1
|
Kapur J, Long L, Dixon-Salazar T. Consequences: Bench to home. Epilepsia 2022; 63 Suppl 1:S14-S24. [PMID: 35999173 DOI: 10.1111/epi.17342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023]
Abstract
Seizure clusters (also referred to as acute repetitive seizures) consist of several seizures interspersed with brief interictal periods. Seizure clusters can break down γ-aminobutyric acidergic (GABAergic) inhibition of dentate granule cells, leading to hyperactivation. Functional changes to GABAA receptors, which play a vital neuroinhibitory role, can include altered GABAA receptor subunit trafficking and cellular localization, intracellular chloride accumulation, and dysregulation of proteins critical to chloride homeostasis. A reduction in neuroinhibition and potentiation of excitatory neurotransmission in CA1 pyramidal neurons represent pathological mechanisms that underlie seizure clusters. Benzodiazepines are well-established treatments for seizure clusters; however, there remain barriers to appropriate care. At the clinical level, there is variability in seizure cluster definitions, such as the number and/or type of seizures associated with a cluster as well as the interictal duration between seizures. This can lead to delays in diagnosis and timely treatment. There are gaps in understanding between clinicians, their patients, and caregivers regarding acute treatment for seizure clusters, such as the use of rescue medications and emergency services. This lack of consensus to define seizure clusters in addition to a lack of education for appropriate treatment can affect quality of life for patients and place a greater burden on patient families and caregivers. For patients with seizure clusters, the sense of unpredictability can lead to continuous traumatic stress, during which patients and families live with a heightened level of anxiety. Clinicians can affect patient quality of life and clinical outcomes through improved seizure cluster education and treatment, such as the development and implementation of a personalized seizure action plan as well as prescriptions for suitable rescue medications indicated for seizure clusters and instructions for their proper use. In all, the combination of targeted therapy along with patient education and support can improve quality of life.
Collapse
Affiliation(s)
- Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Lucretia Long
- Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
2
|
da Silva Fiorin F, de Araújo E Silva M, Rodrigues AC. Electrical stimulation in animal models of epilepsy: A review on cellular and electrophysiological aspects. Life Sci 2021; 285:119972. [PMID: 34560081 DOI: 10.1016/j.lfs.2021.119972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/24/2023]
Abstract
Epilepsy is a debilitating condition, primarily refractory individuals, leading to the search for new efficient therapies. Electrical stimulation is an important method used for years to treat several neurological disorders. Currently, electrical stimulation is used to reduce epileptic crisis in patients and shows promising results. Even though the use of electricity to treat neurological disorders has grown worldwide, there are still many caveats that must be clarified, such as action mechanisms and more efficient stimulation treatment parameters. Thus, this review aimed to explore the comprehension of the main stimulation methods in animal models of epilepsy using rodents to develop new experimental protocols and therapeutic approaches.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil.
| | - Mariane de Araújo E Silva
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| | - Abner Cardoso Rodrigues
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| |
Collapse
|
3
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
4
|
Krishnamurthy K, Huang YZ, Harward SC, Sharma KK, Tamayo DL, McNamara JO. Regression of Epileptogenesis by Inhibiting Tropomyosin Kinase B Signaling following a Seizure. Ann Neurol 2019; 86:939-950. [PMID: 31525273 DOI: 10.1002/ana.25602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is a devastating disease in which seizures persist in 35% of patients despite optimal use of antiseizure drugs. Clinical and preclinical evidence implicates seizures themselves as one factor promoting epilepsy progression. What is the molecular consequence of a seizure that promotes progression? Evidence from preclinical studies led us to hypothesize that activation of tropomyosin kinase B (TrkB)-phospholipase-C-gamma-1 (PLCγ1) signaling induced by a seizure promotes epileptogenesis. METHODS To examine the effects of inhibiting TrkB signaling on epileptogenesis following an isolated seizure, we implemented a modified kindling model in which we induced a seizure through amygdala stimulation and then used either a chemical-genetic strategy or pharmacologic methods to disrupt signaling for 2 days following the seizure. The severity of a subsequent seizure was assessed by behavioral and electrographic measures. RESULTS Transient inhibition of TrkB-PLCγ1 signaling initiated after an isolated seizure limited progression of epileptogenesis, evidenced by the reduced severity and duration of subsequent seizures. Unexpectedly, transient inhibition of TrkB-PLCγ1 signaling initiated following a seizure also reverted a subset of animals to an earlier state of epileptogenesis. Remarkably, inhibition of TrkB-PLCγ1 signaling in the absence of a recent seizure did not reduce severity of subsequent seizures. INTERPRETATION These results suggest a novel strategy for limiting progression or potentially ameliorating severity of TLE whereby transient inhibition of TrkB-PLCγ1 signaling is initiated following a seizure. ANN NEUROL 2019;86:939-950.
