1
|
Zain-ul-abedin, Lopez JM, Freese E. Induction of Bacterial Differentiation by Adenine- and Adenosine-Analogs and Inhibitors of Nucleic Acid Synthesis. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328318308078860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zain-ul-abedin
- a Laboratory of Molecular Biology , National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health , Bethesda , Maryland , 20205
| | - Juan M. Lopez
- a Laboratory of Molecular Biology , National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health , Bethesda , Maryland , 20205
| | - Ernst Freese
- a Laboratory of Molecular Biology , National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health , Bethesda , Maryland , 20205
| |
Collapse
|
2
|
Glatz E, Farewell A, Rutberg B. The Bacillus subtilis glpD leader and antiterminator protein GlpP provide a target for glucose repression in Escherichia coli. FEMS Microbiol Lett 1998; 162:93-6. [PMID: 9595668 DOI: 10.1111/j.1574-6968.1998.tb12983.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Expression of the Bacillus subtilis glpD gene which encodes glycerol-3-phosphate (G3P) dehydrogenase is regulated by the GlpP protein which, in the presence of G3P, causes antitermination of transcription of glpD. The glpD gene leader fused to lacZ was integrated into the chromosome of Escherichia coli deleted for the lac operon and carrying the B. subtilis glpP gene on a plasmid. beta-Galactosidase activity of this strain was increased by the addition of G3P. When G3P and glucose, glucose-6-phosphate or fructose-6-phosphate were added, beta-galactosidase activity was reduced showing that GlpP mediates catabolite repression of transcription from the glpD leader in the absence of any other B. subtilis protein.
Collapse
Affiliation(s)
- E Glatz
- Department of Microbiology, Lund University, Sweden.
| | | | | |
Collapse
|
3
|
Janecek J, Tichý P, Spízek J, Vanĕk Z. Constitution of the metabolic type of streptomycetes during the first hours of cultivation. Folia Microbiol (Praha) 1997; 42:75-96. [PMID: 9306651 DOI: 10.1007/bf02898713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using the examples of biosynthesis of streptomycin, bialaphos, actinorhodin, oligoketides and autoregulators during the first hours of streptomycete cultivation, it is stressed that the external environment in cooperation with the internal metabolic abilities of the cell determines the metabolic type that would develop during the life cycle of the producing streptomycetes. If we accept that a certain metabolic type (from the point of view of the production of secondary metabolites) was determined already during the first hours of cultivation of the microorganisms, we must also admit that the availability of primary metabolites in the so-called production phase of growth (stationary phase, idiophase, etc.) is to a certain extent determined by the very early stages of strain development.
Collapse
Affiliation(s)
- J Janecek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
4
|
MacGregor CH, Arora SK, Hager PW, Dail MB, Phibbs PV. The nucleotide sequence of the Pseudomonas aeruginosa pyrE-crc-rph region and the purification of the crc gene product. J Bacteriol 1996; 178:5627-35. [PMID: 8824606 PMCID: PMC178400 DOI: 10.1128/jb.178.19.5627-5635.1996] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The gene (crc) responsible for catabolite repression control in Pseudomonas aeruginosa has been cloned and sequenced. Flanking the crc gene are genes encoding orotate phosphoribosyl transferase (pyrE) and RNase PH (rph). New crc mutants were constructed by disruption of the wild-type crc gene. The crc gene encodes an open reading frame of 259 amino acids with homology to the apurinic/apyrimidinic endonuclease family of DNA repair enzymes. However, crc mutants do not have a DNA repair phenotype, nor can the crc gene complement Escherichia coli DNA repair-deficient strains. The crc gene product was overexpressed in both P. aeruginosa and in E. coli, and the Crc protein was purified from both. The purified Crc proteins show neither apurinic/apyrimidinic endonuclease nor exonuclease activity. Antibody to the purified Crc protein reacted with proteins of similar size in crude extracts from Pseudomonas putida and Pseudomonas fluorescens, suggesting a common mechanism of catabolite repression in these three species.
Collapse
Affiliation(s)
- C H MacGregor
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27858, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
The CcpA protein has been identified as a key regulator of carbon metabolism in Bacillus subtilis. CcpA is a DNA binding protein in the LacI/GalR transcriptional repressor family, and genes which respond to CcpA contain common cis-acting target sequences (Ccp boxes). A number of pathways involved in carbon source utilization are repressed by CcpA, while at least one gene which is involved in excretion of excess carbon is activated by CcpA. Genes repressed by CcpA generally contain Ccp boxes within or downstream of the promoter, while ackA, which is activated by CcpA, contains Ccp boxes upstream of the promoter. It therefore appears that CcpA acts globally to direct carbon flow in B. subtilis.
Collapse
Affiliation(s)
- T M Henkin
- Department of Microbiology, Ohio State University, Columbus 43210, USA.
| |
Collapse
|
6
|
Kim JH, Guvener ZT, Cho JY, Chung KC, Chambliss GH. Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA. J Bacteriol 1995; 177:5129-34. [PMID: 7665492 PMCID: PMC177293 DOI: 10.1128/jb.177.17.5129-5134.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
CcpA was purified from Escherichia coli BL21 (lambda DE3)/pLysS carrying plasmid pTSC5, which was constructed by inserting the ccpA gene into the polycloning site of pGEM4. The purified protein migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent mass of 38 kDa but was eluted from a calibrated Bio-Gel P-100 column with an apparent mass of 75 kDa. Western blot (immunoblot) analysis revealed the presence of CcpA in E. coli BL21 (lambda DE3)/pLysS/pTSC5, which carries ccpA, and in wild-type Bacillus subtilis 168 but not in E. coli BL21 (lambda DE3)/pLysS/pGEM4 or in B. subtilis WLN-29, in which ccpA is inactivated by transposon Tn917 insertion. Purified CcpA bound to DNA containing amyO and retarded its mobility in electrophoretic mobility shift analysis. Complete retardation of the DNA required 75 ng of CcpA per assay. In DNase protection analysis, CcpA bound to DNA containing amyO and protected a region spanning amyO when either DNA strand was labeled. Mutant forms of amyO not effective in catabolite repression were not retarded by CcpA.
