1
|
Tanaka AJ, Okumoto K, Tamura S, Abe Y, Hirsch Y, Deng L, Ekstein J, Chung WK, Fujiki Y. A newly identified mutation in the PEX26 gene is associated with a milder form of Zellweger spectrum disorder. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003483. [PMID: 30446579 PMCID: PMC6371744 DOI: 10.1101/mcs.a003483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Using clinical exome sequencing (ES), we identified an autosomal recessive missense variant, c.153C>A (p.F51L), in the peroxisome biogenesis factor 26 gene (PEX26) in a 19-yr-old female of Ashkenazi Jewish descent who was referred for moderate to severe hearing loss. The proband and three affected siblings are all homozygous for the c.153C>A variant. Skin fibroblasts from this patient show normal morphology in immunostaining of matrix proteins, although the level of catalase was elevated. Import rate of matrix proteins was significantly decreased in the patient-derived fibroblasts. Binding of Pex26-F51L to the AAA ATPase peroxins, Pex1 and Pex6, is severely impaired and affects peroxisome assembly. Moreover, Pex26 in the patient's fibroblasts is reduced to ∼30% of the control, suggesting that Pex26-F51L is unstable in cells. In the patient's fibroblasts, peroxisome-targeting signal 1 (PTS1) proteins, PTS2 protein 3-ketoacyl-CoA thiolase, and catalase are present in a punctate staining pattern at 37°C and in a diffuse pattern at 42°C, suggesting that these matrix proteins are not imported to peroxisomes in a temperature-sensitive manner. Analysis of peroxisomal metabolism in the patient's fibroblasts showed that the level of docosahexaenoic acid (DHA) (C22:6n-3) in ether phospholipids is decreased, whereas other lipid metabolism, including peroxisomal fatty acid β-oxidation, is normal. Collectively, the functional data support the mild phenotype of nonsyndromic hearing loss in patients harboring the F51L variant in PEX26.
Collapse
Affiliation(s)
- Akemi J Tanaka
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Graduate School of Systems Life Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigehiko Tamura
- Graduate School of Systems Life Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Faculty of Arts and Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoel Hirsch
- Dor Yeshorim, The Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York 11211, USA
| | - Liyong Deng
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Joseph Ekstein
- Dor Yeshorim, The Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York 11211, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Yagita Y, Shinohara K, Abe Y, Nakagawa K, Al-Owain M, Alkuraya FS, Fujiki Y. Deficiency of a Retinal Dystrophy Protein, Acyl-CoA Binding Domain-containing 5 (ACBD5), Impairs Peroxisomal β-Oxidation of Very-long-chain Fatty Acids. J Biol Chem 2016; 292:691-705. [PMID: 27899449 DOI: 10.1074/jbc.m116.760090] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/11/2016] [Indexed: 12/22/2022] Open
Abstract
Acyl-CoA binding domain-containing 5 (ACBD5) is a peroxisomal protein that carries an acyl-CoA binding domain (ACBD) at its N-terminal region. The recent identification of a mutation in the ACBD5 gene in patients with a syndromic form of retinal dystrophy highlights the physiological importance of ACBD5 in humans. However, the underlying pathogenic mechanisms and the precise function of ACBD5 remain unclear. We herein report that ACBD5 is a peroxisomal tail-anchored membrane protein exposing its ACBD to the cytosol. Using patient-derived fibroblasts and ACBD5 knock-out HeLa cells generated via genome editing, we demonstrate that ACBD5 deficiency causes a moderate but significant defect in peroxisomal β-oxidation of very-long-chain fatty acids (VLCFAs) and elevates the level of cellular phospholipids containing VLCFAs without affecting peroxisome biogenesis, including the import of membrane and matrix proteins. Both the N-terminal ACBD and peroxisomal localization of ACBD5 are prerequisite for efficient VLCFA β-oxidation in peroxisomes. Furthermore, ACBD5 preferentially binds very-long-chain fatty acyl-CoAs (VLC-CoAs). Together, these results suggest a direct role of ACBD5 in peroxisomal VLCFA β-oxidation. Based on our findings, we propose that ACBD5 captures VLC-CoAs on the cytosolic side of the peroxisomal membrane so that the transport of VLC-CoAs into peroxisomes and subsequent β-oxidation thereof can proceed efficiently. Our study reclassifies ACBD5-related phenotype as a novel peroxisomal disorder.
Collapse
Affiliation(s)
- Yuichi Yagita
- From the Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Kyoko Shinohara
- From the Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuichi Abe
- the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan, and
| | - Keiko Nakagawa
- From the Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Mohammed Al-Owain
- the King Faisal Specialist Hospital and Research Center, MBC-03 P. O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Fowzan S Alkuraya
- the King Faisal Specialist Hospital and Research Center, MBC-03 P. O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Yukio Fujiki
- the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan, and
| |
Collapse
|
3
|
Itoyama A, Honsho M, Abe Y, Moser A, Yoshida Y, Fujiki Y. Docosahexaenoic acid mediates peroxisomal elongation, a prerequisite for peroxisome division. J Cell Sci 2012; 125:589-602. [PMID: 22389399 DOI: 10.1242/jcs.087452] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peroxisome division is regulated by several factors, termed fission factors, as well as the conditions of the cellular environment. Over the past decade, the idea of metabolic control of peroxisomal morphogenesis has been postulated, but remains largely undefined to date. In the current study, docosahexaenoic acid (DHA, C22:6n-3) was identified as an inducer of peroxisome division. In fibroblasts isolated from patients that carry defects in peroxisomal fatty acid β-oxidation, peroxisomes are much less abundant than normal cells. Treatment of these patient fibroblasts with DHA induced the proliferation of peroxisomes to the level seen in normal fibroblasts. DHA-induced peroxisomal proliferation was abrogated by treatment with a small inhibitory RNA (siRNA) targeting dynamin-like protein 1 and with dynasore, an inhibitor of dynamin-like protein 1, which suggested that DHA stimulates peroxisome division. DHA augmented the hyper-oligomerization of Pex11pβ and the formation of Pex11pβ-enriched regions on elongated peroxisomes. Time-lapse imaging analysis of peroxisomal morphogenesis revealed a sequence of steps involved in peroxisome division, including elongation in one direction followed by peroxisomal fission. DHA enhanced peroxisomal division in a microtubule-independent manner. These results suggest that DHA is a crucial signal for peroxisomal elongation, a prerequisite for subsequent fission and peroxisome division.
