1
|
Mekhtiev AR, Fedchenko VI, Tkachev IV, Timofeev VP, Misharin AI. [Regulation of cholesterol biosynthesis and metabolism in Hep G2 cells by delta8(14)-15-ketoergostane derivatives]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2011; 56:576-86. [PMID: 21254628 DOI: 10.18097/pbmc20105605576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The comparative study of effects of 5alpha-cholest-8(14)-en-15-on-3beta-ol (I), (22E)-5alpha-ergosta-8(14),22-dien-15-on-3beta-ol (II), (22S,23S)-22,23-oxido-5alpha-ergost-8(14)-en- 15-on-3beta-ol (III) and (22R,23R)-22,23-oxido-5alpha-ergost-8(14)-en-15-on-3beta-ol (IV) on HMG-CoA reductase, CYP27A1 and CYP3A4 genes expression in Hep G2 cells was performed. In the contrast to 15-ketocholestane derivative (I), 15-ketoergostane derivatives (II - IV) decreased the HMG- CoA reductase mRNA level; (22R,23R)-22,23-oxido-5alpha-ergost-8(14)-en-15-on-3beta-ol (IV) significantly increased CYP3A4 mRNA level (320% from control). Ketosterol (II) was found to be a more potent inhibitor of cholesterol biosynthesis in Hep G2 cells at a prolong incubation, compared with ketosterol (I). The side chain conformation of compounds (I) - (IV) was evaluated by computational modeling; the correlation between biological activity of these compounds and conformational flexibility of their side chains was found. The results obtained indicated that delta8(14)-15-ketoergostane derivatives may be used as a sterol biosynthesis and metabolism regulators in liver cells.
Collapse
|
2
|
Wielkoszyński T, Gawron K, Strzelczyk J, Bodzek P, Zalewska-Ziob M, Trapp G, Srebniak M, Wiczkowski A. Cellular toxicity of oxycholesterols. Bioessays 2006; 28:387-98. [PMID: 16547953 DOI: 10.1002/bies.20383] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oxycholesterols (OS) are formed from cholesterol or its immediate precursors by enzymatic or free radical action in vivo, or they may be derived from food. OS exhibit a wide spectrum of biological activities. In OS cytotoxicity, several mechanisms seem to be involved: e.g. inhibition of HMG-CoA reductase activity, antiproliferative action, apoptosis induction, replacement of cholesterol by OS in membranes followed by changes in cellular membrane structure and functionality, and immune system functions alteration. Furthermore, OS may be mutagenic and carcinogenic and may serve as intracellular signaling or regulatory molecules. Here we review OS cellular activities with special attention to the cytotoxic action in vivo and in vitro using experimental models.
Collapse
|
3
|
Abstract
Oxygenated derivatives of cholesterol (oxysterols) present a remarkably diverse profile of biological activities, including effects on sphingolipid metabolism, platelet aggregation, apoptosis, and protein prenylation. The most notable oxysterol activities center around the regulation of cholesterol homeostasis, which appears to be controlled in part by a complex series of interactions of oxysterol ligands with various receptors, such as the oxysterol binding protein, the cellular nucleic acid binding protein, the sterol regulatory element binding protein, the LXR nuclear orphan receptors, and the low-density lipoprotein receptor. Identification of the endogenous oxysterol ligands and elucidation of their enzymatic origins are topics of active investigation. Except for 24, 25-epoxysterols, most oxysterols arise from cholesterol by autoxidation or by specific microsomal or mitochondrial oxidations, usually involving cytochrome P-450 species. Oxysterols are variously metabolized to esters, bile acids, steroid hormones, cholesterol, or other sterols through pathways that may differ according to the type of cell and mode of experimentation (in vitro, in vivo, cell culture). Reliable measurements of oxysterol levels and activities are hampered by low physiological concentrations (approximately 0.01-0.1 microM plasma) relative to cholesterol (approximately 5,000 microM) and by the susceptibility of cholesterol to autoxidation, which produces artifactual oxysterols that may also have potent activities. Reports describing the occurrence and levels of oxysterols in plasma, low-density lipoproteins, various tissues, and food products include many unrealistic data resulting from inattention to autoxidation and to limitations of the analytical methodology. Because of the widespread lack of appreciation for the technical difficulties involved in oxysterol research, a rigorous evaluation of the chromatographic and spectroscopic methods used in the isolation, characterization, and quantitation of oxysterols has been included. This review comprises a detailed and critical assessment of current knowledge regarding the formation, occurrence, metabolism, regulatory properties, and other activities of oxysterols in mammalian systems.