Collapse
Affiliation(s)
- J H Kim
- Department of Bacteriology, University of Wisconsin-Madison 53706, USA
| | | | | | | | | |
Collapse
|
7
|
Spatafora G, Rohrer K, Barnard D, Michalek S. A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo. Infect Immun 1995; 63:2556-63. [PMID: 7790069 PMCID: PMC173342 DOI: 10.1128/iai.63.7.2556-2563.1995] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We used the streptococcal transposon, Tn916 to identify and isolate mutants of Streptococcus mutans with altered intracellular polysaccharide (IPS) accumulation. We report on the isolation and characterization of S. mutans SMS202, a transposon mutant which accumulated the glycogen-like IPS in excess of wild-type levels. Southern blot analysis confirmed a single Tn916 insertion into the SMS202 chromosome. Moreover, quantitative ultrastructural analysis revealed significantly increased concentrations of IPS in SMS202 relative to those of the wild-type progenitor strain, UA130. The activities of ADPglucose pyrophosphorylase (GlgC) and glycogen synthase (GlgA), enzymes required for the biosynthesis of bacterial IPS, were also elevated in the IPS excess mutant. Furthermore, SMS202 was significantly more cariogenic on the molar surfaces of germ-free rats than the wild type (P < 0.01), thus confirming a central role for IPS in S. mutants-induced caries formation. We propose that the increased cariogenic potential of SMS202 is due to constitutive expression of genes which encode glycogen biosynthesis in this oral pathogen. The coordinate expression of GlgC and GlgA along with the results of ongoing nucleotide sequence analysis and Northern hybridization experiments support an operon-like arrangement for the glg genes of this oral pathogen.
Collapse
Affiliation(s)
- G Spatafora
- Department of Biology, Middlebury College, Vermont 05753, USA
| | | | | | | |
Collapse
|
8
|
Hueck CJ, Kraus A, Schmiedel D, Hillen W. Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium. Mol Microbiol 1995; 16:855-64. [PMID: 7476184 DOI: 10.1111/j.1365-2958.1995.tb02313.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A mutant of Bacillus megaterium relieved from catabolite repression has been used to clone ccpA from B. megaterium by complementation. ccpA is the first gene of a presumed operon, in which it is followed by the motA homologue ORF1 and the motB homologue ORF2. The mutation maps in the 3'-terminal region of ccpA, where an in-frame duplication of 84 nucleotides located between two 9 bp direct repeats leads to an insertion of 28 amino acids near the C-terminus of CcpA. An in-frame deletion of 501 bp in ccpA exhibits the same phenotype as the 84 bp duplication. Deletion of ORF1 and ORF2 does not yield an apparent phenotype. A single-copy ccpA::lacZ transcriptional fusion is constitutively expressed, independent of whether the growth medium triggers catabolite repression or not. The ccpA mutation leads to relief of catabolite repression exerted by glucose, fructose, mannitol, glucitol and glycerol, whereas only smaller effects were found with ribose, citrate and glutamate. The respective growth rates on these carbon sources are uniformly reduced to a generation time of about 90 min in the ccpA mutant. Catabolite repression of a plasmid-encoded xylA::ccpA fusion is less efficient than that of a xylA::lacZ fusion in the same vector. Furthermore, overproduction of CcpA decreases catabolite repression of a single-copy xylA::lacZ fusion approximately twofold. Thus, overexpression of CcpA may be counterproductive for catabolite repression, supporting the hypothesis that CcpA by itself may not bind sufficiently strongly to the cis-active catabolite-responsive element to exert catabolite repression.
Collapse
Affiliation(s)
- C J Hueck
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | | | |
Collapse
|
9
|
Effect of glucose on sporulation and extracellular amylase production byClostridium perfringens type A in a defined medium. Curr Microbiol 1994. [DOI: 10.1007/bf01570758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Wray LV, Pettengill FK, Fisher SH. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J Bacteriol 1994; 176:1894-902. [PMID: 8144455 PMCID: PMC205292 DOI: 10.1128/jb.176.7.1894-1902.1994] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Expression of the Bacillus subtilis hut operon is subject to regulation by catabolite repression. A set of hut-lacZ transcriptional fusions was constructed and used to identify two cis-acting sites involved in catabolite repression. The hutOCR1 operator site lies immediately downstream of the hut promoter and weakly regulates hut expression in response to catabolite repression. The downstream hutOCR2 operator site lies within the hutP gene, between positions +203 and +216, and is required for wild-type levels of catabolite repression. Both the hutOCR1 and hutOCR2 operators have sequence similarity to the sites which mediate catabolite repression of several other B. subtilis genes. Two mutations which relieve catabolite repression of hut expression were found to alter the nucleotide sequence of the hutOCR2 operator. Catabolite repression of hut expression was partially relieved in strains containing the ccpA mutation but not in strains containing either the pai or hpr mutation.
