1
|
Jung SR, Lee JH, Ryu H, Gao Y, Lee J. Lithium and exercise ameliorate insulin-deficient hyperglycemia by independently attenuating pancreatic α-cell mass and hepatic gluconeogenesis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:31-38. [PMID: 38154962 PMCID: PMC10762486 DOI: 10.4196/kjpp.2024.28.1.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 12/30/2023]
Abstract
As in type 1 diabetes, the loss of pancreatic β-cells leads to insulin deficiency and the subsequent development of hyperglycemia. Exercise has been proposed as a viable remedy for hyperglycemia. Lithium, which has been used as a treatment for bipolar disorder, has also been shown to improve glucose homeostasis under the conditions of obesity and type 2 diabetes by enhancing the effects of exercise on the skeletal muscles. In this study, we demonstrated that unlike in obesity and type 2 diabetic conditions, under the condition of insulin-deficient type 1 diabetes, lithium administration attenuated pancreatic a-cell mass without altering insulin-secreting β-cell mass, implying a selective impact on glucagon production. Additionally, we also documented that lithium downregulated the hepatic gluconeogenic program by decreasing G6Pase protein levels and upregulating AMPK activity. These findings suggest that lithium's effect on glucose metabolism in type 1 diabetes is mediated through a different mechanism than those associated with exerciseinduced metabolic changes in the muscle. Therefore, our research presents the novel therapeutic potential of lithium in the treatment of type 1 diabetes, which can be utilized along with insulin and independently of exercise.
Collapse
Affiliation(s)
- Su-Ryun Jung
- College of Pharmacy, Keimyung University, Daegu 42601, Korea
- Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University, Daegu 42415, Korea
| | - Ji-Hye Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hanguk Ryu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
2
|
Gherardelli C, Cisternas P, Inestrosa NC. Lithium Enhances Hippocampal Glucose Metabolism in an In Vitro Mice Model of Alzheimer's Disease. Int J Mol Sci 2022; 23:8733. [PMID: 35955868 PMCID: PMC9368914 DOI: 10.3390/ijms23158733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired cerebral glucose metabolism is an early event that contributes to the pathogenesis of Alzheimer's disease (AD). Importantly, restoring glucose availability by pharmacological agents or genetic manipulation has been shown to protect against Aβ toxicity, ameliorate AD pathology, and increase lifespan. Lithium, a therapeutic agent widely used as a treatment for mood disorders, has been shown to attenuate AD pathology and promote glucose metabolism in skeletal muscle. However, despite its widespread use in neuropsychiatric disorders, lithium's effects on the brain have been poorly characterized. Here we evaluated the effect of lithium on glucose metabolism in hippocampal neurons from wild-type (WT) and APPSwe/PS1ΔE9 (APP/PS1) mice. Our results showed that lithium significantly stimulates glucose uptake and replenishes ATP levels by preferential oxidation of glucose through glycolysis in neurons from WT mice. This increase was also accompanied by a strong increase in glucose transporter 3 (Glut3), the major carrier responsible for glucose uptake in neurons. Similarly, using hippocampal slices from APP-PS1 mice, we demonstrate that lithium increases glucose uptake, glycolytic rate, and the ATP:ADP ratio in a process that also involves the activation of AMPK. Together, our findings indicate that lithium stimulates glucose metabolism and can act as a potential therapeutic agent in AD.
Collapse
Affiliation(s)
- Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6210427, Chile
| |
Collapse
|
3
|
Jung SR, Park SY, Koh JH, Kim JY. Lithium enhances exercise-induced glycogen breakdown and insulin-induced AKT activation to facilitate glucose uptake in rodent skeletal muscle. Pflugers Arch 2021; 473:673-682. [PMID: 33660027 PMCID: PMC8049887 DOI: 10.1007/s00424-021-02543-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to investigate the effect of lithium on glucose disposal in a high-fat diet-induced type 2 diabetes mellitus (T2DM) and streptozotocin-induced type 1 diabetes mellitus (T1DM) animal model along with low-volume exercise and low-dose insulin. Lithium decreased body weight, fasting plasma glucose, and insulin levels when to treat with low-volume exercise training; however, there were no adaptive responses like an increase in GLUT4 content and translocation factor levels. We discovered that lithium enhanced glucose uptake by acute low-volume exercise-induced glycogen breakdown, which was facilitated by the dephosphorylation of serine 473-AKT (Ser473-AKT) and serine 9-GSK3β. In streptozotocin-induced T1DM mice, Li/low-dose insulin facilitates glucose uptake through increase the level of exocyst complex component 7 (Exoc7) and Ser473-AKT. Thus, lithium enhances acute exercise-induced glycogen breakdown and insulin-induced AKT activation and could serve as a candidate therapeutic target to regulate glucose level of DM patients.
Collapse
Affiliation(s)
- Su-Ryun Jung
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Sol-Yi Park
- Department of Physiology, College of Medicine, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Ho Koh
- Department of Physiology, College of Medicine, Yeungnam University, Gyeongsan, Republic of Korea.
| | - Jong-Yeon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
4
|
Zois CE, Harris AL. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med (Berl) 2016; 94:137-54. [PMID: 26882899 PMCID: PMC4762924 DOI: 10.1007/s00109-015-1377-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer cells and contributes to their adaption within the tumour microenvironment and resistance to anticancer therapies. Recently, glycogen metabolism has become a recognised feature of cancer cells since it is upregulated in many tumour types, suggesting that it is an important aspect of cancer cell pathophysiology. Here, we provide an overview of glycogen metabolism and its regulation, with a focus on its role in metabolic reprogramming of cancer cells under stress conditions such as hypoxia, glucose deprivation and anticancer treatment. The various methods to detect glycogen in tumours in vivo as well as pharmacological modulators of glycogen metabolism are also reviewed. Finally, we discuss the therapeutic value of targeting glycogen metabolism as a strategy for combinational approaches in cancer treatment.