Collapse
Affiliation(s)
- G J Schroepfer
- Departments of Biochemistry, Rice University, Houston, Texas, USA.
| |
Collapse
|
4
|
Abstract
(25R)-3beta,26-Dihydroxy-5alpha-cholest-8(14)-en-15-one (1) and (25R)-3beta,26-dihydroxy-5alpha,14beta-cholest-16-en-1 5-one (2) were synthesized from (25R)-3beta,26-dibenzoyloxy-5alpha,14alpha-chole st-16-ene (4). Oxidation of 4 with CrO3-3,5-dimethylpyrazole at -20 degrees C gave (25R)-3beta,26-dibenzoyloxy-5alpha,14alpha-chole st-16-en-15-one (5) along with (25R)-3beta,26-dibenzoyloxy-5alpha-cholest-16alpha+ ++,17alpha-epoxide (6). Oxidation of 5 with selenium dioxide afforded (25R)-3beta,26-dibenzoyloxy-5alpha-cholest-8(14),16-++ +dien-15-one (7) and (25R)-3beta,26-dibenzoyloxy-5alpha,14beta-choles t-16-en-15-one (8). Selective hydrogenation of 7 followed by hydrolysis in alcoholic potassium hydroxide yielded (25R)-3beta,26-dihydroxy-5alpha-cholest-8(14)-en-15-one (1). Hydrolysis of 5 and 8 in alcoholic potassium hydroxide provided (25R)-3beta,26-dihydroxy-5alpha,14beta-cholest-16-en-1 5-one (2).
Collapse
Affiliation(s)
- H S Kim
- Department of Industrial Chemistry, Kyungpook National University, Taegu, South Korea.
| | | |
Collapse
|
5
|
Carroll JN, Pinkerton FD, Su X, Gerst N, Wilson WK, Schroepfer GJ. Sterol synthesis. Synthesis of 3 beta-hydroxy-25,26,26,26,27,27,27-heptafluorocholest-5-en-7-one and its effects on HMG-CoA reductase activity in Chinese hamster ovary cells, on ACAT activity in rat jejunal microsomes, and serum cholesterol levels in rats. Chem Phys Lipids 1998; 94:209-25. [PMID: 9779586 DOI: 10.1016/s0009-3084(98)00058-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3 beta-Hydroxycholest-5-en-7-one (I; 7-ketocholesterol) is an oxysterol of continuing interest in biology and medicine. In the present study, we have prepared a side-chain fluorinated analog, 3 beta-hydroxy-25,26,26,26,27,27,27-heptafluorocholest-5-en-7-one (VI), with the anticipation that the F7 substitution would block major metabolism of the 7-ketosterol, and thereby enhance its potential in vivo effects on serum cholesterol levels and other parameters. Chromium trioxide/dimethyl pyrazole oxidation of the acetate derivative of the previously described 25,26,26,26,27,27,27-heptafluorocholest-5-en-3 beta-ol (Swaminathan et al., 1993. J. Lipid Res. 34, 1805-1823) followed by mild alkaline hydrolysis gave VI. The effects of VI on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in Chinese hamster ovary (CHO-K1) cells, on acyl coenzyme A-cholesterol acyltransferase (ACAT) activity in rat jejunal microsomes, and on serum cholesterol levels and other parameters in male Sprague-Dawley rats were determined and compared with those obtained with I and with another alpha, beta-unsaturated ketosterol, i.e. 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (II). I and VI showed essentially the same potency, considerably less than that of II, in lowering the levels of HMG-CoA reductase activity in CHO-K1 cells. Whereas addition of II to rat jejunal microsomes inhibited ACAT activity (IC50 approximately 3 microM), I and VI had no effect under the conditions studied (from 1 to 16 microM). Dietary administration of I, at levels of 0.1 and 0.15%, had no effect on food consumption, gain in body weight, or serum cholesterol levels. At 0.2%, I caused a modest decrease in body weight gain and a slight decrease in serum cholesterol levels (relative to ad libitum but not pair-fed control animals). The F7-7-ketosterol VI, at 0.26% in diet (the molar equivalent of 0.2% I), had no effect on food consumption, body weight, or serum cholesterol levels. Administration of I (0.1, 0.15 or 0.2% in diet) caused increases in the weight of small intestine. In contrast, no effect of VI (0.26% in diet) on small intestinal weight was observed.
