1
|
Timmermann C, Zeifman RJ, Erritzoe D, Nutt DJ, Carhart-Harris RL. Effects of DMT on mental health outcomes in healthy volunteers. Sci Rep 2024; 14:3097. [PMID: 38326357 PMCID: PMC10850177 DOI: 10.1038/s41598-024-53363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
Psilocybin, a serotonergic psychedelic, is being increasingly researched in clinical studies for the treatment of psychiatric disorders. The relatively lengthy duration of oral psilocybin's acute effects (4-6 h) may have pragmatic and cost-effectiveness limitations. Here, we explored the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT), a closely related, but faster-acting psychedelic intervention, on mental health outcomes in healthy volunteers. Data is reported from two separate analyses: (1) A comparison of mental health-related variables 1 week after 7, 14, 18, and 20 mg of IV DMT versus IV saline placebo (n = 13) and, (2) A prospective dataset assessing effects before versus 2 weeks after 20 mg of IV DMT (n = 17). Mental health outcomes included measures of depression severity (QIDS-SR16), trait anxiety (STAI-T), Neuroticism (NEO-FFI), wellbeing (WHO-5), meaning in life (MLQ), optimism (LOT-R), and gratitude (GQ-6). In both the prospective and placebo-controlled datasets, significant improvements in scores of depression were found 1-2 weeks after DMT administration. Significant reductions in trait Neuroticism were only found for the placebo-controlled sample. Finally, changes in depression and trait anxiety correlated with acute peak experiences (assessed via 'Oceanic Boundlessness'). While the use of two separate cohorts in pooled analysis limits the generalizability of these correlational findings, these results suggest that DMT may reduce depressive symptomatology by inducing peak experiences. The short half-life of IV DMT and its potential for flexible dosing via controlled infusions makes it an appealing candidate for psychedelic medicine. Further research in clinical samples is needed to corroborate the therapeutic potential of DMT.
Collapse
Affiliation(s)
- Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Richard J Zeifman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- NYU Langone Center for Psychedelic Medicine, NYU Grosssman School of Medicine, New York, USA
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for Psychiatry, Division of Brain Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, Department of Neurology, University of California, San Francisco, USA
| |
Collapse
|
2
|
James E, Erritzoe D, Benway T, Joel Z, Timmermann C, Good M, Agnorelli C, Weiss BM, Barba T, Campbell G, Baker Jones M, Hughes C, Topping H, Boyce M, Routledge C. Safety, tolerability, pharmacodynamic and wellbeing effects of SPL026 (dimethyltryptamine fumarate) in healthy participants: a randomized, placebo-controlled phase 1 trial. Front Psychiatry 2024; 14:1305796. [PMID: 38274414 PMCID: PMC10810248 DOI: 10.3389/fpsyt.2023.1305796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Background Due to their potential impact on mood and wellbeing there has been increasing interest in the potential of serotonergic psychedelics such as N,N-dimethyltryptamine (DMT) in the treatment of major depressive disorder (MDD). Aim The aim of Part A of this study was to evaluate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamic (PD) profile of escalating doses of SPL026 (DMT fumarate) in psychedelic-naïve healthy participants to determine a dose for administration to patients with MDD in the subsequent Phase 2a part of the trial (Part B: not presented in this manuscript). Methods In the Phase 1, randomized, double-blind, placebo-controlled, parallel-group, single dose-escalation trial, psychedelic-naïve participants were randomized to placebo (n = 8) or four different escalating doses [9, 12, 17 and 21.5 mg intravenously (IV)] of SPL026 (n = 6 for each dose) together with psychological support from 2 therapy team members. PK and acute (immediately following dosing experience) psychometric measures [including mystical experience questionnaire (MEQ), ego dissolution inventory (EDI), and intensity rating visual analogue scale (IRVAS)] were determined. Additional endpoints were measured as longer-term change from baseline to days 8, 15, 30 and 90. These measures included the Warwick and Edinburgh mental wellbeing scale and Spielberger's state-trait anxiety inventory. Results SPL026 was well tolerated, with an acceptable safety profile, with no serious adverse events. There was some evidence of a correlation between maximum plasma concentration and increased IRVAS, MEQ, and EDI scores. These trends are likely to require confirmation in a larger sample size. Using the analysis of the safety, tolerability, PD, PK results, doses of 21.5 mg SPL026 were the most likely to provide an intense, tolerated experience. Conclusion Based on the data obtained from this part of the trial, a dose of 21.5 mg SPL026 given as a 2-phase IV infusion over 10 min (6 mg/5 min and 15.5 mg/5 min) was selected as the dose to be taken into patients in Part B (to be presented in a future manuscript).Clinical trial registration:www.clinicaltrials.gov, identifier NCT04673383; https://www.clinicaltrialsregister.eu, identifier 2020-000251-13; https://www.isrctn.com/, identifier ISRCTN63465876.
Collapse
Affiliation(s)
| | - David Erritzoe
- The Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Zelah Joel
- Small Pharma Ltd., London, United Kingdom
| | - Christopher Timmermann
- The Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Claudio Agnorelli
- The Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Brandon M. Weiss
- The Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tommaso Barba
- The Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | | | | | - Helen Topping
- Hammersmith Medicines Research, London, United Kingdom
| | - Malcolm Boyce
- Hammersmith Medicines Research, London, United Kingdom
| | | |
Collapse
|
3
|
Gukasyan N, Narayan SK. Menstrual Changes and Reversal of Amenorrhea Induced by Classic Psychedelics: A Case Series. J Psychoactive Drugs 2024; 56:50-55. [PMID: 36682064 DOI: 10.1080/02791072.2022.2157350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 01/23/2023]
Abstract
There has been little research on the effects of psychedelics on menstrual and reproductive function, though anecdotal evidence suggests that these compounds may have striking effects on menstrual function in at least a subset of users. Social media and word of mouth were used to seek out individuals who had a history of changes in menstrual function following psychedelic use. Case histories were elicited from three respondents following informed consent. A literature search on the effects of classic psychedelics and related compounds was completed. Three women ranging from 27 to 34 years of age were interviewed and reported three distinct phenomena following the use of classic psychedelics: 1) resumption of menses following amenorrhea, 2) early onset of menses, in particular when psychedelics were used in the mid to late luteal period, and 3) improved menstrual regularity in a woman with irregular cycles who was eventually diagnosed with polycystic ovarian syndrome. The mechanisms behind these effects remain unclear, though they may be mediated via direct or indirect effects of 5-HT2A agonism on the hypothalamic-pituitary-gonadal axis. Although phenomena related to menstrual and reproductive function have been largely overlooked in the psychedelic literature to date, these effects may have therapeutic utility and warrant further study.
Collapse
Affiliation(s)
- Natalie Gukasyan
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic and Consciousness Research, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sasha K Narayan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Luan LX, Eckernäs E, Ashton M, Rosas FE, Uthaug MV, Bartha A, Jagger S, Gascon-Perai K, Gomes L, Nutt DJ, Erritzøe D, Carhart-Harris RL, Timmermann C. Psychological and physiological effects of extended DMT. J Psychopharmacol 2024; 38:56-67. [PMID: 37897244 PMCID: PMC10851633 DOI: 10.1177/02698811231196877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
N,N-Dimethyltryptamine (DMT) is a serotonergic psychedelic that induces a rapid and transient altered state of consciousness when inhaled or injected via bolus administration. Its marked and novel subjective effects make DMT a powerful tool for the neuroscientific study of consciousness and preliminary results show its potential role in treating mental health conditions. In a within-subjects, placebo-controlled study, we investigated a novel method of DMT administration involving a bolus injection paired with a constant-rate infusion, with the goal of extending the DMT experience. Pharmacokinetic parameters of DMT estimated from plasma data of a previous study of bolus intravenous DMT were used to derive dose regimens necessary to keep subjects in steady levels of immersion into the DMT experience over an extended period of 30 min, and four dose regimens consisting of a bolus loading dose and a slow-rate infusion were tested in eleven healthy volunteers (seven male, four female, mean age ± SD = 37.09 ± 8.93 years). The present method is effective for extending the DMT experience in a stable and tolerable fashion. While subjective effects were maintained over the period of active infusion, anxiety ratings remained low and heart rate habituated within 15 min, indicating psychological and physiological safety of extended DMT. Plasma DMT concentrations increased consistently starting 10 min into DMT administration, whereas psychological effects plateaued into the desired steady state, suggesting the development of acute psychological tolerance to DMT. Taken together, these findings demonstrate the safety and effectiveness of continuous IV DMT administration, laying the groundwork for the further development of this method of administration for basic and clinical research.
Collapse
Affiliation(s)
- Lisa X Luan
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Emma Eckernäs
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Ashton
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Fernando E Rosas
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Malin V Uthaug
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht, Netherlands
- Somnivore Ply Ltd, Australia
| | - Alexander Bartha
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Samantha Jagger
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Kiara Gascon-Perai
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Lauren Gomes
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - David J Nutt
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - David Erritzøe
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
- Psychedelics Division–Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Christopher Timmermann
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
5
|
Acero VP, Cribas ES, Browne KD, Rivellini O, Burrell JC, O’Donnell JC, Das S, Cullen DK. Bedside to bench: the outlook for psychedelic research. Front Pharmacol 2023; 14:1240295. [PMID: 37869749 PMCID: PMC10588653 DOI: 10.3389/fphar.2023.1240295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
There has recently been a resurgence of interest in psychedelic compounds based on studies demonstrating their potential therapeutic applications in treating post-traumatic stress disorder, substance abuse disorders, and treatment-resistant depression. Despite promising efficacy observed in some clinical trials, the full range of biological effects and mechanism(s) of action of these compounds have yet to be fully established. Indeed, most studies to date have focused on assessing the psychological mechanisms of psychedelics, often neglecting the non-psychological modes of action. However, it is important to understand that psychedelics may mediate their therapeutic effects through multi-faceted mechanisms, such as the modulation of brain network activity, neuronal plasticity, neuroendocrine function, glial cell regulation, epigenetic processes, and the gut-brain axis. This review provides a framework supporting the implementation of a multi-faceted approach, incorporating in silico, in vitro and in vivo modeling, to aid in the comprehensive understanding of the physiological effects of psychedelics and their potential for clinical application beyond the treatment of psychiatric disorders. We also provide an overview of the literature supporting the potential utility of psychedelics for the treatment of brain injury (e.g., stroke and traumatic brain injury), neurodegenerative diseases (e.g., Parkinson's and Alzheimer's diseases), and gut-brain axis dysfunction associated with psychiatric disorders (e.g., generalized anxiety disorder and major depressive disorder). To move the field forward, we outline advantageous experimental frameworks to explore these and other novel applications for psychedelics.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily S. Cribas
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Jahanabadi S, Amiri S, Karkeh-Abadi M, Razmi A. Natural psychedelics in the treatment of depression; a review focusing on neurotransmitters. Fitoterapia 2023; 169:105620. [PMID: 37490982 DOI: 10.1016/j.fitote.2023.105620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023]
Abstract
Natural psychedelic compounds are emerging as potential novel therapeutics in psychiatry. This review will discuss how natural psychedelics exert their neurobiological therapeutic effects, and how different neurotransmission systems mediate the effects of these compounds. Further, current therapeutic strategies for depression, and novel mechanism of action of natural psychedelics in the treatment of depression will be discussed. In this review, our focus will be on N, N-dimethyltryptamine (DMT), reversible type A monoamine oxidase inhibitors, mescaline-containing cacti, psilocybin/psilocin-containing mushrooms, ibogaine, muscimol extracted from Amanita spp. mushrooms and ibotenic acid.