Collapse
Affiliation(s)
- Akinori Itoyama
- Graduate School of Systems Life Sciences, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Okumoto K, Kametani Y, Fujiki Y. Two proteases, trypsin domain-containing 1 (Tysnd1) and peroxisomal lon protease (PsLon), cooperatively regulate fatty acid β-oxidation in peroxisomal matrix. J Biol Chem 2011; 286:44367-79. [PMID: 22002062 DOI: 10.1074/jbc.m111.285197] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms underlying protein turnover and enzyme regulation in the peroxisomal matrix remain largely unknown. Trypsin domain-containing 1 (Tysnd1) and peroxisomal Lon protease (PsLon) are newly identified peroxisomal matrix proteins that harbor both a serine protease-like domain and a peroxisome-targeting signal 1 (PTS1) sequence. Tysnd1 processes several PTS1-containing proteins and cleaves N-terminal presequences from PTS2-containing protein precursors. Here we report that knockdown of Tysnd1, but not PsLon, resulted in accumulation of endogenous β-oxidation enzymes in their premature form. The protease activity of Tysnd1 was inactivated by intermolecular self-conversion of the 60-kDa form to 15- and 45-kDa chains, which were preferentially degraded by PsLon. Peroxisomal β-oxidation of a very long fatty acid was significantly decreased by knockdown of Tysnd1 and partially lowered by PsLon knockdown. Taken together, these data suggest that Tysnd1 is a key regulator of the peroxisomal β-oxidation pathway via proteolytic processing of β-oxidation enzymes. The proteolytic activity of oligomeric Tysnd1 is in turn controlled by self-cleavage of Tysnd1 and degradation of Tysnd1 cleavage products by PsLon.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
5
|
Morita M, Kanai M, Mizuno S, Iwashima M, Hayashi T, Shimozawa N, Suzuki Y, Imanaka T. Baicalein 5,6,7-trimethyl ether activates peroxisomal but not mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 2008; 31:442-9. [PMID: 18470630 DOI: 10.1007/s10545-008-0857-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 02/26/2008] [Accepted: 03/31/2008] [Indexed: 11/28/2022]
Abstract
Recently, we reported that baicalein 5,6,7-trimethyl ether (BTM), a flavonoid, is capable of activating fatty acid beta-oxidation in X-linked adrenoleukodystrophy (X-ALD) fibroblasts (FEBS Lett. 2005; 579: 409-414). The objective of this study was to clarify whether BTM activates peroxisomal and/or mitochondrial fatty acid beta-oxidation. We first analysed the effect of BTM on fatty acid beta-oxidation in fibroblasts derived from healthy controls as well as patients with X-ALD, mitochondrial carnitine-acylcarnitine translocase (CACT) deficiency, and peroxisome biogenesis disorder, Zellweger syndrome. Lignoceric acid (C(24:0)) beta-oxidation in the fibroblasts was stimulated by treatment with BTM, except for Zellweger fibroblasts. In contrasts, palmitic acid (C(16:0)) beta-oxidation was increased (2.8-fold) only in CACT-deficient fibroblasts. In U87 glioblastoma cells, C(24:0) beta-oxidation was also activated by treatment with BTM but C(16:0) beta-oxidation was not. The C(16:0) beta-oxidation was, however, significantly increased in the presence of 2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA), a carnitine palmitoyltransferase I inhibitor. These results indicate that BTM activates peroxisomal but not mitochondrial fatty acid beta-oxidation. In addition, we found that BTM did not upregulate the expression of ABCD2/ALDR, ABCD3/PMP70, ACOX1 and FATP4 genes but slightly increased ACSVL1 gene expression.
Collapse
Affiliation(s)
- M Morita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Takahashi N, Morita M, Maeda T, Harayama Y, Shimozawa N, Suzuki Y, Furuya H, Sato R, Kashiwayama Y, Imanaka T. Adrenoleukodystrophy: subcellular localization and degradation of adrenoleukodystrophy protein (ALDP/ABCD1) with naturally occurring missense mutations. J Neurochem 2007; 101:1632-43. [PMID: 17542813 DOI: 10.1111/j.1471-4159.2007.04457.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutation in the X-chromosomal adrenoleukodystrophy gene (ALD; ABCD1) leads to X-linked adrenoleukodystrophy (X-ALD), a severe neurodegenerative disorder. The encoded adrenoleukodystrophy protein (ALDP/ABCD1) is a half-size peroxisomal ATP-binding cassette protein of 745 amino acids in humans. In this study, we chose nine arbitrary mutant human ALDP forms (R104C, G116R, Y174C, S342P, Q544R, S606P, S606L, R617H, and H667D) with naturally occurring missense mutations and examined the intracellular behavior. When expressed in X-ALD fibroblasts lacking ALDP, the expression level of mutant His-ALDPs (S606L, R617H, and H667D) was lower than that of wild type and other mutant ALDPs. Furthermore, mutant ALDP-green fluorescence proteins (S606L and H667D) stably expressed in CHO cells were not detected due to rapid degradation. Interestingly, the wild type ALDP co-expressed in these cells also disappeared. In the case of X-ALD fibroblasts from an ALD patient (R617H), the mutant ALDP was not detected in the cells, but appeared upon incubation with a proteasome inhibitor. When CHO cells expressing mutant ALDP-green fluorescence protein (H667D) were cultured in the presence of a proteasome inhibitor, both the mutant and wild type ALDP reappeared. In addition, mutant His-ALDP (Y174C), which has a mutation between transmembrane domain 2 and 3, did not exhibit peroxisomal localization by immunofluorescense study. These results suggest that mutant ALDPs, which have a mutation in the COOH-terminal half of ALDP, including S606L, R617H, and H667D, were degraded by proteasomes after dimerization. Further, the region between transmembrane domain 2 and 3 is important for the targeting of ALDP to the peroxisome.
