1
|
Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front Oncol 2022; 12:860508. [PMID: 35359383 PMCID: PMC8960963 DOI: 10.3389/fonc.2022.860508] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Caffeic acid (CA) is found abundantly in fruits, vegetables, tea, coffee, oils, and more. CA and its derivatives have been used for many centuries due to their natural healing and medicinal properties. CA possesses various biological and pharmacological activities, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. The potential therapeutic effects of CA are mediated via repression and inhibition of transcription and growth factors. CA possesses potential anticancer and neuroprotective effects in human cell cultures and animal models. However, the biomolecular interactions and pathways of CA have been described highlighting the target binding proteins and signaling molecules. The current review focuses on CA's chemical, physical, and pharmacological properties, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. We further described CA's characteristics and therapeutic potential and its future directions.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Bangalore, India
| |
Collapse
|
2
|
Potential Activity of Abrantes Pollen Extract: Biochemical and Cellular Model Studies. Foods 2021; 10:foods10112804. [PMID: 34829085 PMCID: PMC8624898 DOI: 10.3390/foods10112804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to determine the grain composition and (poly)phenolic profile of pollen from Abrantes (Portugal), as well as its antioxidative and antidiabetic properties, and abilities to protect human erythrocytes against induced hemoglobin oxidation, lipid peroxidation, and hemolysis. The phytochemical profile of the Abrantes’ bee pollen revealed twenty phenolic compounds, identified by high-performance liquid chromatography with electrospray ionization mass spectrometry coupled with photodiode array detection. Among them, quercetin derivatives were the most abundant. Concerning the biological potential, the pollen extract showed notable capacity for 2,2-diphenyl-1-picrylhydrazyl, nitric oxide, and superoxide radicals, as well as for inhibition of α-glucosidase action, and protection of human erythrocytes against oxidative damage. Non-cytotoxic effects regarding the NHDF normal cell line, human adenocarcinoma Caco-2, and human liver HepG2 cells were observed. The results obtained contributed to further research on modes of action related to oxidative damage and metabolic health problems, to generate deeper knowledge of potential health-promoting effects to develop novel pharmaceutical drugs, nutraceuticals, and dietary supplements.
Collapse
|
3
|
Ekeuku SO, Pang KL, Chin KY. Effects of Caffeic Acid and Its Derivatives on Bone: A Systematic Review. Drug Des Devel Ther 2021; 15:259-275. [PMID: 33519191 PMCID: PMC7837552 DOI: 10.2147/dddt.s287280] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Caffeic acid is a metabolite of hydroxycinnamate and phenylpropanoid, which are commonly synthesized by all plant species. It is present in various food sources that are known for their antioxidant properties. As an antioxidant, caffeic acid ameliorates reactive oxygen species, which have been reported to cause bone loss. Some studies have highlighted the effects of caffeic acid against bone resorption. METHODS A systematic review of the literature was conducted to identify relevant studies on the effects of caffeic acid on bone. A comprehensive search was conducted from July to November 2020 using PubMed, Scopus, Cochrane Library and Web of Science databases. Cellular, animal and human studies reporting the effects of caffeic acid, as a single compound, on bone cells or bone were considered. RESULTS The literature search found 226 articles on this topic, but only 24 articles met the inclusion criteria and were included in this review. The results showed that caffeic acid supplementation reduced osteoclastogenesis and bone resorption, possibly through its antioxidant potential and increased expression of osteoblast markers. However, some studies showed that caffeic acid did not affect bone resorption in ovariectomized rats and might impair bone mechanical properties in normal rats. CONCLUSION Caffeic acid potentially regulates the bone remodelling process by inhibiting osteoclastogenesis and bone resorption, as well as osteoblast apoptosis. Thus, it has medicinal values against bone diseases.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Chou CC, Wang CP, Chen JH, Lin HH. Anti-Atherosclerotic Effect of Hibiscus Leaf Polyphenols against Tumor Necrosis Factor-alpha-Induced Abnormal Vascular Smooth Muscle Cell Migration and Proliferation. Antioxidants (Basel) 2019; 8:antiox8120620. [PMID: 31817413 PMCID: PMC6943519 DOI: 10.3390/antiox8120620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/21/2023] Open
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) are major events in the development of atherosclerosis following stimulation with proinflammatory cytokines, especially tumor necrosis factor-alpha (TNF-α). Plant-derived polyphenols have attracted considerable attention in the prevention of atherosclerosis. Hibiscus leaf has been showed to inhibit endothelial cell oxidative injury, low-density lipoprotein oxidation, and foam cell formation. In this study, we examined the anti-atherosclerotic effect of Hibiscus leaf polyphenols (HLPs) against abnormal VSMC migration and proliferation in vitro and in vivo. Firstly, VSMC A7r5 cells pretreated with TNF-α were demonstrated to trigger abnormal proliferation and affect matrix metalloproteinase (MMP) activities. Non-cytotoxic doses of HLPs abolished the TNF-α-induced MMP-9 expression and cell migration via inhibiting the protein kinase PKB (also known as Akt)/activator protein-1 (AP-1) pathway. On the other hand, HLP-mediated cell cycle G0/G1 arrest might be exerted by inducing the expressions of p53 and its downstream factors that, in turn, suppress cyclin E/cdk2 activity, preventing retinoblastoma (Rb) phosphorylation and the subsequent dissociation of Rb/E2F complex. HLPs also attenuated reactive oxygen species (ROS) production against TNF-α stimulation. In vivo, HLPs improved atherosclerotic lesions, and abnormal VSMC migration and proliferation. Our data present the first evidence of HLPs as an inhibitor of VSMC dysfunction, and provide a new mechanism for its anti-atherosclerotic activity.
Collapse
Affiliation(s)
- Cheng-Chung Chou
- Laboratory Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung County 928, Taiwan;
| | - Chi-Ping Wang
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 0201, Taiwan;
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Jing-Hsien Chen
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 0201, Taiwan;
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: (J.-H.C.); (H.-H.L.); Tel.: +886-424-730-022 (ext. 12195) (J.-H.C.); +886-424-730-022 (ext. 12410) (H.-H.L.)
| | - Hui-Hsuan Lin
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 0201, Taiwan;
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: (J.-H.C.); (H.-H.L.); Tel.: +886-424-730-022 (ext. 12195) (J.-H.C.); +886-424-730-022 (ext. 12410) (H.-H.L.)
| |
Collapse
|
5
|
Firdaus F, Zafeer MF, Anis E, Ahmad M, Afzal M. Ellagic acid attenuates arsenic induced neuro-inflammation and mitochondrial dysfunction associated apoptosis. Toxicol Rep 2018; 5:411-417. [PMID: 29854611 PMCID: PMC5978009 DOI: 10.1016/j.toxrep.2018.02.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 01/11/2023] Open
Abstract
Ellagic acid mitigates arsenic mediated genotoxicity in rat brain hippocampi. Ellagic acid ameliorates arsenic induced exacerbation in levels of ROS and pro-inflammatory cytokines in rat brain hippocampi. Ellagic acid has the propensity to modulate mRNA expression of BAX, Bcl2 and caspase3, suggestive of its neuroprotective efficacy.
