1
|
Verduzco-Mendoza A, Mota-Rojas D, Olmos-Hernández A, Avila-Luna A, García-García K, Gálvez-Rosas A, Hidalgo-Bravo A, Ríos C, Parra-Cid C, Montes S, García-López J, Ramos-Languren LE, Pérez-Severiano F, González-Piña R, Bueno-Nava A. Changes in Noradrenergic Synthesis and Dopamine Beta-Hydroxylase Activity in Response to Oxidative Stress after Iron-induced Brain Injury. Neurochem Res 2024; 49:3043-3059. [PMID: 39105899 DOI: 10.1007/s11064-024-04222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Noradrenaline (NA) levels are altered during the first hours and several days after cortical injury. NA modulates motor functional recovery. The present study investigated whether iron-induced cortical injury modulated noradrenergic synthesis and dopamine beta-hydroxylase (DBH) activity in response to oxidative stress in the brain cortex, pons and cerebellum of the rat. Seventy-eight rats were divided into two groups: (a) the sham group, which received an intracortical injection of a vehicle solution; and (b) the injured group, which received an intracortical injection of ferrous chloride. Motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, the rats were euthanized to measure oxidative stress indicators (reactive oxygen species (ROS), reduced glutathione (GSH) and oxidized glutathione (GSSG)) and catecholamines (NA, dopamine (DA)), plus DBH mRNA and protein levels. Our results showed that iron-induced brain cortex injury increased noradrenergic synthesis and DBH activity in the brain cortex, pons and cerebellum at 3 days post-injury, predominantly on the ipsilateral side to the injury, in response to oxidative stress. A compensatory increase in contralateral noradrenergic activity was observed, but without changes in the DBH mRNA and protein levels in the cerebellum and pons. In conclusion, iron-induced cortical injury increased the noradrenergic response in the brain cortex, pons and cerebellum, particularly on the ipsilateral side, accompanied by a compensatory response on the contralateral side. The oxidative stress was countered by antioxidant activity, which favored functional recovery following motor deficits.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Daniel Mota-Rojas
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana CBS, Unidad Xochimilco, Ciudad de México, Mexico
| | - Adriana Olmos-Hernández
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Alberto Avila-Luna
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Karla García-García
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Arturo Gálvez-Rosas
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Alberto Hidalgo-Bravo
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Camilo Ríos
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana CBS, Unidad Xochimilco, Ciudad de México, Mexico
| | - Carmen Parra-Cid
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, calle 16 y lago de Chapala, Aztlán, Tamaulipas, Mexico
| | - Julieta García-López
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Laura E Ramos-Languren
- Facultad de Psicología, División de Estudios Profesionales, Universidad Nacional Autónoma de Mexico, Av. Universidad 3040, Col, Copilco Universidad Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSa, Insurgentes Sur 3877, Ciudad de México, Mexico
| | - Rigoberto González-Piña
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, 11340, Ciudad de México, Mexico
- Clínica de Rehabilitación del Daño Cerebral CLIREDACE "Dr. Hugo Iván González Gutiérrez", Monterrey 243, Col. Roma Sur, Alcaldía Cuauhtémoc, Ciudad de México, Mexico
| | - Antonio Bueno-Nava
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico.
- Laboratorio de Neurofisiología Química de la Discapacidad, Coordinación de Neurociencias Básica, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, Ciudad de México, 14389, Mexico.
| |
Collapse
|
2
|
Sulaman BA, Zhang Y, Matosevich N, Kjærby C, Foustoukos G, Andersen M, Eban-Rothschild A. Emerging Functions of Neuromodulation during Sleep. J Neurosci 2024; 44:e1277242024. [PMID: 39358018 PMCID: PMC11450531 DOI: 10.1523/jneurosci.1277-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/04/2024] Open
Abstract
Neuromodulators act on multiple timescales to affect neuronal activity and behavior. They function as synaptic fine-tuners and master coordinators of neuronal activity across distant brain regions and body organs. While much research on neuromodulation has focused on roles in promoting features of wakefulness and transitions between sleep and wake states, the precise dynamics and functions of neuromodulatory signaling during sleep have received less attention. This review discusses research presented at our minisymposium at the 2024 Society for Neuroscience meeting, highlighting how norepinephrine, dopamine, and acetylcholine orchestrate brain oscillatory activity, control sleep architecture and microarchitecture, regulate responsiveness to sensory stimuli, and facilitate memory consolidation. The potential of each neuromodulator to influence neuronal activity is shaped by the state of the synaptic milieu, which in turn is influenced by the organismal or systemic state. Investigating the effects of neuromodulator release across different sleep substates and synaptic environments offers unique opportunities to deepen our understanding of neuromodulation and explore the distinct computational opportunities that arise during sleep. Moreover, since alterations in neuromodulatory signaling and sleep are implicated in various neuropsychiatric disorders and because existing pharmacological treatments affect neuromodulatory signaling, gaining a deeper understanding of the less-studied aspects of neuromodulators during sleep is of high importance.
Collapse
Affiliation(s)
- Bibi Alika Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yiyao Zhang
- Neuroscience Institute, New York University, New York, New York 10016
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Celia Kjærby
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Mie Andersen
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | | |
Collapse
|
3
|
Cuevas JS, Watanabe M, Uematsu A, Johansen JP. Whole-brain afferent input mapping to functionally distinct brainstem noradrenaline cell types. Neurosci Res 2023:S0168-0102(23)00074-3. [PMID: 37062443 DOI: 10.1016/j.neures.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
The locus coeruleus (LC) is a small region in the pons and the main source of noradrenaline (NA) to the forebrain. While traditional models suggested that all LC-NA neurons project indiscriminately throughout the brain, accumulating evidence indicates that these cells can be heterogeneous based on their anatomical connectivity and behavioral functionality and exhibit distinct coding modes. How LC-NA neuronal subpopulations are endowed with unique functional properties is unclear. Here, we used a viral-genetic approach for mapping anatomical connectivity at different levels of organization based on inputs and outputs of defined cell classes. Specifically, we studied the whole-brain afferent inputs onto two functionally distinct LC-NA neuronal subpopulations which project to amygdala or medial prefrontal cortex (mPFC). We found that the global input distribution is similar for both LC-NA neuronal subpopulations. However, finer analysis demonstrated important differences in inputs from specific brain regions. Moreover, sex related differences were apparent, but only in inputs to amygdala-projecting LC-NA neurons. These findings reveal a cell type and sex specific afferent input organization which could allow for context dependent and target specific control of NA outflow to forebrain structures involved in emotional control and decision making.
Collapse
Affiliation(s)
- Jessica Sulkes Cuevas
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan 351-0198; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 0Japan
| | - Mayumi Watanabe
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan 351-0198; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 0Japan
| | - Akira Uematsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Joshua P Johansen
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan 351-0198; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 0Japan.
| |
Collapse
|
4
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
5
|
Redding ZV, Sabol KE. Reduced attentional lapses in male rats following a combination treatment of low-dose D-serine and atomoxetine. J Psychopharmacol 2023; 37:204-215. [PMID: 36648101 DOI: 10.1177/02698811221149652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Goal-directed attention involves the selective processing of behaviorally relevant sensory information. This selective processing is thought to be supported by glutamatergic and noradrenergic systems. Pharmacotherapies that simultaneously target these systems could therefore be effective treatments for impaired attention. AIMS We first tested an N-methyl-D-aspartate (NMDA) receptor co-agonist (D-serine) for effects on attention (processing speed and attentional lapses). NMDA receptor activation is thought to support noradrenergic effects on sensory processing; therefore, we tested a combination treatment comprising D-serine and a norepinephrine reuptake inhibitor (atomoxetine). METHODS D-serine was first tested in rats performing a two-choice visuospatial discrimination task. Combination treatments comprising relatively low doses of D-serine and atomoxetine were then tested in a separate group. RESULTS In experiment 1, D-serine reduced the skew of initiation time (IT) distributions (IT devmode) at the highest dose tested (300 mg/kg). In experiment 2, low-dose D-serine (125 mg/kg) had no effect, while low-dose atomoxetine (0.3 mg/kg) reduced IT devmode and slowed movement speed. Importantly, the combination of these relatively low doses of D-serine and atomoxetine reduced IT devmode more than either drug alone without further slowing movement speed. CONCLUSIONS IT devmode is thought to reflect attentional lapses; therefore, D-serine's effects on IT devmode suggest that NMDA receptors are involved in the preparatory deployment of attention. Greater effects following a combination of D-serine and atomoxetine suggest that preparatory attention can be facilitated by targeting glutamatergic and noradrenergic systems simultaneously. These results could inform the development of improved treatments for individuals with ADHD who experience abnormally high attentional lapses.
Collapse
Affiliation(s)
- Zach V Redding
- Department of Psychology, The University of Mississippi, University Park, MS, USA.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen E Sabol
- Department of Psychology, The University of Mississippi, University Park, MS, USA
| |
Collapse
|
6
|
Bostanciklioğlu M. Neuromodulation of Memory Formation and Extinction. Curr Neurovasc Res 2021; 17:319-326. [PMID: 32316891 DOI: 10.2174/1567202617999200421202818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/22/2022]
Abstract
Memory retrieval is mediated by discharges of acetylcholine, glutamate, gammaaminobutyric acid, norepinephrine, and serotonin/5-hydroxytryptamine circuits. These projections and memory interact through engram circuits, neurobiological traces of memory. Increased excitability in engram circuits of the medial prefrontal cortex and hippocampus results in remote and recent memory retrievals, respectively. However, due to degenerated neurotransmitter projections, the excitability state of engram circuits is decreased in the patient with dementia; and thus, acquired- memory cannot be retrieved by natural cues. Here, we suggest that artificial neuropharmacological stimulations of the acquired-memory with an excitation potential higher than a natural cue can excite engram circuits in the medial prefrontal cortex, which results in the retrieval of lost memories in dementia. The neuropharmacological foundations of engram cell-mediated memory retrieval strategy in severe dementia, in line with this has also been explained. We particularly highlighted the close interactions between periaqueductal gray, locus coeruleus, raphe nuclei, and medial prefrontal cortex and basolateral amygdala as treatment targets for memory loss. Furthermore, the engram circuits projecting raphe nuclei, locus coeruleus, and pontomesencephalic tegmentum complex could be significant targets of memory editing and memory formation in the absence of experience, and a well-defined study of the neural events underlying the interaction of brain stem and memory will be relevant for such developments. We anticipate our perspective to be a starting point for more sophisticated in vivo models for neuropharmacological modulations of memory retrieval in Alzheimer's dementia.
