluorescein. In addition, basolateral distribution of the proinflammatory cytokine tumour necrosis factor-alpha caused a significant reduction of TER-values after 24 h exposure. This decrease in TER could be re-established to control level by removal of the cytokine within 24 h. Thus, the coculture system of the NCI H441 with HPMEC should be a suitable in vitro model system to examine epithelial and endothelial interactions in the pathogenesis of acute lung injury, infectious lung diseases and toxic lung injury. In addition, it could be used to improve techniques of lung drug delivery that also requires a functional barrier.
Collapse
|
36
|
Zhou J, You Y, Zabner J, Ryan AJ, Mallampalli RK. The CCT promoter directs high-level transgene expression in distal lung epithelial cell lines. Am J Respir Cell Mol Biol 2004; 30:61-8. [PMID: 12829450 DOI: 10.1165/rcmb.2003-0020oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gene therapy requires the presence of a robust and yet small promoter to drive high-level expression of desired proteins. In comparative analysis, we investigated the promoter strength of the CTP:phosphocholine cytidylyltransferase promoter (CCT alpha) with other commonly used promoters, which were all cloned into a similar background vector (PGL3 basic). Transient promoter-reporter assays in murine lung epithelial (MLE-12) cells revealed that the core CCT alpha promoter (240 bp) was observed to exhibit a 40-fold, 8-fold, and 3-fold higher level of activity compared with the simian virus 40, human cytomegalovirus, and Rous sarcoma virus promoters, respectively. The CCT alpha promoter was significantly more active than the Clara cell 10, thymidine kinase, and phosphoglycerate kinase promoters. This pattern of high-level expression for CCT alpha was detected primarily in cell lines of distal lung epithelial origin (MLE-12, RLE, H441) and was reduced in other cell lines (A549, CHO, HepG 2). CCT alpha promoter-reporter activity, CCT alpha transcript levels, and immunoreactive protein levels increased significantly in the presence of all-trans retinoic acid. The CCT alpha promoter, in a retinoic acid-inducible manner, efficiently directed expression of murine erythropoietin in MLE-12 cells. Collectively, these observations suggest that the CCT alpha construct might be useful to drive high-level, regulatable expression of heterologous proteins in alveolar epithelia.
Collapse
Affiliation(s)
- Jiming Zhou
- Pulmonary Division, C-33K, GH, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
37
|
Vanderbilt JN, Mager EM, Allen L, Sawa T, Wiener-Kronish J, Gonzalez R, Dobbs LG. CXC chemokines and their receptors are expressed in type II cells and upregulated following lung injury. Am J Respir Cell Mol Biol 2003; 29:661-8. [PMID: 12829448 DOI: 10.1165/rcmb.2002-0227oc] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The proinflammatory CXC chemokines GRO, CINC-2alpha, and macrophage inflammatory protein (MIP)-2 are a closely related family of neutrophil chemoattractants. Here, we report that freshly isolated alveolar Type II (TII) cells express these chemokine mRNAs at much higher levels than do freshly isolated Type I cells or alveolar macrophages (AM). TII cells also express CXCR2, the receptor for these chemokines. Lung injury caused by acid or Pseudomonas aeruginosa (Pa) caused an increase in TII cell expression of chemokine mRNAs and GRO protein. We compared the time courses of chemokine mRNA expression in cultured TII cells and AM. In TII cells, GRO mRNA levels were stable over 4 h, but decreased to undetectable levels by 24 h. CINC-2alpha and MIP-2 mRNA levels were low in freshly isolated cells, increased over 2-4 h in culture, and by 24 h dropped to undetectable levels. In contrast, none of these chemokine mRNAs were detected in freshly isolated AM, but expression was induced by tissue culture. In summary, we have shown that TII alveolar epithelial cells produce three of the major proinflammatory CXC chemokines (GRO, CINC-2alpha, and MIP-2) and their cognate receptor CXCR2. Chemokine expression is upregulated in response to lung injury. These observations support a central role for the TII cell as an immunologic effector cell in the alveolus and raise intriguing questions about how CXC chemokines and receptors modulate diverse normal and pathologic cellular responses in the alveoli.