Collapse
Affiliation(s)
- Samane Jahanabadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Pharmaceutical Science Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shayan Amiri
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| | - Mehdi Karkeh-Abadi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Ali Razmi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
7
|
Vogt SB, Ley L, Erne L, Straumann I, Becker AM, Klaiber A, Holze F, Vandersmissen A, Mueller L, Duthaler U, Rudin D, Luethi D, Varghese N, Eckert A, Liechti ME. Acute effects of intravenous DMT in a randomized placebo-controlled study in healthy participants. Transl Psychiatry 2023; 13:172. [PMID: 37221177 DOI: 10.1038/s41398-023-02477-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
N,N-dimethyltryptamine (DMT) is distinct among classic serotonergic psychedelics because of its short-lasting effects when administered intravenously. Despite growing interest in the experimental and therapeutic use of intravenous DMT, data are lacking on its clinical pharmacology. We conducted a double-blind, randomized, placebo-controlled crossover trial in 27 healthy participants to test different intravenous DMT administration regimens: placebo, low infusion (0.6 mg/min), high infusion (1 mg/min), low bolus + low infusion (15 mg + 0.6 mg/min), and high bolus + high infusion (25 mg + 1 mg/min). Study sessions lasted for 5 h and were separated by at least 1 week. Participant's lifetime use of psychedelics was ≤20 times. Outcome measures included subjective, autonomic, and adverse effects, pharmacokinetics of DMT, and plasma levels of brain-derived neurotropic factor (BDNF) and oxytocin. Low (15 mg) and high (25 mg) DMT bolus doses rapidly induced very intense psychedelic effects that peaked within 2 min. DMT infusions (0.6 or 1 mg/min) without a bolus induced slowly increasing and dose-dependent psychedelic effects that reached plateaus after 30 min. Both bolus doses produced more negative subjective effects and anxiety than infusions. After stopping the infusion, all drug effects rapidly decreased and completely subsided within 15 min, consistent with a short early plasma elimination half-life (t1/2α) of 5.0-5.8 min, followed by longer late elimination (t1/2β = 14-16 min) after 15-20 min. Subjective effects of DMT were stable from 30 to 90 min, despite further increasing plasma concentrations, thus indicating acute tolerance to continuous DMT administration. Intravenous DMT, particularly when administered as an infusion, is a promising tool for the controlled induction of a psychedelic state that can be tailored to the specific needs of patients and therapeutic sessions.Trial registration: ClinicalTrials.gov identifier: NCT04353024.
Collapse
Affiliation(s)
- Severin B Vogt
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Laura Ley
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Livio Erne
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabelle Straumann
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anna M Becker
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Aaron Klaiber
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Friederike Holze
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anja Vandersmissen
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Lorenz Mueller
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Deborah Rudin
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dino Luethi
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Good M, Joel Z, Benway T, Routledge C, Timmermann C, Erritzoe D, Weaver R, Allen G, Hughes C, Topping H, Bowman A, James E. Pharmacokinetics of N,N-dimethyltryptamine in Humans. Eur J Drug Metab Pharmacokinet 2023; 48:311-327. [PMID: 37086340 PMCID: PMC10122081 DOI: 10.1007/s13318-023-00822-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND AND OBJECTIVE N,N-dimethyltryptamine (DMT) is a psychedelic compound under development for the treatment of major depressive disorder (MDD). This study evaluated the preclinical and clinical pharmacokinetics and metabolism of DMT in healthy subjects. METHODS The physiochemical properties of DMT were determined using a series of in vitro experiments and its metabolic profile was assessed using monoamine oxidase (MAO) and cytochrome P450 (CYP) inhibitors in hepatocyte and mitochondrial fractions. Clinical pharmacokinetics results are from the phase I component of a phase I/IIa randomised, double-blind, placebo-controlled, parallel-group, dose-escalation trial (NCT04673383). Healthy adults received single escalating doses of DMT fumarate (SPL026) via a two-phase intravenous (IV) infusion. Dosing regimens were calculated based on pharmacokinetic modelling and predictions with progression to each subsequent dose level contingent upon safety and tolerability. RESULTS In vitro clearance of DMT was reduced through the inhibition of MAO-A, CYP2D6 and to a lesser extent CYP2C19. Determination of lipophilicity and plasma protein binding was low, indicating that a high proportion of DMT is available for distribution and metabolism, consistent with the very rapid clinical pharmacokinetics. Twenty-four healthy subjects received escalating doses of DMT administered as a 10-min infusion over the dose range of 9-21.5 mg (DMT freebase). DMT was rapidly cleared for all doses: mean elimination half-life was 9-12 min. All doses were safe and well tolerated and there was no relationship between peak DMT plasma concentrations and body mass index (BMI) or weight. CONCLUSION This is the first study to determine, in detail, the full pharmacokinetics profile of DMT following a slow IV infusion in humans, confirming rapid attainment of peak plasma concentrations followed by rapid clearance. These findings provide evidence which supports the development of novel DMT infusion regimens for the treatment of MDD. CLINICAL TRIAL REGISTRATION Registered on ClinicalTrials.gov (NCT04673383).
Collapse
Affiliation(s)
- Meghan Good
- Small Pharma, 6-8 Bonhill Street, London, EC2A 4BX, UK.
| | - Zelah Joel
- Small Pharma, 6-8 Bonhill Street, London, EC2A 4BX, UK
| | | | | | - Chris Timmermann
- Department of Brain Sciences, The Centre for Psychedelic Research, Faculty of Medicine, Imperial College London, London, UK
| | - David Erritzoe
- Department of Brain Sciences, The Centre for Psychedelic Research, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | | | | | - Ellen James
- Small Pharma, 6-8 Bonhill Street, London, EC2A 4BX, UK
| |
Collapse
|
9
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Eckernäs E, Timmermann C, Carhart-Harris R, Röshammar D, Ashton M. N,N-dimethyltryptamine affects electroencephalography response in a concentration-dependent manner-A pharmacokinetic/pharmacodynamic analysis. CPT Pharmacometrics Syst Pharmacol 2023; 12:474-486. [PMID: 36762714 PMCID: PMC10088084 DOI: 10.1002/psp4.12933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/14/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
N,N-dimethyltryptamine (DMT) is a psychedelic substance and is being used as a research tool in investigations of the neurobiology behind the human consciousness using different brain imaging techniques. The effects of psychedelics have commonly been studied using electroencephalography (EEG) and have been shown to produce suppression of alpha power and increase in signal diversity. However, the relationship between DMT exposure and its EEG effects has never been quantified. In this work, a population pharmacokinetic/pharmacodynamic analysis was performed investigating the relationship between DMT plasma concentrations and its EEG effects. Data were obtained from a clinical study where DMT was administered by intravenous bolus dose to 13 healthy subjects. The effects on alpha power, beta power, and Lempel-Ziv complexity were evaluated. DMT was shown to fully suppress alpha power. Beta power was only partially suppressed, whereas an increase in Lempel-Ziv complexity was observed. The relationship between plasma concentrations and effects were described using effect compartment models with sigmoidal maximum inhibitory response or maximum stimulatory response models. Values of the concentration needed to reach half of the maximum response (EC50,e ) were estimated at 71, 137, and 54 nM for alpha, beta, and Lempel-Ziv complexity, respectively. A large amount of between-subject variability was associated with both beta power and Lempel-Ziv complexity with coefficients of variability of 75% and 77% for the corresponding EC50,e values, respectively. Alpha power appeared to be the most robust response, with a between-subject variability in EC50,e of 29%. Having a deeper understanding of these processes might prove beneficial in choosing appropriate doses and response biomarkers in the future clinical development of DMT.
Collapse
Affiliation(s)
- Emma Eckernäs
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Timmermann
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK.,Psychedelics Division, Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | | | - Michael Ashton
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
The Altered States Database: Psychometric data from a systematic literature review. Sci Data 2022; 9:720. [PMID: 36418335 PMCID: PMC9684144 DOI: 10.1038/s41597-022-01822-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022] Open
Abstract
In this paper, we present the development of the Altered States Database (ASDB), an open-science project based on a systematic literature review. The ASDB contains psychometric questionnaire data on subjective experiences of altered states of consciousness (ASC) induced by pharmacological and non-pharmacological methods. The systematic review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Scientific journal articles were identified through PubMed and Web of Science. We included studies that examined ASC using the following validated questionnaires: Altered States of Consciousness Rating Scale (APZ, 5D-ASC, 11-ASC), Phenomenology of Consciousness Inventory (PCI), Hallucinogen Rating Scale (HRS), or Mystical Experience Questionnaire (MEQ30). The systematic review resulted in the inclusion of a total of 165 journal articles, whereof questionnaire data was extracted and is now available on the Open Science Framework (OSF) website (https://osf.io/8mbru) and on the ASDB website (http://alteredstatesdb.org), where questionnaire data can be easily retrieved and visualized. This data allows the calculation of comparable psychometric values of ASC experiences and of dose-response relationships of substances inducing ASC. Measurement(s) | Psychometric questionnaire data | Technology Type(s) | Systematic literature review (PRISMA) | Sample Characteristic - Organism | Human |
Collapse
|
12
|
Abstract
N,N-dimethyltryptamine (DMT) is a potent psychedelic naturally produced by many plants and animals, including humans. Whether or not DMT is significant to mammalian physiology, especially within the central nervous system, is a debate that started in the early 1960s and continues to this day. This review integrates historical and recent literature to clarify this issue, giving special attention to the most controversial subjects of DMT's biosynthesis, its storage in synaptic vesicles and the activation receptors like sigma-1. Less discussed topics, like DMT's metabolic regulation or the biased activation of serotonin receptors, are highlighted. We conclude that most of the arguments dismissing endogenous DMT's relevance are based on obsolete data or misleading assumptions. Data strongly suggest that DMT can be relevant as a neurotransmitter, neuromodulator, hormone and immunomodulator, as well as being important to pregnancy and development. Key experiments are addressed to definitely prove what specific roles DMT plays in mammalian physiology.