Collapse
Affiliation(s)
- L V Wray
- Department of Microbiology, Boston University School of Medicine, Massachusetts 02118
| | | | | |
Collapse
|
11
|
Fujita Y, Miwa Y. Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein. J Bacteriol 1994; 176:511-3. [PMID: 8288545 PMCID: PMC205075 DOI: 10.1128/jb.176.2.511-513.1994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Inducer exclusion was not important in catabolite repression of the Bacillus subtilis gnt operon. The CcpA protein (also known as AlsA) was found to be necessary for catabolite repression of the gnt operon, and a mutation (crsA47, which is an allele of the sigA gene) partially affected this catabolite repression.
Collapse
Affiliation(s)
- Y Fujita
- Department of Biotechnology, Faculty of Engineering, Fukuyama University, Japan
| | | |
Collapse
|
12
|
JUNEJA V, CALL J, MILLER A. EVALUATION OF METHYLXANTHINES AND RELATED COMPOUNDS TO ENHANCE CLOSTRIDIUM PERFRINGENS SPORULATION USING A MODIFIED DUNCAN AND STRONG MEDIUM. ACTA ACUST UNITED AC 1993. [DOI: 10.1111/j.1745-4581.1993.tb00290.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Angell S, Schwarz E, Bibb MJ. The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol 1992; 6:2833-44. [PMID: 1435260 DOI: 10.1111/j.1365-2958.1992.tb01463.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mutants (glk) of Streptomyces coelicolor A3(2) that are resistant to the non-utilizable glucose analogue 2-deoxyglucose are deficient in glucose kinase activity, defective in glucose repression, and usually unable to utilize glucose. A 2.9 kb BclI fragment, previously shown to restore a wild-type phenotype to a glk deletion mutant that lacks the entire segment, contains two complete open reading frames that would encode proteins of 20.1 kDa (ORF2) and 33.1 kDa (ORF3). ORF3 is transcribed from its own promoter, and also from a promoter that initiates transcription upstream of ORF2. A derivative of the temperate phage phi C31 containing ORF3 alone restored a wild-type phenotype when used to lysogenize the deletion mutant. The product of ORF3 is homologous to members of a family of repressor proteins encoded by xylR in Bacillus subtilis and Lactobacillus pentosus, and by nagC in Escherichia coli. Although this might suggest that ORF3 encodes a positive activator for glucose kinase, rather than the enzyme itself, ORF3 restored the ability to metabolize glucose to an E. coli glk mutant, and activity gels of cell extracts of E. coli containing ORF3 cloned in the pT7-7 expression vector demonstrated that the ORF3 product has glucose kinase activity.
Collapse
Affiliation(s)
- S Angell
- John Innes Institute, John Innes Centre, Norwich, UK
| | | | | |
Collapse
|
14
|
Lane MA, Bayles KW, Yasbin RE. Identification and initial characterization of glucose-repressible promoters of Streptococcus mutans. Gene 1991; 100:225-9. [PMID: 1711495 DOI: 10.1016/0378-1119(91)90371-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three catabolite-repressible promoters from Streptococcus mutans have been isolated. These promoters were identified by utilizing the vector pRQ200 which contains a promoterless amylase-encoding gene, a Gram- origin of replication, and an erythromycin-resistance determinant. A library of S. mutans DNA was constructed in pRQ200, amplified in Escherichia coli and integrated by Campbell-type insertion into the S. mutans chromosome following transformation. Colonies exhibiting amylase production on media lacking an extraneous carbohydrate source were screened for diminished amylase production on media containing glucose. The effect of glucose on these promoters has been characterized using a quantitative spectrophotometric assay of amylase activity.
Collapse
Affiliation(s)
- M A Lane
- Department of Biological Sciences, University of Maryland Baltimore County 21228
| | | | | |
Collapse
|
15
|
Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol 1991; 5:575-84. [PMID: 1904524 DOI: 10.1111/j.1365-2958.1991.tb00728.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Expression of the alpha-amylase gene of Bacillus subtilis is controlled at the transcriptional level, and responds to the growth state of the cell as well as the availability of rapidly metabolizable carbon sources. Glucose-mediated repression has previously been shown to involve a site near the transcriptional start-point of the amyE gene. In this study, a transposon insertion mutation was characterized which resulted in loss of glucose repression of amyE gene expression. The gene affected by this mutation, which was localized near 263 degrees on the B. subtilis chromosomal map, was isolated and its DNA sequence was determined. This gene, designated ccpA, exhibited striking homology to repressor genes of the lac and gal repressor family. The ccpA gene was found to be allelic to alsA, previously identified as a regulator of acetoin biosynthesis, and may be involved in catabolite regulation of other systems as well.
Collapse
Affiliation(s)
- T M Henkin
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | | | | | |
Collapse
|
16
|
Miwa Y, Fujita Y. Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus. Nucleic Acids Res 1990; 18:7049-53. [PMID: 2124676 PMCID: PMC332768 DOI: 10.1093/nar/18.23.7049] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mechanism underlying catabolite repression in Bacillus species remains unsolved. The gluconate (gnt) operon of Bacillus subtilis is one of the catabolic operons which is under catabolite repression. To identify the cis sequence involved in catabolite repression of the gnt operon, we performed deletion analysis of a DNA fragment carrying the gnt promoter and the gntR gene, which had been cloned into the promoter probe vector, pWP19. Deletion of the region upstream of the gnt promoter did not affect catabolite repression. Further deletion analysis of the gnt promoter and gntR coding region was carried out after restoration of promoter activity through the insertion of internal constitutive promoters of the gnt operon before the gntR gene (P2 and P3). These deletions revealed that the cis sequence involved in catabolite repression of the gnt operon is located between nucleotide positions +137 and +148. This DNA segment contains a sequence, ATTGAAAG, which may be implicated as a consensus sequence involved in catabolite repression in the genus Bacillus.