Collapse
Affiliation(s)
- Jeff N Vanderbilt
- Cardiovascular Research Institute/Pediatrics, University of California San Francisco, Laurel Heights Campus, Suite 150, 3333 California Street, San Francisco, CA 94118, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abu-Dahab R, Schäfer UF, Lehr CM. Lectin-functionalized liposomes for pulmonary drug delivery: effect of nebulization on stability and bioadhesion. Eur J Pharm Sci 2001; 14:37-46. [PMID: 11457648 DOI: 10.1016/s0928-0987(01)00147-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The generation of respirable aerosols of a functionalized colloidal carrier has been investigated in this study. Lectin-functionalized liposomes, which proved to show improved cell association (using A549 cell line and primary human alveolar cells) even in the presence of a commercial lung surfactant preparation, have been developed. The stability of non-functionalized liposomes during nebulization using a jet nebulizer (Pari II provocation nebulizer, operated using an air flow of 30 l/min) was firstly investigated, and the experimental and formulation conditions were optimized and applied for the preparation of lectin-functionalized liposomes. The incorporation of cholesterol enhanced the stability of the liposomes during nebulization (from 15-20% leakage of a hydrophilic marker to 8% upon cholesterol incorporation) and upon incubation with lung surfactant preparation. Nebulization of the functionalized liposomes did not significantly influence their physical stability. Their enhanced cell binding capability (compared to non-functionalized liposomes) was also maintained. A drop in cell association compared to fresh functionalized liposomes was detected after nebulization, nevertheless, the binding was still significantly higher than that of the non-functionalized liposomes. The deposition of the liposomal preparation in lung periphery, proved by the deposition of the liposomal preparation on the lower stages of an ASTRA type cascade impinger and a mean median aerodynamic diameter (MMAD) of 2.85 microm, makes it a potential candidate as a macromolecule-drug carrier for local and/or systemic administration.
Collapse
Affiliation(s)
- R Abu-Dahab
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, P.O. Box 15 11 50, D-66041, Saarbrücken, Germany
| | | | | |
Collapse
|
39
|
Utsuki T, Hashizume K, Iwamori M. Impaired spreading of surfactant phospholipids in the lungs of newborn rats with pulmonary hypoplasia as a model of congenital diaphragmatic hernia induced by nitrofen. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1531:90-8. [PMID: 11278175 DOI: 10.1016/s1388-1981(01)00087-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to clarify the pathological outcome of congenital diaphragmatic hernia (CDH), we devised an animal model of CDH by administration of 2,4-dichlorophenyl-p-nitrophenyl ether (nitrofen) to pregnant rats, and determined the level and distribution of lung surfactant using the monoclonal antibody toward sphingomyelin and disaturated phosphatidylcholine (disat-PC). In control rats, the concentration of disat-PC was found to increase greatly from 16 to 18 days of gestation. Intragastric administration of nitrofen to pregnant rats at day 9 of gestation resulted in CDH in 42.7% of fetuses delivered after 20 days of gestation. In nitrofen-treated fetuses, the concentration of disat-PC in the lungs was lower than those in control fetuses, and surfactant apoprotein SP-A was similarly reduced in nitrofen-treated fetuses. However, the concentration of disat-PC in nitrofen-treated fetuses was higher than that in control fetuses at 18 days of gestation, indicating a synthetic potential of surfactant in nitrofen-treated fetuses comparable to that at the late stage of normal gestation. Immunohistochemical study with the antibody revealed that surfactant phospholipid was mainly in the form of intracellular granules in nitrofen-treated fetuses, probably causing the hypoplastic lungs and then CDH, in contrast to the uniform distribution on the pulmonary alveolar surface in control fetuses.