Collapse
Affiliation(s)
- Javier Hidalgo Jiménez
- ICEERS Foundation (International Center for Ethnobotanical Education, Research and Services), Barcelona, Spain
| | - José Carlos Bouso
- ICEERS Foundation (International Center for Ethnobotanical Education, Research and Services), Barcelona, Spain
| |
Collapse
|
13
|
Bhatt SR, Armstrong M, Parker T, Maviglia M, Kass R, Leeman L, Romo P, Ziedonis D. Psychedelic Therapies at the Crossroads of Trauma and Substance Use: Historical Perspectives and Future Directions, Taking a Lead From New Mexico. Front Pharmacol 2022; 13:905753. [PMID: 35833023 PMCID: PMC9273054 DOI: 10.3389/fphar.2022.905753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Post-traumatic stress disorder (PTSD), a common condition with potentially devastating individual, family, and societal consequences, is highly associated with substance use disorders (SUDs). The association between PTSD and SUD is complex and may involve adverse childhood experiences (ACEs), historical and multi-generational traumas, and social determinants of health as well as cultural and spiritual contexts. Current psychosocial and pharmacological treatments for PTSD are only modestly effective, and there is a need for more research on therapeutic interventions for co-occurring PTSD and SUD, including whether to provide integrated or sequential treatments. There is a current resurgence of interest in psychedelics as potential treatment augmentation for PTSD and SUDs with an appreciation of the risks in this target population. This paper reviews the historical perspective of psychedelic research and practices, as well as the intersection of historical trauma, ACEs, PTSD, and SUDs through the lens of New Mexico. New Mexico is a state with high populations of Indigenous and Hispanic peoples as well as high rates of trauma, PTSD, and SUDs. Researchers in New Mexico have been leaders in psychedelic research. Future directions for psychedelic researchers to consider are discussed, including the importance of community-based participatory approaches that are more inclusive and respectful of Indigenous and other minority communities.
Collapse
Affiliation(s)
- Snehal R. Bhatt
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
- *Correspondence: Snehal R. Bhatt,
| | - Maya Armstrong
- Department of Family and Community Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Tassy Parker
- Department of Family and Community Medicine, University of New Mexico, Albuquerque, NM, United States
- College of Nursing, University of New Mexico, Albuquerque, NM, United States
- College of Population Health, University of New Mexico, Albuquerque, NM, United States
- Center for Native American Health, University of New Mexico, Albuquerque, NM, United States
- American Indian Health Research and Education, University of New Mexico, Albuquerque, NM, United States
| | - Marcello Maviglia
- Department of Family and Community Medicine, University of New Mexico, Albuquerque, NM, United States
- Center for Native American Health, University of New Mexico, Albuquerque, NM, United States
| | - Rebecca Kass
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Lawrence Leeman
- Department of Family and Community Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Paul Romo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Douglas Ziedonis
- Executive Vice President, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
14
|
Strickland JC, Johnson MW. Human behavioral pharmacology of psychedelics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:105-132. [PMID: 35341564 DOI: 10.1016/bs.apha.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The past decade has witnessed a rapid growth of research on the basic science and clinical understanding of psychedelics. This chapter provides an overview of the human behavioral pharmacology of psychedelics focusing on three prototypic classic psychedelics-psilocybin, lysergic acid diethylamide (LSD), and dimethyltryptamine (DMT). A brief historical overview of the classic psychedelics and naming and drug classification is first specified. Next, special considerations in the conduct of human behavioral pharmacology work with psychedelics is described including the role of set and setting, mystical experience measurement, the use of effective blinding and placebos, and the abuse liability of psychedelics. Following, a description of the subjective, physiological, and clinical effects of psilocybin, LSD, and DMT is provided. This body of work clearly documents a unique and complex collection of subjective effects following psychedelic use, both during acute drug administration and as related to long-term behavior change following use. Clinical research demonstrates potential therapeutic utility with early phase clinical trials showing positive and enduring effects in many difficult-to-treat conditions including treatment-resistant depression, alcohol use disorder, and cigarette smoking. Future work in this newly reemerged field is needed to reveal mechanisms of behavior change in psychedelic drug action. Behavioral pharmacology is ultimately well served to provide this direction answering questions at the intersection of environment and pharmacology.
Collapse
Affiliation(s)
- Justin C Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Matthew W Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
15
|
Schlag AK, Aday J, Salam I, Neill JC, Nutt DJ. Adverse effects of psychedelics: From anecdotes and misinformation to systematic science. J Psychopharmacol 2022; 36:258-272. [PMID: 35107059 PMCID: PMC8905125 DOI: 10.1177/02698811211069100] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Despite an increasing body of research highlighting their efficacy to treat a broad range of medical conditions, psychedelic drugs remain a controversial issue among the public and politicians, tainted by previous stigmatisation and perceptions of risk and danger. OBJECTIVE This narrative review examines the evidence for potential harms of the classic psychedelics by separating anecdotes and misinformation from systematic research. METHODS Taking a high-level perspective, we address both psychological and psychiatric risks, such as abuse liability and potential for dependence, as well as medical harms, including toxicity and overdose. We explore the evidence base for these adverse effects to elucidate which of these harms are based largely on anecdotes versus those that stand up to current scientific scrutiny. RESULTS Our review shows that medical risks are often minimal, and that many - albeit not all - of the persistent negative perceptions of psychological risks are unsupported by the currently available scientific evidence, with the majority of reported adverse effects not being observed in a regulated and/or medical context. CONCLUSIONS This highlights the importance for clinicians and therapists to keep to the highest safety and ethical standards. It is imperative not to be overzealous and to ensure balanced media reporting to avoid future controversies, so that much needed research can continue.
Collapse
Affiliation(s)
- Anne K Schlag
- Drug Science, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Geography, King’s College London, London, UK
| | - Jacob Aday
- Drug Science, London, UK
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
| | | | - Jo C Neill
- Drug Science, London, UK
- Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Manchester, UK
| | - David J Nutt
- Drug Science, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
16
|
Administration of N,N-dimethyltryptamine (DMT) in psychedelic therapeutics and research and the study of endogenous DMT. Psychopharmacology (Berl) 2022; 239:1749-1763. [PMID: 35064294 PMCID: PMC8782705 DOI: 10.1007/s00213-022-06065-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022]
Abstract
As with all drugs, the route, form, and/or dose of a substance administered or applied can play a defining role in its overall pharmacology and use as a therapeutic. This review will focus on these factors as they relate to the psychedelic N,N-dimethyltryptamine (DMT). It will examine the positive and negative aspects of different formulations and routes of administration of DMT and the observed effects from such administrations in the form of ayahuasca teas; oral "pharmahuasca"; injections by intravenous (IV) and intramuscular (IM) routes; inhalation, insufflation; and other routes; and high-dose, low-dose, and "micro-dose" effects. The review will consider possible oral route of administration alternatives that would not require concomitant use of a monoamine oxidase inhibitor. The review will then address the current research findings for DMT from in vivo and in vitro studies as well as the possibility that these findings may be revealing the role of endogenous DMT in normal brain function.
Collapse
|
17
|
Reckweg J, Mason NL, van Leeuwen C, Toennes SW, Terwey TH, Ramaekers JG. A Phase 1, Dose-Ranging Study to Assess Safety and Psychoactive Effects of a Vaporized 5-Methoxy-N, N-Dimethyltryptamine Formulation (GH001) in Healthy Volunteers. Front Pharmacol 2021; 12:760671. [PMID: 34912222 PMCID: PMC8667866 DOI: 10.3389/fphar.2021.760671] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/04/2021] [Indexed: 01/07/2023] Open
Abstract
5-Methoxy-N,N-Dimethyltryptamine (5-MeO-DMT) is a tryptamine with ultra-rapid onset and short duration of psychedelic effects. Prospective studies for other tryptamines have suggested beneficial effects on mental health outcomes. In preparation for a study in patients with depression, the present study GH001-HV-101 aimed to assess the impact of four different dose levels of a novel vaporized 5-MeO-DMT formulation (GH001) administered via inhalation as single doses of 2 (N = 4), 6 (N = 6), 12 (N = 4) and 18 mg (N = 4), and in an individualized dose escalation regimen (N = 4) on the safety, tolerability, and the dose-related psychoactive effects in healthy volunteers (N = 22). The psychedelic experience was assessed with a novel Peak Experience Scale (PES), the Mystical Experience Questionnaire (MEQ), the Ego Dissolution Inventory (EDI), the Challenging Experience Questionnaire (CEQ), and the 5-Dimensional Altered States of Consciousness Questionnaire (5D-ASC). Further aims were to assess the impact of 5-MeO-DMT on cognitive functioning, mood, and well-being. Higher doses of 5-MeO-DMT produced significant increments in the intensity of the psychedelic experience ratings as compared to the lowest 2 mg dose on all questionnaires, except the CEQ. Prominent effects were observed following single doses of 6, 12, and 18 mg on PES and MEQ ratings, while maximal effects on PES, MEQ, EDI, and 5D-ASC ratings were observed following individualized dose escalation of 5-MeO-DMT. Measures of cognition, mood, and well-being were not affected by 5-MeO-DMT. Vital signs at 1 and 3 h after administration were not affected and adverse events were generally mild and resolved spontaneously. Individualized dose escalation of 5-MeO-DMT may be preferable over single dose administration for clinical applications that aim to maximize the experience to elicit a strong therapeutic response.
Collapse
Affiliation(s)
- Johannes Reckweg
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Natasha L Mason
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Cees van Leeuwen
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Stefan W Toennes
- Institute of Legal Medicine, University of Frankfurt, Frankfurt, Germany
| | | | - Johannes G Ramaekers
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
18
|
Kelly JR, Gillan CM, Prenderville J, Kelly C, Harkin A, Clarke G, O'Keane V. Psychedelic Therapy's Transdiagnostic Effects: A Research Domain Criteria (RDoC) Perspective. Front Psychiatry 2021; 12:800072. [PMID: 34975593 PMCID: PMC8718877 DOI: 10.3389/fpsyt.2021.800072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating clinical evidence shows that psychedelic therapy, by synergistically combining psychopharmacology and psychological support, offers a promising transdiagnostic treatment strategy for a range of disorders with restricted and/or maladaptive habitual patterns of emotion, cognition and behavior, notably, depression (MDD), treatment resistant depression (TRD) and addiction disorders, but perhaps also anxiety disorders, obsessive-compulsive disorder (OCD), Post-Traumatic Stress Disorder (PTSD) and eating disorders. Despite the emergent transdiagnostic evidence, the specific clinical dimensions that psychedelics are efficacious for, and associated underlying neurobiological pathways, remain to be well-characterized. To this end, this review focuses on pre-clinical and clinical evidence of the acute and sustained therapeutic potential of psychedelic therapy in the context of a transdiagnostic dimensional systems framework. Focusing on the Research Domain Criteria (RDoC) as a template, we will describe the multimodal mechanisms underlying the transdiagnostic therapeutic effects of psychedelic therapy, traversing molecular, cellular and network levels. These levels will be mapped to the RDoC constructs of negative and positive valence systems, arousal regulation, social processing, cognitive and sensorimotor systems. In summarizing this literature and framing it transdiagnostically, we hope we can assist the field in moving toward a mechanistic understanding of how psychedelics work for patients and eventually toward a precise-personalized psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Department of Psychiatry, Tallaght University Hospital, Dublin, Ireland
| | - Claire M. Gillan
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Psychology, Trinity College, Dublin, Ireland
- Global Brain Health Institute, Trinity College, Dublin, Ireland
| | - Jack Prenderville
- Transpharmation Ireland Ltd, Institute of Neuroscience, Trinity College, Dublin, Ireland
- Discipline of Physiology, School of Medicine, Trinity College, Dublin, Ireland
| | - Clare Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Psychology, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Department of Psychiatry, Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
19
|
Sherwood AM, Claveau R, Lancelotta R, Kaylo KW, Lenoch K. Synthesis and Characterization of 5-MeO-DMT Succinate for Clinical Use. ACS OMEGA 2020; 5:32067-32075. [PMID: 33344861 PMCID: PMC7745443 DOI: 10.1021/acsomega.0c05099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 05/03/2023]
Abstract
To support clinical use, a multigram-scale process has been developed to provide 5-MeO-DMT, a psychedelic natural product found in the parotid gland secretions of the toad, Incilius alvarius. Several synthetic routes were initially explored, and the selected process featured an optimized Fischer indole reaction to 5-MeO-DMT freebase in high-yield, from which the 1:1 succinate salt was produced to provide 136 g of crystalline active pharmaceutical ingredient (API) with 99.86% peak area by high-performance liquid chromatography (HPLC) and a net yield of 49%. The report provides in-process monitoring, validated analytical methods, impurity formation and removal, and solid-state characterization of the API essential for subsequent clinical development.