Collapse
Affiliation(s)
| | | | | | | | | | - James O McNamara
- Department of Neurobiology, Duke University, Durham, NC.,Department of Pharmacology & Cancer Biology, Duke University, Durham, NC.,Department of Neurology, Duke University, Durham, NC
| |
Collapse
|
5
|
Alexander GM, Huang YZ, Soderblom EJ, He XP, Moseley MA, McNamara JO. Vagal nerve stimulation modifies neuronal activity and the proteome of excitatory synapses of amygdala/piriform cortex. J Neurochem 2017; 140:629-644. [PMID: 27973753 DOI: 10.1111/jnc.13931] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/13/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022]
Abstract
Vagal Nerve Stimulation (VNS) Therapy® is a United States Food and Drug Administration approved neurotherapeutic for medically refractory partial epilepsy and treatment-resistant depression. The molecular mechanisms underlying its beneficial effects are unclear. We hypothesized that one mechanism involves neuronal activity-dependent modifications of central nervous system excitatory synapses. To begin to test this hypothesis, we asked whether VNS modifies the activity of neurons in amygdala and hippocampus. Neuronal recordings from adult, freely moving rats revealed that activity in both amygdala and hippocampus was modified by VNS immediately after its application, and changes were detected following 1 week of stimulation. To investigate whether VNS modifies the proteome of excitatory synapses, we established a label-free, quantitative liquid chromatography-tandem mass spectrometry workflow that enables global analysis of the constituents of the postsynaptic density (PSD) proteome. PSD proteins were biochemically purified from amygdala/piriform cortex of VNS- or dummy-treated rats following 1-week stimulation, and individual PSD protein levels were quantified by liquid chromatography-tandem mass spectrometry analysis. We identified 1899 unique peptides corresponding to 425 proteins in PSD fractions, of which expression levels of 22 proteins were differentially regulated by VNS with changes greater than 150%. Changes in a subset of these proteins, including significantly increased expression of neurexin-1α, cadherin 13 and voltage-dependent calcium channel α2δ1, the primary target of the antiepileptic drug gabapentin, and decreased expression of voltage-dependent calcium channel γ3, were confirmed by western blot analysis of PSD samples. These results demonstrate that VNS modulates excitatory synapses through regulating a subset of the PSD proteome. Our study reveals molecular targets of VNS and point to possible mechanisms underlying its beneficial effects, including activity-dependent formation of excitatory synapses.
Collapse
Affiliation(s)
- Georgia M Alexander
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yang Zhong Huang
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Erik J Soderblom
- Duke Proteomics Core Facility, Duke University Medical Center, Durham, North Carolina, USA
| | - Xiao-Ping He
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - M Arthur Moseley
- Duke Proteomics Core Facility, Duke University Medical Center, Durham, North Carolina, USA
| | - James O McNamara
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
6
|
Kouvaros S, Papatheodoropoulos C. Major dorsoventral differences in the modulation of the local CA1 hippocampal network by NMDA, mGlu5, adenosine A2A and cannabinoid CB1 receptors. Neuroscience 2016; 317:47-64. [PMID: 26762803 DOI: 10.1016/j.neuroscience.2015.12.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022]
Abstract
Recent research points to diversification in the local neuronal circuitry between dorsal (DH) and ventral (VH) hippocampus that may be involved in the large-scale functional segregation along the long axis of the hippocampus. Here, using CA1 field recordings from rat hippocampal slices, we show that activation of N-methyl-d-aspartate receptors (NMDARs) reduced excitatory transmission more in VH than in DH, with an adenosine A1 receptor-independent mechanism, and reduced inhibition and enhanced postsynaptic excitability only in DH. Strikingly, co-activation of metabotropic glutamate receptor-5 (mGluR5) with NMDAR, by CHPG and NMDA respectively, strongly potentiated the effects of NMDAR in DH but had not any potentiating effect in VH. Furthermore, the synergistic actions in DH were occluded by blockade of adenosine A2A receptors (A2ARs) by their antagonist ZM 241385 demonstrating a tonic action of these receptors in DH. Exogenous activation of A2ARs by 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680) did not change the effects of mGluR5-NMDAR co-activation in either hippocampal pole. Importantly, blockade of cannabinoid CB1 receptors (CB1Rs) by their antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM 281) restricted the synergistic actions of mGluR5-NMDARs on excitatory synaptic transmission and postsynaptic excitability and abolished their effect on inhibition. Furthermore, AM 281 increased the excitatory transmission only in DH indicating that CB1Rs were tonically active in DH but not VH. Removing the magnesium ions from the perfusion medium neither stimulated the interaction between mGluR5 and NMDAR in VH nor augmented the synergy of the two receptors in DH. These findings show that the NMDAR-dependent modulation of fundamental parameters of the local neuronal network, by mGluR5, A2AR and CB1R, markedly differs between DH and VH. We propose that the higher modulatory role of A2AR and mGluR5, in combination with the role of CB1Rs, provide DH with higher functional flexibility of its NMDARs, compared with VH.