Collapse
|
7
|
Carlson ES, Hunker AC, Sandberg SG, Locke TM, Geller JM, Schindler AG, Thomas SA, Darvas M, Phillips PEM, Zweifel LS. Catecholaminergic Innervation of the Lateral Nucleus of the Cerebellum Modulates Cognitive Behaviors. J Neurosci 2021; 41:3512-3530. [PMID: 33536201 PMCID: PMC8051686 DOI: 10.1523/jneurosci.2406-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/21/2022] Open
Abstract
The cerebellum processes neural signals related to rewarding and aversive stimuli, suggesting that the cerebellum supports nonmotor functions in cognitive and emotional domains. Catecholamines are a class of neuromodulatory neurotransmitters well known for encoding such salient stimuli. Catecholaminergic modulation of classical cerebellar functions have been demonstrated. However, a role for cerebellar catecholamines in modulating cerebellar nonmotor functions is unknown. Using biochemical methods in male mice, we comprehensively mapped TH+ fibers throughout the entire cerebellum and known precerebellar nuclei. Using electrochemical (fast scan cyclic voltammetry), and viral/genetic methods to selectively delete Th in fibers innervating the lateral cerebellar nucleus (LCN), we interrogated sources and functional roles of catecholamines innervating the LCN, which is known for its role in supporting cognition. The LCN has the most TH+ fibers in cerebellum, as well as the most change in rostrocaudal expression among the cerebellar nuclei. Norepinephrine is the major catecholamine measured in LCN. Distinct catecholaminergic projections to LCN arise only from locus coeruleus, and a subset of Purkinje cells that are positive for staining of TH. LC stimulation was sufficient to produce catecholamine release in LCN. Deletion of Th in fibers innervating LCN (LCN-Th-cKO) resulted in impaired sensorimotor integration, associative fear learning, response inhibition, and working memory in LCN-Th-cKO mice. Strikingly, selective inhibition of excitatory LCN output neurons with inhibitory designer receptor exclusively activated by designer drugs led to facilitation of learning on the same working memory task impaired in LCN-Th-cKO mice. Collectively, these data demonstrate a role for LCN catecholamines in cognitive behaviors.SIGNIFICANCE STATEMENT Here, we report on interrogating sources and functional roles of catecholamines innervating the lateral nucleus of the cerebellum (LCN). We map and quantify expression of TH, the rate-limiting enzyme in catecholamine synthesis, in the entire cerebellar system, including several precerebellar nuclei. We used cyclic voltammetry and pharmacology to demonstrate sufficiency of LC stimulation to produce catecholamine release in LCN. We used advanced viral techniques to map and selectively KO catecholaminergic neurotransmission to the LCN, and characterized significant cognitive deficits related to this manipulation. Finally, we show that inhibition of excitatory LCN neurons with designer receptor exclusively activated by designer drugs, designed to mimic Gi-coupled catecholamine GPCR signaling, results in facilitation of a working memory task impaired in LCN-specific TH KO mice.
Collapse
Affiliation(s)
- Erik S Carlson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, Washington 98108
| | - Avery C Hunker
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Stefan G Sandberg
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
| | - Timothy M Locke
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Julianne M Geller
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, Washington 98108
| | - Abigail G Schindler
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, Washington 98108
| | - Steven A Thomas
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Paul E M Phillips
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
8
|
Matchett BJ, Grinberg LT, Theofilas P, Murray ME. The mechanistic link between selective vulnerability of the locus coeruleus and neurodegeneration in Alzheimer's disease. Acta Neuropathol 2021; 141:631-650. [PMID: 33427939 PMCID: PMC8043919 DOI: 10.1007/s00401-020-02248-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the intracellular accumulation of hyperphosphorylated tau and the extracellular deposition of amyloid-β plaques, which affect certain brain regions in a progressive manner. The locus coeruleus (LC), a small nucleus in the pons of the brainstem, is widely recognized as one of the earliest sites of neurofibrillary tangle formation in AD. Patients with AD exhibit significant neuronal loss in the LC, resulting in a marked reduction of its size and function. The LC, which vastly innervates several regions of the brain, is the primary source of the neurotransmitter norepinephrine (NE) in the central nervous system. Considering that NE is a major modulator of behavior, contributing to neuroprotection and suppression of neuroinflammation, degeneration of the LC in AD and the ultimate dysregulation of the LC-NE system has detrimental effects in the brain. In this review, we detail the neuroanatomy and function of the LC, its essential role in neuroprotection, and how this is dysregulated in AD. We discuss AD-related neuropathologic changes in the LC and mechanisms by which LC neurons are selectively vulnerable to insult. Further, we elucidate the neurotoxic effects of LC de-innervation both locally and at projection sites, and how this augments disease pathology, progression and severity. We summarize how preservation of the LC-NE system could be used in the treatment of AD and other neurodegenerative diseases affected by LC degeneration.
Collapse
Affiliation(s)
- Billie J. Matchett
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, CA 94158 USA
| | - Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| | - Melissa E. Murray
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
9
|
Loonen AJ, Wilffert B, Ivanova SA. Putative role of pharmacogenetics to elucidate the mechanism of tardive dyskinesia in schizophrenia. Pharmacogenomics 2019; 20:1199-1223. [PMID: 31686592 DOI: 10.2217/pgs-2019-0100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identifying biomarkers which can be used as a diagnostic tool is a major objective of pharmacogenetic studies. Most mental and many neurological disorders have a compiled multifaceted nature, which may be the reason why this endeavor has hitherto not been very successful. This is also true for tardive dyskinesia (TD), an involuntary movement complication of long-term treatment with antipsychotic drugs. The observed associations of specific gene variants with the prevalence and severity of a disorder can also be applied to try to elucidate the pathogenesis of the condition. In this paper, this strategy is used by combining pharmacogenetic knowledge with theories on the possible role of a dysfunction of specific cellular elements of neostriatal parts of the (dorsal) extrapyramidal circuits: various glutamatergic terminals, medium spiny neurons, striatal interneurons and ascending monoaminergic fibers. A peculiar finding is that genetic variants which would be expected to increase the neostriatal dopamine concentration are not associated with the prevalence and severity of TD. Moreover, modifying the sensitivity to glutamatergic long-term potentiation (and excitotoxicity) shows a relationship with levodopa-induced dyskinesia, but not with TD. Contrasting this, TD is associated with genetic variants that modify vulnerability to oxidative stress. Reducing the oxidative stress burden of medium spiny neurons may also be the mechanism behind the protective influence of 5-HT2 receptor antagonists. It is probably worthwhile to discriminate between neostriatal matrix and striosomal compartments when studying the mechanism of TD and between orofacial and limb-truncal components in epidemiological studies.
Collapse
Affiliation(s)
- Anton Jm Loonen
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,GGZ Westelijk Noord-Brabant, Hoofdlaan 8, 4661AA Halsteren, The Netherlands
| | - Bob Wilffert
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,Dept. of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Street, 4, 634014 Tomsk, Russian Federation.,School of Non-Destructive Testing & Security, Division for Control and Diagnostics, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russian Federation.,Central Research Laboratory, Siberian State Medical University, Moscowski Trakt, 2, 634050 Tomsk, Russian Federation
| |
Collapse
|
10
|
Neuromodulation in circuits of aversive emotional learning. Nat Neurosci 2019; 22:1586-1597. [PMID: 31551602 DOI: 10.1038/s41593-019-0503-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Emotional learning and memory are functionally and dysfunctionally regulated by the neuromodulatory state of the brain. While the role of excitatory and inhibitory neural circuits mediating emotional learning and its control have been the focus of much research, we are only now beginning to understand the more diffuse role of neuromodulation in these processes. Recent experimental studies of the acetylcholine, noradrenaline and dopamine systems in fear learning and extinction of fear responding provide surprising answers to key questions in neuromodulation. One area of research has revealed how modular organization, coupled with context-dependent coding modes, allows for flexible brain-wide or targeted neuromodulation. Other work has shown how these neuromodulators act in downstream targets to enhance signal-to-noise ratios and gain, as well as to bind distributed circuits through neuronal oscillations. These studies elucidate how different neuromodulatory systems regulate aversive emotional processing and reveal fundamental principles of neuromodulatory function.