Collapse
Affiliation(s)
- J N Carroll
- Department of Chemistry, Rice University, Houston, TX 77251-1892, USA
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Material dealing with the chemistry, biochemistry, and biological activities of oxysterols is reviewed for the period 1987-1995. Particular attention is paid to the presence of oxysterols in tissues and foods and to their physiological relevance.
Collapse
Affiliation(s)
- L L Smith
- University of Texas Medical Branch, Galveston 77555-0653, USA
| |
Collapse
|
7
|
Kim HS, Oh SH, Kim DI, Kim IC, Cho KH, Park YB. Chemical synthesis of 15-ketosterols and their inhibitions of cholesteryl ester transfer protein. Bioorg Med Chem 1995; 3:367-74. [PMID: 8581419 DOI: 10.1016/0968-0896(95)00025-c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Described herein are the chemical syntheses of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one and 3 beta-hydroxy-5 alpha-cholest-8(14),16-dien-15-one from diosgenin and the examinations of their ability to inhibit the cholesteryl ester transfer protein (CETP). Clemmensen reduction of diosgenin gave cholest-5-ene-3 beta, 16 beta,26-triol. Tosylation of the latter compound gave cholest-5-ene-3 beta,16 beta,26-triol 26-tosylate which, upon reduction with LiAIH4, gave cholest-5-ene-3 beta,16 beta-diol. Hydrogenation-benzoylation of the latter to 5 alpha-cholest-3 beta,16 beta-diol 3 beta-benzoate followed by mesylation-elimination gave 5 alpha-cholest-16-ene-3 beta-ol 3 beta-benzoate. Controlled oxidation of the latter with CrO3-dimethylpyrazole gave 3 beta-hydroxy-5 alpha, 14 alpha-cholest-16-en-15-one 3 beta-benzoate. Oxidation of delta 16-15-one with SeO2 gave 3 beta-hydroxy-5 alpha-cholest-8(14),16-dien-15-one 3 beta-benzoate along with 3 beta-hydroxy-5 alpha, 14 beta-cholest-16-en-15-one 3 beta-benzoate. Selective hydrogenation of the delta 8(14),16-15-ketosteryl ester, followed by base hydrolysis gave 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one. Hydrolysis of 3 beta-hydroxy-5 alpha-cholest-8(14),16-dien-15-one 3 beta-benzoate in basic media gave 3 beta-hydroxy-5 alpha-cholest-8(14),16-dien-15-one. The effects of the 15-ketosterols on the CETP activity were studied in vitro by incubating cholesteryl ester donor (HDL), cholesteryl ester acceptor (LDL) and human plasma as a CETP source at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H S Kim
- Department of Industrial Chemistry, Kyungpook National University, Taegu, Korea
| | | | | | | | | | | |
Collapse
|
8
|
Swaminathan S, Siddiqui AU, Gerst N, Pinkerton FD, Kisic A, Kim LJ, Wilson WK, Schroepfer GJ. Inhibitors of sterol synthesis. Metabolism-based design and construction of a new analog of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one and its effects in cultured mammalian cells and in rats. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)40062-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Parish EJ, Parish SC, Li S. Side-chain oxysterol regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Lipids 1995; 30:247-51. [PMID: 7791533 DOI: 10.1007/bf02537828] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Side-chain oxysterols are known to be potent inhibitors of 3-hydroxy-3-methylglutaryl CoA reductase, a key regulatory enzyme in the biosynthesis of sterols. Structural variations in the side-chain oxysterols influence enzyme inhibition. Under certain conditions, biological systems have been induced to produce side-chain oxysterols, adding support to the hypothesis that oxysterols may be natural regulators of sterol biosynthesis in the intact cell. Specific inhibition of sterol biosynthesis is of interest as it may prove useful in the prevention or reversal of various cardiovascular disease states, as well as in the control of normal and abnormal cell growth.