Arsenic, being a global pollutant needs a potential remedy which could fight against its associated toxicities. Ellagic acid (EA) is a known agent for its anti-inflammatory, antioxidant and antiapoptotic effects, and it is commonly found in fruits. The present study is designed to determine protective efficacy of EA against arsenic induced toxicity with special mention to inflammation and mitochondrial dysfunction in hippocampi of wistar rats. Rats were pre-treated with EA (20 and 40 mg/kg b.wt; p.o. for 11 days) along with arsenic (10 mg/kg; p.o. for 8 days). Total reactive oxygen species level and mitochondrial membrane potential were analyzed using flow cytometry. Protein and mRNA expression of apoptotic and inflammatory markers were also evaluated in rat hippocampus. Our results show that arsenic exposure increased total ROS generation and DNA fragmentation, decreased mitochondrial membrane potential alongwith an increase in expression of pro-apoptotic and inflammatory markers. suggesting that EA complementation downregulated total ROS generation dose dependently. Apoptotic markers, BAX and Bcl2 as well as inflammatory markers, IL-1β, TNFα, INFγ got altered significantly on its administration. Moreover, it also attenuated effects on mitochondrial membrane potential. Based on our findings, EA might substantiate to be a budding therapeutic candidate against arsenic induced neurotoxicity.
Collapse
Affiliation(s)
- Fakiha Firdaus
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Faraz Zafeer
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ehraz Anis
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Afzal
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
6
|
Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015; 8:nu8010016. [PMID: 26712785 PMCID: PMC4728630 DOI: 10.3390/nu8010016] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/21/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022] Open
Abstract
Chlorogenic acids (CGAs) are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices are linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s) for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1) the relative composition of different CGA isomers present in coffee beverages; (2) analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3) description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.
Collapse
|
7
|
Martínez J, Nieto G, Castillo J, Ros G. Influence of in vitro gastrointestinal digestion and/or grape seed extract addition on antioxidant capacity of meat emulsions. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.07.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Shin HS, Satsu H, Bae MJ, Zhao Z, Ogiwara H, Totsuka M, Shimizu M. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem 2014; 168:167-75. [PMID: 25172696 DOI: 10.1016/j.foodchem.2014.06.100] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/28/2014] [Accepted: 06/25/2014] [Indexed: 12/14/2022]
Abstract
Chlorogenic acid (CHA) is an antioxidant polyphenol prevalent in human diet, with coffee, fruits, and vegetables being its main source. Effects of CHA and CHA metabolites were evaluated on the IL-8 production in human intestinal Caco-2 cells induced by combined stimulation with tumour necrosis factor alpha (TNFα) and H2O2. CHA and caffeic acid (CA) inhibited TNFα- and H2O2-induced IL-8 production. We also examined the in vivo effects of CHA and CA using dextran sulphate sodium (DSS)-induced colitis in mice. CHA attenuated DSS-induced body weight loss, diarrhea, fecal blood, and shortening of colon and dramatically improved colitis histological scores. Furthermore, increases in the mRNA expression of colonic macrophage inflammatory protein 2 and IL-1β, which were induced by DSS, were significantly suppressed by CHA supplementation. These results suggest that dietary CHA use may aid in the prevention of intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Hee Soon Shin
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Functional Materials Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute, Republic of Korea
| | - Hideo Satsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Biotechnology, Faculty of Engineering, Maebashi Institute of Technology, Gunma, Japan.
| | - Min-Jung Bae
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Institute for Basic Science, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Zhaohui Zhao
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Haru Ogiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mamoru Totsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
9
|
Protective effect of ellagic acid against TCDD-induced renal oxidative stress: Modulation of CYP1A1 activity and antioxidant defense mechanisms. Mol Biol Rep 2014; 41:4223-32. [DOI: 10.1007/s11033-014-3292-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
|
10
|
Ellagic acid inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and prevents atheroma formation in streptozotocin-induced diabetic rats. J Nutr Biochem 2013; 24:1830-9. [DOI: 10.1016/j.jnutbio.2013.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/13/2013] [Accepted: 04/01/2013] [Indexed: 01/14/2023]
|
11
|
Yin J, Andersen ML, Skibsted LH. Reduction of ferrylmyoglobin by theanine and green tea catechins. Importance of specific Acid catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3159-3166. [PMID: 23461366 DOI: 10.1021/jf400219r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Reduction of the hypervalent heme pigment ferrylmyoglobin by green tea catechins in aqueous solution of pH = 7.5 was investigated by stopped-flow spectroscopy. Reduction by the gallic acid esters epigallocatechin gallate (EGCG, k2 = 1460 L mol(-1) s(-1), 25.0 °C, 0.16 ionic strength) and epicatechin gallate (ECG, 1410 L mol(-1) s(-1)) was found faster than for epicatechin (EC, 300 L mol(-1) s(-1)) and epigallocatechin (EGC, 200 L mol(-1) s(-1)), even though the gallate ion (G, 330 L mol(-1) s(-1)) is similar in rate to EC. The rate for reduction by EC, EGC, ECG, EGCG, and G shows no correlation with their oxidation potentials or phenolic hydrogen-oxygen bond dissociation energy, but with the pKa of the most acidic phenol group. Theanine, with an acidity similar to that of EC, reduces ferrylmyoglobin with a similar rate (200 L mol(-1) s(-1)), in support of general acid catalysis with an initial proton transfer prior to electron transfer.
Collapse
Affiliation(s)
- Jie Yin
- Food Chemistry, Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | |
Collapse
|
12
|
Chen JH, Wang CJ, Wang CP, Sheu JY, Lin CL, Lin HH. Hibiscus sabdariffa leaf polyphenolic extract inhibits LDL oxidation and foam cell formation involving up-regulation of LXRα/ABCA1 pathway. Food Chem 2013; 141:397-406. [PMID: 23768373 DOI: 10.1016/j.foodchem.2013.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/02/2013] [Accepted: 03/07/2013] [Indexed: 01/18/2023]
Abstract
The oxidative modification of low-density lipoprotein (LDL) is involved in the pathogenesis of atherosclerotic lesions through the formation of macrophage-derived foam cells. In the present study, we aimed to investigate the anti-atherosclerotic effect of Hibiscus sabdariffa leaf polyphenolic extract (HLP), which is rich in flavonoid. The inhibitory effect of HLP on oxidation and lipid peroxidation of LDL was defined in vitro. HLP showed potential in reducing foam cell formation and intracellular lipid accumulation in oxidised-LDL (ox-LDL)-induced macrophage J774A.1 cells under non-cytotoxic concentrations. Molecular data showed these influences of HLP might be mediated via liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) pathway, as demonstrated by the transfection of LXRα siRNA. Our data implied that HLP up-regulated the LXRα/ABCA1 pathway, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that HLP potentially could be developed as an anti-atherosclerotic agent.
Collapse
Affiliation(s)
- Jing-Hsien Chen
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Wu M, Wang Z, Meng C, Wang K, Hu Y, Wang L, Wang Q. Discovery and SARs of trans-3-aryl acrylic acids and their analogs as novel anti-tobacco mosaic virus (TMV) agents. PLoS One 2013; 8:e56475. [PMID: 23418574 PMCID: PMC3572066 DOI: 10.1371/journal.pone.0056475] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/09/2013] [Indexed: 11/23/2022] Open
Abstract
A series of trans-3-aryl acrylic acids 1-27 and their derivatives 28-34 were prepared and evaluated for their antiviral activity against tobacco mosaic virus (TMV) for the first time. The bioassay results showed that most of these compounds exhibited good antiviral activity against TMV, of which compounds 1, 5, 6, 20, 27 and 34 exhibited significantly higher activity against TMV than commercial Ribavirin both in vitro and in vivo. Furthermore, these compounds have more simple structure than commercial Ribavirin, and can be synthesized more efficiently. These new findings demonstrate that trans-3-aryl acrylic acids and their derivatives represent a new template for antiviral studies and could be considered for novel therapy against plant virus infection.