Collapse
Affiliation(s)
- Y Miwa
- Department of Biotechnology, Faculty of Engineering, Fukuyama University, Japan
| | | |
Collapse
|
17
|
Weickert MJ, Chambliss GH. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci U S A 1990; 87:6238-42. [PMID: 2117276 PMCID: PMC54508 DOI: 10.1073/pnas.87.16.6238] [Citation(s) in RCA: 224] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Catabolite repression of the Bacillus subtilis alpha-amylase gene (amyE) involves an operator sequence located just downstream of the promoter (amyR), overlapping the transcription start site. Oligonucleotide site-directed mutagenesis of this sequence identified bases required for catabolite repression. Two mutations increased both the 2-fold symmetry of the operator and the repression ratio. Although many mutations reduced the repression ratio 3- to 11-fold, some also caused a 2-fold or greater increase in amylase production. Others caused hyperproduction without affecting catabolite repression. Homologous sequences in other catabolite-repressed B. subtilis promoters suggest a common regulatory site may be involved in catabolite repression.
Collapse
Affiliation(s)
- M J Weickert
- Department of Genetics, University of Wisconsin, Madison 53706
| | | |
Collapse
|
18
|
Ingram C, Brawner M, Youngman P, Westpheling J. xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J Bacteriol 1989; 171:6617-24. [PMID: 2592344 PMCID: PMC210555 DOI: 10.1128/jb.171.12.6617-6624.1989] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We describe the development of a convenient and sensitive reporter gene system for Streptomyces spp. based on the use of a promoterless copy of the xylE gene of Pseudomonas putida. The xylE gene product is a catechol dioxygenase, which converts the colorless substrate catechol to an intensely yellow hydroxymuconic semialdehyde. A promoterless copy of xylE was placed under the transcriptional control of galP1, a glucose-repressed and galactose-induced promoter from Streptomyces lividans, and its expression was examined in bacterial colonies on agar plates or in liquid cultures grown in the presence of glucose or galactose as the sole carbon source. On plates, colonies of bacteria grown on galactose turned bright yellow within a few minutes of being sprayed with a solution of catechol, whereas colonies on glucose-containing plates remained white or only slightly colored, even after extensive incubation. Activity of galP1-xylE fusions was conveniently measured in crude cell extracts with a simple colorimetric assay and was shown to faithfully reflect intracellular RNA levels, as determined by quantitative dot blots. Moreover, differences in expression levels of xylE fusions driven by mutant galP1 promoters were readily apparent in color reactions on plates. The properties of xylE as a reporter gene thus make it suitable not only for quantitatively monitoring expression of regulated promoters in Streptomyces spp. but also for recovering mutations that alter the expression levels of promoters of interest.
Collapse
Affiliation(s)
- C Ingram
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | |
Collapse
|
19
|
Westpheling J, Brawner M. Two transcribing activities are involved in expression of the Streptomyces galactose operon. J Bacteriol 1989; 171:1355-61. [PMID: 2921238 PMCID: PMC209753 DOI: 10.1128/jb.171.3.1355-1361.1989] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Streptomyces galactose operon is transcribed from two independently regulated promoters: galP1, located at the 5' end of the operon and responsible for galactose-dependent transcription of the operon, and galP2, an internal constitutive promoter. We identified and partially separated two distinct transcribing activities involved in expression of this operon. Using RNA polymerase from Streptomyces lividans and Streptomyces coelicolor partially purified by chromatography on heparin-agarose and DNA-cellulose, we detected activities capable of initiating transcription in vitro specifically from either galP1 or galP2. Circumstantial evidence suggests that the activity for galP2 transcription is a holoenzyme species associated with the previously described sigma 28 protein (referred to here as sigma C). The galP1-transcribing activity is more difficult to evaluate. This activity may correspond to a holoenzyme species associated with sigma A (formerly sigma 35), although other possibilities are discussed. This would be the second reported example of a catabolite-controlled gene in Streptomyces species expressed from multiple promoters recognized by different holoenzyme forms. This may indicate that the involvement of RNA polymerase heterogeneity in gene expression in Streptomyces species is a more general strategy for regulation than the specialized gene expression seen in Escherichia coli.