Collapse
Affiliation(s)
- E J Parish
- Department of Chemistry, Auburn University, Alabama 36849, USA
| | | | | |
Collapse
|
10
|
Gerst N, Pinkerton FD, Kisic A, Wilson WK, Swaminathan S, Schroepfer G. Inhibitors of sterol synthesis. Effects of a new fluorinated analog of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one in rats. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)40100-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Siddiqui AU, Wilson WK, Schroepfer GJ. Inhibitors of sterol synthesis. An improved chemical synthesis of 26-oxygenated delta 8(14)-15-ketosterols having the 25R configuration. Chem Phys Lipids 1994; 71:205-18. [PMID: 8076403 DOI: 10.1016/0009-3084(94)90072-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
(25R)-3 beta,26-Dihydroxy-5 alpha-cholest-8(14)-en-15-one (I) was synthesized in four steps from (25R)-3 beta,26-diacetoxycholesta-5,7-diene (III) in 30% overall yield. Isomerization of III with HCl in chloroform-dichloromethane at -60 degrees C gave (25R)-3 beta,26-diacetoxy-5 alpha-cholesta-7,14-diene together with the 5 alpha-delta 8,14 and 5 beta-delta 8,14 isomers in a 5:1:1 ratio. Epoxidation of the crude diene mixture with m-chloroperbenzoic acid, followed by hydrolysis in acetone containing concentrated HClO4 (0.1%) gave (25R)-3 beta,26-diacetoxy-5 alpha-cholest-8(14)-en-15-one (VIII), accompanied by numerous minor byproducts, including the 5 alpha,14 beta-delta 7, 5 alpha, 14 beta-delta 8 and 5 beta,14 beta-delta 8 isomers of VIII. All four 15-ketosterol esters were isolated by chromatography and fully characterized by mass spectrometry and 1H and 13C nuclear magnetic resonance. Treatment of VIII with potassium carbonate in degassed methanol gave I.
Collapse
Affiliation(s)
- A U Siddiqui
- Department of Biochemistry, Rice University, Houston, Texas 77251-1892
| | | | | |
Collapse
|
12
|
Ni Y, Kisic A, Wilson WK, Schroepfer GJ. Inhibitors of sterol synthesis. Tritium-labeled 26-hydroxycholesterol of high specific activity from a byproduct of the Clemmensen reduction of diosgenin. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)41205-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Inhibitors of sterol synthesis. Chemical synthesis and properties of 3 beta-hydroxy-25,26,26,26,27,27,27-heptafluoro-5 alpha-cholest-8(14)-en-15-one and 25,26,26,26,27,27,27-heptafluorocholesterol and their effects on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured mammalian cells. J Lipid Res 1993. [DOI: 10.1016/s0022-2275(20)35743-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
|
15
|
Siddiqui AU, Wilson WK, Ruecker KE, Pinkerton FD, Schroepfer GJ. Inhibitors of sterol synthesis. Chemical syntheses and spectral properties of 26-oxygenated derivatives of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one and their effects on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells. Chem Phys Lipids 1992; 63:77-90. [PMID: 1486662 DOI: 10.1016/0009-3084(92)90025-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
26-Oxygenated derivatives of delta 8(14)-15-ketosterols have been synthesized from (25R)-3 beta,26-diacetoxy-5 alpha-cholest-8(14)-en-15-one (IX) as part of a program to prepare potential metabolites and analogs of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (I), a potent regulator of cholesterol metabolism. Partial hydrolysis of IX gave a mixture, from which the 3 beta,26-diol II and the 26-acetate (XI) and 3 beta-acetate (X) monoesters were isolated. Mitsunobu reaction of XI followed by hydrolysis gave (25R)-3 alpha,26-dihydroxy-5 alpha-cholest-8(14)-en-15-one (VI). Oxidation of XI with pyridinium chlorochromate followed by hydrolysis of the acetate gave (25R)-26-hydroxy-5 alpha-cholest-8(14)-ene-3,15-dione (VII). Oxidation of X with Jones reagent followed by hydrolysis of the acetate gave (25R)-3 beta-hydroxy-15-keto-5 alpha-cholest-8(14)-en-26-oic acid (IVa). Jones oxidation of II gave (25R)-3,15-diketo-5 alpha-cholest-8(14)-en-26-oic acid (VII). 1H and 13C nuclear magnetic resonance assignments and analyses of mass spectral fragmentation data are presented for each of the new compounds and their derivatives. The 3,15-diketone VII was found to be highly active in lowering the levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells, with a potency comparable to that of I. In contrast, 3 alpha,26-diol VI was less potent than I or VII. The two carboxylic acid analogs IVa and VIII were considerably less potent than VI in lowering the levels of HMG-CoA reductase activity.