Collapse
Affiliation(s)
- Meng Wu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Chuisong Meng
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Kailiang Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Yanna Hu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Lizhong Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Singh J, Khan M, Singh I. Caffeic acid phenethyl ester induces adrenoleukodystrophy (Abcd2) gene in human X-ALD fibroblasts and inhibits the proinflammatory response in Abcd1/2 silenced mouse primary astrocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:747-58. [PMID: 23318275 DOI: 10.1016/j.bbalip.2013.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/31/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene. Accumulation of very long chain fatty acids (VLCFA) that have been attributed to reduced peroxisomal VLCFA β-oxidation activity are the hallmark of the disease. Overexpression of ABCD2 gene, the closest homolog of ABCD1, has been shown to compensate for ABCD1, thus correcting the VLCFA derangement. The accumulation of VLCFA leads to a neuroinflammatory disease process associated with demyelination of the cerebral white matter. The present study underlines the importance of caffeic acid phenethyl ester (CAPE) in inducing the expression of ABCD2 (ALDRP), and normalizing the peroxisomal β-oxidation as well as the levels of saturated and monounsaturated VLCFAs in cultured human skin fibroblasts of X-ALD patients. The expression of ELOVL1, the single elongase catalyzing the synthesis of both saturated VLCFA (C26:0) and mono-unsaturated VLCFA (C26:1), was also reduced by CAPE treatment. Importantly, CAPE upregulated Abcd2 expression and peroxisomal β-oxidation and lowered the VLCFA levels in Abcd1-deficient U87 astrocytes and B12 oligodendrocytes. In addition, using Abcd1/Abcd2-silenced mouse primary astrocytes we examined the effects of CAPE in VLCFA-induced inflammatory response. CAPE treatment decreased the inflammatory response as the expression of inducible nitric oxide synthase, inflammatory cytokine, and activation of NF-κB in Abcd1/Abcd2-silenced mouse primary astrocytes was reduced. The observations indicate that CAPE corrects both the metabolic disease of VLCFA as well as secondary inflammatory disease; therefore, it may be a potential drug candidate to be tested for X-ALD therapy in humans.
Collapse
Affiliation(s)
- Jaspreet Singh
- Department of Pediatrics, Darby Children Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
15
|
Kamal A, Mallareddy A, Suresh P, Lakshma Nayak V, Shetti RV, Sankara Rao N, Tamboli JR, Shaik TB, Vishnuvardhan M, Ramakrishna S. Synthesis and anticancer activity of 4β-alkylamidochalcone and 4β-cinnamido linked podophyllotoxins as apoptotic inducing agents. Eur J Med Chem 2012; 47:530-45. [DOI: 10.1016/j.ejmech.2011.11.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 01/28/2023]
|
16
|
Lee JW, Kim YH. Activation of Pro-Apoptotic Multidomain Bcl-2 Family Member Bak and Mitochondria-Dependent Caspase Cascade are Involved in p-Coumaric Acid-Induced Apoptosis in Human Jurkat T Cells. ACTA ACUST UNITED AC 2011. [DOI: 10.5352/jls.2011.21.12.1678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
The combination of 4-anilinoquinazoline and cinnamic acid: A novel mode of binding to the epidermal growth factor receptor tyrosine kinase. Bioorg Med Chem 2011; 19:5012-22. [DOI: 10.1016/j.bmc.2011.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 11/24/2022]
|
18
|
Neira JI, Pazos M, Maestre R, Torres JL, Medina I. Galloylated polyphenols as inhibitors of hemoglobin-catalyzed lipid oxidation in fish muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5684-5691. [PMID: 21486001 DOI: 10.1021/jf200295c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The influence of galloyl residues on the antioxidant mechanism of polyphenols to prevent hemoglobin-promoted lipid oxidation was investigated by using polyphenolic fractions with different degrees of galloylation: nongalloylated structures from pine bark (IVP), medium-galloylated from grape pomace (IVG), and high-galloylated from witch hazel bark (IVH). Hemoglobin (Hb) from the pelagic fish horse mackerel (Trachurus trachurus) was employed as a Hb standard. In vitro experiments showed an important increase in the deoxygenation and autoxidation of horse mackerel Hb at acidic pH values. All polyphenolic fractions significantly reduced the redox stability of Hb in buffer solutions, showing a greater deoxygenation and methemoglobin (metHb) formation in the presence of IVH, followed in decreasing order by IVG and IVP. However, galloylated polyphenols (IVH and IVG) were efficient to inhibit the oxidation of the oxygenated Hb (OxyHb) and the formation of lipid oxidation products in chilled washed fish muscle. This antioxidant activity of galloylated proanthocyanidins showed a positive relationship with the phenolic concentration. Polyphenols devoid of galloyl groups (IVP) were less active to prevent either Hb oxidation or lipid oxidation in fish muscle. The results draw attention to the potential role of galloyl residues to lessen Hb-catalyzed lipid oxidation in muscle and to maintain Hb in reduced and oxygenated states, which exhibit lower pro-oxidant activity as compared to the metHb and deoxyHb species.
Collapse
|
19
|
Li NG, Wang R, Shi ZH, Tang YP, Li BQ, Wang ZJ, Song SL, Qian LH, Wei L, Yang JP, Yao LJ, Xi JZ, Xu J, Feng F, Qian DW, Duan JA. Design and synthesis of novel NO-donor-ferulic acid hybrids as potential antiatherosclerotic drug candidatesa. Drug Dev Res 2011. [DOI: 10.1002/ddr.20442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Lee SJ, Mun GI, An SM, Boo YC. Evidence for the association of peroxidases with the antioxidant effect of p-coumaric acid in endothelial cells exposed to high glucose plus arachidonic acid. BMB Rep 2009; 42:561-7. [PMID: 19788856 DOI: 10.5483/bmbrep.2009.42.9.561] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although many plant-derived phenolic compounds display antioxidant effects in biological systems, their mechanism of action remains controversial. In this study, the mechanism by which p-coumaric acid (p-CA) performs its antioxidant action was investigated in bovine aortic endothelial cells under oxidative stress due to high levels of glucose (HG) and arachidonic acid (AA), a free fatty acid. p-CA prevented lipid peroxidation and cell death due to HG+AA without affecting the production of reactive oxygen species. The antioxidant effect of p-CA was not decreased by buthionine-(S,R)-sulfoximine, an inhibitor of cellular GSH synthesis. In contrast, pretreatment with p-CA caused the induction of peroxidases that decomposed t-butyl hydroperoxide in a p-CA-dependent manner. Furthermore, the antioxidant effect of p-CA was significantly mitigated by methimazole, which was shown to inhibit the catalytic activity of 'p-CA peroxidases' in vitro. Therefore, it is suggested that the induction of these previously unidentified 'p-CA peroxidases' is responsible for the antioxidant effect of p-CA. [BMB reports 2009; 42(9): 561-567].
Collapse
Affiliation(s)
- Seung Jin Lee
- Department of Molecular Medicine and Cell and Matrix Research Institute, BK21 Medical Education Program for Human Resources, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | |
Collapse
|
21
|
di Paola R, Esposito E, Mazzon E, Caminiti R, Toso RD, Pressi G, Cozzocrea S. 3,5-Dicaffeoyl-4-malonylquinic acid reduced oxidative stress and inflammation in a experimental model of inflammatory bowel disease. Free Radic Res 2009; 44:74-89. [DOI: 10.3109/10715760903300709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Huang HY, Chang CK, Tso TK, Huang JJ, Chang WW, Tsai YC. Antioxidant activities of various fruits and vegetables produced in Taiwan. Int J Food Sci Nutr 2009; 55:423-9. [PMID: 15545051 DOI: 10.1080/09637480412331324695] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Fruits and vegetables have been known to contain a variety of antioxidant components. It has been suggested that antioxidants may protect biomolecules from oxidative damage and therefore be associated with reduced risks of cardiovascular disease and certain cancer. The antioxidant abilities of various parts of eight common fruits and vegetables produced in Taiwan were investigated, including tomato, guava, squash, tangerine, wax gourd, pineapple, chayote, and eggplant. Squash, wax gourd, tomato, and guava seeds showed the highest antioxidant activities in thiobarbituric acid assay. Wax guard and squash seeds showed the highest antioxidant activities in iodometric assay. At the level of 1 g fresh sample, low-density lipoprotein peroxidation was inhibited by at least 90% by tomato meat, guava meat, squash seed, wax gourd meat, core, and seed, and eggplant skin. The total phenolic content was significantly correlated with antioxidant activities measured by thiobarbituric acid (r=0.715, P<0.01) and iodometric (r=0.749, P<0.01) assays. The results of this study could be used for development of merchandise with potential health benefits from agricultural products.