Collapse
Affiliation(s)
| | - Romain Claveau
- Almac
Sciences, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| | - Rafael Lancelotta
- Habituating
to Wholeness, 6500 W
13th Avenue, Lakewood, Colorado 80214, United States
| | - Kristi W. Kaylo
- Usona
Institute, 2800 Woods
Hollow Road, Madison, Wisconsin 53711, United States
| | - Kelsey Lenoch
- Usona
Institute, 2800 Woods
Hollow Road, Madison, Wisconsin 53711, United States
| |
Collapse
|
20
|
Durante Í, Dos Santos RG, Bouso JC, Hallak JE. Risk assessment of ayahuasca use in a religious context: self-reported risk factors and adverse effects. ACTA ACUST UNITED AC 2020; 43:362-369. [PMID: 33146343 PMCID: PMC8352742 DOI: 10.1590/1516-4446-2020-0913] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
Abstract
Objective: Whether for spiritual, recreational, or potential therapeutic use, interest in ayahuasca has grown remarkably. Ayahuasca’s main active substances are N,N‐dimethyltryptamine and certain monoamine oxidase inhibitor β-carbolines. Possible drug interactions are a major concern, and research is lacking in this area. The objective of this study was to evaluate the safety of ritual ayahuasca use regarding adverse effects and risk factors. Methods: In this cross-sectional study, ayahuasca users from a religious institution answered an online questionnaire about its safety. Adverse effects, safety measures, and possible risk factors (psychiatric diagnosis and medications) were investigated. Results: The most frequent adverse effects among the 614 participants were transient gastrointestinal effects (nausea and vomiting). Fifty participants self-reported a psychiatric diagnosis (depression and anxiety were the most prevalent), and these participants experienced adverse effects more frequently. Psychiatric medication use was reported by 31 participants. No indication of increased adverse effects due to drug-drug interactions was found. Conclusion: A minority of participants reported being very negatively affected by persistent adverse effects. Psychiatric medication use while participating in ayahuasca rituals was not associated with increased adverse effects. For the most part, the institution’s practices seem sufficient to prevent exacerbated reactions. Future studies may focus on negatively affected users.
Collapse
Affiliation(s)
- Ícaro Durante
- Faculdade de Medicina, Universidade Federal da Fronteira Sul (UFFS), Passo Fundo, RS, Brazil
| | - Rafael G Dos Santos
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Ribeirão Preto, SP, Brazil.,International Center for Ethnobotanical Education, Research and Services (ICEERS), Barcelona, Spain
| | - José C Bouso
- International Center for Ethnobotanical Education, Research and Services (ICEERS), Barcelona, Spain
| | - Jaime E Hallak
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Brito-da-Costa AM, Dias-da-Silva D, Gomes NGM, Dinis-Oliveira RJ, Madureira-Carvalho Á. Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N, N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact. Pharmaceuticals (Basel) 2020; 13:ph13110334. [PMID: 33114119 PMCID: PMC7690791 DOI: 10.3390/ph13110334] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Ayahuasca is a hallucinogenic botanical beverage originally used by indigenous Amazonian tribes in religious ceremonies and therapeutic practices. While ethnobotanical surveys still indicate its spiritual and medicinal uses, consumption of ayahuasca has been progressively related with a recreational purpose, particularly in Western societies. The ayahuasca aqueous concoction is typically prepared from the leaves of the N,N-dimethyltryptamine (DMT)-containing Psychotria viridis, and the stem and bark of Banisteriopsis caapi, the plant source of harmala alkaloids. Herein, the toxicokinetics and toxicodynamics of the psychoactive DMT and harmala alkaloids harmine, harmaline and tetrahydroharmine, are comprehensively covered, particularly emphasizing the psychological, physiological, and toxic effects deriving from their concomitant intake. Potential therapeutic utility, particularly in mental and psychiatric disorders, and forensic aspects of DMT and ayahuasca are also reviewed and discussed. Following administration of ayahuasca, DMT is rapidly absorbed and distributed. Harmala alkaloids act as potent inhibitors of monoamine oxidase A (MAO-A), preventing extensive first-pass degradation of DMT into 3-indole-acetic acid (3-IAA), and enabling sufficient amounts of DMT to reach the brain. DMT has affinity for a variety of serotonergic and non-serotonergic receptors, though its psychotropic effects are mainly related with the activation of serotonin receptors type 2A (5-HT2A). Mildly to rarely severe psychedelic adverse effects are reported for ayahuasca or its alkaloids individually, but abuse does not lead to dependence or tolerance. For a long time, the evidence has pointed to potential psychotherapeutic benefits in the treatment of depression, anxiety, and substance abuse disorders; and although misuse of ayahuasca has been diverting attention away from such clinical potential, research onto its therapeutic effects has now strongly resurged.
Collapse
Affiliation(s)
- Andreia Machado Brito-da-Costa
- Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.M.B.-d.-C.); (N.G.M.G.); (Á.M.-C.)
| | - Diana Dias-da-Silva
- Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.M.B.-d.-C.); (N.G.M.G.); (Á.M.-C.)
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (D.D.-d.-S.); (R.J.D.-O.); Tel.: +351-224-157-216 (R.J.D.-O.)
| | - Nelson G. M. Gomes
- Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.M.B.-d.-C.); (N.G.M.G.); (Á.M.-C.)
- LAQV-REQUIMTE, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.M.B.-d.-C.); (N.G.M.G.); (Á.M.-C.)
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (D.D.-d.-S.); (R.J.D.-O.); Tel.: +351-224-157-216 (R.J.D.-O.)
| | - Áurea Madureira-Carvalho
- Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.M.B.-d.-C.); (N.G.M.G.); (Á.M.-C.)
- LAQV-REQUIMTE, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
22
|
Thompson C, Szabo A. Psychedelics as a novel approach to treating autoimmune conditions. Immunol Lett 2020; 228:45-54. [PMID: 33035575 DOI: 10.1016/j.imlet.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/12/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
With a rise in the incidence of autoimmune diseases (AiD), health care providers continue to seek out more efficacious treatment approaches for the AiD patient population. Classic serotonergic psychedelics have recently been gaining public and professional interest as novel interventions to a number of mental health afflictions. Psychedelics have also been shown to be able to modulate immune functions, however, while there has been great interest to researching into their psychotherapeutic applications, there has so far been very little exploration into the potential to treat inflammatory and immune-related diseases with these compounds. A handful of studies from a variety of fields suggest that psychedelics do indeed have effects in the body that may attenuate the outcome of AiD. This literature review explores existing evidence that psychedelic compounds may offer a potential novel application in the treatment of pathologies related to autoimmunity. We propose that psychedelics hold the potential to attenuate or even resolve autoimmunity by targeting psychosomatic origins, maladaptive chronic stress responses, inflammatory pathways, immune modulation and enteric microbiome populations.
Collapse
Affiliation(s)
| | - Attila Szabo
- NORMENT Center of Excellence (CoE), Institute of Clinical Medicine, University of Oslo, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
23
|
Gouzoulis-Mayfrank E, Habermeyer E, Hermle L, Steinmeyer AM, Kunert HJ, Sass H. Hallucinogenic drug induced states resemble acute endogenous psychoses: results of an empirical study. Eur Psychiatry 2020; 13:399-406. [DOI: 10.1016/s0924-9338(99)80686-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/1997] [Revised: 10/23/1998] [Accepted: 11/10/1998] [Indexed: 10/18/2022] Open
Abstract
SummaryClinical evidence suggests that hallucinogenic drug-induced altered states of consciousness (ASCs) and the incipient, acute stages of endogenous psychoses share many common phenomenological features. The aim of our study was to assess hallucinogen-like phenomena in endogenous psychotic patients using standardised methods. We examined 93 endogenous psychotic patients, 50 healthy controls and a small group of drug induced psychotic patients (n = 7) with two ASC self-assessment scales (questionnaire APZ = Abnormer Psychischer Zustand = Altered State of Consciousness [Dittrich et al, 1985]; and questionnaire OAV = Abbreviation of the three subscales: Oceanic Boundlessness/Angst = Dread of Ego Dissolution/Visionary Restructuralisation [Bodmer 1989]). Patients were examined shortly after remission of their last acute psychotic episode and they answered the questionnaires referring to the early phase of this episode. Differences in the questionnaire scores were significant between psychotic patients and controls. Drug induced patients had numerically higher scores than endogenous psychotic patients, however these differences were only significant for the APZ total score and the undifferentiated items of the APZ, but not for the three APZ subscale and the OAV scores. More than 50% of the endogenous psychotic patients answered 26% of the APZ-and 43% of the OAV-items with “yes”. The OAV total score and the OSE (Ozeanische Selbstentgrenzung = oceanic boundlessness) scores of both questionnaires correlated significantly with BPRS Factor 3 (thought disturbance). Our results support the hypothesis that hallucinogen-like experiences represent common phenomena during the acute stages of endogenous psychoses. Remarkably, these phenomena include subjectively pleasant experiences of the OSE dimension. In the routine clinical assessment of endogenous psychotic patients experiences of this dimension may be more easily overlooked than the negative experiences of the AIA dimension (AIA: Angst vor der Ich-Auflösung = dread of ego dissolution).