Collapse
Affiliation(s)
- Christos E Zois
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, OX3 9DS, UK.
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, OX3 9DS, UK.
| |
Collapse
|
5
|
Souza DN, Mendes FM, Nogueira FN, Simões A, Nicolau J. Lithium Induces Glycogen Accumulation in Salivary Glands of the Rat. Biol Trace Elem Res 2016; 169:271-8. [PMID: 26155966 DOI: 10.1007/s12011-015-0434-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/30/2015] [Indexed: 01/25/2023]
Abstract
Lithium is administered for the treatment of mood and bipolar disorder. The aim of this study was to verify whether treatment with different concentrations of lithium may affect the glycogen metabolism in the salivary glands of the rats when compared with the liver. Mobilization of glycogen in salivary glands is important for the process of secretion. Two sets of experiments were carried out, that is, in the first, the rats received drinking water supplemented with LiCl (38,25 and 12 mM of LiCl for 15 days) and the second experiment was carried out by intraperitoneal injection of LiCl solution (12 mg/kg and 45 mg LiCl/kg body weight) for 3 days. The active form of glycogen phosphorylase was not affected by treatment with LiCl considering the two experiments. The active form of glycogen synthase presented higher activity in the submandibular glands of rats treated with 25 and 38 mM LiCl and in the liver, with 25 mM LiCl. Glycogen level was higher than that of control in the submandibular glands of rats receiving 38 and 12 mM LiCl, in the parotid of rats receiving 25 and 38 mM, and in the liver of rats receiving 12 mM LiCl. The absolute value of glycogen for the submandibular treated with 25 mM LiCl, and the liver treated with 38 mM LiCl, was higher than the control value, although not statistically significant for these tissues. No statistically significant difference was found in the submandibular and parotid salivary glands for protein concentration when comparing experimental and control groups. We concluded that LiCl administered to rats influences the metabolism of glycogen in salivary glands.
Collapse
Affiliation(s)
- D N Souza
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes, São Paulo, SP, 2227, Brazil
| | - F M Mendes
- Departamento Ortodontia e Odontopediatria, Faculdade de Odontologia, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes, São Paulo, SP, 2227, Brazil
| | - F N Nogueira
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes, São Paulo, SP, 2227, Brazil
| | - A Simões
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes, São Paulo, SP, 2227, Brazil
| | - J Nicolau
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes, São Paulo, SP, 2227, Brazil.
| |
Collapse
|
6
|
Abstract
Exercise/muscle contraction activates glucose transport. The increase in muscle glucose transport induced by exercise is independent of insulin. As the acute effect of exercise on glucose transport wears off, it is replaced by an increase in insulin sensitivity. An increase in insulin sensitivity results in a shift in the insulin dose-response curve to the left, with a decrease in the concentration of insulin needed to induce 50% of the maximal response. This phenomenon, which plays a major role in rapid muscle glycogen accumulation after exercise, is not mediated by amplification of the insulin signal. Development of the increase in insulin sensitivity after contractions does not require protein synthesis or activation of p38 MAPK. It does require the presence of a serum protein during the period of contractile activity. The effect of exercise on muscle insulin sensitivity is mimicked by hypoxia and by treatment of muscles with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside to activate AMP-activated protein kinase. The postexercise increase in sensitivity of muscle glucose transport to activation is not specific for insulin but also involves an increased susceptibility to activation by a submaximal contraction/hypoxia stimulus. The increase in insulin sensitivity is mediated by translocation of more GLUT4 glucose transporters to the cell surface in response to a submaximal insulin stimulus. Although the postexercise increase in muscle insulin sensitivity has been characterized in considerable detail, the basic mechanisms underlying this phenomenon remain a mystery.
Collapse
Affiliation(s)
- John O Holloszy
- Division of Geriatrics and Nutritional Sciences, Department of Internal Medicine, Washington Univ. School of Medicine, 4566 Scott Ave., Campus Box 8113, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Ring DB, Johnson KW, Henriksen EJ, Nuss JM, Goff D, Kinnick TR, Ma ST, Reeder JW, Samuels I, Slabiak T, Wagman AS, Hammond MEW, Harrison SD. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes 2003; 52:588-95. [PMID: 12606497 DOI: 10.2337/diabetes.52.3.588] [Citation(s) in RCA: 385] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin resistance plays a central role in the development of type 2 diabetes, but the precise defects in insulin action remain to be elucidated. Glycogen synthase kinase 3 (GSK-3) can negatively regulate several aspects of insulin signaling, and elevated levels of GSK-3 have been reported in skeletal muscle from diabetic rodents and humans. A limited amount of information is available regarding the utility of highly selective inhibitors of GSK-3 for the modification of insulin action under conditions of insulin resistance. In the present investigation, we describe novel substituted aminopyrimidine derivatives that inhibit human GSK-3 potently (K(i) < 10 nmol/l) with at least 500-fold selectivity against 20 other protein kinases. These low molecular weight compounds activated glycogen synthase at approximately 100 nmol/l in cultured CHO cells transfected with the insulin receptor and in primary hepatocytes isolated from Sprague-Dawley rats, and at 500 nmol/l in isolated type 1 skeletal muscle of both lean Zucker and ZDF rats. It is interesting that these GSK-3 inhibitors enhanced insulin-stimulated glucose transport in type 1 skeletal muscle from the insulin-resistant ZDF rats but not from insulin-sensitive lean Zucker rats. Single oral or subcutaneous doses of the inhibitors (30-48 mg/kg) rapidly lowered blood glucose levels and improved glucose disposal after oral or intravenous glucose challenges in ZDF rats and db/db mice, without causing hypoglycemia or markedly elevating insulin. Collectively, our results suggest that these selective GSK-3 inhibitors may be useful as acute-acting therapeutics for the treatment of the insulin resistance of type 2 diabetes.