Collapse
Affiliation(s)
- Norimasa Takahashi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Morita M, Takahashi I, Kanai M, Okafuji F, Iwashima M, Hayashi T, Watanabe S, Hamazaki T, Shimozawa N, Suzuki Y, Furuya H, Yamada T, Imanaka T. Baicalein 5,6,7-trimethyl ether, a flavonoid derivative, stimulates fatty acid β-oxidation in skin fibroblasts of X-linked adrenoleukodystrophy. FEBS Lett 2004; 579:409-14. [PMID: 15642351 DOI: 10.1016/j.febslet.2004.11.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Revised: 11/26/2004] [Accepted: 11/29/2004] [Indexed: 11/17/2022]
Abstract
The purpose of the present study is to identify bioactive compounds with potential for X-linked adrenoleukodystrophy (X-ALD) pharmacological therapy. Various plant natural products including flavonoids were tested for their ability to ameliorate the abnormality of very long chain fatty acid (VLCFA) metabolism in cultured skin-fibroblasts from X-ALD patients. Of the compounds tested, baicalein 5,6,7-trimethyl ether (baicalein-tri-Me) was found to significantly stimulate the VLCFA beta-oxidation activity. Furthermore, the incorporation of [1-(14)C]lignoceric acid into cholesteryl esters was markedly reduced towards the normal level and the VLCFA (C24:0 and C26:0) content was decreased. These results make baicalein-tri-Me a candidate for the therapeutic compound for X-ALD.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, Faculty of Pharmaceutical Science, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yamada T, Ohyagi Y, Shinnoh N, Kikuchi H, Osoegawa M, Ochi H, Kira JI, Furuya H. Therapeutic effects of normal cells on ABCD1 deficient cells in vitro and hematopoietic cell transplantation in the X-ALD mouse model. J Neurol Sci 2004; 218:91-7. [PMID: 14759639 DOI: 10.1016/j.jns.2003.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 10/03/2003] [Accepted: 11/11/2003] [Indexed: 11/19/2022]
Abstract
Bone marrow transplantation (BMT) is accepted as an efficient therapy for X-linked adrenoleukodystrophy (ALD). To clarify the mechanisms of this treatment, we examined the effects of hematopoietic cell transplantation (HCT) in an ATP-binding cassette, subfamily D, member 1 (ABCD1) knock out mice and co-culture of ALD patient fibroblasts with normal cells. We treated ABCD1 knock out mice with HCT using lacZ-transgenic mice as donors, which enabled us to detect donor-derived cells. We also examined the effects of co-culturing a normal microglia cell line (N9) with ALD fibroblasts. beta-Galactosidase (beta-GAL) activity was higher in spleen, lung and kidney than in liver, brain and spinal cord of the recipient ABCD1 knock out mice. HCT reduced the accumulation of very long chain fatty acid (VLCFA) in those tissues. The reduction of the VLCFA ratio was significant in spleen and lung; tissues with higher beta-GAL activity. ABCD1 was detectable in spleen from HCT mice. Co-culture of ALD fibroblasts with normal fibroblast cells reduced VLCFA accumulation in ALD cells. This effect was not observed when the cells were co-cultured while separated by a filter membrane. Our data suggest that supplying normal cells for ABCD1 knockout mouse by HCT corrects metabolic abnormalities in ALD tissues through a cell-mediated process. The correction requires direct cell-to-cell contact for recovering normal cell function.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Suzuki Y, Iai M, Kamei A, Tanabe Y, Chida S, Yamaguchi S, Zhang Z, Takemoto Y, Shimozawa N, Kondo N. Peroxisomal acyl CoA oxidase deficiency. J Pediatr 2002; 140:128-30. [PMID: 11815777 DOI: 10.1067/mpd.2002.120511] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three Japanese patients with peroxisomal acyl coenzyme A oxidase deficiency who manifested psychomotor retardation and regression during the late infantile period showed characteristic patterns of demyelination in the ponto- medullary corticospinal tracts and in the cerebellar and cerebral white matter. Molecular investigations revealed 2 novel missense mutations, M278V and G178C.
Collapse
Affiliation(s)
- Yasuyuki Suzuki
- Department of Pediatrics and Medical Education Development Center, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fujiwara C, Imamura A, Hashiguchi N, Shimozawa N, Suzuki Y, Kondo N, Imanaka T, Tsukamoto T, Osumi T. Catalase-less peroxisomes. Implication in the milder forms of peroxisome biogenesis disorder. J Biol Chem 2000; 275:37271-7. [PMID: 10960480 DOI: 10.1074/jbc.m006347200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We established a Chinese hamster ovary cell line having a temperature-sensitive phenotype in peroxisome biogenesis. This mutant (65TS) was produced by transforming a PEX2-defective mutant, Z65, with a mutant PEX2 gene, PEX2(E55K), derived from a patient with infantile Refsum disease, a milder form of peroxisome biogenesis disorder. In 65TS, catalase was found in the cytosol at a nonpermissive temperature (39 degrees C), but upon the shift to a permissive temperature (33 degrees C), catalase gradually localized to the structures containing a 70-kDa peroxisomal membrane protein, PMP70. In contrast to catalase, other matrix proteins containing typical peroxisome targeting signals, acyl-CoA oxidase and peroxisomal 3-ketoacyl-CoA thiolase, were co-localized with PMP70 in most cells, even at 39 degrees C. We found that these structures are partially functional peroxisomes and named them "catalase-less peroxisomes." Catalase-less peroxisomes were also observed in human fibroblasts from patients with milder forms of peroxisome biogenesis disorder, including the one from which the mutant PEX2 gene was derived. We suggest that these structures are the causes of the milder phenotypes of the patients. Temperature-dependent restoration of the peroxisomes in 65TS occurred even in the presence of cycloheximide, a protein synthesis inhibitor. Thus, we conclude that in 65TS, catalase-less peroxisomes are the direct precursors of peroxisomes.