Collapse
|
24
|
Timmermann C, Roseman L, Schartner M, Milliere R, Williams LTJ, Erritzoe D, Muthukumaraswamy S, Ashton M, Bendrioua A, Kaur O, Turton S, Nour MM, Day CM, Leech R, Nutt DJ, Carhart-Harris RL. Neural correlates of the DMT experience assessed with multivariate EEG. Sci Rep 2019; 9:16324. [PMID: 31745107 PMCID: PMC6864083 DOI: 10.1038/s41598-019-51974-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Studying transitions in and out of the altered state of consciousness caused by intravenous (IV) N,N-Dimethyltryptamine (DMT - a fast-acting tryptamine psychedelic) offers a safe and powerful means of advancing knowledge on the neurobiology of conscious states. Here we sought to investigate the effects of IV DMT on the power spectrum and signal diversity of human brain activity (6 female, 7 male) recorded via multivariate EEG, and plot relationships between subjective experience, brain activity and drug plasma concentrations across time. Compared with placebo, DMT markedly reduced oscillatory power in the alpha and beta bands and robustly increased spontaneous signal diversity. Time-referenced and neurophenomenological analyses revealed close relationships between changes in various aspects of subjective experience and changes in brain activity. Importantly, the emergence of oscillatory activity within the delta and theta frequency bands was found to correlate with the peak of the experience - particularly its eyes-closed visual component. These findings highlight marked changes in oscillatory activity and signal diversity with DMT that parallel broad and specific components of the subjective experience, thus advancing our understanding of the neurobiological underpinnings of immersive states of consciousness.
Collapse
Affiliation(s)
- Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College, London, UK.
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Faculty of Medicine, Imperial College, London, UK.
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Michael Schartner
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Raphael Milliere
- Faculty of Philosophy, University of Oxford, Oxford, United Kingdom
| | - Luke T J Williams
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College, London, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College, London, UK
| | | | - Michael Ashton
- PKDM Unit, Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
| | - Adam Bendrioua
- PKDM Unit, Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
| | - Okdeep Kaur
- Imperial Clinical Research Facility, Imperial College London, London, UK
| | - Samuel Turton
- Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Camilla M Day
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Robert Leech
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College, London, UK
- Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Cameron L, Benson CJ, DeFelice BC, Fiehn O, Olson DE. Chronic, Intermittent Microdoses of the Psychedelic N, N-Dimethyltryptamine (DMT) Produce Positive Effects on Mood and Anxiety in Rodents. ACS Chem Neurosci 2019; 10:3261-3270. [PMID: 30829033 PMCID: PMC6639775 DOI: 10.1021/acschemneuro.8b00692] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Drugs capable of ameliorating symptoms of depression and anxiety while also improving cognitive function and sociability are highly desirable. Anecdotal reports have suggested that serotonergic psychedelics administered in low doses on a chronic, intermittent schedule, so-called "microdosing", might produce beneficial effects on mood, anxiety, cognition, and social interaction. Here, we test this hypothesis by subjecting male and female Sprague Dawley rats to behavioral testing following the chronic, intermittent administration of low doses of the psychedelic N,N-dimethyltryptamine (DMT). The behavioral and cellular effects of this dosing regimen were distinct from those induced following a single high dose of the drug. We found that chronic, intermittent, low doses of DMT produced an antidepressant-like phenotype and enhanced fear extinction learning without impacting working memory or social interaction. Additionally, male rats treated with DMT on this schedule gained a significant amount of body weight during the course of the study. Taken together, our results suggest that psychedelic microdosing may alleviate symptoms of mood and anxiety disorders, though the potential hazards of this practice warrant further investigation.
Collapse
Affiliation(s)
- Lindsay
P. Cameron
- Neuroscience
Graduate Program, University of California,
Davis, 1544 Newton Ct, Davis, California 95618, United States
| | - Charlie J. Benson
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Brian C. DeFelice
- West
Coast Metabolomics Center, University of
California, Davis, One
Shields Avenue, Davis, California 95616, United States
| | - Oliver Fiehn
- West
Coast Metabolomics Center, University of
California, Davis, One
Shields Avenue, Davis, California 95616, United States
- Biochemistry
Department, King Abdulaziz University, Jeddah, Saudi-Arabia
| | - David E. Olson
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Department
of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, 2700 Stockton Blvd, Suite 2102, Sacramento, California 95817, United States
- Center for
Neuroscience, University of California,
Davis, 1544 Newton Ct, Davis, California 95618, United States
| |
Collapse
|
26
|
Hamill J, Hallak J, Dursun SM, Baker G. Ayahuasca: Psychological and Physiologic Effects, Pharmacology and Potential Uses in Addiction and Mental Illness. Curr Neuropharmacol 2019; 17:108-128. [PMID: 29366418 PMCID: PMC6343205 DOI: 10.2174/1570159x16666180125095902] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/07/2017] [Accepted: 01/24/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Ayahuasca, a traditional Amazonian decoction with psychoactive properties, is made from bark of the Banisteriopsis caapi vine (containing beta-carboline alkaloids) and leaves of the Psychotria viridis bush (supplying the hallucinogen N,N-dimethyltryptamine, DMT). Originally used by indigenous shamans for the purposes of spirit communi-cation, magical experiences, healing, and religious rituals across several South American countries, ayahuasca has been in-corporated into folk medicine and spiritual healing, and several Brazilian churches use it routinely to foster a spiritual experi-ence. More recently, it is being used in Europe and North America, not only for religious or healing reasons, but also for rec-reation. Objective: To review ayahuasca’s behavioral effects, possible adverse effects, proposed mechanisms of action and potential clinical uses in mental illness. Method: We searched Medline, in English, using the terms ayahuasca, dimethyltryptamine, Banisteriopsis caapi, and Psy-chotria viridis and reviewed the relevant publications. Results: The following aspects of ayahuasca are summarized: Political and legal factors; acute and chronic psychological ef-fects; electrophysiological studies and imaging; physiological effects; safety and adverse effects; pharmacology; potential psychiatric uses. Conclusion: Many years of shamanic wisdom have indicated potential therapeutic uses for ayahuasca, and several present day studies suggest that it may be useful for treating various psychiatric disorders and addictions. The side effect profile ap-pears to be relatively mild, but more detailed studies need to be done. Several prominent researchers believe that government regulations with regard to ayahuasca should be relaxed so that it could be provided more readily to recognized, credible re-searchers to conduct comprehensive clinical trials.
Collapse
Affiliation(s)
- Jonathan Hamill
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jaime Hallak
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Neurosciences and Behavior and National Institute of Science and Technology (Translational Medicine), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Serdar M Dursun
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Glen Baker
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Rodrigues AVSL, Almeida FJ, Vieira-Coelho MA. Dimethyltryptamine: Endogenous Role and Therapeutic Potential. J Psychoactive Drugs 2019; 51:299-310. [DOI: 10.1080/02791072.2019.1602291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexandra VSL Rodrigues
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisco Jcg Almeida
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
- Psychiatry and Mental Health Clinic, Hospital de São João, Porto, Portugal
| |
Collapse
|
28
|
Mello SM, Soubhia PC, Silveira G, Corrêa-Neto NF, Lanaro R, Costa JL, Linardi A. Effect of Ritualistic Consumption of Ayahuasca on Hepatic Function in Chronic Users. J Psychoactive Drugs 2018; 51:3-11. [PMID: 30582439 DOI: 10.1080/02791072.2018.1557355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ayahuasca is a beverage obtained from decoctions of the liana Banisteriopsis caapi plus the shrub Psychotria viridis. This beverage contains a combination of monoamine oxidase inhibitors (harmine, harmaline, and tetrahydroharmine) and N,N-dimethyltryptamine, the main substance responsible for its visionary effect. The ritualistic use of ayahuasca is becoming a global phenomenon. Most members of ayahuasca churches consume this beverage throughout their life, and many reports have discussed the therapeutic potential of this beverage. Ayahuasca is consumed orally, and the liver, as the major organ for the metabolism and detoxification of xenobiotics absorbed from the alimentary tract, may be susceptible to injury by compounds present in the ayahuasca decoction. In this study, we evaluated biochemical parameters related to hepatic damage in the serum of 22 volunteers who consumed ayahuasca twice a month or more for at least one year. There was no significant alteration in the following parameters: alanine aminotransferase, aspartate aminotransferase, bilirubin, creatinine, urea, lactate dehydrogenase, alkaline phosphatase, and gamma glutamyl transferase. These findings indicate that chronic ayahuasca consumption in a religious context apparently does not affect hepatic function.
Collapse
Affiliation(s)
- Sueli Moreira Mello
- a Poison Control Center, Faculty of Medical Sciences , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Paula Christiane Soubhia
- a Poison Control Center, Faculty of Medical Sciences , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Gabriela Silveira
- a Poison Control Center, Faculty of Medical Sciences , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Nelson Francisco Corrêa-Neto
- b Department of Physiological Sciences , Santa Casa de São Paulo School of Medical Sciences , São Paulo , SP , Brazil
| | - Rafael Lanaro
- a Poison Control Center, Faculty of Medical Sciences , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - José Luiz Costa
- c Faculty of Pharmaceutical Sciences , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - Alessandra Linardi
- b Department of Physiological Sciences , Santa Casa de São Paulo School of Medical Sciences , São Paulo , SP , Brazil
| |
Collapse
|
29
|
Cameron LP, Olson DE. Dark Classics in Chemical Neuroscience: N, N-Dimethyltryptamine (DMT). ACS Chem Neurosci 2018; 9:2344-2357. [PMID: 30036036 DOI: 10.1021/acschemneuro.8b00101] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Though relatively obscure, N, N-dimethyltryptamine (DMT) is an important molecule in psychopharmacology as it is the archetype for all indole-containing serotonergic psychedelics. Its structure can be found embedded within those of better-known molecules such as lysergic acid diethylamide (LSD) and psilocybin. Unlike the latter two compounds, DMT is ubiquitous, being produced by a wide variety of plant and animal species. It is one of the principal psychoactive components of ayahuasca, a tisane made from various plant sources that has been used for centuries. Furthermore, DMT is one of the few psychedelic compounds produced endogenously by mammals, and its biological function in human physiology remains a mystery. In this review, we cover the synthesis of DMT as well as its pharmacology, metabolism, adverse effects, and potential use in medicine. Finally, we discuss the history of DMT in chemical neuroscience and why this underappreciated molecule is so important to the field of psychedelic science.