Collapse
|
8
|
Abstract
Mood stabilizers represent a class of drugs that are efficacious in the treatment of bipolar disorder. The most established medications in this class are lithium, valproic acid, and carbamazepine. In addition to their therapeutic effects for treatment of acute manic episodes, these medications often are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. While important extracellular effects have not been excluded, most available evidence suggests that the therapeutically relevant targets of this class of medications are in the interior of cells. Herein we give a prospective of a rapidly evolving field, discussing common effects of mood stabilizers as well as effects that are unique to individual medications. Mood stabilizers have been shown to modulate the activity of enzymes, ion channels, arachidonic acid turnover, G protein coupled receptors and intracellular pathways involved in synaptic plasticity and neuroprotection. Understanding the therapeutic targets of mood stabilizers will undoubtedly lead to a better understanding of the pathophysiology of bipolar disorder and to the development of improved therapeutics for the treatment of this disease. Furthermore, the involvement of mood stabilizers in pathways operative in neuroprotection suggests that they may have utility in the treatment of classical neurodegenerative disorders.
Collapse
Affiliation(s)
- Todd D. Gould
- Laboratory of Molecular Pathophysiology, Building 49, Room B1EE16, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guang Chen
- Laboratory of Molecular Pathophysiology, Building 49, Room B1EE16, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Husseini K. Manji
- Laboratory of Molecular Pathophysiology, Building 49, Room B1EE16, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Abstract
This essay is concerned with the role of the thiol or sulfhydrvl group in cellular function and metabolism and with the important investigations over many years that have led us to a better understanding of the importance of this molecular moiety that plays such a vital role in biology. The tools for measuring the SH group and for inhibiting or regenerating it will be discussed as will its essential role in the actions of many enzymes. The importance of the thiol group in glycolysis and in energy production by mitochondria will be emphasized. Of special interest at present is the fact that certain low molecular weight SH-containing substances can mimic some of the actions of insulin and may become of benefit in the treatment of diabetes mellitus. Finally, the toxic effects of oxygen on metabolism and function will be discussed with particular reference to the possibility that oxidation of thiol groups may play a role in the manifestations of oxygen toxicity.
Collapse
Affiliation(s)
- N Haugaard
- Department of Pharmacology, University of Pennsylvania, Philadelphia 19104, USA
| |
Collapse
|
10
|
Oreña SJ, Torchia AJ, Garofalo RS. Inhibition of glycogen-synthase kinase 3 stimulates glycogen synthase and glucose transport by distinct mechanisms in 3T3-L1 adipocytes. J Biol Chem 2000; 275:15765-72. [PMID: 10748179 DOI: 10.1074/jbc.m910002199] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of glycogen-synthase kinase 3 (GSK3) in insulin-stimulated glucose transport and glycogen synthase activation was investigated in 3T3-L1 adipocytes. GSK3 protein was clearly present in adipocytes and was found to be more abundant than in muscle and liver cell lines. The selective GSK3 inhibitor, LiCl, stimulated glucose transport and glycogen synthase activity (20 and 65%, respectively, of the maximal (1 microm) insulin response) and potentiated the responses to a submaximal concentration (1 nm) of insulin. LiCl- and insulin-stimulated glucose transport were abolished by the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, wortmannin; however, LiCl stimulation of glycogen synthase was not. In contrast to the rapid stimulation of glucose transport by insulin, transport stimulated by LiCl increased gradually over 3-5 h reaching 40% of the maximal insulin-stimulated level. Both LiCl- and insulin-stimulated glycogen synthase activity were maximal at 25 min. However, insulin-stimulated glycogen synthase activity returned to basal after 2 h, coincident with reactivation of GSK3. After a 2-h exposure to insulin, glycogen synthase was refractory to restimulation with insulin, indicating selective desensitization of this pathway. However, LiCl could partially stimulate glycogen synthase in desensitized cells. Furthermore, coincubation with LiCl during the 2 h exposure to insulin completely blocked desensitization of glycogen synthase activity. In summary, inhibition of GSK3 by LiCl: 1) stimulated glycogen synthase activity directly and independently of PI3-kinase, 2) stimulated glucose transport at a point upstream of PI3-kinase, 3) stimulated glycogen synthase activity in desensitized cells, and 4) prevented desensitization of glycogen synthase due to chronic insulin treatment. These data are consistent with GSK3 playing a central role in the regulation of glycogen synthase activity and a contributing factor in the regulation of glucose transport in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- S J Oreña
- Pfizer, Inc., Central Research Division, Groton, Connecticut 06340-8002, USA
| | | | | |
Collapse
|
11
|
Rodriguez-Gil JE, Fernández-Novell JM, Barberá A, Guinovart JJ. Lithium's effects on rat liver glucose metabolism in vivo. Arch Biochem Biophys 2000; 375:377-84. [PMID: 10700396 DOI: 10.1006/abbi.1999.1679] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oral administration of lithium carbonate to fed-healthy rats strongly decreased liver glycogen content, despite the simultaneous activation of glycogen synthase and the inactivation of glycogen phosphorylase. The effect seemed to be related to a decrease in glucose 6-phosphate concentration and to a decrease in glucokinase activity. Moreover, in these animals lithium markedly decreased liver fructose 2,6-bisphosphate, which could be a consequence of the fall in glucose 6-phosphate and of the inactivation of 6-phosphofructo-2-kinase. Liver pyruvate kinase activity and blood insulin also decreased after lithium administration. Lower doses of lithium carbonate had less intense effects. Lithium administration to starved-healthy and fed-streptozotocin-diabetic rats caused a slight increase in blood insulin, which was simultaneous with increases in liver glycogen, glucose 6-phosphate, and fructose 2, 6-phosphate. Glucokinase, 6-phosphofructo-2-kinase, and pyruvate kinase activities also increased after lithium administration in starved-healthy and fed-diabetic rats. Lithium treatment activated glycogen synthase and inactivated glycogen phosphorylase in a manner similar to that observed in fed-healthy rats. Glycemia was not modified in any group of animals. These results indicate that lithium acts on liver glycogen metabolism in vivo in at least two different ways: one related to changes in insulinemia, and the other related to the direct action of lithium on the activity of some key enzymes of liver glucose metabolism.