Collapse
Affiliation(s)
- J Westpheling
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | |
Collapse
|
20
|
Fujita Y, Fujita T, Miwa Y, Nihashi J, Aratani Y. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67083-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Mitchell C, Skomurski J, Vary J. Effect of ion channel blockers on germination ofBacillus megateriumspores. FEMS Microbiol Lett 1986. [DOI: 10.1111/j.1574-6968.1986.tb01406.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Fujita Y, Fujita T. Identification and nucleotide sequence of the promoter region of the Bacillus subtilis gluconate operon. Nucleic Acids Res 1986; 14:1237-52. [PMID: 2419835 PMCID: PMC339500 DOI: 10.1093/nar/14.3.1237] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nucleotide sequence (742 bp) of the promoter region of the Bacillus subtilis gluconate (gnt) operon is presented. Nuclease Sl mapping revealed the start point of the transcription and suggested that the expression of this operon is probably regulated at the transcriptional level. The sequences of the -35 and -10 regions suggested that RNA polymerase possessing sigma-43 may recognize this structure. The 223 bp fragment containing 100 bp upstream from the transcription start site actually exhibited a promoter activity when cloned in a promoter probe vector of pPL603B. This promoter activity was highly derepressed and although still under catabolite repression. The fragment on a high copy plasmid could titrate a regulator of the gnt operon so that the expression of the operon on the host chromosome also became derepressed.
Collapse
|
23
|
Abstract
The activity of aconitase in Bacillus subtilis is greatly reduced in cells cultured in media containing rapidly metabolized carbon sources (e.g., glucose). Thus, expression of this enzyme appears to be subject to a form of catabolite repression. Since the product of the citB gene of B. subtilis is required for aconitase activity, we cloned the wild-type allele of this gene and used this DNA as a probe for transcription of citB in cells grown in various media. The steady-state level of RNA that hybridized to this probe was about 10-fold higher in B. subtilis cells grown in citrate-glutamine medium than in cells grown in glucose-glutamine medium. This result correlates well with the steady-state levels of aconitase activity. Two transcripts were shown to initiate within the cloned DNA; the steady-state level of one of these transcripts varied in the same way as did aconitase activity when cells were grown in media containing different carbon sources. This is the first demonstration of regulation by the carbon source of the level of a vegatative-cell transcript in B. subtilis.
Collapse
|
24
|
Regulation of Cellulolytic Activity. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/b978-0-12-040308-0.50010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
|
25
|
Esteban R, Nebreda A, Villanueva J, Villa* T. Possible role of cAMP in the synthesis of β-glucanases and β-xylanases of Bacillus circulansWL-12. FEMS Microbiol Lett 1984. [DOI: 10.1111/j.1574-6968.1984.tb01041.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Mach H, Hecker M, Mach F. Evidence for the presence of cyclic adenosine monophosphate inBacillus subtilis. FEMS Microbiol Lett 1984. [DOI: 10.1111/j.1574-6968.1984.tb00348.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Fisher SH, Magasanik B. Synthesis of oxaloacetate in Bacillus subtilis mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex. J Bacteriol 1984; 158:55-62. [PMID: 6425269 PMCID: PMC215378 DOI: 10.1128/jb.158.1.55-62.1984] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bacillus subtilis mutants deficient in the 2-ketoglutarate dehydrogenase enzymatic complex required aspartate for growth at wild-type rates on carbon sources for which synthesis of the degradative enzymes is sensitive to catabolite repression (e.g., poor carbon sources), but did not require aspartate for growth on carbon sources which exert catabolite repression (e.g., good carbon sources). Measurement of metabolite pools in a mutant lacking the 2-ketoglutarate dehydrogenase active complex showed that the aspartate requirement for growth on poor carbon sources resulted from a deficiency in intracellular oxaloacetate pools even through pyruvate carboxylase was present at levels corresponding to those in wild-type cells. The oxaloacetate deficiency most likely resulted from the inability of the mutant to regenerate oxaloacetate from citrate due to the enzymatic block in the tricarboxylic acid cycle. Mutants in the enzymes of the dicarboxylic acid half of the citric acid cycle similarly required aspartate for wild-type growth in minimal medium. These results suggested that the complete turning of the tricarboxylic acid cycle is involved in the maintainance of oxaloacetate levels in B. subtilis. The ability of the mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex to grow at wild-type rates on media containing good carbon sources in the absence of exogenous aspartate is not understood.
Collapse
|
28
|
Fisher SH, Magasanik B. Isolation of Bacillus subtilis mutants pleiotropically insensitive to glucose catabolite repression. J Bacteriol 1984; 157:942-4. [PMID: 6421803 PMCID: PMC215352 DOI: 10.1128/jb.157.3.942-944.1984] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A pleiotropic mutant of Bacillus subtilis was isolated which overproduced in the presence of glucose several enzymes whose synthesis is subject to glucose catabolite repression. Examination of intracellular metabolites suggested that the mutation may have resulted in a defect in glycolysis, increasing phosphoenolpyruvate and decreasing pyruvate, 2-ketoglutarate, and oxaloacetate.
Collapse
|
29
|
Fisher SH, Sonenshein AL. Bacillus subtilis glutamine synthetase mutants pleiotropically altered in glucose catabolite repression. J Bacteriol 1984; 157:612-21. [PMID: 6141156 PMCID: PMC215290 DOI: 10.1128/jb.157.2.612-621.1984] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Strain SF22, a glutamine-requiring (Gln-) mutant of Bacillus subtilis SMY, is likely to have a mutation in the structural gene for glutamine synthetase, since this strain synthesized 22 to 55% as much glutamine synthetase antigen as did wild-type cells in a 10-min period but had less than 3% of wild-type glutamine synthetase enzymatic activity. The expression of several genes subject to glucose catabolite repression was altered in the Gln- mutant. The induced levels of alpha-glucosidase, histidase, and aconitase were 3.5- to 4-fold higher in SF22 cells than in wild-type cells grown in glucose-glutamine medium, and citrate synthase levels were 8-fold higher in the Gln- mutant than in wild-type cells. The relief of glucose catabolite repression in the Gln- mutant may result from poor utilization of glucose. Examination of the intracellular metabolite pools of cells grown in glucose-glutamine medium showed that the glucose-6-phosphate pool was 2.5-fold lower, the pyruvate pool was 4-fold lower, and the 2-ketoglutarate pool was 2.5-fold lower in the Gln- cells than they were in wild-type cells. Intracellular levels of glutamine were sixfold higher in the Gln- mutant than in wild-type cells. Measurements of enzymes involved in glutamine transport and utilization showed that the elevated pools of glutamine in the Gln- mutant resulted from a threefold increase in glutamine permease and a fivefold decrease in glutamate synthase. The pleiotropic effect of the gln-22 mutation on the expression of several genes suggests that either the glutamine synthetase protein or its enzymatic product, glutamine, is involved in the regulation of several metabolic pathways in B. subtilis.