Collapse
Affiliation(s)
- S Kouvaros
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Patras, 26504 Rion, Greece
| | - C Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Patras, 26504 Rion, Greece.
| |
Collapse
|
7
|
Helgager J, Liu G, McNamara JO. The cellular and synaptic location of activated TrkB in mouse hippocampus during limbic epileptogenesis. J Comp Neurol 2013; 521:499-521, Spc1. [PMID: 22987780 DOI: 10.1002/cne.23225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/18/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023]
Abstract
Understanding the mechanisms of limbic epileptogenesis in cellular and molecular terms may provide novel therapeutic targets for its prevention. The neurotrophin receptor tropomyosin-related kinase B (TrkB) is thought to be critical for limbic epileptogenesis. Enhanced activation of TrkB, revealed by immunodetection of enhanced phosphorylated TrkB (pTrkB), a surrogate measure of its activation, has been identified within the hippocampus in multiple animal models. Knowledge of the cellular locale of activated TrkB is necessary to elucidate its functional consequences. Using an antibody selective to pTrkB in conjunction with confocal microscopy and cellular markers, we determined the cellular and subcellular locale of enhanced pTrkB induced by status epilepticus (SE) evoked by infusion of kainic acid into the amygdala of adult mice. SE induced enhanced pTrkB immunoreactivity in two distinct populations of principal neurons within the hippocampus-the dentate granule cells and CA1 pyramidal cells. Enhanced immunoreactivity within granule cells was found within mossy fiber axons and giant synaptic boutons. By contrast, enhanced immunoreactivity was found within apical dendritic shafts and spines of CA1 pyramidal cells. A common feature of this enhanced pTrkB at these cellular locales is its localization to excitatory synapses between excitatory neurons, presynaptically in the granule cells and postsynaptically in CA1 pyramidal cells. Long-term potentiation (LTP) is one cellular consequence of TrkB activation at these excitatory synapses that may promote epileptogenesis.