Collapse
Affiliation(s)
- J E Rodriguez-Gil
- Unit of Reproduction, Autonomous University of Barcelona, Bellaterra, E-08193, Spain
| | | | | | | |
Collapse
|
12
|
Chen X, McMahon EG, Gulve EA. Stimulatory effect of lithium on glucose transport in rat adipocytes is not mediated by elevation of IP1. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E272-7. [PMID: 9688629 DOI: 10.1152/ajpendo.1998.275.2.e272] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lithium has been shown to increase glucose uptake in skeletal muscle and adipose tissues. The therapeutic effect of lithium on bipolar disease is thought to be mediated by its inhibitory effect on myo-inositol-1-monophosphatase (IMPase). We tested the hypothesis that the stimulatory effect of lithium on glucose uptake results from inhibition of IMPase and the resultant accumulation of inositol monophosphates (IP1) by comparing the effects of lithium and a selective IMPase inhibitor, L-690,488, on isolated rat adipocytes. Insulin produced a concentration-dependent stimulation of 2-deoxy-D-[14C]glucose (2-DG) transport (10 microU/ml caused half-maximal activation). Acute exposure to lithium stimulated basal glucose transport activity in a concentration-dependent manner, with a threefold stimulation at 30 mM lithium. Lithium also potentiated insulin-stimulated 2-DG transport. Lithium produced a concomitant increase in IP1 accumulation. In contrast, L-690,488 increased IP1 to levels comparable to those of lithium without stimulatory effects on 2-DG transport. These results demonstrate that stimulatory effects of lithium on glucose transport are not mediated by the inhibition of IMPase and subsequent accumulation of IP1 in rat adipocytes.
Collapse
Affiliation(s)
- X Chen
- Cardiovascular Disease and Diabetes Research, Monsanto Company, St. Louis, Missouri 63167, USA
| | | | | |
Collapse
|
13
|
Van Epps-Fung M, Gupta K, Hardy RW, Wells A. A role for phospholipase C activity in GLUT4-mediated glucose transport. Endocrinology 1997; 138:5170-5. [PMID: 9389497 DOI: 10.1210/endo.138.12.5596] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Overexpression of surrogate receptors [epidermal growth factor (EGF) receptor (EGFR) and platelet-derived growth factor receptor] in adipocytes has demonstrated that multiple signaling pathways may lead to GLUT4-mediated glucose uptake. These implicated pathways function independently of IRS-1 phosphorylation and PI3-kinase activation. In addition, we previously demonstrated that EGFR tyrosyl autophosphorylation is required to stimulate GLUT4-mediated glucose transport in 3T3-L1 adipocytes. This observation suggests that signaling molecules that are dependent on EGFR autophosphorylation, such as phospholipase C (PLC), may lie in the signaling pathway to glucose transport. As PLC has been implicated in glucose transport by several clinical and basic mechanistic studies, we investigated whether EGFR signaling may promote glucose transport via modulation of PLC activity. Activation of EGFR overexpressing 3T3-L1 adipocytes leads to a 3.4 +/- 1.2-fold stimulation of PLC activity over basal levels vs. only 1.06 +/- 0.01-fold stimulation by insulin. Pharmacological inhibition of PLC by 50 microM U73122 reduced phosphoinositide accumulation by 79.2 +/- 16.9% and resulted in a concomitant 56.0 +/- 12.7% decrease in EGF-induced glucose transport. This inhibition of glucose transport by U73122 was specific, because the inactive congener, U73343, failed to block EGF-induced glucose transport. Despite the low levels of insulin-induced PLC activity, insulin-stimulated glucose transport activity was similarly inhibited by U73122 (55.9 +/- 13.1% inhibition). Inhibition of PLC activation did not impair either EGF- or insulin-induced activation of glycogen synthase or incorporation of glucose into lipid, supporting the hypothesis that both EGF- and insulin-induced glucose disposal can be independent of GLUT4-mediated glucose transport. The diminution of glucose transport secondary to inhibition of PLC activity was reflected by a decrease in GLUT4 translocation to the plasma membrane upon either EGF or insulin stimulation. These results are consistent with either a permissive or an active role for PLC activity in the translocation of GLUT4 to the plasma membrane.