Collapse
Affiliation(s)
- Hui-Yu Huang
- Department of Food and Nutrition, Shih-Chien University, Taipei 104, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Vishnoi S, Agrawal V, Kasana VK. Synthesis and structure--activity relationships of substituted cinnamic acids and amide analogues: a new class of herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3261-3265. [PMID: 19368353 DOI: 10.1021/jf8034385] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the present investigation, substituted cinnamic acids (3-hydroxy, 4-hydroxy, 2-nitro, 3-nitro, 4-nitro, 3-chloro, and 4-methoxy) and their amide analogues with four different types of substituted anilines have been synthesized. The synthesized compounds have been screened for their germination inhibition activity on radish (Raphanus sativus L. var. Japanese White) seeds at 50, 100, and 200 ppm concentrations, and the activity was compared with standard herbicide, metribuzin formulation (sencor). Significant activity was exhibited by all of the compounds. It was observed that with the increase in concentration of the test solution, the activity also increased. All of the compounds showed more than 70% inhibition at 100 ppm concentration except 4-hydroxy cinnamanilide. The compound, 2-chloro (4'-hydroxy) cinnamanilide was the best among the tested compounds, and it was found to be at par with the standard, metribuzin at all concentrations. Thus, it can be concluded that substituted cinnamic acids and their amide analogues may be developed as potential herbicides.
Collapse
Affiliation(s)
- Shipra Vishnoi
- Department of Chemistry, GBPUA & T, Pantanagar-263 145, Uttarakhand, India.
| | | | | |
Collapse
|
24
|
Wang J, Lu DQ, Ling XQ, Wang JL, Qiao HQ, Ouyang PK. Simultaneous Determination of Four Active Components in Tobacco Wastes by LC. Chromatographia 2008; 69:561-566. [PMID: 32214427 PMCID: PMC7087915 DOI: 10.1365/s10337-008-0908-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/26/2008] [Accepted: 10/27/2008] [Indexed: 11/05/2022]
Abstract
A liquid chromatographic method was developed for the simultaneous quantification of four major active components in tobacco (Nicotiana tobaccum L.) wastes. Samples were extracted with 70% v/v aqueous methanol, four compounds including chlorogenic acid, cryptochlorogenic acid, neochlorogenic acid and caffeic acid were identified and determined by using LC coupled to electrospray tandem mass spectrometry and LC-UV method, respectively. Separation in LC-UV was on an Alltima C18 column (250 mm × 4.6 mm i.d.; 5 μm) with a mobile phase consisting acetonitrile: ammonium acetate buffer (pH 4.5) (5:95 v/v), at a flow rate of 1.0 mL min-1, detected at 327 nm. Four regression equations showed good linear relationships (r 2 > 0.999) between the peak area of each marker and concentration. The method has good repeatability and precision, the intra-day and inter-day RSD for both retention time and peak area was less than 1.0%. The recoveries, measured at three concentration levels, varied from 96.33 to 101.10%. The LOD (S/N = 3) and LOQ (S/N = 6) were less than 0.010 and 0.795 μg·mL-1, respectively. This assay was successfully applied to the determination of four active compounds in ten samples. The results indicated that the developed assay method was rapid, accurate, reliable and could be readily utilized as a quantitative analysis method for various of tobacco wastes.
Collapse
Affiliation(s)
- Jun Wang
- 1College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210009 Nanjing, People's Republic of China
| | - Ding-Qiang Lu
- 1College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210009 Nanjing, People's Republic of China.,Jiangsu Provincial Institute of Materia Medica, 210009 Nanjing, People's Republic of China
| | - Xiu-Quan Ling
- 1College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210009 Nanjing, People's Republic of China
| | - Jia-Li Wang
- 1College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210009 Nanjing, People's Republic of China
| | - Hong-Qun Qiao
- 1College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210009 Nanjing, People's Republic of China.,Jiangsu Provincial Institute of Materia Medica, 210009 Nanjing, People's Republic of China
| | - Ping-Kai Ouyang
- 1College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210009 Nanjing, People's Republic of China
| |
Collapse
|
25
|
Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. ACTA ACUST UNITED AC 2008; 61:223-42. [PMID: 18986801 DOI: 10.1016/j.etp.2008.09.003] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 02/07/2023]
Abstract
cis-Diamminedichloroplatinum (II) (cisplatin) is an important chemotherapeutic agent useful in the treatment of several cancers; however, it has several side effects such as nephrotoxicity. The role of the oxidative and nitrosative stress in cisplatin-induced nephrotoxicity is additionally supported by the protective effect of several free radical scavengers and antioxidants. Furthermore, in in vitro experiments, antioxidants or reactive oxygen species (ROS) scavengers have a cytoprotective effect on cells exposed to cisplatin. Recently, the participation of nitrosative stress has been more explored in cisplatin-induced renal damage. The use of a water-soluble Fe(III) porphyrin complex able to metabolize peroxynitrite (ONOO(-)) has demonstrated that this anion contributes to both in vivo and in vitro cisplatin-induced toxicity. ONOO(-) is produced when nitric oxide (NO*) reacts with superoxide anion (O(2)(*-)); currently, there are evidences suggesting alterations in NO* production after cisplatin treatment and the evidence appear to NO* has a toxic effect. This article goes through current evidence of the mechanism by more than a few compounds have beneficial effects on cisplatin-induced nephrotoxicity, contribute to understanding the role of oxidative and nitrosative stress and suggest several points as part of the mechanism of cisplatin toxicity.
Collapse
Affiliation(s)
- Yolanda I Chirino
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Tlalpan, DF, Mexico.