Collapse
Affiliation(s)
- A U Siddiqui
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251-1892
| | | | | | | | | |
Collapse
|
16
|
Swaminathan S, Pinkerton FD, Numazawa S, Wilson WK, Schroepfer GJ. Inhibitors of sterol synthesis. Chemical synthesis and spectral properties of 3 beta-hydroxy-5 alpha-cholesta-8(14),24-dien-15-one, 3 beta,25-dihydroxy-5 alpha-cholest-8(14)-en-15-one, and 3 beta,24-dihydroxy-5 alpha-cholest-8(14)-en-15-one and their effects on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells. J Lipid Res 1992. [DOI: 10.1016/s0022-2275(20)41405-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Kim HS, Wilson WK, Kirkpatrick ND, Pinkerton FD, Swaminathan S, Hylarides MD, Schroepfer GJ. Inhibitors of sterol synthesis. Chemical synthesis of 7 alpha-ethyl and 16 alpha-ethyl derivatives of delta 8(14)-15-oxygenated sterols and their effects on 3-hydroxy-3-methylglutaryl coenzyme A reductase in CHO-K1 cells. Chem Phys Lipids 1992; 62:55-67. [PMID: 1423803 DOI: 10.1016/0009-3084(92)90054-s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The enolate of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (II), formed upon treatment of II with potassium tert-butoxide in tert-butanol, was alkylated with ethyl iodide. In addition to the major products, 3 beta-hydroxy-14 alpha-ethyl-5 alpha-cholest-7-en-15-one and its 3 beta-ethyl ether, small amounts of 3 beta-hydroxy-7 alpha-ethyl-5 alpha-cholest-8(14)-en-15-one (V), 3 beta-hydroxy-16 alpha-ethyl-5 alpha-cholest-8(14)-en-15-one (VI) and the 3 beta-ethyl ether of VI were isolated. When the enolate of II was formed by treatment with lithium diisopropylamide in tetrahydrofuran, the same alkylation furnished VI as the major product. Reduction of VI with lithium aluminum hydride gave 16 alpha-ethyl-5 alpha-cholest-8(14)-ene-3 beta, 15 alpha-diol (IX) and its 15 beta epimer X, which were separated by column chromatography. Full 1H and 13C nuclear magnetic resonance (NMR) assignments, augmented by nuclear Overhauser effect difference spectra for VI, established the stereochemistry of these diols at C-15 and C-16. The NMR results indicate that the 16 alpha-ethyl group affects the side-chain conformation. The effects of II, V, VI, IX and X on the levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity were studied in CHO-K1 cells. With the exception of IX, each of the compounds reduced the levels of HMG-CoA reductase activity. The order of potency with respect to suppression of the elevated levels of HMG-CoA reductase activity induced by transfer of the cells to lipid-deficient medium, was II greater than V greater than VI greater than X.
Collapse
Affiliation(s)
- H S Kim
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892
| | | | | | | | | | | | | |
Collapse
|
18
|
Swaminathan S, Pinkerton FD, Wilson WK, Schroepfer GJ. Inhibitors of sterol synthesis. Chemical synthesis and spectral properties of (25R)-5 alpha-cholest-8(14)-ene-3 beta,15 beta,26-triol, a potential metabolite of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one and its effects on 3-hydroxy-3-methylglutaryl-coenzyme A reductase in CHO-K1 cells. Chem Phys Lipids 1992; 61:235-42. [PMID: 1525963 DOI: 10.1016/0009-3084(92)90103-v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
(25R)-5 alpha-Cholest-8(14)-ene-3 beta,15 beta,26-triol (III) was prepared by reduction of (25R)-3 beta,26-diacetoxy-5 alpha-cholest-8(14)-en-15-one with sodium borohydride followed by treatment of the crude product with lithium aluminium hydride. The trihydroxysterol III, a potential metabolite of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one, was characterized by the results of mass spectral studies and by nuclear magnetic resonance (NMR) spectroscopy. Full 1H and 13C NMR assignments for III and 5 alpha-cholest-8(14)-ene-3 beta,15 beta-diol are given and used to establish the structure of III. The triol was found to be very potent in lowering the levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Chinese hamster ovary cells.