Collapse
Affiliation(s)
- Lindsay P. Cameron
- Neuroscience Graduate Program, University of California, Davis, 1544 Newton Ct., Davis, California 95618, United States
| | - David E. Olson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, 2700 Stockton Blvd., Suite 2102, Sacramento, California 95817, United States
- Center for Neuroscience, University of California, Davis, 1544 Newton Ct., Davis, California 95618, United States
| |
Collapse
|
30
|
Garcia-Romeu A, Richards WA. Current perspectives on psychedelic therapy: use of serotonergic hallucinogens in clinical interventions. Int Rev Psychiatry 2018; 30:291-316. [PMID: 30422079 DOI: 10.1080/09540261.2018.1486289] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Humans have used serotonergic hallucinogens (i.e. psychedelics) for spiritual, ceremonial, and recreational purposes for thousands of years, but their administration as part of a structured therapeutic intervention is still a relatively novel practice within Western medical and psychological frameworks. In the mid-20th century, considerable advances were made in developing therapeutic approaches integrating administration of low (psycholytic) and high (psychedelic) doses of serotonergic hallucinogens for treatment of a variety of conditions, often incorporating psychoanalytic concepts prevalent at that time. This work contributed seminal insights regarding how these substances may be employed with efficacy and safety in targeted therapeutic interventions, including the importance of optimizing set (frame of mind) and setting (therapeutic environment). More recently, clinical and pharmacological research has revisited the effects and therapeutic potential of psychedelics utilizing a variety of approaches. The current article provides an overview of past and present models of psychedelic therapy, and discusses important considerations for future interventions incorporating the use of psychedelics in research and clinical practice.
Collapse
Affiliation(s)
- Albert Garcia-Romeu
- a Department of Psychiatry & Behavioral Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - William A Richards
- a Department of Psychiatry & Behavioral Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
31
|
Schindler EAD, Wallace RM, Sloshower JA, D'Souza DC. Neuroendocrine Associations Underlying the Persistent Therapeutic Effects of Classic Serotonergic Psychedelics. Front Pharmacol 2018; 9:177. [PMID: 29545753 PMCID: PMC5838010 DOI: 10.3389/fphar.2018.00177] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
Recent reports on the effects of psychedelic-assisted therapies for mood disorders and addiction, as well as the effects of psychedelics in the treatment of cluster headache, have demonstrated promising therapeutic results. In addition, the beneficial effects appear to persist well after limited exposure to the drugs, making them particularly appealing as treatments for chronic neuropsychiatric and headache disorders. Understanding the basis of the long-lasting effects, however, will be critical for the continued use and development of this drug class. Several mechanisms, including biological and psychological ones, have been suggested to explain the long-lasting effects of psychedelics. Actions on the neuroendocrine system are some such mechanisms that warrant further investigation in the study of persisting psychedelic effects. In this report, we review certain structural and functional neuroendocrinological pathologies associated with neuropsychiatric disorders and cluster headache. We then review the effects that psychedelic drugs have on those systems and provide preliminary support for potential long-term effects. The circadian biology of cluster headache is of particular relevance in this area. We also discuss methodologic considerations for future investigations of neuroendocrine system involvement in the therapeutic benefits of psychedelic drugs.
Collapse
Affiliation(s)
- Emmanuelle A D Schindler
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States.,Department of Neurology, VA Connecticut Healthcare System, West Haven, CT, United States
| | - Ryan M Wallace
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Jordan A Sloshower
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.,Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, United States
| | - Deepak C D'Souza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.,Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
32
|
Ibrahim MA, El-Alfy AT, Ezel K, Radwan MO, Shilabin AG, Kochanowska-Karamyan AJ, Abd-Alla HI, Otsuka M, Hamann MT. Marine Inspired 2-(5-Halo-1H-indol-3-yl)-N,N-dimethylethanamines as Modulators of Serotonin Receptors: An Example Illustrating the Power of Bromine as Part of the Uniquely Marine Chemical Space. Mar Drugs 2017; 15:md15080248. [PMID: 28792478 PMCID: PMC5577603 DOI: 10.3390/md15080248] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022] Open
Abstract
In previous studies, we have isolated several marine indole alkaloids and evaluated them in the forced swim test (FST) and locomotor activity test, revealing their potential as antidepressant and sedative drug leads. Amongst the reported metabolites to display such activities was 5-bromo-N,N-dimethyltryptamine. Owing to the importance of the judicious introduction of halogens into drug candidates, we synthesized two series built on a 2-(1H-indol-3-yl)-N,N-dimethylethanamine scaffold with different halogen substitutions. The synthesized compounds were evaluated for their in vitro and in vivo antidepressant and sedative activities using the mouse forced swim and locomotor activity tests. Receptor binding studies of these compounds to serotonin (5-HT) receptors were conducted. Amongst the prepared compounds, 2-(1H-indol-3-yl)-N,N-dimethyl-2-oxoacetamide (1a), 2-(5-bromo-1H-indol-3-yl)-N,N-dimethyl-2-oxoacetamide (1d), 2-(1H-indol-3-yl)-N,N-dimethylethanamine (2a), 2-(5-chloro-1H-indol-3-yl)-N,N-dimethylethanamine (2c), 2-(5-bromo-1H-indol-3-yl)-N,N-dimethylethanamine (2d), and 2-(5-iodo-1H-indol-3-yl)-N,N-dimethylethanamine (2e) have been shown to possess significant antidepressant-like action, while compounds 2c, 2d, and 2e exhibited potent sedative activity. Compounds 2a, 2c, 2d, and 2e showed nanomolar affinities to serotonin receptors 5-HT1A and 5-HT₇. The in vitro data indicates that the antidepressant action exerted by these compounds in vivo is mediated, at least in part, via interaction with serotonin receptors. The data presented here shows the valuable role that bromine plays in providing novel chemical space and electrostatic interactions. Bromine is ubiquitous in the marine environment and a common element of marine natural products.
Collapse
Affiliation(s)
- Mohamed A Ibrahim
- Department of Pharmacognosy, The University of Mississippi, University, MS 38677, USA.
- National Center for Natural Products Research, the University of Mississippi, University, MS 38677, USA.
- Department of Chemistry of Natural Compounds, National Research Center, Dokki 12622, Cairo, Egypt.
| | - Abir T El-Alfy
- Biopharmaceutical Sciences Department, Medical College of Wisconsin Pharmacy School, Milwaukee, WI 53226, USA.
- Department of Pharmacology, The University of Mississippi, University, MS 38677, USA.
| | - Kelly Ezel
- Department of Pharmacology, The University of Mississippi, University, MS 38677, USA.
| | - Mohamed O Radwan
- Department of Chemistry of Natural Compounds, National Research Center, Dokki 12622, Cairo, Egypt.
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Abbas G Shilabin
- Department of Pharmacognosy, The University of Mississippi, University, MS 38677, USA.
- Department of Chemistry, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Anna J Kochanowska-Karamyan
- Department of Pharmacognosy, The University of Mississippi, University, MS 38677, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University HSC, Amarillo, TX 79106, USA.
| | - Howaida I Abd-Alla
- Department of Chemistry of Natural Compounds, National Research Center, Dokki 12622, Cairo, Egypt.
| | - Masami Otsuka
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Mark T Hamann
- Department of Pharmacognosy, The University of Mississippi, University, MS 38677, USA.
- National Center for Natural Products Research, the University of Mississippi, University, MS 38677, USA.
- Department of Pharmacology, The University of Mississippi, University, MS 38677, USA.
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
33
|
Dos Santos RG, Bouso JC, Hallak JEC. Ayahuasca, dimethyltryptamine, and psychosis: a systematic review of human studies. Ther Adv Psychopharmacol 2017; 7:141-157. [PMID: 28540034 PMCID: PMC5433617 DOI: 10.1177/2045125316689030] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ayahuasca is a hallucinogen brew traditionally used for ritual and therapeutic purposes in Northwestern Amazon. It is rich in the tryptamine hallucinogens dimethyltryptamine (DMT), which acts as a serotonin 5-HT2A agonist. This mechanism of action is similar to other compounds such as lysergic acid diethylamide (LSD) and psilocybin. The controlled use of LSD and psilocybin in experimental settings is associated with a low incidence of psychotic episodes, and population studies corroborate these findings. Both the controlled use of DMT in experimental settings and the use of ayahuasca in experimental and ritual settings are not usually associated with psychotic episodes, but little is known regarding ayahuasca or DMT use outside these controlled contexts. Thus, we performed a systematic review of the published case reports describing psychotic episodes associated with ayahuasca and DMT intake. We found three case series and two case reports describing psychotic episodes associated with ayahuasca intake, and three case reports describing psychotic episodes associated with DMT. Several reports describe subjects with a personal and possibly a family history of psychosis (including schizophrenia, schizophreniform disorders, psychotic mania, psychotic depression), nonpsychotic mania, or concomitant use of other drugs. However, some cases also described psychotic episodes in subjects without these previous characteristics. Overall, the incidence of such episodes appears to be rare in both the ritual and the recreational/noncontrolled settings. Performance of a psychiatric screening before administration of these drugs, and other hallucinogens, in controlled settings seems to significantly reduce the possibility of adverse reactions with psychotic symptomatology. Individuals with a personal or family history of any psychotic illness or nonpsychotic mania should avoid hallucinogen intake.
Collapse
Affiliation(s)
- Rafael G Dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Ribeirão Preto, Brazil; International Center for Ethnobotanical Education, Research and Service, ICEERS, Barcelona, Spain
| | - José Carlos Bouso
- International Center for Ethnobotanical Education, Research and Service, ICEERS, Barcelona, Spain
| | - Jaime E C Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Ribeirão Preto, Brazil
| |
Collapse
|
34
|
Hassan Z, Bosch OG, Singh D, Narayanan S, Kasinather BV, Seifritz E, Kornhuber J, Quednow BB, Müller CP. Novel Psychoactive Substances-Recent Progress on Neuropharmacological Mechanisms of Action for Selected Drugs. Front Psychiatry 2017; 8:152. [PMID: 28868040 PMCID: PMC5563308 DOI: 10.3389/fpsyt.2017.00152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022] Open
Abstract
A feature of human culture is that we can learn to consume chemical compounds, derived from natural plants or synthetic fabrication, for their psychoactive effects. These drugs change the mental state and/or the behavioral performance of an individual and can be instrumentalized for various purposes. After the emergence of a novel psychoactive substance (NPS) and a period of experimental consumption, personal and medical benefits and harm potential of the NPS can be estimated on evidence base. This may lead to a legal classification of the NPS, which may range from limited medical use, controlled availability up to a complete ban of the drug form publically accepted use. With these measures, however, a drug does not disappear, but frequently continues to be used, which eventually allows an even better estimate of the drug's properties. Thus, only in rare cases, there is a final verdict that is no more questioned. Instead, the view on a drug can change from tolerable to harmful but may also involve the new establishment of a desired medical application to a previously harmful drug. Here, we provide a summary review on a number of NPS for which the neuropharmacological evaluation has made important progress in recent years. They include mitragynine ("Kratom"), synthetic cannabinoids (e.g., "Spice"), dimethyltryptamine and novel serotonergic hallucinogens, the cathinones mephedrone and methylone, ketamine and novel dissociative drugs, γ-hydroxybutyrate, γ-butyrolactone, and 1,4-butanediol. This review shows not only emerging harm potentials but also some potential medical applications.