Collapse
|
11
|
Totah NK, Logothetis NK, Eschenko O. Noradrenergic ensemble-based modulation of cognition over multiple timescales. Brain Res 2019; 1709:50-66. [DOI: 10.1016/j.brainres.2018.12.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 11/30/2022]
|
12
|
Totah NK, Neves RM, Panzeri S, Logothetis NK, Eschenko O. The Locus Coeruleus Is a Complex and Differentiated Neuromodulatory System. Neuron 2018; 99:1055-1068.e6. [PMID: 30122373 DOI: 10.1016/j.neuron.2018.07.037] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/25/2018] [Accepted: 07/20/2018] [Indexed: 01/22/2023]
Abstract
Diffuse projections of locus coeruleus (LC) neurons and evidence of synchronous spiking have long been perceived as features of global neuromodulation. Recent studies demonstrated the possibility of targeted modulation by subsets of LC neurons. Non-global neuromodulation depends on target specificity and the differentiated spatiotemporal dynamics within LC. Here, we characterized interactions between 3,164 LC cell pairs in the rat LC under urethane anesthesia. Spike count correlations were near zero and only a small proportion of unit pairs had synchronized spontaneous (15%) or evoked (16%) discharge. We identified infra-slow (0.01-1 Hz) fluctuations of LC unit spike rate, which were also asynchronous across the population. Despite overall sparse population synchrony, we report the existence of LC ensembles and relate them to forebrain projection targets. We also show that spike waveform width was related to ensemble membership, propensity for synchronization, and interactions with cortex. Our findings suggest a partly differentiated and target-specific noradrenergic signal.
Collapse
Affiliation(s)
- Nelson K Totah
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076 Tuebingen, Germany.
| | - Ricardo M Neves
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076 Tuebingen, Germany
| | - Stefano Panzeri
- Laboratory of Neural Computation, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076 Tuebingen, Germany; Division of Imaging Science and Biomedical Engineering, University of Manchester, M13 9PT Manchester, UK
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076 Tuebingen, Germany.
| |
Collapse
|
13
|
Giustino TF, Maren S. Noradrenergic Modulation of Fear Conditioning and Extinction. Front Behav Neurosci 2018; 12:43. [PMID: 29593511 PMCID: PMC5859179 DOI: 10.3389/fnbeh.2018.00043] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
The locus coeruleus norepinephrine (LC-NE) system plays a broad role in learning and memory. Here we begin with an overview of the LC-NE system. We then consider how both direct and indirect manipulations of the LC-NE system affect cued and contextual aversive learning and memory. We propose that NE dynamically modulates Pavlovian conditioning and extinction, either promoting or impairing learning aversive processes under different levels of behavioral arousal. We suggest that under high levels of stress (e.g., during/soon after fear conditioning) the locus coeruleus (LC) promotes cued fear learning by enhancing amygdala function while simultaneously blunting prefrontal function. Under low levels of arousal, the LC promotes PFC function to promote downstream inhibition of the amygdala and foster the extinction of cued fear. Thus, LC-NE action on the medial prefrontal cortex (mPFC) might be described by an inverted-U function such that it can either enhance or hinder learning depending on arousal states. In addition, LC-NE seems to be particularly important for the acquisition, consolidation and extinction of contextual fear memories. This may be due to dense adrenoceptor expression in the hippocampus (HPC) which encodes contextual information, and the ability of NE to regulate long-term potentiation (LTP). Moreover, recent work reveals that the diversity of LC-NE functions in aversive learning and memory are mediated by functionally heterogeneous populations of LC neurons that are defined by their projection targets. Hence, LC-NE function in learning and memory is determined by projection-specific neuromodulation that accompanies various states of behavioral arousal.
Collapse
Affiliation(s)
- Thomas F Giustino
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
14
|
Braun DJ, Kalinin S, Feinstein DL. Conditional Depletion of Hippocampal Brain-Derived Neurotrophic Factor Exacerbates Neuropathology in a Mouse Model of Alzheimer's Disease. ASN Neuro 2017; 9:1759091417696161. [PMID: 28266222 PMCID: PMC5415058 DOI: 10.1177/1759091417696161] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Damage occurring to noradrenergic neurons in the locus coeruleus (LC) contributes to the evolution of neuroinflammation and neurodegeneration in a variety of conditions and diseases. One cause of LC damage may be loss of neurotrophic support from LC target regions. We tested this hypothesis by conditional unilateral knockout of brain-derived neurotrophic factor (BDNF) in adult mice. To evaluate the consequences of BDNF loss in the context of neurodegeneration, the mice harbored familial mutations for human amyloid precursor protein and presenilin-1. In these mice, BDNF depletion reduced tyrosine hydroxylase staining, a marker of noradrenergic neurons, in the rostral LC. BDNF depletion also reduced noradrenergic innervation in the hippocampus, the frontal cortex, and molecular layer of the cerebellum, assessed by staining for dopamine beta hydroxylase. BDNF depletion led to an increase in cortical amyloid plaque numbers and size but was without effect on plaque numbers in the striatum, a site with minimal innervation from the LC. Interestingly, cortical Iba1 staining for microglia was reduced by BDNF depletion and was correlated with reduced dopamine beta hydroxylase staining. These data demonstrate that reduction of BDNF levels in an LC target region can cause retrograde damage to LC neurons, leading to exacerbation of neuropathology in distinct LC target areas. Methods to reduce BDNF loss or supplement BDNF levels may be of value to reduce neurodegenerative processes normally limited by LC noradrenergic activities.
Collapse
Affiliation(s)
- David J Braun
- 1 Department of Anesthesiology, University of Illinois, Chicago, IL, USA
| | - Sergey Kalinin
- 1 Department of Anesthesiology, University of Illinois, Chicago, IL, USA
| | | |
Collapse
|
15
|
Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nat Neurosci 2017; 20:1602-1611. [DOI: 10.1038/nn.4642] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
|
16
|
Abstract
The release of the neurotransmitter norepinephrine throughout the mammalian brain is important for modulating attention, arousal, and cognition during many behaviors. Furthermore, disruption of norepinephrine-mediated signaling is strongly associated with several psychiatric and neurodegenerative disorders in humans, emphasizing the clinical importance of this system. Most of the norepinephrine released in the brain is supplied by a very small, bilateral nucleus in the brainstem called the locus coeruleus. The goal of this minireview is to emphasize the complexity of the locus coeruleus beyond its primary definition as a norepinephrine-producing nucleus. Several recent studies utilizing innovative technologies highlight how the locus coeruleus-norepinephrine system can now be targeted with increased accuracy and resolution, in order to better understand its role in modulating diverse behaviors.
Collapse
Affiliation(s)
- Lindsay A Schwarz
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Liqun Luo
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA. Neuron 2016; 91:975-987. [PMID: 27545715 DOI: 10.1016/j.neuron.2016.07.036] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/18/2016] [Accepted: 07/09/2016] [Indexed: 11/23/2022]
Abstract
Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits.
Collapse
|
18
|
Uematsu A, Tan BZ, Johansen JP. Projection specificity in heterogeneous locus coeruleus cell populations: implications for learning and memory. Learn Mem 2015; 22:444-51. [PMID: 26330494 PMCID: PMC4561410 DOI: 10.1101/lm.037283.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/22/2015] [Indexed: 01/05/2023]
Abstract
Noradrenergic neurons in the locus coeruleus (LC) play a critical role in many functions including learning and memory. This relatively small population of cells sends widespread projections throughout the brain including to a number of regions such as the amygdala which is involved in emotional associative learning and the medial prefrontal cortex which is important for facilitating flexibility when learning rules change. LC noradrenergic cells participate in both of these functions, but it is not clear how this small population of neurons modulates these partially distinct processes. Here we review anatomical, behavioral, and electrophysiological studies to assess how LC noradrenergic neurons regulate these different aspects of learning and memory. Previous work has demonstrated that subpopulations of LC noradrenergic cells innervate specific brain regions suggesting heterogeneity of function in LC neurons. Furthermore, noradrenaline in mPFC and amygdala has distinct effects on emotional learning and cognitive flexibility. Finally, neural recording data show that LC neurons respond during associative learning and when previously learned task contingencies change. Together, these studies suggest a working model in which distinct and potentially opposing subsets of LC neurons modulate particular learning functions through restricted efferent connectivity with amygdala or mPFC. This type of model may provide a general framework for understanding other neuromodulatory systems, which also exhibit cell type heterogeneity and projection specificity.
Collapse
Affiliation(s)
- Akira Uematsu
- RIKEN Brain Science Institute, Laboratory for Neural Circuitry of Memory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Bao Zhen Tan
- RIKEN Brain Science Institute, Laboratory for Neural Circuitry of Memory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Joshua P Johansen
- RIKEN Brain Science Institute, Laboratory for Neural Circuitry of Memory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
19
|
Zhang S, Hu S, Chao HH, Li CSR. Resting-State Functional Connectivity of the Locus Coeruleus in Humans: In Comparison with the Ventral Tegmental Area/Substantia Nigra Pars Compacta and the Effects of Age. Cereb Cortex 2015. [PMID: 26223261 DOI: 10.1093/cercor/bhv172] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The locus coeruleus (LC) provides the primary noradrenergic inputs to the cerebral cortex. Despite numerous animal studies documenting the functions of the LC, research in humans is hampered by the small volume of this midbrain nucleus. Here, we took advantage of a probabilistic template, explored the cerebral functional connectivity of the LC with resting-state fMRI data of 250 healthy adults, and verified the findings by accounting for physiological noise in another data set. In addition, we contrasted connectivities of the LC and the ventral tegmental area/substantia nigra pars compacta. The results highlighted both shared and distinct connectivity of these 2 midbrain structures, as well as an opposite pattern of connectivity to bilateral amygdala, pulvinar, and right anterior insula. Additionally, LC connectivity to the fronto-parietal cortex and the cerebellum increases with age and connectivity to the visual cortex decreases with age. These findings may facilitate studies of the role of the LC in arousal, saliency responses and cognitive motor control and in the behavioral and cognitive manifestations during healthy and disordered aging. Although the first to demonstrate whole-brain LC connectivity, these findings need to be confirmed with high-resolution imaging.