Collapse
Affiliation(s)
- S Swaminathan
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892
| | | | | | | |
Collapse
|
19
|
Inhibitors of sterol synthesis. A highly efficient and specific side-chain oxidation of 3 beta-acetoxy-5 alpha-cholest-8(14)-en-15-one for construction of metabolites and analogs of the 15-ketosterol. J Lipid Res 1992. [DOI: 10.1016/s0022-2275(20)41623-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Herz JE, Wilson WK, Pinkerton FD, Schroepfer GJ. Inhibitors of sterol synthesis. Synthesis and spectral properties of 3 beta-hydroxy-24-dimethylamino-5 alpha-chol-8(14)-en-15-one and its effects on HMG-CoA reductase activity in CHO-K1 cells. Chem Phys Lipids 1991; 60:61-9. [PMID: 1813179 DOI: 10.1016/0009-3084(91)90015-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A simple, three-step synthesis of the 25-aza analog of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (I) is described. Treatment of 3 beta-acetoxy-24-hydroxy-5 alpha-chol-8(14)-en-15-one (III) with 1.75 equivalents of tosyl chloride in pyridine for 24 h at 5 degrees C gave 3 beta-acetoxy-24-tosyloxy-5 alpha-chol-8(14)-en-15-one (IV). In contrast, treatment of III with 3.95 equivalents of tosyl chloride in pyridine for 12 h at 48 degrees C gave 3 beta-acetoxy-24-chloro-5 alpha-chol-8(14)-en-15-one (V). Treatment of IV with dimethylamine in dioxane yielded 3 beta-acetoxy-24-dimethylamino-5 alpha-chol-8(14)-en-15-one (VI). Hydrolysis of VI with LiOH.H2O in methanol gave 3 beta-hydroxy-24-dimethylamino-5 alpha-chol-8(14)-en-15-one (VII). 1H- and 13C-NMR assignments are presented for compounds IV-VII. The 25-aza analog (VII) of the 15-ketosterol (I), at a concentration of 1.0 microM, caused a 47% lowering of the level of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Chinese hamster ovary cells.
Collapse
Affiliation(s)
- J E Herz
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892
| | | | | | | |
Collapse
|
21
|
Inhibitors of sterol synthesis. Characterization of trimethylsilyl dienol ethers of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one. Applications in the analysis of mitochondrial metabolites of the 15-ketosterol by gas chromatography-mass spectrometry. J Lipid Res 1991. [DOI: 10.1016/s0022-2275(20)41967-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Wilson WK, Wheeler ME, Pinkerton FD, St Pyrek J, Schroepfer GJ. Inhibitors of sterol synthesis. Characterization of beta,gamma-unsaturated analogs of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one and their effects on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells. J Lipid Res 1991. [DOI: 10.1016/s0022-2275(20)41984-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
|
24
|
Davies HG, Green RH, Kelly DR, Roberts SM. Recent advances in the generation of chiral intermediates using enzymes. Crit Rev Biotechnol 1990; 10:129-53. [PMID: 2202520 DOI: 10.3109/07388559009068264] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Different types of enzyme-catalyzed processes are reviewed, with particular regard to those procedures leading to the generation of chiral compounds of high optical purity. The main body of the review deals with hydrolyses and esterification as well as the reduction and oxidation of organic substrates. Other biotransformations of current and/or future importance in the synthesis of homochiral fine chemicals (such as the formation of carbon-carbon bonds using aldolases) are also discussed in some detail. Attention is drawn to current trends in the area and, to this end, a majority of the references are taken from journals published during the period April 1987 to September 1988.