Collapse
Affiliation(s)
- M Van Epps-Fung
- Department of Pathology, University of Alabama at Birmingham, 35294, USA
| | | | | | | |
Collapse
|
14
|
Fürnsinn C, Noe C, Herdlicka R, Roden M, Nowotny P, Leighton B, Waldhäusl W. More marked stimulation by lithium than insulin of the glycogenic pathway in rat skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:E514-20. [PMID: 9316440 DOI: 10.1152/ajpendo.1997.273.3.e514] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lithium's impact on glucose metabolism was compared with that of insulin in isolated rat soleus muscle. Lithium chloride (20 mmol/l) induced a 4.8-fold more pronounced increment over basal glycogen synthase activity than insulin (10 nmol/l) (nmol UDP-glucose into glycogen in synthase activity assay.g-1.min-1: lithium, +22.1 +/- 1.8 vs. insulin, +4.6 +/- 3.9; P < 0.01). In parallel, lithium was less efficient than insulin in stimulating glucose transport (counts per minute 2-deoxy-D-[3H]glucose.mg-1.h-1: lithium, +211 +/- 19 vs. insulin, +311 +/- 57; P < 0.05) and lactate release (mumol.g-1.h-1: lithium, +1.0 +/- 0.5 vs. insulin, +3.9 +/- 0.5; P < 0.01), and similar increments were induced in glycogen synthesis (mumol glucose into glycogen.g-1.h-1: lithium, +3.32 +/- 0.43 vs. insulin, +3.46 +/- 0.47; not significant). Full additivity of glycogenic effects and divergent dependency on phosphatidylinositol 3-kinase activation provided further evidence for different mechanisms of action. In muscle from insulin-resistant obese Zucker rats (fa/fa), failure of lithium to reverse deficits in glucose metabolism suggested a primary deficit in muscle glucose uptake rather than glycogen synthesis. Hence lithium distinctly stimulates glycogen synthase activity in skeletal muscle and may therefore be regarded as a candidate for the treatment of disorders associated with primary deficits in the glycogenic pathway.
Collapse
Affiliation(s)
- C Fürnsinn
- Department of Medicine III, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
15
|
Holloszy JO, Hansen PA. Regulation of glucose transport into skeletal muscle. Rev Physiol Biochem Pharmacol 1996; 128:99-193. [PMID: 8791721 DOI: 10.1007/3-540-61343-9_8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J O Holloszy
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
16
|
Estrada DE, Elliott E, Zinman B, Poon I, Liu Z, Klip A, Daneman D. Regulation of glucose transport and expression of GLUT3 transporters in human circulating mononuclear cells: studies in cells from insulin-dependent diabetic and nondiabetic individuals. Metabolism 1994; 43:591-8. [PMID: 8177047 DOI: 10.1016/0026-0495(94)90201-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously shown that human circulating mononuclear cells (CMCs) respond to physiological concentrations of insulin with a rapid increase in glucose transport rate. The responding cells were found to be the monocytes, and cells derived from individuals with insulin-dependent diabetes mellitus (IDDM) had lower basal and insulin-stimulated glucose transport rates. Of interest, both cell types were found to express the GLUT1 but not the typical insulin-responsive GLUT4 transporter isoform. To further study the mechanisms responsible for stimulation of transport in these cells, we investigated (1) the response to insulin-like growth factor-I (IGF-I) and insulin-mimetic agents, and (2) the expression of other glucose transporter isoforms in CMCs of nondiabetic and IDDM individuals. The time course of insulin-stimulated glucose uptake in CMCs was rapid, reaching a plateau within 30 minutes. CMCs showed a dose-dependent and highly sensitive increase in glucose uptake to IGF-I (maximal response reached at 0.1 to 0.5 nmol/L IGF-I). The IGF-I dose-response curve was similar for CMCs of control and IDDM individuals, but both the basal and maximal response to IGF-I were lower in the diabetic group (P < .01). CMCs did not respond to vanadate, lithium, hydrogen peroxide, or short incubation (1 hour) with metformin, but glucose uptake increased in response to peroxides of vanadate and longer-duration (14 hours) metformin incubations. The glucose transporter isoforms of separated monocytes and lymphocytes were further investigated by Northern blotting of total RNA with a GLUT3-specific cDNA probe and by Western blotting of total membranes using GLUT3-specific antiserum.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D E Estrada
- Department of Pediatrics (Endocrine Division), Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Lithium inhibits hepatic gluconeogenesis and phosphoenolpyruvate carboxykinase gene expression. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50669-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Posas F, Clotet J, Ariño J. Saccharomyces cerevisiae gene SIT4 is involved in the control of glycogen metabolism. FEBS Lett 1991; 279:341-5. [PMID: 1848194 DOI: 10.1016/0014-5793(91)80183-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gene SIT4 of S. cerevisiae, which codes for a protein structurally related to the catalytic subunit of mammalian protein phosphatase 2A, was disrupted in vitro. Analysis of glycogen synthase activity ratio in mutant haploid cells indicated that the enzyme was less active than in wild-type cells. On the contrary, glycogen phosphorylase alpha activity was much higher. The activation of glycogen synthase observed in wild-type cells after incubation with lithium ions was not detected in mutant cells. These results suggest that the product of gene SIT4, a putative protein phosphatase, could be involved in the control of glycogen metabolism in yeast cells.