| | | |
Collapse
|
26
|
De Leonardis A, Pizzella L, Macciola V. Evaluation of chlorogenic acid and its metabolites as potential antioxidants for fish oils. EUR J LIPID SCI TECH 2008. [DOI: 10.1002/ejlt.200700317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Zhao Z, Shin HS, Satsu H, Totsuka M, Shimizu M. 5-caffeoylquinic acid and caffeic acid down-regulate the oxidative stress- and TNF-alpha-induced secretion of interleukin-8 from Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3863-3868. [PMID: 18444659 DOI: 10.1021/jf073168d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Although chlorogenic acid (CHA) easily reaches a millimolar level in the gastrointestinal tract because of its high concentration in coffee and fruits, its effects on intestinal epithelial cells have been little reported. We investigated in this study the down-regulative effects of 5-caffeoylquinic acid (CQA), the predominant isomer of CHA, on the H(2)O(2-) or TNF-alpha-induced secretion of interleukin (IL)-8, a central pro-inflammatory chemokine involved in the pathogenesis of inflammatory bowel diseases, in human intestinal epithelial Caco-2 cells. After the cells had been pre- and simultaneously treated with CQA, the oversecretion of IL-8 and overexpression of its mRNA induced by H(2)O(2) were significantly suppressed in a dose-dependent manner in the range of 0.25-2.00 mmol/L. We further found that a metabolite of CQA, caffeic acid (CA), but not quinic acid, significantly inhibited the H(2)O(2)-induced IL-8 secretion and its mRNA expression in the same dose-dependent manner. Both CQA and CA suppressed the TNF-alpha-induced IL-8 secretion as well. Caffeic acid at 2.00 mmol/l was able to absolutely block the H(2)O(2)- or TNF-alpha-induced oversecretion of IL-8 in Caco-2 cells. However, CQA and CA did not suppress the TNF-alpha-induced increase in the IL-8 mRNA expression, indicating that the suppressive mechanisms are different between TNF-alpha-induced and H(2)O(2)-induced IL-8 production models. These results suggest that the habit of drinking coffee and/or eating fruits with a high CHA content may be beneficial to humans in preventing the genesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Zhaohui Zhao
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
28
|
Sakthivel M, Elanchezhian R, Ramesh E, Isai M, Jesudasan CN, Thomas P, Geraldine P. Prevention of selenite-induced cataractogenesis in Wistar rats by the polyphenol, ellagic acid. Exp Eye Res 2008; 86:251-9. [DOI: 10.1016/j.exer.2007.10.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 09/19/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
|
29
|
|
30
|
Devipriya N, Sudheer AR, Vishwanathan P, Menon VP. Modulatory potential of ellagic acid, a natural plant polyphenol on altered lipid profile and lipid peroxidation status during alcohol-induced toxicity: A pathohistological study. J Biochem Mol Toxicol 2008; 22:101-12. [DOI: 10.1002/jbt.20226] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Wei HA, Lian TW, Tu YC, Hong JT, Kou MC, Wu MJ. Inhibition of low-density lipoprotein oxidation and oxidative burst in polymorphonuclear neutrophils by caffeic acid and hispidin derivatives isolated from sword brake fern (Pteris ensiformis Burm.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:10579-10584. [PMID: 18038974 DOI: 10.1021/jf071173b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Several antioxidant compounds have been previously identified from sword brake fern (Pteris ensiformis Burm.) by DPPH bleaching and Trolox equivalent antioxidant capacity (TEAC) analyses. Among the isolates, 7-O-caffeoylhydroxymaltol 3-O-beta-D-glucopyranoside and hispidin 4-O-beta- D-glucopyranoside [6-(3,4-dihydroxystyryl)-4-O-beta-D-glucopyranoside-2-pyrone] were two new compounds. The aim of this study is to elucidate the possible effect of the aqueous extract of sword brake fern (SBF) and these two compounds in preventing atherosclerosis. The results demonstrated that SBF and these two compounds strongly inhibited Cu2+-mediated low-density lipoprotein (LDL) oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene production, and relative electrophoretic mobility. The commercial antioxidant dl-alpha-tocopherol showed lower antioxidant activity than these two compounds at the same molecular concentration. SBF and these two compounds also suppressed N-formylmethionyl-leucylphenylalanine (fMLP)-stimulated reactive oxygen species (ROS) production in human polymorphonuclear neutrophils (PMN). These findings indicate that sword brake fern may prevent atherosclerosis via inhibition of both LDL oxidation and ROS production.
Collapse
Affiliation(s)
- Hsiu-An Wei
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
32
|
Glei M, Kirmse A, Habermann N, Persin C, Pool-Zobel BL. Bread enriched with green coffee extract has chemoprotective and antigenotoxic activities in human cells. Nutr Cancer 2007; 56:182-92. [PMID: 17474864 DOI: 10.1207/s15327914nc5602_9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Recent studies have shown that bread supplemented with functional ingredients was more chemoprotective than nonsupplemented bread. Here we investigated components of a German wheat bread supplemented with green coffee antioxidants (GC) to assess basic biological activities in human cells in culture. We analyzed chlorogenic acid (ChA) in the bread and determined antioxidative activities. Human colon (HT29) and liver (HepG2) cells were incubated with GC and with aqueous extracts of freeze-dried breads, after which cell survival (4' ,6-diamino-2- phenylindole dihydrochloride assay) and H(2)O(2)-induced DNA damage (comet assay) were determined. GC and supplemented bread contained 7- and 880-fold more ChA than normal bread and were significantly more antioxidative (ferric reducing ability of plasma assay, 2.9- and 265-fold; Trolox equivalent antioxidant capacity assay, 1.3- and 24-fold, respectively). Treatment of cells for 24 to 72 h with the samples resulted in a significant inhibition of cell survival in a dose-dependent manner. HepG2 liver cells were more susceptible than HT29 colon cells. No genotoxicity or cytotoxicity was observed after treatment of cells with GC, ChA, or the bread samples. H(2)O(2)-induced DNA damage was reduced significantly after treatment with GC, ChA, and supplemented bread. In conclusion, the supplementation of bread with GC improves the chemoprotective property of normal bread under these in vitro cell culture conditions. Supplementation also increases ChA content and antioxidative capacity. The treatment of the cells with supplemented bread increases resistance of colon and liver cells against H(2)O(2), a source of oxidative stress.
Collapse
Affiliation(s)
- Michael Glei
- Friedrich-Schiller-University Jena Department of Nutritional Toxicology, Institute for Nutrition, Jena, Germany.
| | | | | | | | | |
Collapse
|
33
|
Martínez R, Lacort M, Ruiz-Sanz JI, Ruiz-Larrea MB. Ferrylmyoglobin impairs secretion of VLDL triacylglycerols from stored intracellular pools: Involvement of lipid peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:590-9. [PMID: 17478120 DOI: 10.1016/j.bbalip.2007.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 03/19/2007] [Accepted: 03/26/2007] [Indexed: 11/28/2022]
Abstract
Ferrylmyoglobin (ferrylMb) may play a major role in vivo under certain pathological conditions. Preliminary experiments showed that ferrylmyoglobin induced a mild oxidative stress in rat hepatocytes, mainly reflected by early lipid peroxidation. One of the major functions of hepatocytes is the synthesis, secretion and distribution of lipids to other cells. The aim of this work was to examine whether ferrylMb affected the synthesis and secretion of triacylglycerols (TAG), and the possible involvement of lipid peroxidation on these effects. The heme protein completely impaired VLDL secretion, affecting both the lipid and apoB components of the lipoprotein particle. The incorporation of [(3)H]-oleate into newly synthesized diacylglycerol and TAG was not altered by ferrylMb. The co-treatment of cells with alpha-tocopherol prevented lipid peroxidation and concomitantly reverted VLDL TAG secretion to control values. Importantly, although ferrylMb dramatically blocked prelabeled TAG secretion, newly synthesized TAG secretion was not impaired. These data indicate that lipid peroxidation elicited by ferrylMb modulates the VLDL TAG secretion process, specifically affecting the stored intracellular TAG mobilization, rather than de novo synthesis. Apart from its potential role in vivo, ferrylmyoglobin constitutes a useful model for studying the interactions between lipid peroxidation and the specific TAG pool dependence for VLDL secretion.