Collapse
Affiliation(s)
- Jeffrey Helgager
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
8
|
Jang HJ, Yang YR, Kim JK, Choi JH, Seo YK, Lee YH, Lee JE, Ryu SH, Suh PG. Phospholipase C-γ1 involved in brain disorders. Adv Biol Regul 2013; 53:51-62. [PMID: 23063587 DOI: 10.1016/j.jbior.2012.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
Phosphoinositide-specific phospholipase C-γ1 (PLC-γ1) is an important signaling regulator involved in various cellular processes. In brain, PLC-γ1 is highly expressed and participates in neuronal cell functions mediated by neurotrophins. Consistent with essential roles of PLC-γ1, it is involved in development of brain and synaptic transmission. Significantly, abnormal expression and activation of PLC-γ1 appears in various brain disorders such as epilepsy, depression, Huntington's disease and Alzheimer's disease. Thus, PLC-γ1 has been implicated in brain functions as well as related brain disorders. In this review, we discuss the roles of PLC-γ1 in neuronal functions and its pathological relevance to diverse brain diseases.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Notenboom RGE, Ramakers GMJ, Kamal A, Spruijt BM, de Graan PNE. Long-lasting modulation of synaptic plasticity in rat hippocampus after early-life complex febrile seizures. Eur J Neurosci 2010; 32:749-58. [PMID: 20646062 DOI: 10.1111/j.1460-9568.2010.07321.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A small fraction of children with febrile seizures appears to develop cognitive impairments. Recent studies in a rat model of hyperthermia-induced febrile seizures indicate that prolonged febrile seizures early in life have long-lasting effects on the hippocampus and induce cognitive deficits. However, data on network plasticity and the nature of cognitive deficits are conflicting. We examined three specific measures of hippocampal plasticity in adult rats with a prior history of experimental febrile seizures: (i) activity-dependent synaptic plasticity (long-term potentiation and depression) by electrophysiological recordings of Schaffer collateral/commissural-evoked field excitatory synaptic potentials in CA1 of acute hippocampal slices; (ii) Morris water maze spatial learning and memory; and (iii) hippocampal mossy fiber plasticity by Timm histochemistry and quantification of terminal sprouting in CA3 and the dentate gyrus. We found enhanced hippocampal CA1 long-term potentiation and reduced long-term depression but normal spatial learning and memory in adult rats that were subjected to experimental febrile seizures on postnatal day 10. Furthermore, rats with experimental febrile seizures showed modest but significant sprouting of mossy fiber collaterals into the inner molecular layer of the dentate gyrus in adulthood. We conclude that enhanced CA1 long-term potentiation and mild mossy fiber sprouting occur after experimental febrile seizures, without affecting spatial learning and memory in the Morris water maze. These long-term functional and structural alterations in hippocampal plasticity are likely to play a role in the enhanced seizure susceptibility in this model of prolonged human febrile seizures but do not correlate with overt cognitive deficits.
Collapse
Affiliation(s)
- Robbert G E Notenboom
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience & Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Disruption of TrkB-mediated phospholipase Cgamma signaling inhibits limbic epileptogenesis. J Neurosci 2010; 30:6188-96. [PMID: 20445044 DOI: 10.1523/jneurosci.5821-09.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The BDNF receptor, TrkB, is critical to limbic epileptogenesis, but the responsible downstream signaling pathways are unknown. We hypothesized that TrkB-dependent activation of phospholipase Cgamma1 (PLCgamma1) signaling is the key pathway and tested this in trkB(PLC/PLC) mice carrying a mutation (Y816F) that uncouples TrkB from PLCgamma1. Biochemical measures revealed activation of both TrkB and PLCgamma1 in hippocampi in the pilocarpine and kindling models in wild-type mice. PLCgamma1 activation was decreased in hippocampi isolated from trkB(PLC/PLC) compared with control mice. Epileptogenesis assessed by development of kindling was inhibited in trkB(PLC/PLC) compared with control mice. Long-term potentiation of the mossy fiber-CA3 pyramid synapse was impaired in slices of trkB(PLC/PLC) mice. We conclude that TrkB-dependent activation of PLCgamma1 signaling is an important molecular mechanism of limbic epileptogenesis. Elucidating signaling pathways activated by a cell membrane receptor in animal models of CNS disorders promises to reveal novel targets for specific and effective therapeutic intervention.
Collapse
|
11
|
Levetiracetam inhibits kindling-induced synaptic potentiation in the dentate gyrus of freely moving rats. Neurosci Res 2009; 66:228-31. [PMID: 19896989 DOI: 10.1016/j.neures.2009.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/27/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
A novel antiepileptic drug, levetiracetam, strongly suppresses the development of kindling, although the mechanisms by which it does so are still unknown. Kindling-induced synaptic potentiation (KIP) is considered to play an important role in the development of kindling. Therefore, we examined the effect of levetiracetam on KIP during perforant path kindling in freely moving rats. Daily administration of levetiracetam significantly suppressed the development of kindling. Furthermore, levetiracetam significantly inhibited the development of KIP during 21 days of kindling. These results suggest that levetiracetam may suppress kindling development through the suppression of KIP.