Collapse
Affiliation(s)
- F Posas
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Autónoma de Barcelona, Spain
| | | | | |
Collapse
|
19
|
Peng Z, Trumbly R, Reimann E. Purification and characterization of glycogen synthase from a glycogen-deficient strain of Saccharomyces cerevisiae. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77429-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Kato K, Lin AT, Haugaard N, Longhurst PA, Wein AJ, Levin RM. Effects of outlet obstruction on glucose metabolism of the rabbit urinary bladder. J Urol 1990; 143:844-7. [PMID: 2107338 DOI: 10.1016/s0022-5347(17)40114-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bladder outlet obstruction has been shown to cause detrusor contractile dysfunction. To determine if alterations in bladder metabolism may in part underlie these functional defects, we investigated the effects of mild outlet obstruction on the glucose metabolism of the rabbit urinary bladder. Mild outlet obstruction was created in mature male rabbits by the surgical placement of a silicon sleeve around the bladder neck. Two weeks after surgery, the in vitro ability of the obstructed bladder tissues to metabolize glucose was compared to that of the controls. The results can be summarized as follows: 1) The bladder wet weight increased 2.3-fold following two weeks of obstruction. 2) Obstructed bladder tissues had a reduced glucose consumption as compared to the controls. 3) CO2 generation was significantly reduced by 31% in obstructed bladder tissues whereas lactate formation increased significantly by 22%. 4) Tissue concentrations of ATP, creatine phosphate, and glycogen before incubation showed no significant differences between control and obstructed bladder tissues. In summary, bladder tissues following two weeks obstruction showed a decrease in aerobic metabolism and an increase in anaerobic metabolism. Previous studies have indicated that the ability of the bladder to maintain a contraction and empty may be directly related to aerobic metabolism. Therefore, the decrease in aerobic metabolism (even in the presence of increased anaerobic metabolism) may in part explain the decreased ability of the obstructed bladder to empty.
Collapse
Affiliation(s)
- K Kato
- Division of Urology, University of Pennsylvania School of Medicine, Philadelphia Veterans Administration Medical Center
| | | | | | | | | | | |
Collapse
|
21
|
Lin AT, Monson FC, Kato K, Haugaard N, Wein AJ, Levin RM. Effect of chronic ischemia on glucose metabolism of rabbit urinary bladder. J Urol 1989; 142:1127-33. [PMID: 2507796 DOI: 10.1016/s0022-5347(17)39011-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of chronic ischemia on glucose metabolism of the rabbit urinary bladder was studied. Unilateral ischemia was produced by ligation of one of the two vesical arteries which supply the rabbit bladder. Two weeks after the operation, the in vitro glucose metabolism of normal bladder tissue was compared to the glucose metabolism of tissue isolated from both the ischemic side and contralateral (non-ischemic) side of the ischemic bladder. The results can be summarized as follows: 1) ischemic and contralateral side bladder tissues contained less glycogen than normal; 2) glucose utilization was higher in the ischemic and contralateral side tissues; 3) ischemic and contralateral side tissues incorporated more glucose into lactate and produced more total lactate than normal tissues; 4) whereas contralateral side tissue produced more 14CO2 than ischemic side tissue, the ability of normal bladder tissue to form 14CO2 is significantly higher than both ischemic and contralateral side tissues; 5) the degree of reduced CO2 production correlated well with previous studies on the contractile response of smooth muscle strips isolated from the ischemic and contralateral sides, and the reduced functional ability of the in vitro whole bladder to empty; 6) histologically, smooth muscle degeneration and necrosis is only present on the ischemic side of the bladder although the contralateral side shows signs of generalized degeneration and edema. In general, we conclude that although only the ischemic tissue demonstrated major smooth muscle degeneration and necrosis, unilateral ischemia resulted in marked alterations in glucose metabolism on both the ischemic and contralateral sides.
Collapse
Affiliation(s)
- A T Lin
- Division of Urology, University of Pennsylvania School of Medicine, Philadelphia
| | | | | | | | | | | |
Collapse
|
22
|
Volonté C. Lithium stimulates the binding of GTP to the membranes of PC12 cells cultured with nerve growth factor. Neurosci Lett 1988; 87:127-32. [PMID: 2837684 DOI: 10.1016/0304-3940(88)90157-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mechanism of action of lithium regarding its therapeutic effects has not yet been established, despite many years of clinical use and scientific investigations. We recently reported that lithium stimulates the phospholipase C of NGF differentiated PC12 cells membranes. In view of the coupling between growth factor receptors, G proteins and phospholipase C, we investigated the effects of lithium on the binding of GTP to the membranes of PC12 cells cultured with NGF. Lithium (1.1 mM) increased 4-5-fold the Bmax of the binding of [3H]GTP to the PC12 membranes. NaF did not induce a similar stimulation.
Collapse
Affiliation(s)
- C Volonté
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
23
|
Abstract
The urinary bladder, as do all smooth muscle organs, depends on the delivery of oxygen and metabolic substrates for proper functioning. Although glucose metabolism has been studied and evaluated for a variety of smooth muscle systems, little is known about carbohydrate metabolism of the urinary bladder. In the present investigation glucose metabolism and glycogen formation of the urinary bladder of the rabbit was studied in vitro. Isolated urinary bladder strips were prepared from bladder base and body and the following metabolic determinations were made: glucose utilization, glycogen formation, CO2, and lactic acid formation. In addition, the effect of insulin on glucose metabolism was investigated. Glucose utilization was similar in bladder base and body (6.57 +/- 0.67 mumols/gm./2 hours in combined tissues). Eighty-one percent of the glucose utilized was metabolized to lactate whereas 11% was oxidized to CO2 and 4.7% was incorporated into glycogen. Insulin caused a small but significant increase in glucose utilization by bladder strips.