Collapse
Affiliation(s)
| | | | - Herta H Chao
- Department of Internal Medicine, Yale University, New Haven, CT 06519, USA Medical Service, VA Connecticut Health Care System, West Haven, CT 06516, USA
| | - Chiang-Shan R Li
- Department of Psychiatry Department of Neurobiology Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA Connecticut Mental Health Center, New Haven, CT 06519, USA
| |
Collapse
|
20
|
Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature 2015; 524:88-92. [PMID: 26131933 PMCID: PMC4587569 DOI: 10.1038/nature14600] [Citation(s) in RCA: 490] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 06/01/2015] [Indexed: 12/18/2022]
Abstract
Deciphering how neural circuits are anatomically organized with regard to input and output is instrumental in understanding how the brain processes information. For example, locus coeruleus noradrenaline (also known as norepinephrine) (LC-NE) neurons receive input from and send output to broad regions of the brain and spinal cord, and regulate diverse functions including arousal, attention, mood and sensory gating. However, it is unclear how LC-NE neurons divide up their brain-wide projection patterns and whether different LC-NE neurons receive differential input. Here we developed a set of viral-genetic tools to quantitatively analyse the input-output relationship of neural circuits, and applied these tools to dissect the LC-NE circuit in mice. Rabies-virus-based input mapping indicated that LC-NE neurons receive convergent synaptic input from many regions previously identified as sending axons to the locus coeruleus, as well as from newly identified presynaptic partners, including cerebellar Purkinje cells. The 'tracing the relationship between input and output' method (or TRIO method) enables trans-synaptic input tracing from specific subsets of neurons based on their projection and cell type. We found that LC-NE neurons projecting to diverse output regions receive mostly similar input. Projection-based viral labelling revealed that LC-NE neurons projecting to one output region also project to all brain regions we examined. Thus, the LC-NE circuit overall integrates information from, and broadcasts to, many brain regions, consistent with its primary role in regulating brain states. At the same time, we uncovered several levels of specificity in certain LC-NE sub-circuits. These tools for mapping output architecture and input-output relationship are applicable to other neuronal circuits and organisms. More broadly, our viral-genetic approaches provide an efficient intersectional means to target neuronal populations based on cell type and projection pattern.
Collapse
|
21
|
Zhu Y, Fenik P, Zhan G, Xin R, Veasey SC. Degeneration in Arousal Neurons in Chronic Sleep Disruption Modeling Sleep Apnea. Front Neurol 2015. [PMID: 26074865 DOI: 10.3389/fneur.2015.00109.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic sleep disruption (CSD) is a cardinal feature of sleep apnea that predicts impaired wakefulness. Despite effective treatment of apneas and sleep disruption, patients with sleep apnea may have persistent somnolence. Lasting wake disturbances in treated sleep apnea raise the possibility that CSD may induce sufficient degeneration in wake-activated neurons (WAN) to cause irreversible wake impairments. Implementing a stereological approach in a murine model of CSD, we found reduced neuronal counts in representative WAN groups, locus coeruleus (LC) and orexinergic neurons, reduced by 50 and 25%, respectively. Mice exposed to CSD showed shortened sleep latencies lasting at least 4 weeks into recovery from CSD. As CSD results in frequent activation of WAN, we hypothesized that CSD promotes mitochondrial metabolic stress in WAN. In support, CSD increased lipofuscin within select WAN. Further, examining the LC as a representative WAN nucleus, we observed increased mitochondrial protein acetylation and down-regulation of anti-oxidant enzyme and brain-derived neurotrophic factor mRNA. Remarkably, CSD markedly increased tumor necrosis factor-alpha within WAN, and not in adjacent neurons or glia. Thus, CSD, as observed in sleep apnea, results in a composite of lasting wake impairments, loss of select neurons, a pro-inflammatory, pro-oxidative mitochondrial stress response in WAN, consistent with a degenerative process with behavioral consequences.
Collapse
Affiliation(s)
- Yan Zhu
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Polina Fenik
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Guanxia Zhan
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Ryan Xin
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Sigrid C Veasey
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
22
|
Zhu Y, Fenik P, Zhan G, Xin R, Veasey SC. Degeneration in Arousal Neurons in Chronic Sleep Disruption Modeling Sleep Apnea. Front Neurol 2015; 6:109. [PMID: 26074865 PMCID: PMC4443725 DOI: 10.3389/fneur.2015.00109] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/03/2015] [Indexed: 11/13/2022] Open
Abstract
Chronic sleep disruption (CSD) is a cardinal feature of sleep apnea that predicts impaired wakefulness. Despite effective treatment of apneas and sleep disruption, patients with sleep apnea may have persistent somnolence. Lasting wake disturbances in treated sleep apnea raise the possibility that CSD may induce sufficient degeneration in wake-activated neurons (WAN) to cause irreversible wake impairments. Implementing a stereological approach in a murine model of CSD, we found reduced neuronal counts in representative WAN groups, locus coeruleus (LC) and orexinergic neurons, reduced by 50 and 25%, respectively. Mice exposed to CSD showed shortened sleep latencies lasting at least 4 weeks into recovery from CSD. As CSD results in frequent activation of WAN, we hypothesized that CSD promotes mitochondrial metabolic stress in WAN. In support, CSD increased lipofuscin within select WAN. Further, examining the LC as a representative WAN nucleus, we observed increased mitochondrial protein acetylation and down-regulation of anti-oxidant enzyme and brain-derived neurotrophic factor mRNA. Remarkably, CSD markedly increased tumor necrosis factor-alpha within WAN, and not in adjacent neurons or glia. Thus, CSD, as observed in sleep apnea, results in a composite of lasting wake impairments, loss of select neurons, a pro-inflammatory, pro-oxidative mitochondrial stress response in WAN, consistent with a degenerative process with behavioral consequences.
Collapse
Affiliation(s)
- Yan Zhu
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Polina Fenik
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Guanxia Zhan
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Ryan Xin
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Sigrid C Veasey
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
23
|
The locus coeruleus and cerebral metabolism: Recovery of function after cortical injury. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03326520] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Ferrucci M, Giorgi FS, Bartalucci A, Busceti CL, Fornai F. The effects of locus coeruleus and norepinephrine in methamphetamine toxicity. Curr Neuropharmacol 2013; 11:80-94. [PMID: 23814540 PMCID: PMC3580794 DOI: 10.2174/157015913804999522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/25/2012] [Accepted: 08/08/2012] [Indexed: 12/03/2022] Open
Abstract
The activity of locus coeruleus (LC) neurons has been extensively investigated in a variety of behavioural states. In fact this norepinephrine (NE)-containing nucleus modulates many physiological and pathological conditions including the sleep-waking cycle, movement disorders, mood alterations, convulsive seizures, and the effects of drugs such as psychostimulants and opioids. This review focuses on the modulation exerted by central NE pathways on the behavioural and neurotoxic effects produced by the psychostimulant methamphetamine, essentially the modulation of the activity of mesencephalic dopamine (DA) neurons. In fact, although NE in itself mediates some behavioural effects induced by methamphetamine, NE modulation of DA release is pivotal for methamphetamine-induced behavioural states and neurotoxicity. These interactions are discussed on the basis of the state of the art of the functional neuroanatomy of central NE- and DA systems. Emphasis is given to those brain sites possessing a remarkable overlapping of both neurotransmitters.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
25
|
Holm L, Hilke S, Adori C, Theodorsson E, Hökfelt T, Theodorsson A. Changes in galanin and GalR1 gene expression in discrete brain regions after transient occlusion of the middle cerebral artery in female rats. Neuropeptides 2012; 46:19-27. [PMID: 22197078 DOI: 10.1016/j.npep.2011.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/27/2011] [Accepted: 11/27/2011] [Indexed: 11/16/2022]
Abstract
Injury to neurons results in up-regulation of galanin in some central and peripheral systems, and it has been suggested that this neuropeptide may play a protective and trophic role, primarily mediated by galanin receptor 2 (GalR2). The objective of the present study was to investigate galanin, GalR1, GalR2 and GalR3 gene expression in the female rat brain 7 days after a 60-min unilateral occlusion of the middle cerebral artery followed by reperfusion. Quantitative real-time PCR was employed in punch-biopsies from the locus coeruleus, somatosensory cortex and dorsal hippocampal formation, including sham-operated rats as controls. Galanin gene expression showed a ∼2.5-fold increase and GalR1 a ∼1.5-fold increase in the locus coeruleus of the ischemic hemisphere compared to the control side. Furthermore, the GalR1 mRNA levels decreased by 35% in somatosensory cortex of the ischemic hemisphere. Immunohistochemical analysis indicated a depletion of galanin from cell bodies and dendrites in the locus coeruleus after middle cerebral artery occlusion. The present results suggest that a stroke-induced forebrain lesion up-regulates synthesis of galanin and GalR1 in the locus coeruleus, a noradrenergic cell group projecting to many forebrain areas, including cortex and the hippocampal formation. These results support the notion that galanin may play a role in the response of the central nervous system to injury.
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Brain/pathology
- Disease Models, Animal
- Female
- Galanin/genetics
- Galanin/metabolism
- Gene Expression
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/metabolism
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Receptor, Galanin, Type 1/genetics
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- Receptor, Galanin, Type 3/genetics
- Reperfusion Injury/genetics
- Reperfusion Injury/pathology
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Lovisa Holm
- Division of Clinical Chemistry, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Lee SB, Beak SK, Park SH, Waterhouse BD, Lee HS. Collateral projection from the locus coeruleus to whisker-related sensory and motor brain regions of the rat. J Comp Neurol 2009; 514:387-402. [PMID: 19330821 DOI: 10.1002/cne.22012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The primary goal of this study was to examine whether the locus coeruleus (LC) provides collateral projections to whisker-related, sensorimotor brain regions. After injections of retrograde tracers into the primary sensory (S1) barrel field/primary whisker motor (M1) cortices, ventroposteromedial (VPM)/ventrolateral (VL) thalamic nuclei, or principal sensory trigeminal (Pr5)/facial motor (Mo7) nuclei, the distribution of double-labeled neurons within the LC was examined. Our observations indicated that a large number of individual LC cells provided axon collaterals to S1-M1 or VPM-VL regions, whereas only a few projected to Pr5-Mo7 nuclei. The laterality and the distribution of dual-projecting LC neurons were as follows. 1) The neurons projecting to the S1-M1 cortices were predominantly ipsilateral (96% +/- 0.7%). Labeled neurons were located ventrally at the rostral pole but were evenly distributed along the dorsoventral aspect of the principal LC. 2) The cells projecting to the VPM-VL nuclei were bilateral, with ipsilateral (68% +/- 2.3%) dominance. Neurons were observed at the rostrocaudal extent of the LC, where the labeling was most pronounced at the ventral, principal LC. 3) The neurons projecting to the Pr5-Mo7 regions exhibited slightly contralateral (56% +/- 2.9%) dominance, where labeled cells were confined within the ventral margin of the principal subdivision. Taken together, the present observations demonstrate that each subdivision of the LC possesses a differential functional organization with respect to its collateral projection to whisker-related sensorimotor targets, suggesting that the nucleus might play a modulatory role in vibrissal sensorimotor integration that allows the guidance of behavioral action essential for the survival of the animal.