Collapse
Affiliation(s)
- Rosa Martínez
- Department of Physiology, Medicine School, University of the Basque Country, 48080-Bilbao, Spain
| | | | | | | |
Collapse
|
34
|
Yu YM, Wang ZH, Liu CH, Chen CS. Ellagic acid inhibits IL-1β-induced cell adhesion molecule expression in human umbilical vein endothelial cells. Br J Nutr 2007; 97:692-8. [PMID: 17349082 DOI: 10.1017/s0007114507666409] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Expression of cell adhesion molecules by endothelium and the attachment of monocytes to endothelium may play a major role in atherosclerosis. Ellagic acid (EA) is a phenolic compound found in fruits and nuts including raspberries, strawberries, grapes and walnuts. Previous studies have indicated that EA possesses antioxidant activityin vitro. In the present study, we investigated the effects of EA on the formation of intracellular reactive oxygen species, the translocation of NFκB and expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 and endothelial leucocyte adhesion molecule (E-selectin) induced by IL-1β in human umbilical vein endothelial cells (HUVEC). We found that EA significantly reduced the binding of human monocytic cell line, U937, to IL-1β-treated HUVEC. The production of reactive oxygen species by IL-1β was dose-dependently suppressed by EA. Supplementation with increasing doses of EA up to 50 μmol/l was most effective in inhibiting the expression of VCAM-1 and E-selectin. Furthermore, the inhibition of IL-1β-induced adhesion molecule expression by EA was manifested by the suppression of nuclear translocation of p65 and p50. In conclusion, EA inhibits IL-1β-induced nuclear translocation of p65 and p50, thereby suppressing the expression of VCAM-1 and E-selectin, resulting in decreased monocyte adhesion. Thus, EA has anti-inflammatory properties and may play an important role in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Ya-Mei Yu
- Department of Nutrition, China Medical University, 91, Hsueh-Shih Road, Taichung, Taiwan.
| | | | | | | |
Collapse
|
35
|
Cheng Z, Li Y. What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update. Chem Rev 2007; 107:748-66. [PMID: 17326688 DOI: 10.1021/cr040077w] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhiyong Cheng
- The Key Laboratory of Bioorganic & Molecular Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing, China 100871
| | | |
Collapse
|
36
|
Kim SI, Jeong YI, Jung ID, Lee JS, Lee CM, Yoon MS, Seong EY, Kim JI, Lee JD, Park YM. p-Coumaric acid inhibits indoleamine 2, 3-dioxygenase expression in murine dendritic cells. Int Immunopharmacol 2007; 7:805-15. [PMID: 17466914 DOI: 10.1016/j.intimp.2007.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/29/2007] [Accepted: 01/29/2007] [Indexed: 12/21/2022]
Abstract
Indoleamine 2, 3-dioxygenase (IDO), a key enzyme that catalyses the initial and rate-limiting step in the degradation of the tryptophan, is simultaneously expressed in murine dendritic cells and macrophages stimulated with interferon-gamma (IFN-gamma). In the present study, we investigated whether p-Coumaric acid (CA), which is suggested to exhibit antioxidant properties, could suppress the functional expression of IDO in murine bone marrow-derived dendritic cells (BMDCs) stimulated with IFN-gamma. Treatment with CA reduced intracellular expression of IDO mRNA and protein levels in IFN-gamma-activated murine BMDCs in vitro and in CD11c(+)CD8alpha(+) DCs of tumor-draining lymph node (TDLN) of tumor-bearing mice in vivo. Consequently, we obtained evidence that CA suppresses the functional activity of IDO, which catalyses oxidative catabolism of tryptophan, and significantly recovers the IDO-dependent T cell suppression. Activation of the signal transducer and activator of transcription 1 (STAT1) is important to be express IDO in IFN-gamma-stimulated murine BMDCs. To determine whether these inhibitory effects of CA are associated with the alteration of the signal transducer and activator of transcription 1 (STAT1) and IFN-gamma-inducible, dsRNA-activated serine/threonine protein kinase (PKR), BMDCs were pretreated with various concentrations of CA. We found that CA inhibited the activation of STAT1 in response to IFN-gamma. Based on our results, this study may account that CA could inhibit IDO expression by down-regulation of STAT1 activation in IFN-gamma-stimulated murine DCs.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Coumaric Acids/pharmacology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Immunologic Factors/pharmacology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interferon-gamma/pharmacology
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Male
- Melanoma, Experimental/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Ovalbumin/immunology
- Propionates
- RNA, Messenger/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- STAT1 Transcription Factor/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Sang Il Kim
- Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Ami-Dong 1-10, Seo-Gu, Busan, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dupas C, Marsset Baglieri A, Ordonaud C, Tomé D, Maillard MN. Chlorogenic acid is poorly absorbed, independently of the food matrix: A Caco-2 cells and rat chronic absorption study. Mol Nutr Food Res 2006; 50:1053-60. [PMID: 17054098 DOI: 10.1002/mnfr.200600034] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
According to epidemiologic studies, dietary phenolic antioxidants, such as chlorogenic acid (CQA), could prevent coronary heart diseases and some cancers. Coffee is the main source of CQA in the human diet. The aim of this study was to assess the effect of usual coffee consumption conditions, such as the addition of milk, on CQA bioavailability. Interactions between CQA and milk proteins were shown, using an ultrafiltration technique. These interactions proved to be slightly disrupted during an in vitro digestion process. CQA absorption and bioavailability were then studied in vitro using a Caco-2 cell model coupled with an in vitro digestion process, and in vivo, in a chronic supplementation study in which rats were fed daily coffee or coffee and milk for 3 weeks. Both experiments showed that CQA absorption under its native form is weak, but unmodified by the addition of milk proteins, and slightly reduced by the addition of Maillard reaction products. These data show that there are some interactions between coffee phenolics and milk proteins, but these have no significant effect on CQA bioavailability from coffee in the rat. CQA is poorly absorbed under its native form in the body, when ingested in a realistic food matrix.
Collapse
Affiliation(s)
- Coralie Dupas
- UMR 1211 SCALE (ENSIA/INRA/CNAM)--ENSIA, Département Science de l'Aliment, Laboratoire de Chimie des Substances Naturelles: antioxydants, arômes, colorants, Massy, France
| | | | | | | | | |
Collapse
|
38
|
Dupas CJ, Marsset-Baglieri AC, Ordonaud CS, Ducept FMG, Maillard MN. Coffee Antioxidant Properties: Effects of Milk Addition and Processing Conditions. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2006.tb15650.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Yu YM, Chang WC, Wu CH, Chiang SY. Reduction of oxidative stress and apoptosis in hyperlipidemic rabbits by ellagic acid. J Nutr Biochem 2005; 16:675-81. [PMID: 16081267 DOI: 10.1016/j.jnutbio.2005.03.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 02/04/2005] [Accepted: 03/11/2005] [Indexed: 12/13/2022]
Abstract
Oxidative stress is one of the major risk factors for coronary artery disease. Ellagic acid is a phenolic compound present in fruits and nuts, and has been found to have antioxidative property. Twenty-four New Zealand white (NZW) rabbits were assigned randomly into four dietary groups. The normal group was fed regular rabbit chow, and the cholesterol group was fed a high fat and cholesterol diet. The ellagic acid (E) group and probucol group were fed the same diet as the cholesterol group plus the addition of 1% (w/w diet) ellagic acid and probucol, respectively. Oxidative stress [as measured by plasma lipids, oxygen free radicals and thiobarbituric acid reactive substances (TBARS)] increased in the cholesterol group compared with the normal group; however, it decreased in the probucol and E groups compared with the cholesterol group. Forty-five percent of the intimal surface of the thoracic aorta was covered with atherosclerotic lesions in the cholesterol group, but only 2-3% was covered in the E and probucol groups. The aortic level of 8-(OH)dG and the expression of caspase-8, caspase-9 and Fas ligand were also suppressed after ellagic acid supplement. These results indicated that ellagic acid could prevent atherosclerosis via suppression of oxidative stress and apoptosis in hyperlipidemic rabbits.