Collapse
Affiliation(s)
- T Utsuki
- Department of Pediatrics, Kiyosenomori Hospital, Tokyo, Japan
| | | | | |
Collapse
|
40
|
Spragg RG, Li J. Effect of phosphocholine cytidylyltransferase overexpression on phosphatidylcholine synthesis in alveolar type II cells and related cell lines. Am J Respir Cell Mol Biol 2000; 22:116-24. [PMID: 10615073 DOI: 10.1165/ajrcmb.22.1.3295] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Disaturated phosphatidylcholine (DSPC) is the predominate phospholipid component of lung surfactant. In the alveolar type II cell, the cytidine diphosphocholine (CDP-choline) pathway is the major biosynthetic pathway for DSPC. To investigate the hypothesis that phosphocholine cytidylyltransferase (CT) is the rate-limiting enzyme in the CDP-choline pathway, rat alveolar type II cells or lung tumor-derived cell lines (A549 or H441) with type II cell features were transfected with CT complementary DNA (cDNA). Cell fractions were subsequently assayed for CT protein and activity, and cell rates of DSPC synthesis were determined. In all cases, cell CT protein and activity were increased after transfection with CT cDNA but not after control transfection. Rat type II cells, but not A549 or H441 cells, increased the rate of DSPC synthesis after transfection with CT cDNA. Exposure of type II cells transfected with CT cDNA to palmitic acid resulted in a further increase in CT protein and activity. Exposure to dexamethasone resulted in increased CT protein and activity and increased synthesis of DSPC. The results confirm that CT has a rate-limiting and regulatory role in the synthesis of type II cell DSPC, and raise possibilities for novel therapeutic interventions.
Collapse
Affiliation(s)
- R G Spragg
- VA Medical Center, San Diego, California 92161, USA.
| | | |
Collapse
|
41
|
Elbert KJ, Schäfer UF, Schäfers HJ, Kim KJ, Lee VH, Lehr CM. Monolayers of human alveolar epithelial cells in primary culture for pulmonary absorption and transport studies. Pharm Res 1999; 16:601-8. [PMID: 10349999 DOI: 10.1023/a:1018887501927] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a cell culture model of human alveolar epithelial cells in primary culture for the in vitro study of pulmonary absorption and transport. METHODS Type II pneumocytes isolated from normal human distal lung tissue by enzyme treatment and subsequent purification were plated on fibronectin/collagen coated polyester filter inserts, and cultured using a low-serum growth medium. Characterization of the cell culture was achieved by bioelectric measurements, cell-specific lectin binding, immunohistochemical detection of cell junctions, and by assessment of transepithelial transport of dextrans of varying molecular weights. RESULTS In culture, the isolated cells spread into confluent monolayers, exhibiting peak transepithelial resistance of 2,180 +/- 62 ohms x cm2 and potential difference of 13.5 +/- 1.0 mV (n = 30-48), and developing tight junctions as well as desmosomes. As assessed by lectin-binding, the cell monolayers consisted of mainly type I cells with some interspersed type II cells, thus well mimicking the situation in vivo. The permeability of hydrophilic macromolecular FITC-dextrans across the cell monolayer was found to be inversely related to their molecular size, with Papp values ranging from 1.7 to 0.2 x 10(-8) cm/sec. CONCLUSIONS A primary cell culture model of human alveolar epithelial cells has been established, which appears to be a valuable in vitro model for pulmonary drug delivery and transport studies.
Collapse
Affiliation(s)
- K J Elbert
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Mathias NR, Yamashita F, Lee VH. Respiratory epithelial cell culture models for evaluation of ion and drug transport. Adv Drug Deliv Rev 1996. [DOI: 10.1016/s0169-409x(96)00420-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Deterding RR, Shannon JM. Proliferation and differentiation of fetal rat pulmonary epithelium in the absence of mesenchyme. J Clin Invest 1995; 95:2963-72. [PMID: 7769139 PMCID: PMC295985 DOI: 10.1172/jci118004] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies have shown that pulmonary mesenchyme is required to maintain epithelial viability and to support branching morphogenesis and cytodifferentiation. We have examined whether pulmonary mesenchyme can be replaced by a medium containing a combination of soluble factors. Day 13-14 fetal rat distal lung epithelium was enzymatically separated from its mesenchyme, enrobed in EHS tumor matrix, and cultured for 5 d in medium containing concentrated bronchoalveolar lavage, EGF, acidic fibroblast growth factor, cholera toxin, insulin, and FBS (TGM), or in control medium containing only FBS. After 5 d in culture, marked growth and morphological changes occurred in epithelial rudiments cultured in TGM, whereas no changes were seen in controls. [3H]Thymidine incorporation and nuclear labeling indices during the last 24 h of culture confirmed that epithelial rudiments cultured in TGM had significant proliferative capacities. Evaluation of surfactant protein gene expression by Northern analysis, in situ hybridization, and immunocytochemistry demonstrated that distal lung epithelial differentiation progressed in TGM. Ultrastructural analysis demonstrated that fetal distal lung epithelium cultured in TGM contained lamellar bodies and deposited a basal lamina. These results are the first demonstration that sustained proliferation and differentiation of glandular stage distal pulmonary epithelium can proceed in the absence of mesenchyme.