Collapse
|
12
|
Sjöström PJ, Rancz EA, Roth A, Häusser M. Dendritic excitability and synaptic plasticity. Physiol Rev 2008; 88:769-840. [PMID: 18391179 DOI: 10.1152/physrev.00016.2007] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Most synaptic inputs are made onto the dendritic tree. Recent work has shown that dendrites play an active role in transforming synaptic input into neuronal output and in defining the relationships between active synapses. In this review, we discuss how these dendritic properties influence the rules governing the induction of synaptic plasticity. We argue that the location of synapses in the dendritic tree, and the type of dendritic excitability associated with each synapse, play decisive roles in determining the plastic properties of that synapse. Furthermore, since the electrical properties of the dendritic tree are not static, but can be altered by neuromodulators and by synaptic activity itself, we discuss how learning rules may be dynamically shaped by tuning dendritic function. We conclude by describing how this reciprocal relationship between plasticity of dendritic excitability and synaptic plasticity has changed our view of information processing and memory storage in neuronal networks.
Collapse
Affiliation(s)
- P Jesper Sjöström
- Wolfson Institute for Biomedical Research and Department of Physiology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
13
|
Tallent MK, Qiu C. Somatostatin: an endogenous antiepileptic. Mol Cell Endocrinol 2008; 286:96-103. [PMID: 18221832 PMCID: PMC2843391 DOI: 10.1016/j.mce.2007.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 08/02/2007] [Accepted: 12/01/2007] [Indexed: 02/07/2023]
Abstract
The neuropeptide somatostatin (SST) is highly expressed in brain regions associated with seizures. In hippocampus, SST expression and release is regulated by seizures, and SST-containing neurons within the hilus of the dentate gyrus are sensitive to seizure-induced death. In vivo and in vitro studies suggest that the loss of SST function in the dentate could contribute to epileptogenesis and seizure susceptibility. SST also has inhibitory actions in the CA1 and CA3 hippocampus indicating this peptide is an important homeostatic regulator throughout the hippocampus. In vivo studies show SST has robust antiepileptic properties with the major site of action being hippocampus. In rodents, somatostatin receptor subtype 2 (SST(2)) and SST(4) appear to mediate the majority of the antiepileptic actions of SST, with SST(2) predominate in rat and SST(4) in mouse. Thus SST receptors may be appropriate targets for new antiepileptic drugs (AEDs), although validation in human tissue is lacking.
Collapse
Affiliation(s)
- Melanie K Tallent
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | |
Collapse
|
14
|
Dudek FE, Sutula TP. Epileptogenesis in the dentate gyrus: a critical perspective. PROGRESS IN BRAIN RESEARCH 2007; 163:755-73. [PMID: 17765749 DOI: 10.1016/s0079-6123(07)63041-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The dentate gyrus has long been a focal point for studies on the molecular, cellular, and network mechanisms responsible for epileptogenesis in temporal lobe epilepsy (TLE). Although several hypothetical mechanisms are considered in this chapter, two that have garnered particular interest and experimental support are: (1) the selective loss of vulnerable interneurons in the region of the hilus and (2) the formation of new recurrent excitatory circuits after mossy fiber sprouting. Histopathological data show that specific GABAergic interneurons in the hilus are lost in animal models of TLE, and several lines of electrophysiological evidence, including intracellular analyses of postsynaptic currents, support this hypothesis. In particular, whole-cell recordings have demonstrated a reduction in the frequency of miniature inhibitory postsynaptic currents in the dentate gyrus and other areas (e.g., CA1 pyramidal cells), which provides relatively specific evidence for a reduction in GABAergic input to granule cells. These studies support the viewpoint that modest alterations in GABAergic inhibition can have significant functional impact in the dentate gyrus, and suggest that dynamic activity-dependent mechanisms of GABAergic regulation add complexity to this local synaptic circuitry and to analyses of epileptogenesis. In regard to mossy fiber sprouting, a wide variety of experiments involving intracellular or whole-cell recordings during electrical stimulation of the hilus, glutamate microstimulation, and dual recordings from granule cells support the hypothesis that mossy fiber sprouting forms new recurrent excitatory circuits in the dentate gyrus in animal models of TLE. Similar to previous studies on recurrent excitation in the CA3 area, GABA-mediated inhibition and the intrinsic high threshold of granule cells in the dentate gyrus tends to mask the presence of the new recurrent excitatory circuits and reduce the likelihood that reorganized circuits will generate seizure-like activity. How cellular alterations such as neuron loss in the hilus and mossy fiber sprouting influence functional properties is potentially important for understanding fundamental aspects of epileptogenesis, such as the consequences of primary initial injuries, mechanisms underlying network synchronization, and progression of intractability. The continuous nature of the axonal sprouting and formation of recurrent excitation could account for aspects of the latent period and the progressive nature of the epileptogenesis. Future studies will need to identify precisely how these hypothetical mechanisms and others contribute to the process whereby epileptic seizures are initiated or propagated through an area such as the dentate gyrus. Finally, in addition to its unique features and potential importance in epileptogenesis, the dentate gyrus may also serve as a model for other cortical structures in acquired epilepsy.