Collapse
|
30
|
Abstract
An analysis of the glucose downshift mechanism in Bacillus subtilis has shown that the depression of catabolic enzymes characteristic of the 'glucose effect' includes isocitrate dehydrogenase and glucose-6-phosphate dehydrogenase. Additionally, phosphofructokinase undergoes what appears to be a reversible modification regulated by glucose transport.
Collapse
|
31
|
Sacks LE. Stimulation of sporulation of Clostridium perfringens by papaverine. EXPERIENTIA 1982; 38:246-7. [PMID: 6277684 DOI: 10.1007/bf01945092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Papaverine induced sporulation in Clostridium perfringens, strains FD-1 and PS52; growth was markedly slowed under these conditions. Papaverine induced sporulation in the presence of glucose, a sporulation repressor, although increasing glucose concentrations overcame the papaverine effect. Papaverine induced sporulation of strain FD-1 more effectively than did theophylline.
Collapse
|
32
|
Malik VS. Genetics and Biochemistry of Secondary Metabolism. ADVANCES IN APPLIED MICROBIOLOGY 1982. [DOI: 10.1016/s0065-2164(08)70233-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
|
34
|
Foster JW, Katz E. Control of actinomycin D biosynthesis in Streptomyces parvullus: regulation of tryptophan oxygenase activity. J Bacteriol 1981; 148:670-7. [PMID: 6117549 PMCID: PMC216254 DOI: 10.1128/jb.148.2.670-677.1981] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tryptophan oxygenase (tryptophan 2,3-dioxygenase) activity increases immediately before the initiation of actinomycin D production by Streptomyces parvullus. We have attempted to discern whether this increase is due to a release from catabolite repression or to the synthesis of an inducer substance. The standard culture medium (glutamic acid-histidine-fructose medium) used in antibiotic production studies with S. parvullus contains l-glutamate as a major constituent. l-Glutamate is almost totally consumed before the onset of actinomycin D synthesis. The addition of 10 mM l-glutamate at this stage completely abolished actinomycin D production as well as tryptophan oxygenase synthesis. Fourteen amino acids were tested for a similar effect. Of these, l-glutamate and l-aspartate had the most dramatic effect on tryptophan oxygenase and beta-galactosidase (beta-d-galactosidase), another inducible enzyme. Standard glutamic acid-histidine-fructose medium, preincubated for 23 h to remove l-glutamate, allowed the synthesis of actinomycin D and tryptophan oxygenase by cells at a stage of growth normally considered too early for antibiotic production. A chemically defined medium lacking l-glutamate and adjusted to pH 8.0 was designed to simulate the preincubation medium. The transfer of cells to this artificial preincubation medium resulted in the appearance of tryptophan oxygenase as early as 19 h before normal synthesis occurred, eliminating the possibility that an inducer molecule is synthesized and excreted during the preincubation period. The results of these studies suggest that the increase in tryptophan oxygenase activity before the onset of actinomycin D synthesis, as well as the synthesis of actinomycin D itself, is due to a release from l-glutamate catabolite repression.
Collapse
|
35
|
Labbe RG, Nolan LL. Stimulation of Clostridium perfringens enterotoxin formation by caffeine and theobromine. Infect Immun 1981; 34:50-4. [PMID: 6271685 PMCID: PMC350819 DOI: 10.1128/iai.34.1.50-54.1981] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the presence of 100 micrograms of caffeine per ml or 200 micrograms of theobromine per ml, sporulation of Clostridium perfringens NCTC 8679 rose from less than 1 to 80 or 85%. Enterotoxin concentration increased from undetectable levels to 450 micrograms/mg of cell extract protein. Heat-resistant spore levels increased from less than 1,000 to between 1 X 10(7) and 2 X 10(7)/ml. These effects were partially reversible by the addition of adenosine or thymidine. In the case of NCTC 8238, caffeine and theobromine caused a three- to fourfold increase in the percentages of cells possessing refractile spores and a similar increase in enterotoxin concentration. Heat-resistant spore levels, however, were unaffected. Inosine was ineffective in promoting sporulation in NCTC 8679.