Collapse
Affiliation(s)
- Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Suresh Narayanan
- School of Social Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | | | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
35
|
Abstract
Classic hallucinogens share pharmacology as serotonin 5-HT2A, 5-HT2B, and 5-HT2C receptor agonists. Unique among most other Schedule 1 drugs, they are generally non-addictive and can be effective tools in the treatment of addiction. Mechanisms underlying these attributes are largely unknown. However, many preclinical studies show that 5-HT2C agonists counteract the addictive effects of drugs from several classes, suggesting this pharmacological property of classic hallucinogens may be significant. Drawing from a comprehensive analysis of preclinical behavior, neuroanatomy, and neurochemistry studies, this review builds rationale for this hypothesis, and also proposes a testable, neurobiological framework. 5-HT2C agonists work, in part, by modulating dopamine neuron activity in the ventral tegmental area-nucleus accumbens (NAc) reward pathway. We argue that activation of 5-HT2C receptors on NAc shell, GABAergic, medium spiny neurons inhibits potassium Kv1.x channels, thereby enhancing inhibitory activity via intrinsic mechanisms. Together with experiments that show that addictive drugs, such as cocaine, potentiate Kv1.x channels, thereby suppressing NAc shell GABAergic activity, this hypothesis provides a mechanism by which classic hallucinogen-mediated stimulation of 5-HT2C receptors could thwart addiction. It also provides a potential reason for the non-addictive nature of classic hallucinogens.
Collapse
Affiliation(s)
- Clinton E Canal
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, USA
| | - Kevin S Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, USA
| |
Collapse
|
36
|
Bouso JC, Pedrero-Pérez EJ, Gandy S, Alcázar-Córcoles MÁ. Measuring the subjective: revisiting the psychometric properties of three rating scales that assess the acute effects of hallucinogens. Hum Psychopharmacol 2016; 31:356-72. [PMID: 27470427 DOI: 10.1002/hup.2545] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 05/10/2016] [Accepted: 06/21/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In the present study we explored the psychometric properties of three widely used questionnaires to assess the subjective effects of hallucinogens: the Hallucinogen Rating Scale (HRS), the Mystical Experience Questionnaire (MEQ), and the Addiction Research Center Inventory (ARCI). METHODS These three questionnaires were administered to a sample of 158 subjects (100 men) after taking ayahuasca, a hallucinogen whose main active component is N,N-dimethyltryptamine (DMT). A confirmatory factorial study was conducted to check the adjustment of previous data obtained via theoretical proposals. When this was not possible, we used an exploratory factor analysis without restrictions, based on tetrachoric and polychoric matrices and correlations. RESULTS Our results sparsely match the theoretical proposals of the authors, perhaps because previous studies have not always employed psychometric methods appropriate to the data obtained. However, these data should be considered preliminary, pending larger samples to confirm or reject the proposed structures obtained. CONCLUSIONS It is crucial that instruments of sufficiently precise measurement are utilized to make sense of the information obtained in the study of the subjective effects of psychedelic drugs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- José Carlos Bouso
- ICEERS Foundation (International Center for Ethnobotanical Education, Research and Services), Spain.
| | - Eduardo José Pedrero-Pérez
- Departamento de Evaluación y Calidad, Instituto de Adicciones, Madrid Salud, Ayuntamiento de Madrid, Spain
| | - Sam Gandy
- The College of Life Sciences and Medicine, University of Aberdeen, UK
| | | |
Collapse
|
37
|
Carbonaro TM, Gatch MB. Neuropharmacology of N,N-dimethyltryptamine. Brain Res Bull 2016; 126:74-88. [PMID: 27126737 PMCID: PMC5048497 DOI: 10.1016/j.brainresbull.2016.04.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/20/2022]
Abstract
N,N-dimethyltryptamine (DMT) is an indole alkaloid widely found in plants and animals. It is best known for producing brief and intense psychedelic effects when ingested. Increasing evidence suggests that endogenous DMT plays important roles for a number of processes in the periphery and central nervous system, and may act as a neurotransmitter. This paper reviews the current literature of both the recreational use of DMT and its potential roles as an endogenous neurotransmitter. Pharmacokinetics, mechanisms of action in the periphery and central nervous system, clinical uses and adverse effects are also reviewed. DMT appears to have limited neurotoxicity and other adverse effects except for intense cardiovascular effects when administered intravenously in large doses. Because of its role in nervous system signaling, DMT may be a useful experimental tool in exploring how the brain works, and may also be a useful clinical tool for treatment of anxiety and psychosis.
Collapse
Affiliation(s)
- Theresa M Carbonaro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael B Gatch
- Center for Neuroscience Discovery University of North Texas Health Science Center Fort Worth, TX, United States.
| |
Collapse
|
38
|
Gallimore AR, Strassman RJ. A Model for the Application of Target-Controlled Intravenous Infusion for a Prolonged Immersive DMT Psychedelic Experience. Front Pharmacol 2016; 7:211. [PMID: 27471468 PMCID: PMC4944667 DOI: 10.3389/fphar.2016.00211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/30/2016] [Indexed: 01/22/2023] Open
Abstract
The state of consciousness induced by N,N-dimethyltryptamine (DMT) is one of the most extraordinary of any naturally-occurring psychedelic substance. Users consistently report the complete replacement of normal subjective experience with a novel "alternate universe," often densely populated with a variety of strange objects and other highly complex visual content, including what appear to be sentient "beings." The phenomenology of the DMT state is of great interest to psychology and calls for rigorous academic enquiry. The extremely short duration of DMT effects-less than 20 min-militates against single dose administration as the ideal model for such enquiry. Using pharmacokinetic modeling and DMT blood sampling data, we demonstrate that the unique pharmacological characteristics of DMT, which also include a rapid onset and lack of acute tolerance to its subjective effects, make it amenable to administration by target-controlled intravenous infusion. This is a technology developed to maintain a stable brain concentration of anesthetic drugs during surgery. Simulations of our model demonstrate that this approach will allow research subjects to be induced into a stable and prolonged DMT experience, making it possible to carefully observe its psychological contents, and provide more extensive accounts for subsequent analyses. This model would also be valuable in performing functional neuroimaging, where subjects are required to remain under the influence of the drug for extended periods. Finally, target-controlled intravenous infusion of DMT may aid the development of unique psychotherapeutic applications of this psychedelic agent.
Collapse
Affiliation(s)
- Andrew R. Gallimore
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
| | - Rick J. Strassman
- Department of Psychiatry, University of New Mexico School of MedicineAlbuquerque, NM, USA
| |
Collapse
|
39
|
Valle M, Maqueda AE, Rabella M, Rodríguez-Pujadas A, Antonijoan RM, Romero S, Alonso JF, Mañanas MÀ, Barker S, Friedlander P, Feilding A, Riba J. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans. Eur Neuropsychopharmacol 2016; 26:1161-75. [PMID: 27039035 DOI: 10.1016/j.euroneuro.2016.03.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 03/02/2016] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
Abstract
Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans.
Collapse
Affiliation(s)
- Marta Valle
- Pharmacokinetic and Pharmacodynamic Modelling and Simulation, IIB Sant Pau, Sant Antoni María Claret, 167, 08025 Barcelona, Spain; Centre d'Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Sant Antoni María Claret, 167, 08025 Barcelona, Spain; Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
| | - Ana Elda Maqueda
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Human Neuropsychopharmacology Research Group. Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Sant Antoni María Claret, 167, 08025 Barcelona, Spain
| | - Mireia Rabella
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Servei de Psiquiatria, Hospital de la Santa Creu i Sant Pau, Sant Antoni María Claret, 167, 08025 Barcelona, Spain
| | - Aina Rodríguez-Pujadas
- Human Neuropsychopharmacology Research Group. Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Sant Antoni María Claret, 167, 08025 Barcelona, Spain
| | - Rosa Maria Antonijoan
- Centre d'Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Sant Antoni María Claret, 167, 08025 Barcelona, Spain; Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
| | - Sergio Romero
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Joan Francesc Alonso
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Barcelona College of Industrial Engineering (EUETIB), UniversitatPolitècnica de Catalunya (UPC), Barcelona 08028, Spain
| | - Miquel Àngel Mañanas
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Barcelona College of Industrial Engineering (EUETIB), UniversitatPolitècnica de Catalunya (UPC), Barcelona 08028, Spain
| | - Steven Barker
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, LA 70803, USA
| | - Pablo Friedlander
- The Beckley Foundation, Beckley Park, Oxford OX3 9SY, United Kingdom
| | - Amanda Feilding
- The Beckley Foundation, Beckley Park, Oxford OX3 9SY, United Kingdom
| | - Jordi Riba
- Centre d'Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Sant Antoni María Claret, 167, 08025 Barcelona, Spain; Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Human Neuropsychopharmacology Research Group. Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Sant Antoni María Claret, 167, 08025 Barcelona, Spain.
| |
Collapse
|
40
|
Abstract
Ayahuasca is a hallucinogenic brew traditionally used by Northwestern Amazonian indigenous groups for therapeutic purposes. It is prepared by the decoction of Banisteriopsis caapi with the leaves of Psychotria viridis. Banisteriopsis caapi contains β-carbolines that are inhibitors of monoamine oxidase and P. viris is rich in dimethyltryptamine, a 5-HT(1A/2A/2C) agonist. Acute ayahuasca administration produces moderate cardiovascular effects in healthy volunteers, but information regarding long-term use is lacking. This study investigated the effects of ayahuasca (2-4 mL/kg) in the rat aorta after acute and chronic (14 days) administration. Ayahuasca caused flattening and stretching of vascular smooth muscle cells and changes in the arrangement and distribution of collagen and elastic fibers. Chronic treatment with the higher dose significantly increased media thickness and the ratio of media thickness to lumen diameter. More research is needed on the cardiovascular function of long-term ayahuasca consumers.
Collapse
|
41
|
Frecska E, Bokor P, Winkelman M. The Therapeutic Potentials of Ayahuasca: Possible Effects against Various Diseases of Civilization. Front Pharmacol 2016; 7:35. [PMID: 26973523 PMCID: PMC4773875 DOI: 10.3389/fphar.2016.00035] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/08/2016] [Indexed: 11/23/2022] Open
Abstract
Ayahuasca is an Amazonian psychoactive brew of two main components. Its active agents are β-carboline and tryptamine derivatives. As a sacrament, ayahuasca is still a central element of many healing ceremonies in the Amazon Basin and its ritual consumption has become common among the mestizo populations of South America. Ayahuasca use amongst the indigenous people of the Amazon is a form of traditional medicine and cultural psychiatry. During the last two decades, the substance has become increasingly known among both scientists and laymen, and currently its use is spreading all over in the Western world. In the present paper we describe the chief characteristics of ayahuasca, discuss important questions raised about its use, and provide an overview of the scientific research supporting its potential therapeutic benefits. A growing number of studies indicate that the psychotherapeutic potential of ayahuasca is based mostly on the strong serotonergic effects, whereas the sigma-1 receptor (Sig-1R) agonist effect of its active ingredient dimethyltryptamine raises the possibility that the ethnomedical observations on the diversity of treated conditions can be scientifically verified. Moreover, in the right therapeutic or ritual setting with proper preparation and mindset of the user, followed by subsequent integration of the experience, ayahuasca has proven effective in the treatment of substance dependence. This article has two important take-home messages: (1) the therapeutic effects of ayahuasca are best understood from a bio-psycho-socio-spiritual model, and (2) on the biological level ayahuasca may act against chronic low grade inflammation and oxidative stress via the Sig-1R which can explain its widespread therapeutic indications.