Collapse
Affiliation(s)
- C Fujiwara
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Imamura A, Shimozawa N, Suzuki Y, Zhang Z, Tsukamoto T, Fujiki Y, Orii T, Osumi T, Wanders RJ, Kondo N. Temperature-sensitive mutation of PEX6 in peroxisome biogenesis disorders in complementation group C (CG-C): comparative study of PEX6 and PEX1. Pediatr Res 2000; 48:541-5. [PMID: 11004248 DOI: 10.1203/00006450-200010000-00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxisome biogenesis disorders (PBD), including Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease, are a group of genetically heterogeneous autosomal-recessive diseases caused by mutations in PEX genes that encode peroxins, proteins required for peroxisome biogenesis. Zellweger syndrome patients present the most severe phenotype, whereas neonatal adrenoleukodystrophy patients are intermediate and infantile Refsum disease patients have the mildest features. PEX6 is a causative gene for PBD of complementation group C (CG-C) and encodes the peroxin Pex6p, one of the ATPases associated with diverse cellular activities and a member of the same family of proteins as Pex1p, a causative protein for PBD of CG-E (CG1). Here, we identified the temperature sensitivity of peroxisomes in the fibroblasts of a patient with neonatal adrenoleukodystrophy in CG-C. Peroxisomes were morphologically and biochemically formed at 30 degrees C but not at 37 degrees C. This patient was homozygous for a missense mutation, T-->C at nucleotide 170 resulting in a change from leucine to proline at amino acid 57 (L57P) in Pex6p. CG-C cell mutants (ZP92) in the Chinese hamster ovary transfected with L57P in HsPEX6 revealed the same temperature-sensitive phenotype. However, PEX1-deficient Chinese hamster ovary cell mutants (ZP101) transfected with L111P in PEX1, the counterpart to L57P in PEX6, showed no temperature sensitivity. In addition, ZP92 transfected with G708D in PEX6, the counterpart to the temperature-sensitive mutation G843D in PEX1, revealed no temperature-sensitive phenotype. These results indicate that L57P in Pex6p is a temperature-sensitive mutation causing the milder phenotype in a patient with PBD in CG-C. They also indicate that the amino acid residues responsible for temperature sensitivity do not seem to be conserved between Pex6p and Pex1p.
Collapse
Affiliation(s)
- A Imamura
- Department of Pediatrics, Gifu University School of Medicine, Gifu 500-8705, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shimozawa N, Zhang Z, Imamura A, Suzuki Y, Fujiki Y, Tsukamoto T, Osumi T, Aubourg P, Wanders RJ, Kondo N. Molecular mechanism of detectable catalase-containing particles, peroxisomes, in fibroblasts from a PEX2-defective patient. Biochem Biophys Res Commun 2000; 268:31-5. [PMID: 10652207 DOI: 10.1006/bbrc.1999.2082] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients with peroxisome biogenesis disorders (PBD) can be identified by detection of peroxisomes in their fibroblasts, by means of immunocytochemical staining using an anti-catalase antibody. We report here data on three PBD patients with newly identified mutations (del550C and del642G) in the PEX2 gene which encodes a 35-kDa peroxisomal membrane protein containing two membrane-spanning and a C-terminal cysteine-rich region. Some of the fibroblasts from the patient with the del642G mutation contained numerous catalase-containing particles, whereas no fibroblasts containing such particles were found in the patient with the del550C mutation. We confirmed that the del642G mutation caused a partial defect in peroxisome synthesis and import by expression of the mutated PEX2 into PEX2-defective CHO mutant cells. We propose that the two putative membrane-spanning segments in Pex2p are important domains for peroxisome assembly and import and that a defect in one of these domains severely affects PBD patients. Furthermore, a defect in the C-terminal portion of Pex2p exposed to the cytosol containing a RING finger motif caused the mild phenotype, residual enzyme activities, and mosaic detectable peroxisomes in fibroblasts from the patient.
Collapse
Affiliation(s)
- N Shimozawa
- Department of Pediatrics, Gifu University School of Medicine, Gifu, 500-8076, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Imamura A, Shimozawa N, Suzuki Y, Zhang Z, Tsukamoto T, Fujiki Y, Orii T, Osumi T, Kondo N. Restoration of biochemical function of the peroxisome in the temperature-sensitive mild forms of peroxisome biogenesis disorder in humans. Brain Dev 2000; 22:8-12. [PMID: 10761827 DOI: 10.1016/s0387-7604(99)00072-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have found that peroxisome assembly is temperature-sensitive (ts) in mild forms of peroxisome biogenesis disorders (PBDs), that is all infantile Refsum disease (IRD) patients and a few neonatal adrenoleukodystrophy patients of several complementation groups. The number of peroxisomes increased daily in incubation at 30 degrees C in the ts cells. Oxidation of very long-chain fatty acids, processing of acyl-CoA oxidase and dihydroxyacetonephosphate acyltransferase activity also improved after 8 days incubation at 30 degrees C in the IRD fibroblasts. These biochemical functions of the peroxisome did not change at 30 degrees C in Zellweger fibroblasts. Number of peroxisomes gradually decreased after 4 days when the temperature shifted from 30 to 37 degrees C in the ts cells. These results indicate that the biochemical functions of peroxisome are also restored by incubation at 30 degrees C in the mild and ts phenotype of PBDs, and the results will aid to predict the severity and the prognosis of affected children.
Collapse
Affiliation(s)
- A Imamura
- Department of Pediatrics, Gifu University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shimozawa N, Zhang Z, Suzuki Y, Imamura A, Tsukamoto T, Osumi T, Fujiki Y, Orii T, Barth PG, Wanders RJ, Kondo N. Functional heterogeneity of C-terminal peroxisome targeting signal 1 in PEX5-defective patients. Biochem Biophys Res Commun 1999; 262:504-8. [PMID: 10462504 DOI: 10.1006/bbrc.1999.1232] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate mechanisms related to functions of the peroxisome targeting signal (PTS) 1 receptor, Pex5p, we analyzed peroxisome matrix protein import in fibroblasts from three patients with peroxisome biogenesis disorders, all with different mutations in the PEX5 gene. The patients 2-01 (Zellweger syndrome) and 2-05 (neonatal adrenoleukodystrophy) have the reported mutations, R390X and N489K, and patient 2-03 (infantile Refsum disease) has a newly identified mutation, S563W. Fibroblasts from 2-03 (S563W) were detected in both PTS1 and PTS2 imports despite the PEX5 defect, findings in contrast with fibroblasts from 2-05 (N489K) severely defective in PTS1 import and those from 2-01 (R390X) severely defective in both PTS1 and PTS2. The PTS1 receptor in 2-03 is functional for only the C-terminal -SKL sequence (acyl-CoA oxidase) and had little or no function for C-terminal -AKL (D-bifunctional protein and sterol carrier protein 2) and -KANL (catalase) sequences, respectively. After transfection of these mutated PEX5 cDNA into the PEX5-defective CHO mutant, transformants of ZP102 revealed that each mutation was responsible for each dysfunction of the PTS1 import. It seems apparent that -AKL and -KANL are poorer variants of PTS1 and are likely to be more susceptible to effects of mutation of its receptor, Pex5p.