Collapse
|
24
|
Bosch F, Gómez-Foix AM, Ariño J, Guinovart JJ. Effects of lithium ions on glycogen synthase and phosphorylase in rat hepatocytes. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)75978-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Bigornia L, Bihler I. The role of calcium in stimulation of sugar transport in muscle by lithium. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 816:197-207. [PMID: 4005243 DOI: 10.1016/0005-2736(85)90487-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have investigated the relation between the stimulation of sugar transport by Li+ and Li+-induced changes in cellular Ca2+ distribution. The fluxes of 3-O-[14C]methyl-D-glucose and 45Ca were measured in hemidiaphragm, soleus, and cardiac muscles of the rat, and cellular levels of Ca2+, Na+ and K+ were determined. Li+ increased in parallel the fluxes of 3-O-[14C]methyl-D-glucose and 45Ca in rat hemidiaphragm and soleus muscles. Sugar transport and Ca2+ efflux were also stimulated by Li+ in Ca2+-free medium, suggesting that in addition to increasing sarcolemmal Ca2+ influx, Li+ may also cause the release of Ca2+ from intracellular storage sites, presumably the mitochondria. Mitochondria were isolated from preparations of rat ventricular muscle exposed to Li+, and their Ca2+ content was determined. In rat cardiac muscle, Li+ stimulation of sugar transport was associated with decreased mitochondrial Ca2+ levels (indicating mitochondrial Ca2+ release) only under conditions of deteriorating mitochondrial function. Thus, Li+-induced changes in cellular Ca2+ distribution, which would increase cytosolic Ca2+ levels, were associated with stimulation of sugar transport. These observations support the hypothesis that the increased availability of cytosolic Ca2+ regulates the activity of the sugar transport system in muscle.
Collapse
|
26
|
Cheng K, Creacy S, Larner J. 'Insulin-like' effects of lithium ion on isolated rat adipocytes. II. Specific activation of glycogen synthase. Mol Cell Biochem 1983; 56:183-9. [PMID: 6417471 DOI: 10.1007/bf00227219] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lithium ion, like insulin, activated adipocyte glycogen synthase with or without glucose in the medium. However, the effect of lithium ion was much greater than that of insulin under both conditions. The lithium-activated glycogen synthase was stable to both Sephadex chromatography and ethanol precipitation of the enzyme, indicating that the effect of lithium ion on glycogen synthase was through covalent modification of the enzyme. Glycogen synthase was significantly activated by lithium ion under conditions where concentrations of cellular ATP were unaffected. The effect of lithium ion on glycogen synthase was rapid and observed at concentrations as low as 1 to 3 mM, reaching a maximum at the concentration of 40 mM. It was thus the most sensitive of all the effects studied (see previous paper). Insulin further stimulated glycogen synthase at low concentrations but not at maximal concentration of lithium ion. Lithium-activated glycogen synthase was inhibited by both epinephrine and dibutyryl cyclic AMP, but was not affected by the removal of extracellular Ca++. Interestingly, lithium ion had no detectable effect on basal pyruvate dehydrogenase as well as on epinephrine-stimulated phosphorylase. The failure of lithium ion to thus mimic insulin actions on pyruvate dehydrogenase and on phosphorylase suggests that the action of lithium ion on glycogen synthase is quite specific and may be mediated by stimulating a phosphatase or by inhibiting a protein kinase acting specifically on glycogen synthase.
Collapse
|
27
|
Aronson CE. Effects of PGBx on glucose utilization and glycogen content of the isolated rat diaphragm. GENERAL PHARMACOLOGY 1983; 14:519-23. [PMID: 6642192 DOI: 10.1016/0306-3623(83)90112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Under an environment of 100% O2, PGBx caused a significant dose dependent decrease in glucose uptake by skeletal muscle from the incubation medium, using the isolated rat diaphragm as a model system. At concentrations of PGBx below 200 micrograms/flask, however, significant alterations in the amount of glucose taken up by the tissues were not observed. The glycogen content of the tissues examined was not changed by the presence of PGBx in the incubation mixture at any of the concentrations studied. When tissues were incubated under room air, however, no PGBx-induced effects on glucose utilization or glycogen concentration were detected.
Collapse
|
28
|
Nyfeler F, Fasel P, Walter P. Short-term stimulation of net glycogen production by insulin in rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 675:17-23. [PMID: 6266493 DOI: 10.1016/0304-4165(81)90064-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Isolated liver cells from 24 h starved rats were incubated in Krebs-Ringer buffer containing 4% albumin. In the presence of 10, 20 and 30 mM glucose, addition of insulin stimulated net glycogen production by 52, 39 and 20%, respectively. 2 . 10(-9) M insulin was required for half-maximal stimulation. Increases of glycogen production and of glycogen synthase a activity were observed after 15-30 min of incubation with insulin. The stimulatory effect of insulin was additive to that of lithium. In agreement with the literature, insulin antagonized the inhibitory action of suboptimal doses of glucagon on glycogen deposition whereby a decrease of glucagon-elevated cyclic AMP levels was observed. In addition, we found that insulin also decreased the basal cyclic AMP levels in the absence of added glucagon by 22%. It is concluded that physiological concentrations of insulin stimulate net glycogen deposition in hepatocytes from fasted rats; the decrease of basal cyclic AMP levels upon insulin addition may play a role in the mechanism of the hormone action.