Collapse
Affiliation(s)
- Ede Frecska
- Department of Psychiatry, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Petra Bokor
- Doctoral School of Psychology, University of Pécs Pécs, Hungary
| | - Michael Winkelman
- School of Human Evolution and Social Change, Arizona State University, Tempe AZ, USA
| |
Collapse
|
42
|
Kalueff AV, Echevarria DJ, Homechaudhuri S, Stewart AM, Collier AD, Kaluyeva AA, Li S, Liu Y, Chen P, Wang J, Yang L, Mitra A, Pal S, Chaudhuri A, Roy A, Biswas M, Roy D, Podder A, Poudel MK, Katare DP, Mani RJ, Kyzar EJ, Gaikwad S, Nguyen M, Song C. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:297-309. [PMID: 26372090 DOI: 10.1016/j.aquatox.2015.08.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 05/25/2023]
Abstract
Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Chemical-Technological Institute and Institute of Natural Sciences, Ural Federal University, Ekaterinburg 620002, Russia.
| | - David J Echevarria
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Sumit Homechaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adam Michael Stewart
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Adam D Collier
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | | | - Shaomin Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Yingcong Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Peirong Chen
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - JiaJia Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Lei Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Anisa Mitra
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Subharthi Pal
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adwitiya Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anwesha Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Missidona Biswas
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Dola Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anupam Podder
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Manoj K Poudel
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Deepshikha P Katare
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Ruchi J Mani
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Evan J Kyzar
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, 1601 W Taylor St., Chicago, IL 60612, USA
| | - Siddharth Gaikwad
- Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| | - Michael Nguyen
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
43
|
Lanaro R, Calemi DBDA, Togni LR, Costa JL, Yonamine M, Cazenave SDOS, Linardi A. Ritualistic Use of Ayahuasca versus Street Use of Similar Substances Seized by the Police: A Key Factor Involved in the Potential for Intoxications and Overdose? J Psychoactive Drugs 2015; 47:132-9. [DOI: 10.1080/02791072.2015.1013202] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Araújo AM, Carvalho F, Bastos MDL, Guedes de Pinho P, Carvalho M. The hallucinogenic world of tryptamines: an updated review. Arch Toxicol 2015; 89:1151-73. [PMID: 25877327 DOI: 10.1007/s00204-015-1513-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
|
45
|
Sessa B, Fischer FM. Underground MDMA-, LSD- and 2-CB-assisted individual and group psychotherapy in Zurich: Outcomes, implications and commentary. ACTA ACUST UNITED AC 2015. [DOI: 10.1177/2050324515578080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Underground psychedelic-assisted psychotherapy has persisted in Europe despite the banning of the substances LSD and MDMA in the 1960s and 1980s, respectively. This article describes the work of a Zurich-based psychotherapist providing individual and group psycholytic psychotherapy, whose practice persisted for several years before she was arrested in 2009. The article provides commentary on the psychopharmacological, moral, ethical and legal issues of this case and discusses these issues in the context of the growing medical research of psychedelic substances as mainstream treatments for psychiatry.
Collapse
Affiliation(s)
- Ben Sessa
- Cardiff University School of Medicine, UK
| | | |
Collapse
|
46
|
Abstract
Ayahuasca is a botanical hallucinogen traditionally used by indigenous groups of the northwest Amazon. In the last decade, the use of ayahuasca has spread from Brazil, Colombia, Ecuador, and Peru to the U.S., Europe, Asia, and Africa. Despite acute and long-term evidence of good tolerability and safety for ayahuasca administered in the laboratory or ritually consumed in religious contexts, little is known about the immunological impact of ayahuasca on humans. Since ayahuasca is used by an increasing number of consumers, and considering its therapeutic potential, more information is needed regarding ayahuasca potential risks. This article presents a brief overview of the available data regarding the immunological impact of ayahuasca in humans.
Collapse
Affiliation(s)
- Rafael Guimarães dos Santos
- a Postdoctoral Research Fellow, Department of Neuroscience and Behavior , Ribeirão Preto Medical School, University of São Paulo, Brazil; Advisory Board, International Center for Ethnobotanical Education, Research & Service, ICEERS , Halsteren , The Netherlands
| |
Collapse
|
47
|
Halberstadt AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res 2015; 277:99-120. [PMID: 25036425 PMCID: PMC4642895 DOI: 10.1016/j.bbr.2014.07.016] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/12/2022]
Abstract
Serotonergic hallucinogens, such as (+)-lysergic acid diethylamide, psilocybin, and mescaline, are somewhat enigmatic substances. Although these drugs are derived from multiple chemical families, they all produce remarkably similar effects in animals and humans, and they show cross-tolerance. This article reviews the evidence demonstrating the serotonin 5-HT2A receptor is the primary site of hallucinogen action. The 5-HT2A receptor is responsible for mediating the effects of hallucinogens in human subjects, as well as in animal behavioral paradigms such as drug discrimination, head twitch response, prepulse inhibition of startle, exploratory behavior, and interval timing. Many recent clinical trials have yielded important new findings regarding the psychopharmacology of these substances. Furthermore, the use of modern imaging and electrophysiological techniques is beginning to help unravel how hallucinogens work in the brain. Evidence is also emerging that hallucinogens may possess therapeutic efficacy.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
48
|
The role of 5-HT2A, 5-HT 2C and mGlu2 receptors in the behavioral effects of tryptamine hallucinogens N,N-dimethyltryptamine and N,N-diisopropyltryptamine in rats and mice. Psychopharmacology (Berl) 2015; 232:275-84. [PMID: 24985890 PMCID: PMC4282596 DOI: 10.1007/s00213-014-3658-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/10/2014] [Indexed: 12/25/2022]
Abstract
RATIONALE Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens. OBJECTIVE The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT). METHODS Drug discrimination, head twitch, and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084), and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT. RESULTS MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT's effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low-potency full agonist at 5-HT2CR in vitro. CONCLUSIONS The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree.
Collapse
|
49
|
Smith DA, Bailey JM, Williams D, Fantegrossi WE. Tolerance and cross-tolerance to head twitch behavior elicited by phenethylamine- and tryptamine-derived hallucinogens in mice. J Pharmacol Exp Ther 2014; 351:485-91. [PMID: 25271256 DOI: 10.1124/jpet.114.219337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The serotonin 5-hydroxytryptamine 2A (5-HT2A) receptor is a potential therapeutic target to a host of neuropsychiatric conditions, but agonist actions at this site are linked to abuse-related hallucinogenic effects that may limit therapeutic efficacy of chronic drug administration. Tolerance to some effects of hallucinogens has been observed in humans and laboratory animals, but the understanding of tolerance and cross-tolerance between distinct structural classes of hallucinogens is limited. Here, we used the drug-elicited head twitch response (HTR) in mice to assess the development of tolerance and cross-tolerance with two phenethylamine-derived [DOI (2,5-dimethoxy-4-iodoamphetamine) and 2C-T-7 (2,5-dimethoxy-4-propylthiophenethylamine)] and two tryptamine-derived [DPT (N,N-dipropyltryptamine) and DIPT (N,N-diisopropyltryptamine)] drugs with agonist affinity for 5-HT2A receptors. Tolerance developed to HTR elicited by daily DOI or 2C-T-7, but not to HTR elicited by DPT or DIPT. DOI-elicited tolerance was not surmountable with dose, and a similar insurmountable cross-tolerance was evident when DOI-tolerant mice were tested with various doses of 2C-T-7 or DPT. These studies suggest that the use of phenethylamine-derived hallucinogens as therapeutic agents may be limited not only by their abuse potential, but also by the rapid development of tolerance that would likely be maintained even if a patient were switched to a different 5-HT2A agonist medication from a distinct structural class. However, these experiments also imply that tryptamine-derived hallucinogens might have a reduced potential for tolerance development, compared with phenethylamine-derived 5-HT2A agonists, and might therefore be more suitable for chronic administration in a therapeutic context.
Collapse
Affiliation(s)
- Douglas A Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.A.S.); and Interdisciplinary Biomedical Sciences Program (J.M.B., D.W.), Department of Pharmacology and Toxicology (W.E.F.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jessica M Bailey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.A.S.); and Interdisciplinary Biomedical Sciences Program (J.M.B., D.W.), Department of Pharmacology and Toxicology (W.E.F.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Diarria Williams
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.A.S.); and Interdisciplinary Biomedical Sciences Program (J.M.B., D.W.), Department of Pharmacology and Toxicology (W.E.F.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.A.S.); and Interdisciplinary Biomedical Sciences Program (J.M.B., D.W.), Department of Pharmacology and Toxicology (W.E.F.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
50
|
Frecska E, Szabo A, Winkelman MJ, Luna LE, McKenna DJ. A possibly sigma-1 receptor mediated role of dimethyltryptamine in tissue protection, regeneration, and immunity. J Neural Transm (Vienna) 2013; 120:1295-303. [PMID: 23619992 DOI: 10.1007/s00702-013-1024-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/01/2013] [Indexed: 01/20/2023]
Abstract
N,N-dimethyltryptamine (DMT) is classified as a naturally occurring serotonergic hallucinogen of plant origin. It has also been found in animal tissues and regarded as an endogenous trace amine transmitter. The vast majority of research on DMT has targeted its psychotropic/psychedelic properties with less focus on its effects beyond the nervous system. The recent discovery that DMT is an endogenous ligand of the sigma-1 receptor may shed light on yet undiscovered physiological mechanisms of DMT activity and reveal some of its putative biological functions. A three-step active uptake process of DMT from peripheral sources to neurons underscores a presumed physiological significance of this endogenous hallucinogen. In this paper, we overview the literature on the effects of sigma-1 receptor ligands on cellular bioenergetics, the role of serotonin, and serotoninergic analogues in immunoregulation and the data regarding gene expression of the DMT synthesizing enzyme indolethylamine-N-methyltransferase in carcinogenesis. We conclude that the function of DMT may extend central nervous activity and involve a more universal role in cellular protective mechanisms. Suggestions are offered for future directions of indole alkaloid research in the general medical field. We provide converging evidence that while DMT is a substance which produces powerful psychedelic experiences, it is better understood not as a hallucinogenic drug of abuse, but rather an agent of significant adaptive mechanisms that can also serve as a promising tool in the development of future medical therapies.
Collapse
Affiliation(s)
- Ede Frecska
- Department of Psychiatry, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, 4012, Debrecen, Hungary.
| | | | | | | | | |
Collapse
|