Collapse
Affiliation(s)
- Ya-Mei Yu
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| | | | | | | |
Collapse
|
40
|
Tapia A, Rodriguez J, Theoduloz C, Lopez S, Feresin GE, Schmeda-Hirschmann G. Free radical scavengers and antioxidants from Baccharis grisebachii. JOURNAL OF ETHNOPHARMACOLOGY 2004; 95:155-161. [PMID: 15507329 DOI: 10.1016/j.jep.2004.06.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 06/16/2004] [Accepted: 06/16/2004] [Indexed: 05/24/2023]
Abstract
The exudate and seriated extracts from the aerial parts of Baccharis grisebachii (Asteraceae) which is recommended as a digestive and to relieve gastric ulcers in Argentina, showed activity as free radical scavengers and inhibited lipoperoxidation in erythrocytes. Assay-guided isolation led to seven p-coumaric acid derivatives and six flavonoids as the main active constituents of the crude drug. The activity towards the superoxide anion was mainly due to the flavonoid constituents. 5,7,4'-Trihydroxy-6-methoxyflavone and quercetin presented high activity (64 and 79%) even at 12.5 microg/ml. The xanthine oxidase inhibitory effect of the extracts can be related with the p-coumaric acid derivatives drupanin, 4-acetyl-3,5-diprenylcinnamic acid and trans-ferulic acid O-hexan-3-onyl-ether which showed IC(50) values in the range 28-40 microg/ml. Both p-coumaric acid derivatives and flavonoids inhibited lipoperoxidation in erythrocytes. The highest activity was found for the p-coumaric acid derivatives 4-acetyl-3-prenyl-ethoxycinnamate, 3-prenyl-4-(4'-hydroxydihydrocinnamoyloxy)-cinnamate and trans-ferulic acid O-hexan-3-onyl-ether (69-82%) and the flavonoids 5,7,4'-trihydroxy-6-methoxyflavone, quercetin, 5,7,4'-trihydroxy-6,3'-dimethoxyflavone and 5,7,4'-trihydroxy-6,8-dimethoxyflavone (64-84%) at 100 microg/ml. The most active free radical scavengers measured by the DPPH decoloration assay were the p-coumaric acid derivatives drupanin and trans-ferulic acid O-hexan-3-onyl-ether (27-35% at 10 microg/ml) and the flavonoid quercetin (97 and 23% at 10 and 1 microg/ml, respectively). The results support the use of Baccharis grisebachii in Argentinian traditional medicine.
Collapse
Affiliation(s)
- Alejandro Tapia
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, Chile
| | | | | | | | | | | |
Collapse
|
41
|
NAKAYAMA T, SATO M, KAJIYA K, KUMAZAWA S, HASHIMOTO K. Antioxidative Effects of Phenolic Acids on Lipid Peroxidation Induced by H2O2 in the Presence of Myoglobin. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2004. [DOI: 10.3136/fstr.10.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Lee JS, Jeon SM, Park EM, Huh TL, Kwon OS, Lee MK, Choi MS. Cinnamate Supplementation Enhances Hepatic Lipid Metabolism and Antioxidant Defense Systems in High Cholesterol-Fed Rats. J Med Food 2003; 6:183-91. [PMID: 14585184 DOI: 10.1089/10966200360716599] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigated the effect of cinnamate, a phenolic compound found in cinnamon bark and other plant materials, on lipid metabolism and antioxidant enzyme activities in rats fed a high cholesterol diet. Three groups of rats were given a diet containing 1 g of cholesterol/kg for 6 weeks. The control group only received the high cholesterol diet, whereas the other two groups received a diet supplemented with lovastatin or cinnamate (0.1 g/100 g of diet). The plasma high-density lipoprotein-cholesterol levels were significantly higher in the cinnamate group than in either the control or lovastatin groups, and the atherogenic index was significantly lower in rats with cinnamate supplementation. Supplementation with cinnamate resulted in significantly lower hepatic cholesterol and triglyceride levels. Accumulation of hepatic lipid droplets was higher in the control group than in the rats supplemented with either cinnamate or lovastatin. Hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase activity was significantly lower in the cinnamate group compared with the other groups, whereas only acyl-CoA:cholesterol acyltransferase activity was significantly lower in the lovastatin group compared with the control group. Cinnamate supplementation resulted in higher catalase and glutathione peroxidase activities, while hepatic thiobarbituric acid-reactive substances were significantly lower in both the cinnamate and lovastatin groups. The fecal acidic sterol was higher in the lovastatin group than in the control or cinnamate groups. These results suggest that dietary cinnamate inhibits hepatic HMG-CoA reductase activity, resulting in lower hepatic cholesterol content, and suppresses lipid peroxidation via enhancement of hepatic antioxidant enzyme activities.
Collapse
Affiliation(s)
- Jeong-Sun Lee
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Damiani E, Belaid C, Carloni P, Greci L. Comparison of antioxidant activity between aromatic indolinonic nitroxides and natural and synthetic antioxidants. Free Radic Res 2003; 37:731-41. [PMID: 12911269 DOI: 10.1080/1071576031000102169] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In view of the possible employment of nitroxide compounds in various fields, it is important to know how they compare with other synthetic antioxidant compounds currently used in several industries and with naturally occurring antioxidants. To address this issue, the antioxidant activity of two aromatic indolinonic nitroxides synthesized by us was compared with both commercial phenolic antioxidants (BHT and BHA) and with natural phenolic antioxidants (alpha-hydroxytyrosol, tyrosol, caffeic acid, alpha-tocopherol). DPPH radical scavenging ability and the inhibition of both lipid and protein oxidation induced by the peroxyl-radical generator, AAPH, were evaluated. The results obtained show that overall: (i) the reduced forms of the nitroxide compounds are better scavengers of DPPH radical than butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BLT) but less efficient than the natural compounds; (ii) the nitroxides inhibit both linolenic acid micelles and bovine serum albumin (BSA) oxidation to similar extents as most of the other compounds in a concentration-dependent fashion. Since the aromatic nitroxides tested in this study are less toxic than BHT, these compounds may be regarded as potential, alternative sources for several applications. The mechanisms underlying the antioxidant activity of nitroxides were further confirmed by UV-Vis absorption spectroscopy experiments and macroscale reactions in the presence of radicals generated by thermolabile azo-compounds. Distribution coefficients in octanol/buffer of the nitroxides and the other compounds were also determined as a measure of lipophilicity.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Dipartimento di Scienze dei Materiali e della Terra, via Brecce Bianche, Università, 1-60131 Ancona, Italy.
| | | | | | | |
Collapse
|
44
|
Sestili P, Diamantini G, Bedini A, Cerioni L, Tommasini I, Tarzia G, Cantoni O. Plant-derived phenolic compounds prevent the DNA single-strand breakage and cytotoxicity induced by tert-butylhydroperoxide via an iron-chelating mechanism. Biochem J 2002; 364:121-8. [PMID: 11988084 PMCID: PMC1222553 DOI: 10.1042/bj3640121] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The protective effects of selected members from a series of caffeic acid esters and flavonoids were tested in various toxicity paradigms using U937 cells, previously shown to be sensitive to either iron chelators or bona fide radical scavengers or to both classes of compounds. It was found that all the protective polyphenols were active at very low concentrations and that their effects were observed only under those conditions in which iron chelators also afforded protection. Consistently, active polyphenolic compounds, unlike the inactive ones, effectively chelated iron in an in vitro system. It follows that, at least under the experimental conditions utilized in the present study, the most prominent activity of these polyphenolic compounds resides in their ability to chelate iron. Further studies revealed that the protective effects afforded by the caffeic acid esters and flavonoids were largely mediated by the catechol moiety and that the relative biological potency of these compounds was a direct function of their lipophilicity.