Collapse
Affiliation(s)
- Sat-Byol Lee
- Department of Anatomy, College of Medicine, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
28
|
Stevenson CW, Halliday DM, Marsden CA, Mason R. Systemic administration of the benzodiazepine receptor partial inverse agonist FG-7142 disrupts corticolimbic network interactions. Synapse 2007; 61:646-63. [PMID: 17503486 DOI: 10.1002/syn.20414] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) coordinate various stress responses. Although the effects of stressors on mPFC and BLA activity have been previously examined, it remains unclear to what extent stressors affect functional interactions between these regions. In vivo electrophysiology in the anesthetized rat was used to examine mPFC and BLA activity simultaneously in response to FG-7142, a benzodiazepine receptor partial inverse agonist that mimics various stress responses, in an attempt to model the effects of stressors on corticolimbic functional connectivity. Extracellular unit and local field potential (LFP) recordings, using multielectrode arrays positioned in mPFC and BLA, were conducted under basal conditions and in response to systemic FG-7142 administration. This drug increased mPFC and BLA unit firing at the lowest dose tested, whereas higher doses of FG-7142 decreased various burst firing parameters in both regions. Moreover, LFP power was attenuated at lower (<1 Hz) and potentiated at higher frequencies in mPFC (1-12 Hz) and BLA (4-8 Hz). Interestingly, FG-7142 diminished synchronized unit firing, both within and between mPFC and BLA. Finally, FG-7142 decreased LFP synchronization between these regions. In a separate group of animals, pretreatment with the selective benzodiazepine receptor antagonist flumazenil blocked the changes in burst firing, LFP power and synchronized activity induced by FG-7142, confirming direct benzodiazepine receptor-mediated effects. These results indicate that FG-7142 disrupts corticolimbic network interactions via benzodiazepine receptor partial inverse agonism. Perturbation of mPFC-BLA functional connectivity induced by FG-7142 may provide a useful model of corticolimbic dysfunction induced by stressors.
Collapse
Affiliation(s)
- Carl W Stevenson
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom.
| | | | | | | |
Collapse
|
29
|
Gonzalez-Pina R, Bueno-Nava A, Montes S, Alfaro-Rodriguez A, Gonzalez-Maciel A, Reynoso-Robles R, Ayala-Guerrero F. Pontine and cerebellar norepinephrine content in adult rats recovering from focal cortical injury. Neurochem Res 2006; 31:1443-9. [PMID: 17094035 DOI: 10.1007/s11064-006-9196-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 10/05/2006] [Indexed: 11/24/2022]
Abstract
Norepinephrine (NE) plays an important role in motor recovery after brain damage. Most studies concerning NE activity have been performed in the cerebellum, while the role of the pons, the site where the norepinephrinergic locus coeruleus is located, has not yet been elucidated. For this work, we studied the changes in cerebellar and pontine NE content in sham-operated (n = 17), motor cortex injured (n = 6) and recovered rats (n = 12). Motor effects were assessed by means of footprint analysis and sensorimotor evaluation. It was found that after cortical brain damage, the stride length decreases while the stride angle increases after 6 h post-surgery, while the sensorimotor evaluation showed an increase in the motor deficit. Recovery was observed after 24 h. NE content increased in the pons after 6 h and returned to normal levels in recovered rats, with no significant changes observed in the cerebellum. Based on the functional remote inhibition, it is possible that NE exerts an autoinhibitory effect in the pons after motor cortical ablation. On the other hand, the absence of an effect in the cerebellum suggests that cerebellar NE activity related to damage and/or recovery is limited to discrete areas of the structure.
Collapse
Affiliation(s)
- Rigoberto Gonzalez-Pina
- Laboratorio de Neuroplasticidad, Torre de Investigación, Instituto Nacional de Rehabilitacion, Mexico City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
There are complex relationships among behavioral experience, brain morphology, and functional recovery of an animal before and after brain injury. A large series of experimental studies have shown that exogenous manipulation of central neurotransmitter levels can directly affect plastic changes in the brain and can modulate the effects of experience and training. These complex relationships provide a formidable challenge for studies aimed at understanding neurotransmitter effects on the recovery process. Experiments delineating norepinephrine-modulated locomotor recovery after injury to the cerebral cortex illustrate the close relationships among neurotransmitter levels, brain plasticity, and behavioral recovery. Understanding the neurobiological processes underlying recovery, and how they might be manipulated, may lead to novel strategies for improving recovery from stroke-related gait impairment in humans.
Collapse
Affiliation(s)
- Larry B Goldstein
- Department of Medicine (Neurology), Duke Center for Cerebrovascular Disease, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Giorgi FS, Pizzanelli C, Biagioni F, Murri L, Fornai F. The role of norepinephrine in epilepsy: from the bench to the bedside. Neurosci Biobehav Rev 2004; 28:507-24. [PMID: 15465138 DOI: 10.1016/j.neubiorev.2004.06.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2004] [Revised: 06/13/2004] [Accepted: 06/22/2004] [Indexed: 11/26/2022]
Abstract
This article provides a brief review of the role of norepinephrine (NE) in epilepsy, starting from early studies reproducing the kindling model in NE-lesioned rats, through the use of specific ligands for adrenergic receptors in experimental models of epilepsy, up to recent advances obtained by using transgenic and knock-out mice for specific genes expressed in the NE system. Data obtained from multiple experimental models converge to demonstrate the antiepileptic role of endogenous NE. This effect predominantly consists in counteracting the development of an epileptic circuit (such as in the kindling model) rather than increasing the epileptic threshold. This suggests that NE activity is critical in modifying epilepsy-induced neuronal changes especially on the limbic system. These data encompass from experimental models to clinical applications as recently evidenced by the need of an intact NE innervation for the antiepileptic mechanisms of vagal nerve stimulation (VNS) in patients suffering from refractory epilepsy. Finally, recent data demonstrate that NE loss increases neuronal damage following focally induced limbic status epilepticus, confirming a protective effect of brain NE, which has already been shown in other neurological disorders.
Collapse
Affiliation(s)
- Filippo S Giorgi
- Department of Human Morphology and Applied Biology, University of Pisa, Via Roma 55, 56100 Pisa, Italy
| | | | | | | | | |
Collapse
|
32
|
Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. ACTA ACUST UNITED AC 2004; 45:38-78. [PMID: 15063099 DOI: 10.1016/j.brainresrev.2004.02.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/26/2022]
Abstract
A deficiency in the noradrenergic system of the brain, originating largely from cells in the locus coeruleus (LC), is theorized to play a critical role in the progression of a family of neurodegenerative disorders that includes Parkinson's disease (PD) and Alzheimer's disease (AD). Consideration is given here to evidence that several neurodegenerative diseases and syndromes share common elements, including profound LC cell loss, and may in fact be different manifestations of a common pathophysiological process. Findings in animal models of PD indicate that the modification of LC-noradrenergic activity alters electrophysiological, neurochemical and behavioral indices of neurotransmission in the nigrostriatal dopaminergic system, and influences the response of this system to experimental lesions. In models related to AD, noradrenergic mechanisms appear to play important roles in modulating the activity of the basalocortical cholinergic system and its response to injury, and to modify cognitive functions including memory and attention. Mechanisms by which noradrenaline may protect or promote recovery from neural damage are reviewed, including effects on neuroplasticity, neurotrophic factors, neurogenesis, inflammation, cellular energy metabolism and excitotoxicity, and oxidative stress. Based on evidence for facilitatory effects on transmitter release, motor function, memory, neuroprotection and recovery of function after brain injury, a rationale for the potential of noradrenergic-based approaches, specifically alpha2-adrenoceptor antagonists, in the treatment of central neurodegenerative diseases is presented.
Collapse
Affiliation(s)
- Marc R Marien
- Centre de Recherche Pierre Fabre, Neurobiology I, 17 Avenue Jean Moulin, 81106 Castres Cedex, France.
| | | | | |
Collapse
|
33
|
Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I, Fornai F. The role of the locus coeruleus in the development of Parkinson's disease. Neurosci Biobehav Rev 2000; 24:655-68. [PMID: 10940440 DOI: 10.1016/s0149-7634(00)00028-2] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Parkinson's disease, together with the classic loss of dopamine neurons of the substantia nigra pars compacta, neuropathological studies and biochemical findings documented the occurrence of a concomitant significant cell death in the locus coeruleus. This review analyzes the latest data obtained from experimental parkinsonism indicating that, the loss of norepinephrine in Parkinson's disease might worsen the dopamine nigrostriatal damage. Within this latter context, basic research provided a new provocative hypothesis on the significance of locus coeruleus in conditioning the natural history of Parkinson's disease. In particular, the loss of a trophic influence of these neurons might be crucial in increasing the sensitivity of nigrostriatal dopamine axons to various neurotoxic insults. In line with this, recently, it has been shown that locus coeruleus activity plays a pivotal role in the expression of various immediate early genes and in inducing the phosphorilation of cyclic adenosine monophosphate response element-binding proteins, suggesting a role of the nucleus in sustaining a protective effect.