Collapse
Affiliation(s)
- R R Deterding
- Department of Pediatrics, University of Colorado, Children's Hospital, Denver 80218, USA
| | | |
Collapse
|
44
|
Oguchi A, Mita M, Ohkawa M, Kawamura K, Kikuyama S. Analysis of lung surfactant in the metamorphosing bullfrog (Rana catesbeiana). THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1994; 269:515-21. [PMID: 7931124 DOI: 10.1002/jez.1402690604] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In bullfrog (Rana catesbeiana) tadpoles, the lung begins to function at an advanced stage of metamorphosis. As a preliminary step for investigation of the mechanisms involved in lung maturation, pulmonary surfactant was prepared from tadpoles at advanced stages of metamorphosis and its biochemical properties were analyzed. Surfactant phospholipid analysis revealed that the major constituent was phosphatidylcholine (PC), as examined in the animals at late climax (stage 24). Other detectable phospholipids were phosphatidylethanolamine, phosphatidylserine, sphingomyelin, and phosphatidylglycerol, a marker lipid in mammalian surfactant. As in mammals, PC in the surfactant was rich in saturated fatty acids, about 50% of fatty acid moieties being palmitic acid. The content of surfactant PC in the lung increased moderately around mid-climax and markedly at the end of climax. The effect of antiserum against bullfrog prolactin (PRL) on the pulmonary surfactant was studied in climactic tadpoles. The content of surfactant PC in the lung of the antiserum-treated larvae was lower than that in the lung of the normal rabbit serum-injected larvae, whereas the content of PC in the whole lung did not differ between the antiserum-treated and control groups. The results suggest that synthesis of surfactant in the amphibian lung is enhanced as metamorphosis progresses and that PRL is involved in lung maturation.
Collapse
Affiliation(s)
- A Oguchi
- Department of Biology, School of Education, Waseda University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
45
|
Germann PG, Ueberschär S, Gerull A, Emura M. In vitro induction of type II pneumocyte-related differentiation in a clonal fetal bronchiolo-alveolar epithelial cell line (M3E3/C3). EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 1993; 45:315-24. [PMID: 8312716 DOI: 10.1016/s0940-2993(11)80417-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of the present study is to investigate the differentiation of a cloned fetal Syrian hamster lung epithelial cell line, M3E3/C3, to assume morphological and biochemical features of Type II pneumocytes (phospholipid synthesis). The use of a soft agar overlay and a differentiation medium, based on RPMI 1640 combined with hormone supplements, increased the cellular content of phosphatidylcholine (PC) from 48.6% in the conventional culture without any of these factors (referred to as 'control') to 64.7% (p < 0.02). The other cell membrane-associated components, phosphatidylethanolamine (p < 0.05), sphingomyelin (p < 0.001), phosphatidylserine (n. s.), phosphatidic acid (p < 0.02) and phosphatidylinositol (p < 0.02) decreased. The content of phosphatidylglycerol showed no essential change (from 11.2% to 8.4%) and the content of disaturated phospholipids decreased from 32.0 to 23.4 micrograms/10(6) cells (p < 0.002). The phospholipid pattern of these differentiated cells is in rough accordance with that of primary isolated Type II pneumocytes. They incorporated 3H-choline over a period of four hours at a higher rate in the Type II pneumocyte-specific phospholipids, PC and dipalmitoyl-phosphatidylcholine (DPPC), than the undifferentiated control. The radiolabelling of PC and DPPC in the differentiated cells, after 3 hours of incubation with 3H-choline, was about 3.2-fold and 2.2-fold, respectively, higher than that in the control cells (p < 0.001). Intracytoplasmatic phospholipid granules were evident in the differentiated cells by light and fluorescence microscopy (modified Papanicolaou stain, Phosphin 3 R fluorescence). Furthermore, the differentiated cells had a high activity of alkaline phosphatase, whereas the control cells showed only little activity of this enzyme. Ultrastructurally, many concentric multilayered osmiophilic bodies, well developed Golgi apparatuses and many cytoplasmic protrusions comparable to microvilli, were detectable in the cuboidal shaped differentiated cells. The control cells remained wide and flattened on the plastic surface and produced a fibrillar extracellular matrix. In the simultaneously studied fetal lung fibroblasts none of these specific features were noted. These results indicate a specific differentiation capacity of the clonal fetal cell line, M3E3/C3, by closely resembling Type II pneumocytes.