Collapse
Affiliation(s)
- Piero Sestili
- Istituto di Farmacologia e Farmacognosia, Via S. Chiara 27, 61029 Università di Urbino, Urbino, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Møller JKS, Sosniecki L, Skibsted LH. Effect of nitrosylmyoglobin and saturated fatty acid anions on metmyoglobin-catalyzed oxidation of aqueous methyl linoleate emulsions. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1570:129-34. [PMID: 11985897 DOI: 10.1016/s0304-4165(02)00186-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In aqueous methyl linoleate emulsions (pH 7.4, 25 degrees C, air-saturated), nitrosylmyoglobin and saturated fatty acid anions (palmitate and stearate investigated) each showed antioxidant effect on metmyoglobin-induced peroxidation as measured by oxygen depletion rate. For equimolar concentration of nitrosylmyoglobin and metmyoglobin and for metmyoglobin in moderate excess, a reduction in oxygen consumption rate of approximately 70% was observed. Fatty acid anions reduced oxygen consumption rate most significantly for palmitate (up to 60% for a fatty acid:heme protein ratio of 90:1). No further antioxidative effect was seen for fatty acid anions in the presence of nitrosylmyoglobin, whereas nitrosylmyoglobin showed a further antioxidant effect in presence of fatty acid anions in the metmyoglobin-catalyzed process. The antioxidative mechanism of nitrosylmyoglobin and fatty acid anions is different, and while the fatty acid anions seem active in inhibiting initiation of oxidation through protection against metmyoglobin activation into perferrylmyoglobin, as shown by freeze-quench Electron Spin Resonance (ESR) spectroscopy, nitrosylmyoglobin is rather active in the oxygen consuming (propagation) phase.
Collapse
Affiliation(s)
- Jens K S Møller
- Sect. Food Chemistry, Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | |
Collapse
|
46
|
Abstract
Os compostos fenólicos têm sido muito estudados devido a sua influência na qualidade dos alimentos. Englobam uma gama enorme de substâncias, entre elas os ácidos fenólicos, os quais, por sua constituição química, possuem propriedades antioxidantes. Assim, a presente revisão procura reunir diversos estudos que avaliaram o potencial antioxidante dos ácidos fenólicos na conservação de alimentos lipídicos. Além disso, são reunidos também estudos sobre a ação antioxidante destes compostos no sistema biológico através da neutralização dos radicais livres gerados no organismo, que estão associados a diversas doenças como câncer e doenças cardiovasculares.
Collapse
|
47
|
Kanner J, Lapidot T. The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic Biol Med 2001; 31:1388-95. [PMID: 11728810 DOI: 10.1016/s0891-5849(01)00718-3] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Atherosclerosis may result partly from processes that occur following food consumption and that involve oxidized lipids in chylomicrons. We investigated reactions that could occur in the acidic pH of the stomach and accelerate the generation of lipid hydroperoxides and co-oxidation of dietary constituents. The ability of dietary polyphenols to invert catalysis from pro-oxidation to antioxidation was examined. The acidic pH of gastric fluid amplified lipid peroxidation catalyzed by metmyoglobin or iron ions. Metmyoglobin catalyzed peroxidation of edible oil, resulting in 8-fold increase of hydroperoxide concentration. The incubation of heated muscle tissue in simulated gastric fluid for 2 h enhanced hydroperoxides accumulation by 6-fold to 1200 microM. In the presence of catechin or red wine polyphenols, metmyoglobin catalyzed the breakdown of hydroperoxides to zero, totally preventing lipid peroxidation and beta-carotene cooxidation. We suggest that human gastric fluid may be an excellent medium for enhancing the oxidation of lipids and other dietary constituents. The results indicate the potentially harmful effects of oxidized fats intake in the presence of endogenous catalysts found in foods, and the major benefit of including in the meal plant dietary antioxidants.
Collapse
Affiliation(s)
- J Kanner
- Department of Food Science, ARO, the Volcani Center, Bet Dagan, Israel.
| | | |
Collapse
|
48
|
Burkitt MJ. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Arch Biochem Biophys 2001; 394:117-35. [PMID: 11566034 DOI: 10.1006/abbi.2001.2509] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms by which low-density lipoprotein (LDL) particles undergo oxidative modification to an atherogenic form that is taken up by the macrophage scavenger-receptor pathway have been the subject of extensive research for almost two decades. The most common method for the initiation of LDL oxidation in vitro involves incubation with Cu(II) ions. Although various mechanisms have been proposed to explain the ability of Cu(II) to promote LDL modification, the precise reactions involved in initiating the process remain a matter of contention in the literature. This review provides a critical overview and evaluation of the current theories describing the interactions of copper with the LDL particle. Following discussion of the thermodynamics of reactions dependent upon the decomposition of preexisting lipid hydroperoxides, which are present in all crude LDL preparations, attention is turned to the more difficult (but perhaps more physiologically-relevant) system of the hydroperoxide-free LDL particle. In both systems, the key role of alpha-tocopherol is discussed. In addition to its protective, radical-scavenging action, alpha-tocopherol can also behave as a prooxidant via its reduction of Cu(II) to Cu(I). Generation of Cu(I) greatly facilitates the decomposition of lipid hydroperoxides to chain-carrying radicals, but the mechanisms by which the vitamin promotes LDL oxidation in the absence of preformed hydroperoxides remain more speculative. In addition to the so-called tocopherol-mediated peroxidation model, in which polyunsaturated fatty acid oxidation is initiated by the alpha-tocopheroxyl radical (generated during the reduction of Cu(II) by alpha-tocopherol), an evaluation of the role of the hydroxyl radical is provided. Important interactions between copper ions and thiols are also discussed, particularly in the context of cell-mediated LDL oxidation. Finally, the mechanisms by which ceruloplasmin, a copper-containing plasma protein, can bring about LDL modification are discussed. Improved understanding of the mechanisms of LDL oxidation by copper ions should facilitate the establishment of any physiological role of the metal in LDL modification. It will also assist in the interpretation of studies in which copper systems of LDL oxidation are used in vitro to evaluate potential antioxidants.
Collapse
Affiliation(s)
- M J Burkitt
- Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex, HA6 2JR, United Kingdom
| |
Collapse
|
49
|
Affiliation(s)
- J Laranjinha
- Laboratory of Biochemistry, Faculty of Pharmacy, and Center for Neurosciences, University of Coimbra, Coimbra 3000, Portugal
| |
Collapse
|
50
|
Abstract
Polyphenols are a large and diverse class of compounds, many of which occur naturally in a range of food plants. The flavonoids are the largest and best-studied group of these. A range of plant polyphenols are either being actively developed or currently sold as dietary supplements and/or herbal remedies. Although, these compounds play no known role in nutrition (non-nutrients), many of them have properties including antioxidant, anti-mutagenic, anti-oestrogenic, anti-carcinogenic and anti-inflammatory effects that might potentially be beneficial in preventing disease and protecting the stability of the genome. However not all polyphenols and not all actions of individual polyphenols are necessarily beneficial. Some have mutagenic and/or pro-oxidant effects, as well as interfering with essential biochemical pathways including topoisomerase enzyme activities, prostanoid biosynthesis and signal transduction. There is a very large amount of in vitro data available, but far fewer animal studies, and these are not necessarily predictive of human effects because of differences in bacterial and hepatic metabolism of polyphenols between species. Epidemiological studies suggest that high green tea consumption in the Japanese population and moderate red wine consumption in the French population may be beneficial for heart disease and cancer, and these effects may relate to specific polyphenols. A small number of adequately controlled human intervention studies suggest that some, but not all polyphenol extracts or high polyphenol diets may lead to transitory changes in the antioxidative capacity of plasma in humans. However, none of these studies have adequately considered long-term effects on DNA or the chromosome and unequivocally associated these with polyphenol uptake. Furthermore, clinical trials have required intravenously administered polyphenols at concentrations around 1400mg/m(2) before effects are seen. These plasma concentrations are unlikely to be achieved using the dietary supplements currently available. More focused human studies are necessary before recommending specific polyphenolic supplements at specific doses in the human population.
Collapse
Affiliation(s)
- L R Ferguson
- Faculty of Medical and Health Science, Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|