Collapse
Affiliation(s)
- N Shimozawa
- Department of Pediatrics, Gifu University School of Medicine, Gifu, 500-8076, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Imanaka T, Aihara K, Takano T, Yamashita A, Sato R, Suzuki Y, Yokota S, Osumi T. Characterization of the 70-kDa peroxisomal membrane protein, an ATP binding cassette transporter. J Biol Chem 1999; 274:11968-76. [PMID: 10207018 DOI: 10.1074/jbc.274.17.11968] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 70-kDa peroxisomal membrane protein (PMP70) is one of the major components of rat liver peroxisomal membranes and belongs to a superfamily of proteins known as ATP binding cassette transporters. PMP70 is markedly induced by administration of hypolipidemic agents in parallel with peroxisome proliferation and induction of peroxisomal fatty acid beta-oxidation enzymes. To characterize the role of PMP70 in biogenesis and function of peroxisomes, we transfected the cDNA of rat PMP70 into Chinese hamster ovary cells and established cell lines stably expressing PMP70. The content of PMP70 in the transfectants increased about 5-fold when compared with the control cells. A subcellular fractionation study showed that overexpressed PMP70 was enriched in peroxisomes. This peroxisomal localization was confirmed by immunofluorescence and immunoelectron microscopy. The number of immuno-gold particles corresponding to PMP70 on peroxisomes increased markedly in the transfectants, but the size and the number of peroxisomes were essentially the same in both the transfectants and the control cells. beta-Oxidation of palmitic acid increased about 2-3-fold in the transfectants, whereas the oxidation of lignoceric acid decreased about 30-40%. When intact peroxisomes prepared from both the cell lines were incubated with palmitoyl-CoA, oxidation was stimulated with ATP, but the degree of the stimulation was higher in the transfectants than in the control cells. Furthermore, we established three Chinese hamster ovary cell lines stably expressing mutant PMP70. In these cells, beta-oxidation of palmitic acid decreased markedly. These results suggest that PMP70 is involved in metabolic transport of long chain acyl-CoA across peroxisomal membranes and that increase of PMP70 is not associated with proliferation of peroxisomes.
Collapse
Affiliation(s)
- T Imanaka
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The enzymes involved in beta-oxidation spiral are schematically classified into two groups. The first group consists of palmitoyl-CoA oxidase, the L-bifunctional protein, which has been called as the bifunctional protein, and 3-ketoacyl-CoA thiolase. The second group consists of the newly confirmed enzymes, branched chain oxidase, the D-bifunctional protein, and sterol carrier protein x. The enzymes of the first group are inducible and act on the straight chain acyl-CoA substrates. But the enzymes of the second group are non-inducible and act on branched chain acyl-CoAs. Accordingly, bile acid formation and oxidation of pristanic acid derived from phytol are catalyzed by the enzymes of the second group but not by those of the first group. The functions of the peroxisomal system and methods of analysis of the enzymes are briefly summarized.
Collapse
Affiliation(s)
- T Hashimoto
- Department of Biochemistry, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
17
|
Shimozawa N, Suzuki Y, Zhang Z, Imamura A, Kondo N, Kinoshita N, Fujiki Y, Tsukamoto T, Osumi T, Imanaka T, Orii T, Beemer F, Mooijer P, Dekker C, Wanders RJ. Genetic basis of peroxisome-assembly mutants of humans, Chinese hamster ovary cells, and yeast: identification of a new complementation group of peroxisome-biogenesis disorders apparently lacking peroxisomal-membrane ghosts. Am J Hum Genet 1998; 63:1898-903. [PMID: 9837841 PMCID: PMC1377660 DOI: 10.1086/302142] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
18
|
Imamura A, Tsukamoto T, Shimozawa N, Suzuki Y, Zhang Z, Imanaka T, Fujiki Y, Orii T, Kondo N, Osumi T. Temperature-sensitive phenotypes of peroxisome-assembly processes represent the milder forms of human peroxisome-biogenesis disorders. Am J Hum Genet 1998; 62:1539-43. [PMID: 9585609 PMCID: PMC1377160 DOI: 10.1086/301881] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
19
|
Kamijo T, Indo Y, Souri M, Aoyama T, Hara T, Yamamoto S, Ushikubo S, Rinaldo P, Matsuda I, Komiyama A, Hashimoto T. Medium chain 3-ketoacyl-coenzyme A thiolase deficiency: a new disorder of mitochondrial fatty acid beta-oxidation. Pediatr Res 1997; 42:569-76. [PMID: 9357925 DOI: 10.1203/00006450-199711000-00002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A Japanese male neonate died at 13 d of age after presenting at 2 d of age with vomiting, dehydration, metabolic acidosis, liver dysfunction, and terminal rhabdomyolysis with myoglobinuria. Multiple urine organic acid analyses consistently revealed a markedly elevated excretion of lactic acid, 3-hydroxybutyric acid, and saturated and unsaturated C6-C16 dicarboxylic acids, with predominant C12-C16 species. Oxidation of [1-14C]octanoic acid in cultured skin fibroblasts was significantly reduced (0.59 nmol/h/mg of protein; controls, 1.93 +/- 0.65), [1-14C]palmitic acid oxidation was 1.11 nmol/h/mg of protein (controls, 1.63 +/- 0.41). A systematic study of the catalytic activities of nine enzymes of the beta-oxidation cycle using the respective optimal substrate revealed a deficiency of a single enzyme not previously associated with a metabolic disorder, medium chain 3-ketoacyl-CoA thiolase (patient, 3.9 nmol/min/mg protein; controls (n = 6), 10.2 +/- 2.3). Immunoprecipitation with antibodies raised against medium chain 3-ketoacyl-CoA thiolase revealed a 60% decrease compared with controls.