Collapse
Affiliation(s)
- M Gesi
- Department of Human Morphology and Applied Biology, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Xu ZQ, Shi TJ, Hökfelt T. Galanin/GMAP- and NPY-like immunoreactivities in locus coeruleus and noradrenergic nerve terminals in the hippocampal formation and cortex with notes on the galanin-R1 and -R2 receptors. J Comp Neurol 1998; 392:227-51. [PMID: 9512271 DOI: 10.1002/(sici)1096-9861(19980309)392:2<227::aid-cne6>3.0.co;2-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
By using immunofluorescence methodology, extensive galanin (GAL) and GAL message-associated peptide (GMAP)-positive terminal networks were observed in the hippocampal formation. The majority of the GAL/GMAP fibers were dopamine beta-hydroxylase- (DBH) positive, that is, they were noradrenergic. This finding was established with GAL/GMAP-DBH double-staining and with 6-hydroxy-dopamine treatment, which totally abolished all fibers in which GAL/GMAP and DBH coexisted. Also, reserpine treatment caused a marked depletion of GAL. No evidence for GAL/GMAP coexistence with 5-hydroxytryptamine was obtained. In the ventral hippocampus, GAL/GMAP-, DBH-negative fibers were seen in the stratum oriens, the anterior stratum radiatum, along the granule cell layer and in the strata oriens and alveus. In the locus coeruleus (LC), around 80% of the GMAP-positive neurons contained neuropeptide tyrosine (NPY), and about 40% of the NPY-positive neurons expressed GMAP. GAL-R1 receptor mRNA was expressed in Barrington's nucleus (close to the LC), but was not detected in the hippocampal formation/dorsal cortical areas. GAL-R2 receptor mRNA was found in the granule cell layer in the dentate gyrus. The present results show that most, but not all, immunohistochemically detectable GAL/GMAP in the hippocampal formation/dorsal cortex is present in noradrenergic nerve terminals originating in the LC, which has a robust GAL/GMAP synthesis. The functional role of GAL may be related to noradrenaline, possibly by a presynaptic action. However, the presence of GAL in other systems and of GAL-R2 receptor mRNA in granule cells also indicates other targets.
Collapse
Affiliation(s)
- Z Q Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
36
|
Goldstein LB, Bullman S. Effects of dorsal noradrenergic bundle lesions on recovery after sensorimotor cortex injury. Pharmacol Biochem Behav 1997; 58:1151-7. [PMID: 9408227 DOI: 10.1016/s0091-3057(97)00324-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several lines of evidence suggest that the recovery of the ability of rats to traverse a narrow beam after unilateral injury to the sensorimotor cortex is noradrenergically mediated. We tested the hypotheses that the influence of norepinephrine on beam-walking recovery occurs, at least partially, through effects in the contralateral and/or ipsilateral cerebral cortex. Rats had either a selective left or right 6-hydroxydopamine lesion or sham lesion of the dorsal noradrenergic bundle (DNB) 2 weeks before suction-ablation or sham injury of the right sensorimotor cortex. The rats' abilities to perform the beam-walking task were measured over the 10 days following cortex surgery. DNB lesions did not affect the initial severity of the beam-walking deficit and had no effect on the performance of the task in rats with sham cortex injuries. Lesions of the contralateral but not ipsilateral DNB significantly impaired recovery. Further, in cortically lesioned rats with contralateral DNB lesions, norepinephrine content in the cerebral cortex opposite to the sensorimotor cortex lesion was significantly correlated with recovery. These data suggest that the effect of norepinephrine on recovery of beam-walking ability may be partially exerted in the cerebral cortex contralateral to the injury.
Collapse
Affiliation(s)
- L B Goldstein
- Department of Medicine, Center for Health Policy Research and Education, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
37
|
Simpson KL, Altman DW, Wang L, Kirifides ML, Lin RCS, Waterhouse BD. Lateralization and functional organization of the locus coeruleus projection to the trigeminal somatosensory pathway in rat. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970818)385:1<135::aid-cne8>3.0.co;2-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Arakawa S, Nakamura S, Kawashima N, Nishiike S, Fujii Y. Antidromic burst activity of locus coeruleus neurons during cortical spreading depression. Neuroscience 1997; 78:1147-58. [PMID: 9174080 DOI: 10.1016/s0306-4522(96)00679-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The electrical activity of locus coeruleus neurons was investigated during cortical spreading depression in urethane-anaesthetized rats. Cortical spreading depression was induced by a direct application of 1-3 M KCl solution to the surface of the cerebral cortex. The occurrence of cortical spreading depression was assessed by recording negative d.c. shifts and in some experiments by monitoring the extracellular potassium concentrations. The mean spontaneous firing rate of locus coeruleus neurons was significantly reduced during cortical spreading depression. Approximately 60% of locus coeruleus neurons recorded during cortical spreading depression revealed anomalous burst activity consisting of multiple initial segment spikes as well as full initial segment-somatodendritic spikes with a marked initial segment-somatodendritic break. Each spike of the cortical spreading depression-related burst activity occurred at intervals ranging from 15.0 ms to 90.1 ms (34.9 +/- 0.5 ms). The burst activity appeared unpredictably at variable intervals in a phasic or tonic manner during cortical spreading depression. The cortical spreading depression-related burst activity of locus coeruleus neurons mimicked antidromic spikes induced by train stimulation of the cerebral cortex at short interspike intervals during iontophoretic application of GABA to locus coeruleus neurons, whereas it was totally different from synaptically-activated burst activity induced by tail pinch. The full spikes and initial segment spikes in the cortical spreading depression-related burst activity failed to collide with cortically elicited antidromic spikes, even when they appeared within the collision interval. The proportion of initial segment spikes in the cortical spreading depression-related burst activity was reduced following an increase in membrane excitability by iontophoretic application of glutamate, and increased during a decreased membrane excitability by GABA application. The antidromic burst activity of locus coeruleus neurons also appeared for a short time during cortical spreading depression prior to the occurrence of seizure waves induced by GABA antagonists, while the burst activity could not be observed during seizure activity. These results indicate that the cortical spreading depression-related burst activity was of antidromic origin and that the marked initial segment-somatodendritic break in spontaneous spikes of locus coeruleus neurons during cortical spreading depression was due to reduced excitability of the somatodendritic membrane. The cortical spreading depression-related burst activity may cause release of a large amount of noradrenaline in vast regions of locus coeruleus terminal fields through the numerous axon collaterals, thereby playing a role in functional changes of brain neurons related to cortical spreading depression.
Collapse
Affiliation(s)
- S Arakawa
- Department of Physiology, Faculty of Medicine, Kanazawa University, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
39
|
Cassel JC, Duconseille E, Jeltsch H, Will B. The fimbria-fornix/cingular bundle pathways: a review of neurochemical and behavioural approaches using lesions and transplantation techniques. Prog Neurobiol 1997; 51:663-716. [PMID: 9175161 DOI: 10.1016/s0301-0082(97)00009-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Extensive lesions of the fimbria-fornix pathways and the cingular bundle deprive the hippocampus of a substantial part of its cholinergic, noradrenergic and serotonergic afferents and, among several other behavioural alterations, induce lasting impairment of spatial learning and memory capabilities. After a brief presentation of the neuroanatomical organization of the hippocampus and the connections relevant to the topic of this article, studies which have contributed to characterize the neurochemical and behavioural aspects of the fimbria-fornix lesion "syndrome" with lesion techniques differing by the extent, the location or the specificity of the damage produced, are reviewed. Furthermore, several compensatory changes that may occur as a reaction to hippocampal denervation (sprouting changes in receptor sensitivity and modifications of neurotransmitter turnover in spared fibres) are described and discussed in relation with their capacity (or incapacity) to foster recovery from the lesion-induced deficits. According to this background, experiments using intrahippocampal or "parahippocampal" grafts to substitute for missing cholinergic, noradrenergic or serotonergic afferents are considered according to whether the reported findings concern neurochemical and/or behavioural effects. Taken together, these experiments suggest that appropriately chosen fetal neurons (or other cells such as for instance, genetically-modified fibroblasts) implanted into or close to the denervated hippocampus may substitute, at least partially, for missing hippocampal afferents with a neurochemical specificity that closely depends on the neurochemical identity of the grafted neurons. Thereby, such grafts are able not only to restore some functions as they can be detected locally, namely within the hippocampus, but also to attenuate some of the behavioural (and other types of) disturbances resulting from the lesions. In some respects, also these graft-induced behavioural effects might be considered as occurring with a neurochemically-defined specificity. Nevertheless, if a graft-induced recovery of neurochemical markers in the hippocampus seems to be a prerequisite for also behavioural recovery to be observed, this neurochemical recovery is neither the one and only condition for behavioural effects to be expressed, nor is it the one and only mechanism to account for the latter effects.