Collapse
|
36
|
|
37
|
|
38
|
Hood EE, Armour S, Ownby JD, Handa AK, Bressan RA. Effect of nitrogen starvation on the level of adenosine 3',5'-monophosphate in Anabaena variabilis. Biochim Biophys Acta Gen Subj 1979; 588:193-200. [PMID: 228756 DOI: 10.1016/0304-4165(79)90202-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low levels of adenosine 3',5'-monophosphate (cyclic AMP) were detected in the cyanobacterium Anabaena variabilis using a protein binding assay and two radioisotopic labelling methods. The basal concentration of intracellular cyclic AMP ranged from 0.27 pmol/mg protein in A. variabilis Kutz grown under heterotrophic conditions to 1.0--2.7 pmol/mg protein in A. variabilis strain 377 grown autotrophically. Extracellular cyclic AMP was found to comprise as much as 90% of the total cyclic AMP in rapidly growing cultures. When A. variabilis strain 377 was starved of nitrogen, a 3--4-fold increase in intracellular cyclic AMP was observed during the 24 h period coincident with early heterocyst development.
Collapse
|
39
|
Setlow B, Setlow P. Levels of cyclic GMP in dormant, germinated, and outgrowing spores and growing and sporulating cells of Bacillus megaterium. J Bacteriol 1978; 136:433-6. [PMID: 213418 PMCID: PMC218677 DOI: 10.1128/jb.136.1.433-436.1978] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The level of cyclic GMP was less than one molecule per organism in dormant, germinated, and outgrowing spores of Bacillus megaterium. A significant level (approximately 8 pmol/g, dry weight) of cyclic GMP was found in early to mid-log phase cells, but the level fell to below 0.2 pmol/g, dry weight, in late-log phase and only rose slightly to approximately 0.9 pmol/g, dry weight, in stationary phare. No significant amount of cyclic GMP was detected in the growth medium at any time.
Collapse
|
40
|
Donohue TJ, Bernlohr RW. Effect of cultural conditions on the concentrations of metabolic intermediates during growth and sporulation of Bacillus licheniformis. J Bacteriol 1978; 135:363-72. [PMID: 681276 PMCID: PMC222392 DOI: 10.1128/jb.135.2.363-372.1978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Intracellular concentrations of adenine nucleotides and intermediates of the Embden-Meyerhof pathway and the tricarboxylic acid cycle have been determined during growth and sporulation of Bacillus licheniformis in a variety of different media. The ATP pool was independent of growth rate and nitrogen source, but the use of glucose as a carbon source resulted in a twofold elevation in the ATP pool during exponential growth. The intracellular phosphoenolpyruvate pool was at least twofold higher during gluconeogenesis than during glycolysis. The finding that the use of glutamate as the sole nitrogen source resulted in at least a fivefold elevation of the alpha-ketoglutarate pool suggests a role for alpha-ketoglutarate in the repression of the enzymes of the tricarboxylic acid cycle responsible for alpha-ketoglutarate synthesis. Not one of the metabolites assayed appears to function as a signal of the nutrient deprivation which accompanies the initiation of sporulation.
Collapse
|
41
|
|
42
|
Ikeuchi T, Kurahashi K. Early-blocked asporogenous mutants of Bacillus subtilis are lysogenized at reduced frequency by temperate bacteriophages. J Bacteriol 1978; 134:440-5. [PMID: 96089 PMCID: PMC222271 DOI: 10.1128/jb.134.2.440-445.1978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The establishment of lysogeny in early-blocked asporogenous (Spo-) mutants of Bacillus subtilis 168, which were also defective in the production of antibiotics (Abs-), by temperate phage phi105 or SPO2 was studied. It was found that the frequency of lysogenization of Spo-Abs-mutants was 10 to 20% that of the wild-type bacteria. There was no difference in the efficiency of plating and the burst size of phi105 between wild-type and mutant strains. Phi105 lysogens of mutant strains were as stable as those of the wild type. Several rifampin-resistant mutants defective in the production of antibiotics were isolated. They were also defective in spore formation and lysogenized by phi105 at reduced frequency.
Collapse
|
43
|
Schneider F, Lefebvre G, Gay R, Raval G. [Demonstration, kinetic study and solubilization of particular adenylate cyclase from Nocardia restricta]. Biochimie 1978; 60:45-55. [PMID: 647069 DOI: 10.1016/s0300-9084(78)80197-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An adenylate cyclase (EC r.6.1.1.) was found in cell-free extracts of several Nocardia species. The enzyme from Nocardia restricta has been specially studied. It is a membrane enzyme which exhibits a strong specific activity, one hundred times greater than that of mammals. It has an optimal pH of 8.5 in Tris buffer and an absolute requirement for divalent ions, Mg++ or Mn++ (Mn++ ions are the most efficient). The kinetic properties of this adenylate cyclase are similar to those that could be expected of an allosteric enzyme having, as a substrate, the ATP-Mg++ complex and, as an activator, free Mn++ ions. Ca++ ions are activators: they set up the maximum velocity without modification of the KM. GTP is a competitive inhibitor (KI = 5.10(-5) M). Fluoride ions have no detectable effect on activity. Non-ionic detergents, Lubrol WX and Triton X 100, are inhibitors of the enzyme which has been partially solubilized by repeated freezing and thawing, following by brief ultra-sonic treatment. Catalytic sites are not modified after the solubilization, but cooperative effects between moles of substrate ATP-Mn++ are diminished: the KM becomes smaller and the sigmoidal shape of the curve v = f (ATP-Mn++) is attenuated.