Collapse
Affiliation(s)
- T Kamijo
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Suzuki Y, Jiang LL, Souri M, Miyazawa S, Fukuda S, Zhang Z, Une M, Shimozawa N, Kondo N, Orii T, Hashimoto T. D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency: a newly identified peroxisomal disorder. Am J Hum Genet 1997; 61:1153-62. [PMID: 9345094 PMCID: PMC1716023 DOI: 10.1086/301599] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peroxisomal beta-oxidation proceeds from enoyl-CoA through D-3-hydroxyacyl-CoA to 3-ketoacyl-CoA by the D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxy-acyl-CoA dehydrogenase bifunctional protein (d-bifunctional protein), and the oxidation of bile-acid precursors also has been suggested as being catalyzed by the d-bifunctional protein. Because of the important roles of this protein, we reinvestigated two Japanese patients previously diagnosed as having enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase bifunctional protein (L-bifunctional protein) deficiency, in complementation studies. We found that both the protein and the enzyme activity of the d-bifunctional protein were hardly detectable in these patients but that the active L-bifunctional protein was present. The mRNA level in patient 1 was very low, and, for patient 2, mRNA was of a smaller size. Sequencing analysis of the cDNA revealed a 52-bp deletion in patient 1 and a 237-bp deletion in patient 2. This seems to be the first report of D-bifunctional protein deficiency. Patients previously diagnosed as cases of L-bifunctional protein deficiency probably should be reexamined for a possible d-bifunctional protein deficiency.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ruiz M, Coll MJ, Pampols T, Girós M. ALDP expression in fetal cells and its application in prenatal diagnosis of X-linked adrenoleukodystrophy. Prenat Diagn 1997. [DOI: 10.1002/(sici)1097-0223(199707)17:7<651::aid-pd131>3.0.co;2-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Kobayashi T, Shinnoh N, Kondo A, Yamada T. Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem Biophys Res Commun 1997; 232:631-6. [PMID: 9126326 DOI: 10.1006/bbrc.1997.6340] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have generated a line of mice deficient in adrenoleukodystrophy protein (ALDP) by gene targeting in order to clarify the pathophysiology of adrenoleukodystrophy (ALD). ALDP-deficient male and female mice appeared normal clinically at least up to 12 months. Western blot analysis showed the absence of ALDP in the brain, spinal cord, lung, and kidney and normal expression of PMP70 in the liver, lung, and kidney. The amounts of C26:0 increased by 73-240% in the brain, spinal cord, lung, and kidney. beta-Oxidation of very long chain fatty acids (VLCFA) in cultured hepatocytes and fibroblasts was reduced to 35-50% of normal. Light and electron microscopy did not show demyelination in the brain, spinal cord, and peripheral nerve. Thus, the deficiency of ALDP in mice impairs the peroxisomal fatty acid beta-oxidation but does not duplicate the clinical and pathological abnormalities of the human ALD. These observations suggest that the accumulation of VLCFA alone is not sufficient to cause demyelination in the nervous system.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Neurology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
23
|
Yamada T, Shinnoh N, Kobayashi T. Protease inhibitors suppress the degradation of mutant adrenoleukodystrophy proteins but do not correct impairment of very long chain fatty acid metabolism in adrenoleukodystrophy fibroblasts. Neurochem Res 1997; 22:233-7. [PMID: 9051655 DOI: 10.1023/a:1022477001703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The adrenoleukodystrophy (ALD) gene product, ALD protein (ALDP), was not detected in fibroblasts from our or most other patients with ALD as determined by immunoblot or immunocytochemistry. We investigated the stability of mutant ALDP and found from pulse-chase experiments that the respective half-lives of the normal and mutant #140 (Gly512Ser) and #249 (Arg660Trp) were 72.6, 32.1 and 26.1 min, indicative that mutant ALDPs are less stable than normal ones. The mutant ALDPs were detectable in fibroblasts cultured with the protease inhibitor E-64 or leupeptin. Protease inhibitor treatment for 2 to 28 days did not affect the amount of very long chain fatty acid (VLCFA), C26:0, or VLCFA beta-oxidation activity in ALD fibroblasts. Protease inhibitors therefore suppress the degradation of ALDP but do not correct the impairment of VLCFA metabolism in ALD.
Collapse
Affiliation(s)
- T Yamada
- Department of Neurology, Faculty of Medicine, Kyushu University, Japan.
| | | | | |
Collapse
|
24
|
Inoue K, Suzuki Y, Yajima S, Shimozawa N, Tomatsu S, Orii T, Kondo N. Carrier identification of X-linked adrenoleukodystrophy by measurement of very long chain fatty acids and lignoceric acid oxidation. Clin Genet 1996; 50:348-52. [PMID: 9007322 DOI: 10.1111/j.1399-0004.1996.tb02386.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Because identification of carriers of X-linked adrenoleukodystrophy (ALD) results in 5-15% false negatives with very long chain fatty acids (VLCFA) assay in plasma, and mutation analysis of plasma VLCFA combined with of the ALD gene is not always practical, we studied whether the analysis of plasma VLCFA combined with lignoceric acid oxidation study in fibroblasts could improve the rate of carrier detection. Lignoceric acid oxidation was abnormal in 19 out of 19 patients (ALD or adrenomyeloneuropathy) and in three out of three obligate heterozygous women. Among ten women at risk of being a carrier, three women who had normal plasma VLCFA had abnormal lignoceric acid oxidation in fibroblasts. These data suggest that this combined biochemical procedure may help to improve carrier detection in families when the ALD gene mutation has not been identified.
Collapse
Affiliation(s)
- K Inoue
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Shimozawa N, Suzuki Y, Tomatsu S, Tsukamoto T, Osumi T, Fujiki Y, Kamijo K, Hashimoto T, Kondo N, Orii T. Correction by gene expression of biochemical abnormalities in fibroblasts from Zellweger patients. Pediatr Res 1996; 39:812-5. [PMID: 8726233 DOI: 10.1203/00006450-199605000-00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Zellweger syndrome is a prototype of peroxisomal biogenesis disorders and a fatal autosomal recessive disease with no effective therapy. We identified nine genetic complementation groups of these disorders, and mutations in peroxisome assembly factor-1 (PAF-1) and the 70-kD peroxisomal membrane protein (PMP70) genes have been detected by our group F and Roscher's group 1, respectively. We now describe permanent recovery from generalized peroxisomal abnormalities in fibroblasts of a Zellweger patient from group F, such as biochemical defects of peroxisomal beta-oxidation, plasmalogen biosynthesis, and morphologic absence of peroxisomes, by stable transfection of human cDNA encoding PAF-1. In the light of these observations, we designed a gene expression system using fibroblasts from patients with peroxisomal biogenesis disorders. In Zellweger fibroblasts obtained from Roscher's group 1 and transfected with human cDNA encoding PMP70, peroxisomes were not morphologically identifiable, and peroxisomal function did not normalize.