Collapse
Affiliation(s)
- J C Cassel
- LN2C-URA 1939 du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
40
|
Marín O, Smeets WJ, González A. Basal ganglia organization in amphibians: catecholaminergic innervation of the striatum and the nucleus accumbens. J Comp Neurol 1997; 378:50-69. [PMID: 9120054 DOI: 10.1002/(sici)1096-9861(19970203)378:1<50::aid-cne3>3.0.co;2-j] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to determine the origin of the catecholaminergic inputs to the telencephalic basal ganglia of amphibians. For that purpose, retrograde tracing techniques were combined with tyrosine hydroxylase immunohistochemistry in the anurans Xenopus laevis and Rana perezi and the urodele Pleurodeles waltl. In all three species studied, a topographically organized dopaminergic projection was identified arising from the posterior tubercle/mesencephalic tegmentum and terminating in the striatum and the nucleus accumbens. Although essentially similar, the organization of the mesolimbic and mesostriatal connections in anurans seems to be more elaborate than in urodeles. The present study has also revealed the existence of a noradrenergic projection to the basal forebrain, which has its origin in the locus coeruleus. Additional catecholaminergic afferents to the striatum and the nucleus accumbens arise from the nucleus of the solitary tract, where catecholaminergic neurons appear to give rise to the bulk of the projections to the basal forebrain. In other regions, such as the olfactory bulb, the anterior preoptic area, the suprachiasmatic nucleus, and the thalamus, retrogradely labeled neurons (after basal forebrain tracer-applications) and catecholaminergic cells were intermingled, but none of these centers contained double-labeled cell bodies. It is concluded that the origin of the catecholaminergic innervation of the striatum and the nucleus accumbens in amphibians is largely comparable to that in amniotes. The present study, therefore, strongly supports the existence of a common pattern in the organization of the catecholaminergic inputs to the basal forebrain among tetrapod vertebrates.
Collapse
Affiliation(s)
- O Marín
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
41
|
Raos VC, Dermon CR, Savaki HE. Functional anatomy of the thalamic centrolateral nucleus as revealed with the [14C]deoxyglucose method following electrical stimulation and electrolytic lesion. Neuroscience 1995; 68:299-313. [PMID: 7477942 DOI: 10.1016/0306-4522(95)00114-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effects of electrical stimulation and electrolytic lesion of the thalamic intralaminar centrolateral nucleus were studied in the rat brain by means of the quantitative autoradiographic [14C]deoxyglucose method. Unilateral electrical stimulation of the centrolateral nucleus induced: (i) local increase in metabolic activity within the stimulated centrolateral nucleus and the ipsilateral thalamic mediodorsal nucleus, (ii) metabolic depression in all layers of the ipsilateral frontal cortex, (iii) bilateral increase in glucose consumption within the periaqueductal gray, pedunculopontine nucleus, and pontine reticular formation, and (iv) contralateral metabolic activation in the deep cerebellar nuclei. The unilateral electrolytic lesion of the thalamic centrolateral nucleus elicited metabolic depressions in several distal brain areas. The metabolic depression elicited in the mediodorsal, ventrolateral, and lateral thalamic nuclei, as well as in the caudate nucleus, the cingulate, and the superficial layers of forelimb cortex were ipsilateral to the lesioned side. The metabolic depression measured in the medulla and pons (medullary and pontine reticular formation, periaqueductal gray, locus coeruleus, dorsal tegmental, cuneiformis, raphe and pedunculopontine tegmental nuclei), the cerebellum (molecular and granular layers of the cerebellar cortex, interpositus and dentate nuclei), the mesencephalon (substantia nigra reticulata, ventral tegmental area and deep layers of the superior colliculus), the diencephalon (medial habenula, parafascicular, ventrobasal complex, centromedial and reticular thalamic nuclei), the rhinencephalon (dentate gyrus and septum), the basal ganglia (ventral pallidum, globus pallidus, entopeduncular and accumbens nuclei) and the cerebral cortex (superficial and deep layers of the frontal and parietal cortex, deep layers of the forelimb cortex) were bilateral. These functional effects are discussed in relation to known anatomical pathways. The bilateral effects induced by the centrolateral nucleus lesion reflect an important role of the centrolateral nucleus in the processing of reticular activating input and in the interhemispheric transfer of information. The cortical metabolic depression induced by centrolateral nucleus stimulation indicates the participation of this nucleus in attentional functions.
Collapse
Affiliation(s)
- V C Raos
- Department of Basic Sciences, School of Health Sciences, University of Crete, Greece
| | | | | |
Collapse
|
42
|
Abstract
The hippocampal formation presents a special opportunity for realistic neural modeling since its structure, connectivity, and physiology are better understood than that of other cortical components. A review of the quantitative neuroanatomy of the rodent dentate gyrus (DG) is presented in the context of the development of a computational model of its connectivity. The DG is a three-layered folded sheet of neural tissue. This sheet is represented as a rectangle, having a surface area of 37 mm2 and a septotemporal length of 12 mm. Points, representing cell somata, are distributed in the model rectangle in a roughly uniform fashion. Synaptic connectivity is generated by assigning each presynaptic cell a spatial zone representing its axonal arbor. For each postsynaptic cell, a list of potential presynaptic cells is compiled, based on which arbor zones the given postsynaptic cell falls within. An appropriate number of presynaptic inputs are then selected at random. The principal cells of the DG, the granule cells, are represented in the model, as are non-principal cells, including basket cells, chandelier cells, mossy cells, and GABAergic peptidergic polymorphic (GPP) cells. The neurons of layer II of the entorhinal cortex are included also. The DG receives its main extrinsic input from these cells via the perforant path. The basket cells, chandelier cells, and GPP cells receive perforant path and granule cell input and exert both feedforward and feedback inhibition onto the granule cells. Mossy cells receive converging input from granule cells and send their output back primarily to distant septotemporal levels, where they contact both granule cells and non-principal cells. To permit numerical simulations, the model must be scaled down while preserving its anatomical structure. A variety of methods for doing this exist. Hippocampal allometry provides valuable clues in this regard.
Collapse
Affiliation(s)
- P E Patton
- Arizona Research Laboratories, Division of Neural Systems Memory and Aging, University of Arizona, Tucson 85724, USA
| | | |
Collapse
|
43
|
Bing G, Zhang Y, Watanabe Y, McEwen BS, Stone EA. Locus coeruleus lesions potentiate neurotoxic effects of MPTP in dopaminergic neurons of the substantia nigra. Brain Res 1994; 668:261-5. [PMID: 7704612 DOI: 10.1016/0006-8993(94)90534-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The observation that Parkinson's disease (PD) is associated with locus coeruleus (LC) noradrenergic neuronal degeneration suggests that the LC noradrenergic system may be involved in the pathogenesis and natural progression of the destruction of the substantia nigra (SN) dopaminergic neurons in Parkinson's disease. The relationship of these two systems was examined by injection of subtoxic doses of MPTP into unilateral LC 6-hydroxydopamine (6-OHDA) lesioned mice. A significant loss of dopaminergic cells was only found in the SN on the side of the LC lesions. These results suggest that the LC may have protective effects on SN dopaminergic neurons.
Collapse
Affiliation(s)
- G Bing
- Department of Psychiatry, New York University, NY, USA
| | | | | | | | | |
Collapse
|
44
|
Fung SJ, Reddy VK, Zhuo H, Liu RH, Wang Z, Barnes CD. Anatomical evidence for the presence of glutamate or enkephalin in noradrenergic projection neurons of the locus coeruleus. Microsc Res Tech 1994; 29:219-25. [PMID: 7849326 DOI: 10.1002/jemt.1070290307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This paper reviews the anatomical evidence for the presence of glutamate (GLU) in noradrenergic neurons of the nucleus locus coeruleus (LC) and adjacent nuclei in the dorsolateral pontine tegmentum (DLPT) that project to the spinal cord, cerebellum, or cerebral cortex. Additionally, the evidence for the existence of methionine-enkephalin (ENK) in noradrenergic neurons of the DLPT that project to the spinal cord of the cat is reviewed. In these studies, we have combined the retrograde transport of either Fast Blue (FB), rhodamine labeled latex microspheres (MS), or rhodamine labeled dextran and indirect immunofluorescence histochemistry to determine whether the neurons that contain tyrosine hydroxylase (TH) and project to these terminal fields also contain GLU or ENK. The neurons of the cat that project to the spinal cord, cerebellum, and neocortex were observed in the nucleus LC and Kölliker-Fuse (KF) nucleus. They were also present, to a lesser extent, in the nucleus subcoeruleus (SC) and nuclei parabrachialis medialis (PBM) and lateralis (PBL). In the rat the majority of the neurons that project to the neocortex and hippocampus were located in the nucleus LC. Our data revealed a major proportion of these neurons to be immunostained for both GLU and TH (cat, rat), or ENK and TH (cat). Functional implications of such colocalized neurochemicals within individual LC projection neurons are discussed.