Collapse
Affiliation(s)
- F Edward Dudek
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | | |
Collapse
|
15
|
Abstract
The neuropeptide somatostatin (SST) is expressed in a discrete population of interneurons in the dentate gyrus. These interneurons have their soma in the hilus and project to the outer molecular layer onto dendrites of dentate granule cells, adjacent to perforant path input. SST-containing interneurons are very sensitive to excitotoxicty, and thus are vulnerable to a variety of neurological diseases and insults, including epilepsy, Alzheimer's disease, traumatic brain injury, and ischemia. The SST gene contains a prototypical cyclic AMP response element (CRE) site. Such a regulatory site confers activity-dependence to the gene, such that it is turned on when neuronal activity is high. Thus SST expression is increased by pathological conditions such as seizures and by natural stimulation such as environmental enrichment. SST may play an important role in cognition by modulating the response of neurons to synaptic input. In the dentate, SST and the related peptide cortistatin (CST) reduce the likelihood of generating long-term potentiation, a cellular process involved in learning and memory. Thus these neuropeptides would increase the threshold of input required for acquisition of new memories, increasing "signal to noise" to filter out irrelevant environmental cues. The major mechanism through which SST inhibits LTP is likely through inhibition of voltage-gated Ca(2+) channels on dentate granule cell dendrites. Transgenic overexpression of CST in the dentate leads to profound deficits in spatial learning and memory, validating its role in cognitive processing. A reduction of synaptic potentiation by SST and CST in dentate may also contribute to the well-characterized antiepileptic properties of these neuropeptides. Thus SST and CST are important neuromodulators in the dentate gyrus, and disruption of this signaling system may have major impact on hippocampal function.
Collapse
Affiliation(s)
- Melanie K Tallent
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA.
| |
Collapse
|
16
|
Abstract
CONTEXT Bipolar/panic comorbidity has been observed in clinical, community and familial samples. As both are episodic disorders of affect regulation, the common pathophysiological mechanism is likely to involve deficits in amygdala-mediated, plasticity-dependent emotional conditioning. EVIDENCE Neuronal genesis and synaptic remodeling occur in the amygdala; bipolar and panic disorders have both been associated with abnormality in the amygdala and related structures, as well as in molecules that modulate plasticity, such as serotonin, norepinephrine, brain-derived neurotrophic factor (BDNF) and corticotrophin releasing factor (CRF). These biological elements are involved in behavioral conditioning to threat and reward. MODEL Panic attacks resemble the normal acute fear response, but are abnormally dissociated from any relevant threat. Abnormal reward-seeking behavior is central to both manic and depressive syndromes. Appetites can be elevated or depressed; satisfaction of a drive may fail to condition future behavior. These dissociations may be the result of deficits in plasticity-dependent processes of conditioning within different amygdala subregions. CONCLUSIONS This speculative model may be a useful framework with which to connect molecular, cellular, anatomic and behavioral processes in panic and bipolar disorders. The primary clinical implication is that behavioral treatment may be critical to restore function in some bipolar patients who respond only partially to medications.