Collapse
Affiliation(s)
- N Shimozawa
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Imamura A, Suzuki Y, Song XQ, Fukao T, Shimozawa N, Orii T, Kondo N. Prenatal diagnosis of adrenoleukodystrophy by means of mutation analysis. Prenat Diagn 1996; 16:259-61. [PMID: 8710781 DOI: 10.1002/(sici)1097-0223(199603)16:3<259::aid-pd840>3.0.co;2-e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Prenatal diagnosis of adrenoleukodystrophy (ALD) was performed by means of genetic and biochemical analysis using chorionic villi and amniocytes. The mother was a carrier of an exonic point mutation in the ALD protein gene (2154 C to T) which resulted in the premature formation of a termination codon (Q590STOP) and deletes the Pst I site. Two patients in this family were hemizygotes for this mutation. Pst I digestion of cDNA from chorionic villi revealed that the fetus was a heterozygote for this mutation, and sex determination using the polymerase chain reaction (PCR) indicated female. Lignocerate oxidation in cultured amniocytes was slightly decreased. These findings suggest that the fetus is a female carrier of ALD, and the resultant baby was female.
Collapse
Affiliation(s)
- A Imamura
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Suzuki Y, Shimozawa N, Yajima S, Inoue K, Orii T, Kondo N. Incidence of peroxisomal disorders in Japan. THE JAPANESE JOURNAL OF HUMAN GENETICS 1996; 41:167-75. [PMID: 8914632 DOI: 10.1007/bf01892624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Japanese patients with peroxisomal disorders in the pediatric field were screened. Very long chain fatty acid analysis in the serum sphingomyelin was introduced since 1987 and was useful for the first screening of peroxisomal disorders. Seventy-five patients were diagnosed since 1980: 15 patients with Zellweger syndrome, 2 with neonatal adrenoleukodystrophy (ALD), 1 with rhizomelic chondrodysplasia punctata, 1 with Zellweger-like syndrome. 2 with acyl-CoA oxidase deficiency, 2 with bifunctional enzyme deficiency and 52 with X-linked ALD. The incidence of peroxisome-deficient disorders was estimated to be approximately 1 in 800,000 births which is far less than that in the USA. However, the incidence in Okinawa Islands was 1 in 30,000. Japanese Zellweger patients belonged to 5 complementation groups (A, B, C, E, F) and the patients in Okinawa Islands belonged to groups A and C. The results of this screening were useful for genetic counseling, prenatal diagnosis, carrier detection and early medical care of patients with peroxisomal disorders.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Araki E, Kobayashi T, Kohtake N, Goto I, Hashimoto T. A riboflavin-responsive lipid storage myopathy due to multiple acyl-CoA dehydrogenase deficiency: an adult case. J Neurol Sci 1994; 126:202-5. [PMID: 7853027 DOI: 10.1016/0022-510x(94)90274-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 62-year-old man was admitted to our hospital because of easy fatigability of the lower limbs during walking. The biopsied muscle specimen showed excessive lipid accumulation. The carnitine concentration in the muscle was at the lower level of the normal range. Organic acid urinalysis was consistent with the diagnosis of multiple acyl-CoA dehydrogenase deficiency or glutaric acidemia type II. In cultured lymphoblastoid cells from this patient there was impaired beta-oxidation, but the activities of acyl-CoA dehydrogenases were normal. Riboflavin therapy resulted in a dramatic improvement in both clinical and biochemical aspects. In this patient, the defect in coenzyme binding to electron transfer flavoprotein (ETF) or ETF-dehydrogenase was suspected. In the adult case of lipid storage myopathy, multiple acyl-CoA dehydrogenase deficiency should be suspected as one of its pathogenesis and riboflavin therapy should be considered.
Collapse
Affiliation(s)
- E Araki
- Department of Neurology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
29
|
Matsumoto T, Kondoh T, Masuzaki H, Harada N, Matsusaka T, Kinoshita E, Takeo G, Tsujihata M, Suzuki Y, Tsuji Y. A point mutation at ATP-binding region of the ALD gene in a family with X-linked adrenoleukodystrophy. THE JAPANESE JOURNAL OF HUMAN GENETICS 1994; 39:345-51. [PMID: 7841445 DOI: 10.1007/bf01874053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A prenatal diagnosis was performed in a family with X-linked adrenoleukodystrophy (ALD). A fetus was at high risk of suffering the disease by segregation analysis and by very long chain fatty acid-CoA synthetase activity assay. A transition (G to A) at codon 617 of the candidate ALD gene was detected by reverse transcription PCR (RT-PCR) based sequencing of the fetal liver RNA. The mutation was located in highly conserved ATP-binding site in this gene and deduced amino acid transversion R617H was thought to be the cause of ALD in this family.
Collapse
Affiliation(s)
- T Matsumoto
- Department of Pediatrics, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rat very-long-chain acyl-CoA dehydrogenase, a novel mitochondrial acyl-CoA dehydrogenase gene product, is a rate-limiting enzyme in long-chain fatty acid beta-oxidation system. cDNA and deduced amino acid sequence and distinct specificities of the cDNA-expressed protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32278-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Kamijo T, Wanders RJ, Saudubray JM, Aoyama T, Komiyama A, Hashimoto T. Mitochondrial trifunctional protein deficiency. Catalytic heterogeneity of the mutant enzyme in two patients. J Clin Invest 1994; 93:1740-7. [PMID: 8163672 PMCID: PMC294231 DOI: 10.1172/jci117158] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We examined the enzyme protein and biosynthesis of human trifunctional protein harboring enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase activity in cultured skin fibroblasts from two patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. The following results were obtained. (a) In cells from patient 1, immunoblot analysis and pulse-chase experiments indicated that the content of trifunctional protein was < 10% of that in control cells, due to a very rapid degradation of protein newly synthesized in the mitochondria. The diminution of trifunctional protein was associated with a decreased activity of enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase, when measured using medium-chain to long-chain substrates. (b) In cells from patient 2, the rate of degradation of newly synthesized trifunctional protein was faster than that in control cells, giving rise to a trifunctional protein amounting to 60% of the control levels. The 3-hydroxy-acyl-CoA dehydrogenase activity with medium-chain to long-chain substrates was decreased drastically, with minor changes in activities of the two other enzymes. These data suggest a subtle abnormality of trifunctional protein in cells from patient 2. Taken together, the results obtained show that in both patients, long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency is caused by an abnormality in the trifunctional protein, even though there is a heterogeneity in both patients.