Collapse
|
29
|
Vendsborg PB. The distribution of a glucose load in lithium treated rats. ACTA PHARMACOLOGICA ET TOXICOLOGICA 1981; 48:326-9. [PMID: 7336948 DOI: 10.1111/j.1600-0773.1981.tb01628.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The distribution of an intravenous glucose load was investigated in rats without and with previous lithium administration. Lithium caused an increased rate of glycogen formation in muscle tissue but not in liver tissue. Uptake of a 14C-labelled glucose load in skin, liver, muscle, fat and brain was measured. Lithium increased the uptake of labelled glucose in skin and muscle with a concomitant decrease of the amount in blood. The findings are in agreement with an increased glucose tolerance after lithium administration as the uptake was increased in the tissues of quantitative importance for the disposal of a glucose load.
Collapse
|
30
|
Songu E, Haugaard ES, Wildey G, Haugaard N. The relationship between uracil nucleotide concentrations and glycogen synthesis in hepatocytes from fed and fasted rats. Metabolism 1981; 30:119-22. [PMID: 7464560 DOI: 10.1016/0026-0495(81)90159-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The relationship between glycogen synthesis and uracil nucleotide content was studied in rat hepatocytes. When hepatocytes were incubated in the presence of uridine in the incubation medium there was an increase in the rate of incorporation of U-14C-glucose into glycogen. In hepatocytes incubated in the absence of uridine for 1 hr there were large decreases in the cellular contents of UDPG and UTP, while in the presence of 5 mM uridine the concentrations of these nucleotides increased 2 to 3 fold. In hepatocytes from fasted rats uracil nucleotide contents were lower than in hepatocytes from fed rats and the effect of uridine on glycogen synthesis was greater.
Collapse
|
31
|
Rose IA, Warms JV. Lithium on glucose uptake in brain; role of glucose-1,6-P2 as a regulator of hexokinase. Biochem Biophys Res Commun 1980; 92:1030-6. [PMID: 6244814 DOI: 10.1016/0006-291x(80)90805-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
|
33
|
Vendsborg P. Intravenous glucose tolerance in lithium treated rats. ACTA PHARMACOLOGICA ET TOXICOLOGICA 1979; 45:240-4. [PMID: 506747 DOI: 10.1111/j.1600-0773.1979.tb02388.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method for performing intravenous glucose tolerance tests in anaesthetized rats was developed, and factors influencing basal glucose tolerance was investigated. Glucose tolerance increased with increasing weight and body temperature, but decreased with fasting. Lithium administration increased glucose tolerance. The increase varied with the dose and the time interval between administration and glucose tolerance test. There was an immediate increase in glucose tolerance after lithium administration, which lasted under special conditions up to 24 hours. The duration was depending on the dose given and the fasting state of the animal.
Collapse
|
34
|
Gertz BJ, Haugaard ES. Effect of diabetes and fasting on the uridine triphosphate content and uridine kinase activity of rat cardiac and skeletal muscle. Metabolism 1979; 28:358-62. [PMID: 221781 DOI: 10.1016/0026-0495(79)90107-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The influence of diabetes and starvation on uracil nucleotide metabolism in muscle was studied. It was found that the uridine triphosphate (UTP) content of heart and diaphragm muscle was decreased in fasted and streptozotocin-diabetic rats and that insulin treatment of diabetic animals restored the UTP concentration to normal levels. The ATP content of heart tissue was not altered under these conditions. It was also demonstrated that hemidiaphragms from streptozotocin-diabetic rats synthesized less UTP from uridine in vitro than hemidiaphragms from normal animals. Uridine kinase activity of extracts of cardiac and skeletal muscle from fasted and diabetic rats was lower than the activity found in extracts from control animals. It was concluded that uracil nucleotide synthesis by the salvage pathway is decreased in experimental diabetes and fasting.
Collapse
|
35
|
Abstract
Intravenous glucose tolerance was measured in manic-melancholic patients given one daily lithium-dose for relapse prevention. It was found that glucose tolerance was increased for some hours after each lithium administration. In the first week of treatment glucose disposal rate was increased up to 12 h after lithium ingestion. In long-term treated patients glucose tolerance was increased 2 h after administration but not 12 h after. Fasting glucose was increased 2 h after lithium administration in long-term treated patients. Concomitant changes in lactate triglycerides, free-glycerol and electrolytes were measured in serum.
Collapse
|
36
|
Mickel RA, Hallidy L, Haugaard N, Haugaard ES. Stimulation by lithium ions of the incorporation of [U-14C]glucose into glycogen in rat brain slices. Biochem Pharmacol 1978; 27:799-800. [PMID: 656119 DOI: 10.1016/0006-2952(78)90524-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Roach RJ, Larner J. Covalent phosphorylation in the regulation glycogen synthase activity. Mol Cell Biochem 1977; 15:179-200. [PMID: 196178 DOI: 10.1007/bf01734108] [Citation(s) in RCA: 83] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
|
39
|
Haugaard ES, Davidheiser S, Haugaard N. Effects of epinephrine and cyclic AMP phosphodiesterase inhibitors on the glycogen synthetic pathway and glucose content in skeletal muscle. Biochem Pharmacol 1976; 25:439-45. [PMID: 181002 DOI: 10.1016/0006-2952(76)90347-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Haugaard N. Metabolic and electrolyte changes produced by lithium ions in the isolated rat diaphragm. Biochem Pharmacol 1975; 24:1187-91. [PMID: 166645 DOI: 10.1016/0006-2952(75)90060-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|