Collapse
Affiliation(s)
- Dean F MacKinnon
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Meyer 3-181, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | | |
Collapse
|
17
|
McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. ACTA ACUST UNITED AC 2006; 2006:re12. [PMID: 17033045 DOI: 10.1126/stke.3562006re12] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Epilepsy, a disorder of recurrent seizures, is a common and frequently devastating neurological condition. Available therapy is only symptomatic and often ineffective. Understanding epileptogenesis, the process by which a normal brain becomes epileptic, may help identify molecular targets for drugs that could prevent epilepsy. A number of acquired and genetic causes of this disorder have been identified, and various in vivo and in vitro models of epileptogenesis have been established. Here, we review current insights into the molecular signaling mechanisms underlying epileptogenesis, focusing on limbic epileptogenesis. Study of different models reveals that activation of various receptors on the surface of neurons can promote epileptogenesis; these receptors include ionotropic and metabotropic glutamate receptors as well as the TrkB neurotrophin receptor. These receptors are all found in the membrane of a discrete signaling domain within a particular type of cortical neuron--the dendritic spine of principal neurons. Activation of any of these receptors results in an increase Ca2+ concentration within the spine. Various Ca2+-regulated enzymes found in spines have been implicated in epileptogenesis; these include the nonreceptor protein tyrosine kinases Src and Fyn and a serine-threonine kinase [Ca2+-calmodulin-dependent protein kinase II (CaMKII)] and phosphatase (calcineurin). Cross-talk between astrocytes and neurons promotes increased dendritic Ca2+ and synchronous firing of neurons, a hallmark of epileptiform activity. The hypothesis is proposed that limbic epilepsy is a maladaptive consequence of homeostatic responses to increases of Ca2+ concentration within dendritic spines induced by abnormal neuronal activity.
Collapse
Affiliation(s)
- James O McNamara
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
18
|
Papatheodoropoulos C, Moschovos C, Kostopoulos G. Greater contribution of N-methyl-D-aspartic acid receptors in ventral compared to dorsal hippocampal slices in the expression and long-term maintenance of epileptiform activity. Neuroscience 2005; 135:765-79. [PMID: 16154282 DOI: 10.1016/j.neuroscience.2005.06.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 06/12/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
Functional segregation along the dorso-ventral axis of the hippocampus is a developing concept. The higher susceptibility of the ventral hippocampus to epileptic activity compared with dorsal hippocampus is one of the main features, which still has obscure mechanisms. Using the model of magnesium-free medium and field recordings, single epileptiform discharges displayed higher incidence (77% vs 57%), rate (41.7+/-3.1 vs 13.5+/-0.7 events/min), duration (173.9+/-17.7 vs 116.8+/-13.6 ms) and intensity (coastline, 25.4+/-2.5 vs 9.5+/-1.8) in ventral compared with dorsal rat hippocampal slices. In addition, the decay phase of the evoked synaptic potentials was 110% slower in ventral slices. The N-methyl-D-aspartate (NMDA) receptor antagonist d-(-)-2-amino-5-phosphonopentanoic acid (50-100 microM) decreased the discharge rate and coastline similarly in ventral and dorsal slices, but it shortened the discharges in ventral slices (by 40%) only. The NMDA receptor antagonist 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (10 microM) decreased the rate in both groups and additionally shortened discharges in both kinds of slices, an effect which was greater in ventral ones (31% vs 13%). Furthermore, both drugs shortened the evoked potentials more in ventral (77%) than in dorsal slices (52%). On the other hand, 1 microM of 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid shortened the discharges and evoked synaptic potentials only in ventral slices, and slowed down the discharge rate only in dorsal slices. Addition of NMDA, in the magnesium-free medium, enhanced activity in both kinds of slices. At 5 and 10 microM of NMDA 51% of the ventral but only 9% of the dorsal slices displayed persistent epileptiform discharges, which were recorded for at least one hour after reintroduction of magnesium in the medium. At 10-20 microM the enhancement of activity was transient, followed by suppression of discharges in 40% and 76% of the ventral and dorsal slices, respectively. Most of the slices having experienced suppression did not develop persistent activity. We propose that the NMDA receptors contribute to the higher susceptibility of the ventral hippocampus to expression and long-term maintenance of epileptiform discharges. This diversification may be related to other aspects of hippocampal dorso-ventral functional segregation.