Collapse
|
44
|
|
45
|
Siegel LS, Hylemon PB, Phibbs PV. Cyclic adenosine 3',5'-monophosphate levels and activities of adenylate cyclase and cyclic adenosine 3',5'-monophosphate phosphodiesterase in Pseudomonas and Bacteroides. J Bacteriol 1977; 129:87-96. [PMID: 187575 PMCID: PMC234899 DOI: 10.1128/jb.129.1.87-96.1977] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A modified Gilman assay was used to determine the concentrations of cyclic adenosine 3',5'-monophosphate (cAMP) in rapidly filtered cells and in the culture filtrates of Pseudomonas aeruginosa, Escherichia coli K-12, and Bacteroides fragilis. In P. aeruginosa cultures, levels of cAMP in the filtrate increased with the culture absorbance (3.5 to 19.8 X 10(-9) M) but did not vary significantly with the carbon source used to support growth. Intracellular concentrations (0.8 to 3.2 X 10(-5) M) were substantially higher and did not vary appreciably during growth or with carbon source. Sodium cAMP (5 mM) failed to reverse the catabolite repression of inducible glucose-6-phosphate dehydrogenase (EC 1.1.1.49) synthesis caused by the addition of 10 mM succinate. Exogenous cAMP also had no discernible effect on the catabolite repression control of inducible mannitol dehydrogenase (EC 1.1.1.67). P. aeruginosa was found to contain both soluble cAMP phosphodiesterase (EC 3.1.4.17) and membrane-associated adenylate cyclase (EC 4.6.1.1) activity, and these were compared to the activities detected in crude extracts of E. coli. B. fragilis crude cell extracts contain neither of these enzyme activities, and little or no cAMP was detected in cells or culture filtrates of this anaerobic bacterium.
Collapse
|
46
|
Kerjan P, Szulmajster J. Isolation and properties of a cyclic guanosine-monophosphate sensitive intracellular ribonuclease from Bacillus subtilis. Biochimie 1976; 58:533-41. [PMID: 182287 DOI: 10.1016/s0300-9084(76)80223-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A ribonuclease was isolated and completely purified from sporulating cells of Bacillus subtilis. This RNase has a M.W. of about 150,000 daltons. It hydrolyzes single stranded RNA and single stranded synthetic polynucleotides yielding nucleoside 5'-monophosphates. The enzyme is an exonuclease which degrades polynucleotides from the 3'-end in the direction of the 5'-terminal. The RNase activity is strikingly inhibited by cGMP and to a lesser extent by cAMP. This inhibition (Ki = 0.1 mM) is of a non competitive nature. It appeared that in addition to the inhibition site, the enzyme contains a high affinity binding site for the two cyclic mononucleotides (K (cAMP) = 8.3 x 10-8; K (cGMP) = 2.5 x 10-7). The RNase activity is also strongly inhibited by spermidine. This inhibition appeared to be due to the polyamine binding with the RNA, thus lowering the affinity of the substrate for the active site of the enzyme. This RNase may play a role in vivo in selective degradation of newly synthesized mRNA during sporulation.
Collapse
|
47
|
Emeruwa AC, Hawirko RZ. Effect of cyclic AMP on catabolite repressed bacterial sporogenesis of an anaerobe. Arch Microbiol 1975; 105:67-71. [PMID: 242295 DOI: 10.1007/bf00447115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The sporulation of a high frequency sporogenic mutant of Clostridium botulinum was reduced to less than 30% in a medium containing 270 mM glucose. The repression was reversed from 30 to greater than 80% sporulation by the addition of 10(-5) or 10(-4) M cyclic 3',5'-adenosine monophosphate (cAMP) or monobutyrul cyclic AMP (B-cAMP). No difference was observed in amount of growth with the addition of either the cAMP or B-cAMP. Glucose consumption was enhanced by the addition of either of the cyclic nucleotides and corresponding changes in pH were observed. The catabolite repression by glucose was reversed by ATP or ADP. Except for GTP, guanine nucleotides were not effective. The intracellular cyclic AMP levels were high in vegetative, sporulating and derepressed cells, but low in glucose-repressed cells. The findings suggest that the sporulation of the anaerobe was sensitive to catabolite repression which was specifically reversed by cyclic AMP.
Collapse
|
48
|
Priest FG. Typist: effect of glucose and cyclic nucleotides on the transcription of alpha-amylase mRHA in Bacillus subtilis. Biochem Biophys Res Commun 1975; 63:606-10. [PMID: 165810 DOI: 10.1016/s0006-291x(75)80427-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Sarkar N, Paulus H. A guanosine 3':5'-monophosphate-sensitive nuclease from Bacillus brevis. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)41950-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
50
|
Coote JG. Comparative studies on induction of sporulation and synthesis of inducible enzymes in Bacillus subtilis. J Bacteriol 1974; 120:1102-8. [PMID: 4215791 PMCID: PMC245888 DOI: 10.1128/jb.120.3.1102-1108.1974] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An attempt was made to determine whether sporulation and inducible enzyme synthesis in Bacillus subtilis are controlled by the same mechanism of catabolite repression. By the use of a thymine-requiring strain, it has been shown that, whereas sporulation remained repressed unless chromosome replication proceeded to completion, the induction of the enzymes histidase, sucrase, and alpha-glucosidase proceeded quite normally in the absence of continued deoxyribonucleic acid synthesis. It is concluded that the mechanism for overcoming the repression of sporulation differs qualitatively from that involved in overcoming the repression of inducible enzyme synthesis. Attempts to isolate pleiotropic mutants that would provide additional support for this contention were unsuccessful. A pleiotropic mutant deficient in phosphoenolpyruvate-dependent phosphotransferase activity sporulated quite well, whereas a mutant presumed deficient in glutamate synthetase sporulated poorly under all conditions.
Collapse
|