Collapse
Affiliation(s)
- H G Davies
- Department of Medicinal Chemistry, Glaxo Group Research, Greenford, Middlesex, U.K
| | | | | | | |
Collapse
|
25
|
Wilson WK, Pinkerton FD, Kirkpatrick ND, Schroepfer GJ. Inhibitors of sterol synthesis. Chemical synthesis of 5 beta-cholest-8-ene-3 beta,15 alpha-diol and its effects on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells. J Lipid Res 1989. [DOI: 10.1016/s0022-2275(20)38318-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
|
27
|
Pajewski TN, Brabson JS, Kisic A, Wang KS, Hylarides MD, Jackson EM, Schroepfer GJ. Inhibitors of sterol synthesis. Metabolism of [2,4-3H]5 alpha-cholest-8(14)-en-3 beta-ol-15-one after oral administration to a nonhuman primate. Chem Phys Lipids 1989; 49:243-63. [PMID: 2720860 DOI: 10.1016/0009-3084(89)90072-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
5 alpha-Cholest-8(14)-en-3 beta-ol-15-one is a potent inhibitor of cholesterol biosynthesis which has significant hypocholesterolemic activity upon oral administration to rodents and nonhuman primates. In the present study the metabolism of the 15-ketosterol has been investigated after the oral administration of a mixture of [2,4-3H]5 alpha-cholest-8(14)-en-3 beta-ol-15-one and [4-14C]cholesterol to 8 baboons. Blood samples were obtained at 4, 8, 12, 16, and 24 h after administration of the labeled sterols. Clear differences in the time courses of the levels of 3H and 14C in plasma were observed. 3H in plasma showed maximum values at 4 to 8 h, whereas maximum values for the levels of 14C were observed much later. 3H in plasma was shown to be primarily in the form of its metabolites, i.e. esters of the 15-ketosterol, cholesterol, and cholesteryl esters. The levels of the 15-ketosterol and of each of these metabolites showed different changes with time. The labeled cholesterol (and the cholesterol moiety of the cholesteryl esters), formed from the [2,4-3H]-15-ketosterol, was characterized by chromatography and by purification by way of its dibromide derivative. At 24 h after the administration of the labeled sterols, the distribution of 3H in plasma lipoprotein fractions paralleled that of 14C, with most of the 3H and 14C in high density lipoprotiens (HDL) and low density lipoproteins (LDL). Almost all of the 3H in HDL and in LDL was found as cholesterol, cholesteryl esters and esters of the 15-ketosterol. The distribution of 3H in HDL and in LDL of the free 15-ketosterol, esters of the 15-ketosterol, cholesterol, and cholesteryl esters was similar to that of plasma, thereby indicating no unusual concentration of any of the 3H labeled components in HDL or LDL.
Collapse
Affiliation(s)
- T N Pajewski
- Department of Biochemistry, Rice University, Houston, TX 77251
| | | | | | | | | | | | | |
Collapse
|
28
|
Kim HS, Wilson WK, Needleman DH, Pinkerton FD, Wilson DK, Quiocho FA, Schroepfer GJ. Inhibitors of sterol synthesis. Chemical synthesis, structure, and biological activities of (25R)-3 beta,26-dihydroxy-5 alpha-cholest-8(14)-en-15-one, a metabolite of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one. J Lipid Res 1989. [DOI: 10.1016/s0022-2275(20)38385-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Parish EJ, Tsuda M, Schroepfer GJ. Stereospecific 1,4-addition to an alpha,beta-unsaturated steroidal epoxide: syntheses of new 15-oxygenated sterols. Chem Phys Lipids 1988; 49:119-29. [PMID: 3233707 DOI: 10.1016/0009-3084(88)90073-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
3 beta-Benzoyloxy-14 alpha,15 alpha-epoxy-5 alpha-cholest-7-ene (1) is a key intermediate in the synthesis of C-7 and C-15 oxygenated sterols. Treatment of 1 with benzoyl chloride resulted in the formation of 3 beta,15 alpha-bis-benzoyloxy-7 alpha-chloro-5 alpha-cholest-8(14)-ene (2). Reaction of 2 with LiAlH4 or LiAlD4 resulted in the formation of 5 alpha-cholest-7-ene-3 beta,15 alpha-diol (3a) or [14 alpha-2H]5 alpha-cholest-7-ene-3 beta,15 alpha-diol (3b). Diol 3b was selectively oxidized by Ag2CO3/celite to [14 alpha-2H]5 alpha-cholest-7-en-15 alpha-ol-3-one (4). Treatment of 1 with MeMgI/CuI gave 7 alpha-methyl-5 alpha-cholest-8(14)-ene-3 beta,15 alpha-diol (5). Selective oxidation of 5 with pyridinium chlorochromate (PCC)/pyridine or oxidation with PCC resulted in the formation of 7 alpha-methyl-5 alpha-cholest-8(14)-en-3 beta-ol-15-one (6) and 7 alpha-methyl-5 alpha-cholest-8(14)-ene-3,15-dione, respectively. Reduction of 6 with LiAlH4 yielded 5 and 7 alpha-methyl-5 alpha-cholest-8(14)-ene-3 beta,15 beta-diol (6). Reaction of 1 with benzoic acid/pyridine gave 3 beta,7 alpha-bis-benzoyloxy-5 alpha-cholest-8(14)-en-15 alpha-ol (9). Treatment of 9 with LiAlH4 or ethanolic KOH resulted in the formation of 5 alpha-cholest-8(14)-ene-3 beta,7 alpha,15 alpha-triol (10). Dibenzoate 9, upon brief treatment with mineral acid, gave 3 beta-benzoyloxy-5 alpha-cholest-8(14)-ene-15-one (11). Oxidation of 9 with PCC yielded 3 beta,7 alpha-bis-benzoyloxy-5 alpha-cholest-8(14)-ene-15-one (12). Ketone 12 was also prepared by the selective hydride reduction of 5 alpha-cholest-8(14)-en-7 alpha-ol-3,15-dione (13) to give 5 alpha-cholest-8(14)-ene-3 beta,7 alpha-diol-15-one (14), which was then treated with benzoyl chloride to produce 12.