Collapse
Affiliation(s)
- T Kamijo
- Department of Pediatrics, Shinshu University School of Medicine, Nagano, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Suzuki Y, Shimozawa N, Kawabata I, Yajima S, Inoue K, Uchida Y, Izai K, Tomatsu S, Kondo N, Orii T. Prenatal diagnosis of peroxisomal disorders. Biochemical and immunocytochemical studies on peroxisomes in human amniocytes. Brain Dev 1994; 16:27-31. [PMID: 8059925 DOI: 10.1016/0387-7604(94)90109-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Prenatal diagnoses of peroxisomal disorders, including peroxisome-deficient Zellweger syndrome, isolated deficiency of peroxisomal beta-oxidation enzyme and rhizomelic type chondrodysplasia punctata were investigated by means of the lignoceric acid oxidation assay, indirect immunofluorescence staining and pulse-chase experiments, using cultured amniocytes. Assessment of peroxisomal beta-oxidation activity by means of [1-14C]lignoceric acid oxidation is essential for the diagnosis of a single enzyme deficiency of peroxisomal beta-oxidation with detectable enzyme protein. For the diagnosis of Zellweger syndrome, the absence of peroxisomes was readily determined by immunofluorescence staining of only a few amniocytes. Evidence for abnormal processing of 3-ketoacyl-CoA thiolase leads to the diagnosis of rhizomelic chondrodysplasia punctata. All the fetuses were considered to be normal and the neonates were normal. Use of these methods requires only a small number of amniocytes and will facilitate the prenatal diagnosis of peroxisomal disorders.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shimozawa N, Suzuki Y, Orii T, Tsukamoto T, Fujiki Y. Prenatal diagnosis of Zellweger syndrome using DNA analysis. Prenat Diagn 1993; 13:149. [PMID: 8464835 DOI: 10.1002/pd.1970130212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Suzuki Y, Shimozawa N, Izai K, Uchida Y, Miura K, Akatsuka H, Nagaya M, Yamaguchi S, Orii T. Peroxisomal 3-ketoacyl-CoA thiolase is partially processed in fibroblasts from patients with rhizomelic chondrodysplasia punctata. J Inherit Metab Dis 1993; 16:868-71. [PMID: 8295403 DOI: 10.1007/bf00714280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Y Suzuki
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Okamoto H, Suzuki Y, Shimozawa N, Yajima S, Masuno M, Orii T. Transformation and characterization of mutant human fibroblasts defective in peroxisome assembly. Exp Cell Res 1992; 201:307-12. [PMID: 1639130 DOI: 10.1016/0014-4827(92)90278-g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human skin fibroblasts deficient in peroxisome biogenesis were transformed by transfecting SV40 ori- DNA with the use of an electroporator, and the biochemical, immunocytochemical, and cytogenetic properties of the transformants were analyzed. Cells (1 x 10(6)) from a patient with Zellweger syndrome and one with neonatal adrenoleukodystrophy were suspended with 2 micrograms of SV40 ori- DNA in PBS; then a high-voltage pulse (2000 V, 30 microseconds) was generated two times. Several colonies expressing large T-antigen were picked up 4 weeks after transfection. Doubling time of the transformants was about half of that and the saturation density was 5 to 10 times greater than that of the parental cells. Biochemical abnormalities including defective lignoceric acid oxidation, dihydroxyacetone phosphate acyltransferase deficiency, and disturbed biosynthesis of peroxisomal beta-oxidation enzymes were preserved in the transformants. Peroxisomes were defective in all colonies, as determined by immunofluorescence staining using anti-catalase IgG. Cell fusion studies confirmed that the transformants belong to the same complementation groups as those of the parental cells. These transformed mutant cell lines are expected to be useful tools for investigating the pathogenesis of inherited diseases related to defects in peroxisome biogenesis.
Collapse
Affiliation(s)
- H Okamoto
- Department of Pediatrics, School of Medicine, Gifu University, Japan
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Yajima S, Suzuki Y, Shimozawa N, Yamaguchi S, Orii T, Fujiki Y, Osumi T, Hashimoto T, Moser HW. Complementation study of peroxisome-deficient disorders by immunofluorescence staining and characterization of fused cells. Hum Genet 1992; 88:491-9. [PMID: 1372585 DOI: 10.1007/bf00219334] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Genetic heterogeneity in peroxisome-deficient disorders, including Zellweger's cerebrohepatorenal syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease, was investigated. Fibroblasts from 17 patients were fused using polyethylene glycol, cultivated on cover slips, and the formation of peroxisomes in the fused cells was visualized by immunofluorescence staining, using anti-human catalase IgG. Two distinct staining patterns were observed: (1) peroxisomes appeared in the majority of multinucleated cells, and (2) practically no peroxisomes were identified. Single step 12-(1'-pyrene) dodecanoic acid/ultraviolet (P12/UV)-selection confirmed that the former groups were resistant to this selection, most of the surviving cells contained abundant peroxisomes, and the latter cells died. In the complementary matching, [1-14C]lignoceric acid oxidation and the biosynthesis of peroxisomal proteins were also normalized. Five complementation groups were identified. Group A: Zellweger syndrome and infantile Refsum disease; Groups B, C and D: Zellweger syndrome; Group E: Zellweger syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease. We compared these groupings with those of Roscher and identified eight complementation groups. There was no obvious relation between complementation groups and clinical phenotypes. These results indicate that the transport, intracellular processing and function of peroxisomal proteins were normalized in the complementary matching and that at least eight different genes are involved in the formation of normal peroxisomes and in the transport of peroxisomal enzymes.
Collapse
Affiliation(s)
- S Yajima
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lageweg W, Sykes JE, Lopes-Cardozo M, Wanders RJ. Oxidation of very-long-chain fatty acids in rat brain: cerotic acid is beta-oxidized exclusively in rat brain peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1085:381-4. [PMID: 1911873 DOI: 10.1016/0005-2760(91)90144-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We studied the effect of sodium 2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA), a potent inhibitor of mitochondrial carnitine palmitoyltransferase I, on fatty acid oxidation by rat brain cells. In cultured glial cells as well as in dissociated brain cells from adult rats palmitic acid (16:0) oxidation was inhibited by about 85% of control values when 25 microM POCA was added to the medium, whereas no inhibition of cerotic acid (26:0) oxidation was observed. Furthermore, omission of carnitine from the culture medium resulted in a 57.7% decrease in palmitic acid oxidation in cultured glial cells, whereas cerotic acid oxidation was not influenced. These results indicate that rat brain peroxisomes contribute only little (about 15%) to palmitic acid oxidation and provide conclusive evidence that cerotic acid is oxidized exclusively in rat brain peroxisomes.
Collapse
Affiliation(s)
- W Lageweg
- Department of Pediatrics, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|