Collapse
Affiliation(s)
- S J Fung
- Department of Veterinary and Comparative Anatomy, Washington State University, Pullman 99164-6520
| | | | | | | | | | | |
Collapse
|
45
|
Krobert KA, Sutton RL, Feeney DM. Spontaneous and amphetamine-evoked release of cerebellar noradrenaline after sensorimotor cortex contusion: an in vivo microdialysis study in the awake rat. J Neurochem 1994; 62:2233-40. [PMID: 8189231 DOI: 10.1046/j.1471-4159.1994.62062233.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microdialysis sampling combined with HPLC was used to assess spontaneous and d-amphetamine (AMPH)-evoked release of noradrenaline (NA) in the cerebellum 1 day after probe implantation and 1 day after contusion of the right sensorimotor cortex (SMCX) in rats. In normal controls the mean +/- SEM basal NA release was 10.08 +/- 0.97 pg in the left cerebellar hemisphere and 8.21 +/- 1.17 pg in the right hemisphere 22-24 h after probe implantation. The average +/- SEM NA release in a 3-h period after administration of AMPH (2 mg/kg, i.p.) increased to 453 +/- 47.35 pg in the left and to 402 +/- 49.95 pg in the right cerebellar hemisphere. NA release (range of 413-951% increase over baseline) was maximal 20-40 min postdrug, returned to basal levels within 5 h, and remained unchanged for the 22-24-h postdrug measurement period. Animals with a focal SMCX contusion had a marked depression of both spontaneous and AMPH-evoked NA release. Mean +/- SEM basal NA release was 4.84 +/- 1.09 pg in the left and 4.95 +/- 0.43 pg in the right cerebellar hemisphere from 22 to 24 h postinjury, with NA levels increasing to 259 +/- 75.44 and 219 +/- 23.45 pg in the respective hemispheres over a 3-h period after AMPH. The maximal AMPH-induced increase in NA release ranged from 522 to 1,088% of basal levels in contused rats, with NA release returning to predrug levels within 5 h and remaining depressed for at least 48 h postinjury.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K A Krobert
- Department of Physiology, University of New Mexico, Albuquerque
| | | | | |
Collapse
|
46
|
Turlejski K, Djavadian RL, Dreher B. Extent of bilateral collateralization among pontomesencephalic tegmental afferents to dorsal lateral geniculate nuclei of pigmented and albino rats. Neuroscience 1994; 60:521-35. [PMID: 7521026 DOI: 10.1016/0306-4522(94)90262-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In adult pigmented and albino rats, small amounts of different fluorescent dyes (Fast Blue and Fluoro-Gold) were pressure-injected into the dorsal lateral geniculate nuclei, each nucleus (right or left) being injected with one dye only. After postinjection survival of three days, the distribution of neurons retrogradely labelled by each dye was analysed. Consistent with previous studies, in each strain each dye labelled a large number of neurons in the several ipsilateral visuotopically or retinotopically organized structures--visual cortices, retino-recipient layers of the superior colliculi and the pretectal nuclei. A substantial number of retrogradely labelled neurons was also found in the contralateral parabigeminal nucleus. A few retrogradely labelled neurons were found in the ipsilateral and (to a lesser extent) contralateral dorsolateral divisions of the periaqueductal gray matter, as well as in the ipsilateral parabigeminal nucleus and the caudal part of the lateral hypothalamus. However, in all the above structures there was a paucity of cells retrogradely labelled with both dyes (double-labelled cells). By contrast, in each strain, several "modulatory" nuclei (containing cholinergic and aminergic cells) of the pontomesencephalic tegmentum--dorsal raphe, pedunculopontine tegmental nucleus, parabrachial nucleus, laterodorsal tegmental nucleus and locus coeruleus--contained significant numbers of cells projecting to both ipsilateral and contralateral dorsal lateral geniculate nuclei. In each nucleus, ipsilaterally and contralaterally projecting cells constituted, respectively, about 65-70% and about 30-35% of retrogradely labelled cells. About 25% of the contralaterally projecting cells (i.e. about 5-10% of all retrogradely labelled tegmental neurons) were double-labelled with both dyes. Double-labelled cells were intermingled with single-labelled cells projecting ipsilaterally or contralaterally. The proportions of the ipsilaterally, contralaterally and bilaterally projecting neurons in the modulatory components of the pontomesencephalic tegmentum were virtually identical in pigmented and albino strains. It appears that in both strains the visuotopically organized structures convey to the dorsal lateral geniculate nuclei information related mainly to the contralateral visual field. The projections from these structures might play an important role in regulating transmission of visual information in the retinotopically distinct parts of each dorsal lateral geniculate nucleus. By contrast, the projections from the modulatory nuclei of the pontomesencephalic tegmentum are likely to contribute to the functional synchronization of both dorsal lateral geniculate nuclei during the sleep-wakefulness cycle and saccadic eye movements.
Collapse
Affiliation(s)
- K Turlejski
- Department of Anatomy and Histology, University of Sydney, N.S.W., Australia
| | | | | |
Collapse
|
47
|
Waterhouse BD, Border B, Wahl L, Mihailoff GA. Topographic organization of rat locus coeruleus and dorsal raphe nuclei: distribution of cells projecting to visual system structures. J Comp Neurol 1993; 336:345-61. [PMID: 8263226 DOI: 10.1002/cne.903360304] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous reports from this laboratory and elsewhere have provided evidence that the locus coeruleus (LC) and dorsal raphe (DR) nuclei are topographically organized with respect to their efferent targets. Whereas most of these previous studies have focused on relationships between these monoamine-containing brainstem nuclei and cerebral cortex, basal ganglia, and limbic structures, they have not systematically examined the distribution of LC and DR cells that project to multiple structures with common sensory or motor functions. The goal of the present study was to characterize and compare the distributions of LC and DR cells which project to different visual areas of the rat central nervous system. Long-Evans hooded rats received unilateral pressure injections of the retrograde tracer wheat germ agglutinin-horseradish peroxidase in either the dorsal lateral geniculate, ventral lateral geniculate, or lateral posterior nucleus of thalamus; superior colliculus, cortical area 17, cortical area 18a/b; cerebellar vermis (lobules VI and VII); or paraflocculus. Transverse sections through the midbrain and pons were examined by light microscopy after performing routine tetramethyl benzidine histochemical procedures. For all cases studied, retrogradely labeled cells were observed throughout the rostrocaudal extent of the LC and DR; however, labeling patterns which were distinctive for different injection sites were noted in each of these brainstem nuclei. The major conclusion drawn from this work is that subsets of LC and DR cells which project to different target structures within the rat visual system are found in overlapping but not necessarily coextensive zones within these nuclei. These studies provide further evidence of a rough topographic ordering within both the LC and DR nuclei, as well as support a new hypothesis that the outputs from each of these nuclei are organized with respect to the sensory related functions of their efferent targets.
Collapse
Affiliation(s)
- B D Waterhouse
- Hahnemann University, Philadelphia, Pennsylvania 19102-1192
| | | | | | | |
Collapse
|
48
|
Manaker S, Tischler LJ, Morrison AR. Raphespinal and reticulospinal axon collaterals to the hypoglossal nucleus in the rat. J Comp Neurol 1992; 322:68-78. [PMID: 1385487 DOI: 10.1002/cne.903220106] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurons in the medial tegmental field project directly to spinal somatic motoneurons and to cranial motoneuron pools such as the hypoglossal nucleus. The axons of these neurons may be highly collateralized, projecting to multiple levels of the spinal cord and to many diverse regions at different levels of the neuraxis. We employed a double fluorescent retrograde tracer technique to examine whether medial tegmental neurons that project to the spinal cord also project to the hypoglossal nucleus. Injections of Diamidino Yellow into the hypoglossal nucleus and Fast Blue into the spinal cord produced large numbers of double labeled neurons in the medial tegmental field, particularly in the caudal raphe nuclei and adjacent ventromedial reticular formation. In these structures the number of neurons projecting to both the hypoglossal nucleus and the spinal cord was equivalent to the number of neurons projecting to multiple levels of the spinal cord observed in control animals. Fewer neurons projecting to both the hypoglossal nucleus and the spinal cord were observed in several other nuclei and subregions of the medial tegmental field, while almost no such neurons were observed in the lateral tegmental field or other pontomedullary structures. These results demonstrate that neurons of the caudal raphe nuclei and adjacent ventromedial reticular formation project to both the spinal cord and the hypoglossal nucleus, and support the concept that the diffuse projections to motoneuron pools from the medial tegmental field globally modulate both spinal and cranial somatic motoneuron excitability.
Collapse
Affiliation(s)
- S Manaker
- Pulmonary and Critical Care Division, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
49
|
Shinba T, Ando Y, Ozawa N, Yamamoto K. Auditory-evoked response of the cortex after yohimbine administration: phase advance effect of central noradrenergic activation. Brain Res Bull 1992; 28:463-71. [PMID: 1591603 DOI: 10.1016/0361-9230(92)90048-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of central noradrenergic activation on an auditory-evoked cortical response were studied using systemic administration of yohimbine (2 mg/kg intravenously, IV), a noradrenergic stimulant, in 13 anesthetized rats. To analyze changes of the response, surface and intracortical evoked potentials (EP) as well as extracellular single-unit recordings with tungsten microelectrodes were employed. It was noted that the initial-positive wave of the surface EP corresponded to unit firing responses in a restricted area of the auditory cortex, where the surface EP was largest and a polarity inversion of the intracortical EP was observed. The following effects were produced by yohimbine: 1) The initial-positive surface potential (n = 10) and corresponding intracortical potential with inverted polarity (n = 6) both showed an increase in amplitude and a decrease in peak latency; 2) the unit firing response (n = 10) tended to show an increase in peak frequency and a decrease in peak firing latency; and 3) yohimbine produced an earlier ending of the firing period, and in paired stimulation experiments (n = 7) it prolonged the period during which the second response was suppressed, indicating an augmentation of postexcitation inhibition. Later histological examination suggested that most of the units recorded were pyramidal cells. These findings indicate that chemical stimulation of the central noradrenergic system by yohimbine enhances both the initial excitatory and following inhibitory processes in the auditory-evoked response of the cortical units (probably pyramidal cells), resulting not only in amplification of the response but also in advancement of the response phase.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Shinba
- Department of Neurophysiology, Psychiatric Research Institute of Tokyo, Kamikitazawa, Japan
| | | | | | | |
Collapse
|
50
|
Lategan AJ, Marien MR, Colpaert FC. Suppression of nigrostriatal and mesolimbic dopamine release following noradrenaline depletion by DSP-4: A microdialysis study. Life Sci 1992; 50:995-9. [PMID: 1372673 DOI: 10.1016/0024-3205(92)90093-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pretreatment of rats with the noradrenergic neurotoxin DSP-4 selectively reduced regional levels of noradrenaline in the brain by more than 75%, and decreased the concentration of endogenous DA in microdialysates of the caudate nucleus and nucleus accumbens by 52% and 28%, respectively. Results support the hypothesis that central noradrenergic mechanisms facilitate nigrostriatal and mesolimbic dopamine transmission in vivo.
Collapse
Affiliation(s)
- A J Lategan
- Neurobiology Division, FONDAX-Groupe de Recherche SERVIER, Puteaux, France
| | | | | |
Collapse
|