Collapse
Affiliation(s)
- E J Parish
- Department of Biochemistry, Rice University, Houston, TX 77001
| | | | | |
Collapse
|
30
|
Pinkerton FD, Kirkpatrick ND, Schroepfer GJ. Inhibitors of sterol synthesis. Exogenous oleate reduces the inhibitory effect of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one on the growth of CHO-K1 cells. Biochem Biophys Res Commun 1988; 156:689-94. [PMID: 3190675 DOI: 10.1016/s0006-291x(88)80897-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
5 alpha-Cholest-8(14)-en-3 beta-ol-15-one, a hypocholesterolemic agent and a potent inhibitor of sterol biosynthesis, inhibited the growth of CHO-K1 cells incubated in medium containing fetal calf serum. The concentration of the oxysterol required to inhibit growth by 50% was 13 microM. Sodium oleate (82 microM) reduced the inhibitory effects of the sterol, and increased the concentration of the 15-ketosterol required to cause a 50% inhibition of growth to 25 microM. The ACAT inhibitor N'-(2,4-difluoro-phenyl)-N-[4-(2,2-dimethylpropy)-phenyl]-methyl)- N- heptylurea (5 microM) abolished the effect of sodium oleate, and reduced the concentration of the 15-ketosterol required to inhibit growth by 50% to 5 microM.
Collapse
Affiliation(s)
- F D Pinkerton
- Department of Biochemistry, Rice University, Houston, Texas 77251
| | | | | |
Collapse
|
31
|
Schroepfer GJ, Christophe A, Chu AJ, Izumi A, Kisic A, Sherrill BC. Inhibitors of sterol synthesis. A major role of chylomicrons in the metabolism of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one in the rat. Chem Phys Lipids 1988; 48:29-58. [PMID: 3208415 DOI: 10.1016/0009-3084(88)90131-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The metabolism of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one (I), a potent regulator of cholesterol (Chol) metabolism which has significant hypocholesterolemic activity upon oral administration to animals, has been investigated in male rats. After intragastric administration of [2,4-3H] I and [4-14C]Chol in triolein to intestinal lymph duct-cannulated rats, most of the 3H of the lymph was associated with chylomicrons. Most of the 3H in the chylomicrons was associated with fatty acid esters of I and the oleate ester represented the major species of the esters of I. After intravenous injection of the isolated doubly-labeled chylomicrons to intact rats, rapid clearance of 3H and 14C from blood was observed which was associated with a rapid and selective uptake of 3H and 14C by liver. The rate of disappearance of 3H from blood and the rate of uptake of 3H by liver were similar, if not identical, to those for 14C. In contrast, the disappearance of 3H from the liver was much more rapid than that of 14C. Studies of the distribution of 3H in liver demonstrated rapid formation of free I and the formation of [3H]Chol. In addition, significant amounts of the 3H in liver were associated with polar materials, a finding which was not observed in the case of 14C. After intravenous administration of the doubly-labeled chylomicrons to bile duct-cannulated rats, very rapid and substantial metabolism of the administered 3H to polar biliary metabolites was observed. The bulk of the 3H not recovered in bile at 49 h after the injection of the labeled chylomicrons was recovered in blood and tissues and almost all (integral of 94%) of this material was associated with Chol and Chol esters. The combined results indicate an important role for chylomicrons in the overall metabolism of I. The selective delivery of I to liver as its oleate ester in chylomicrons (or, more probably, as chylomicron remnants) and the subsequent metabolism of the oleate ester of I in liver has important consequences with respect to the actions of I which are discussed herein.
Collapse
Affiliation(s)
- G J Schroepfer
- Department of Biochemistry, Rice University, Houston, Texas
| | | | | | | | | | | |
Collapse
|