Collapse
Affiliation(s)
- P G Germann
- Institute of Experimental Pathology, Hannover Medical School, Germany
| | | | | | | |
Collapse
|
46
|
A somatic cell mutant defective in phosphatidylglycerophosphate synthase, with impaired phosphatidylglycerol and cardiolipin biosynthesis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)41612-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Kalina M, Riklis S, Blau H. Pulmonary epithelial cell proliferation in primary culture of alveolar type II cells. Exp Lung Res 1993; 19:153-75. [PMID: 8467760 DOI: 10.3109/01902149309031717] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A small subpopulation of pulmonary epithelial cells (PE) proliferates in low-density primary culture of alveolar type II cells and forms colonies of cells that could be passaged for several generations and that in some respects maintain a differentiated phenotype of the alveolar type II cells. At this time it is not known if these cells are some form of progenitor epithelial cells or type II cells that are not fully differentiated in vitro. The proliferation of the PE cells was dependent on serum, alveolar macrophage-conditioned medium, and insulin being included in the culture medium. Under these conditions, approximately 0.5-1.0% of the seeded cells that adhered to the culture dishes were capable of forming colonies. Efficiency of colony formation increased to 5-10% in subsequent passages. PE cells maintained a high level (> 40%) of saturated phosphatidylcholine (PC) as a percentage of total PC throughout the culture period (> 28 days). However, the saturated PC content was not constant throughout the long-term culture period and the subsequent passages (41.3% at 29 days and 37.3% in the 3rd passage). These cells also contained numerous lamellar bodies and were able to bind the Maclura pomifera lectin. PE cells also expressed cytokeratin No. 19, as well as alkaline phosphatase activity, both possible markers for differentiated type II cells. However, PE cell synthesized low levels of Pg (approximately 2%), were squamous, and tended to form multiple strata, unlike the cuboidal type II cells in vivo. The cells did not exhibit immunocytochemically demonstrable surfactant-associated protein A (SP-A). Additional factors and culture requirements may be necessary for complete maturation of cultured PE cells. This was demonstrated by culturing PE cells on EHS matrix. Aggregates of cells surrounding a central lumen were formed after a few hours in culture and were maintained for 20 days. The cells contained lamellar bodies and some intercellular junctions. PE cells can be regarded as a highly selected subpopulation of pulmonary epithelial cells that concomitantly maintain proliferation and aspects of differentiated alveolar type II cells in long-term culture.
Collapse
Affiliation(s)
- M Kalina
- Department of Histology and Cell Biology, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | |
Collapse
|
48
|
Fisher AB, Dodia C, Chander A, Kleinzeller A. Transport of choline by plasma membrane vesicles from lung-derived epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 263:C1250-7. [PMID: 1476166 DOI: 10.1152/ajpcell.1992.263.6.c1250] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A549 cells, a lung epithelium-derived cell line, were used as a model system to study choline transport by granular pneumocytes. Intact cells accumulated free choline against a concentration gradient by a low-affinity transport system with kinetic characteristics similar to that previously described for granular pneumocytes (Am. J. Respir. Cell Mol. Biol. 1: 455, 1989). Membrane vesicles prepared from these cells showed a 10-fold enrichment in plasma membrane marker enzymes with a vesicular H2O space of 5.7 +/- 0.05 (SE) microliters/mg protein. Vesicles showed a time- and concentration-dependent uptake of free [3H]choline in Na(+)-free medium. With 5 microM choline, choline uptake reached an apparent steady-state concentration gradient (inside/outside) of 50. 3H that was membrane associated ("bound" choline) represented approximately 5% of total uptake. In the presence of an initial gradient of NaCl, choline uptake showed an overshoot with a plateau value similar to Na(+)-free conditions; a similar effect was observed for plasma membrane vesicles from rat lung type 2 epithelial cells. The steady-state uptake of choline was inhibited at low pH (6.5) and by the presence of valinomycin or carbonyl cyanide p-tri-fluoromethoxyphenylhydrazone and was abolished when both were present. These results show that plasma membrane vesicles from A549 cells accumulate choline by binding to the membranes and by Na(+)-dependent and -independent transport mechanisms, the latter apparently reflecting a transmembrane proton gradient.
Collapse
Affiliation(s)
- A B Fisher
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | |
Collapse
|
49
|
Paine R, Chavis A, Gaposchkin D, Christensen P, Mody CH, Turka LA, Toews GB. A factor secreted by a human pulmonary alveolar epithelial-like cell line blocks T-cell proliferation between G1 and S phase. Am J Respir Cell Mol Biol 1992; 6:658-66. [PMID: 1591014 DOI: 10.1165/ajrcmb/6.6.658] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Because the pulmonary alveolar space is both the site of gas exchange for respiration and a portal of entry for foreign antigen, immunologic interactions within that space must be meticulously controlled. Alveolar epithelial cells are ideally situated to play a role in immune regulation within the alveolar space. We have used A549 cells, a cell line that is derived from a human alveolar cell carcinoma and that has been used as a model for alveolar type II epithelial cells, to examine the potential role of alveolar epithelial cells in local pulmonary immune regulation. Medium conditioned by confluent monolayers of A549 cells suppressed proliferation by human peripheral blood mononuclear cells (PBMC) stimulated with lectin, anti-CD3 antibodies, calcium ionophore and phorbol ester, or in a mixed leukocyte reaction. PBMC that had been incubated in and then removed from A549-conditioned medium went on to proliferate normally. Because the suppressive effect was abrogated by heating or acidification and was not blocked by neutralizing antibody to transforming growth factor-beta 1, this effect could not be attributed to transforming growth factor-beta. The factor mediating this effect has an approximate molecular weight of 70,000 D by gel filtration chromatography. Nonalveolar, pulmonary carcinoma cell lines did not exert this immunosuppressive influence nor did the alveolar epithelial cells inhibit proliferation by the transformed, Jurkat, T-cell line. Cell cycle analysis demonstrated that PBMC exposed to A549 cell-conditioned medium failed to enter S phase after mitogen stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Paine
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor 48109-0360
| | | | | | | | | | | | | |
Collapse
|
50
|
Mallampalli RK, Floerchinger CS, Hunninghake GW. Isolation and immortalization of rat pre-type II cell lines. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1992; 28A:181-7. [PMID: 1316350 DOI: 10.1007/bf02631089] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The fetal respiratory distress syndrome is due, in part, to the presence of abundant pre-type II alveolar epithelial cells that have not yet differentiated into mature type II cells. Studies of this syndrome have been limited somewhat by the lack of an adequate in vitro model. In the present study we immortalized pre-type II cells by infecting primary isolates obtained from fetal rat lung with a retroviral construct expressing the adenoviral 12S E1A gene product. The immortalized pre-type II cells retained many of the ultrastructural features typical of pre-type II cells in primary culture, most notably lamellar bodies were not detected and the cells contained abundant stores of glycogen, expressed cytokeratin filaments, and bound the lectin Maclura pomifera. Karyotyping revealed that the cells are diploid. Growth studies demonstrate log phase growth in the presence of serum with a markedly decreased growth rate shortly after the cells reach confluence. Exposure of the immortalized pre-type II cells to hydrocortisone and dibutyryl cAMP resulted in the induction of lamellar bodylike organelles; however, these cells did not secrete surfactant or express surfactant protein A. These cells may serve as useful models for some in vitro studies of fetal type II cell maturation or the fetal respiratory distress syndrome, or both.
Collapse
Affiliation(s)
- R K Mallampalli
- Department of Internal Medicine, Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | | | | |
Collapse
|