Collapse
Affiliation(s)
- C Papatheodoropoulos
- Department of Physiology, Medical School, University of Patras, 26500 Patras, Greece.
| | | | | |
Collapse
|
19
|
Mayer J, Hamel MG, Gottschall PE. Evidence for proteolytic cleavage of brevican by the ADAMTSs in the dentate gyrus after excitotoxic lesion of the mouse entorhinal cortex. BMC Neurosci 2005; 6:52. [PMID: 16122387 PMCID: PMC1199600 DOI: 10.1186/1471-2202-6-52] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 08/25/2005] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Brevican is a member of the lectican family of aggregating extracellular matrix (ECM) proteoglycans that bear chondroitin sulfate (CS) chains. It is highly expressed in the central nervous system (CNS) and is thought to stabilize synapses and inhibit neural plasticity and as such, neuritic or synaptic remodeling would be less likely to occur in regions with intact and abundant, lectican-containing, ECM complexes. Neural plasticity may occur more readily when these ECM complexes are broken down by endogenous proteases, the ADAMTSs (adisintegrin and metalloproteinase with thrombospondin motifs), that selectively cleave the lecticans. The purpose of these experiments was to determine whether the production of brevican or the ADAMTS-cleaved fragments of brevican were altered after deafferentation and reinnervation of the dentate gyrus via entorhinal cortex lesion (ECL). RESULTS In the C57Bl6J mouse, synaptic density in the molecular layer of the dentate gyrus, as measured by synaptophysin levels in ELISA, was significantly attenuated 2 days (nearly 50% of contralateral) and 7 days after lesion and returned to levels not different from the contralateral region at 30 days. Immunoreactive brevican in immunoblot was elevated 2 days after lesion, whereas there was a significant increase in the proteolytic product at 7, but not 30 days post-lesion. ADAMTS activity, estimated using the ratio of the specific ADAMTS-derived brevican fragment and intact brevican levels was increased at 7 days, but was not different from the contralateral side at 2 or 30 days after deafferentation. CONCLUSION These findings indicate that ADAMTS activity in the dentate outer molecular layer (OML) is elevated during the initial synaptic reinnervation period (7 days after lesion). Therefore, proteolytic processing of brevican appears to be a significant extracellular event in the remodeling of the dentate after EC lesion, and may modulate the process of sprouting and/or synaptogenesis.
Collapse
Affiliation(s)
- Joanne Mayer
- University of South Florida College of Medicine, Department of Pharmacology and Therapeutics, 12901 Bruce B. Downs Blvd, Tampa, Florida 33612-4799, USA
| | - Michelle G Hamel
- University of South Florida College of Medicine, Department of Pharmacology and Therapeutics, 12901 Bruce B. Downs Blvd, Tampa, Florida 33612-4799, USA
| | - Paul E Gottschall
- University of South Florida College of Medicine, Department of Pharmacology and Therapeutics, 12901 Bruce B. Downs Blvd, Tampa, Florida 33612-4799, USA
| |
Collapse
|
20
|
Leite JP, Neder L, Arisi GM, Carlotti CG, Assirati JA, Moreira JE. Plasticity, synaptic strength, and epilepsy: what can we learn from ultrastructural data? Epilepsia 2005; 46 Suppl 5:134-41. [PMID: 15987268 DOI: 10.1111/j.1528-1167.2005.01021.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Central nervous system synapses have an intrinsic plastic capacity to adapt to new conditions with rapid changes in their structure. Such activity-dependent refinement occurs during development and learning, and shares features with diseases such as epilepsy. Quantitative ultrastructural studies based on serial sectioning and reconstructions have shown various structural changes associated with synaptic strength involving both dendritic spines and postsynaptic densities (PSDs) during long-term potentiation (LTP). In this review, we focus on experimental studies that have analyzed at the ultrastructural level the consequences of LTP in rodents, and plastic changes in the hippocampus of experimental models of epilepsy and human tissue obtained during surgeries for intractable temporal lobe epilepsy (TLE). Modifications in spine morphology, increases in the proportion of synapses with perforated PSDs, and formation of multiple spine boutons arising from the same dendrite are the possible sequence of events that accompany hippocampal LTP. Structural remodeling of mossy fiber synapses and formation of aberrant synaptic contacts in the dentate gyrus are common features in experimental models of epilepsy and in human TLE. Combined electrophysiological and ultrastructural studies in kindled rats and chronic epileptic animals have indicated the occurrence of seizure- and neuron loss-induced changes in the hippocampal network. In these experiments, the synaptic contacts on granule cells are similar to those described for LTP. Such changes could be associated with enhancement of synaptic efficiency and may be important in epileptogenesis.
Collapse
Affiliation(s)
- João Pereira Leite
- Department of Neurology, University of São Paulo School of Medicine at Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
21
|
Adén U, O'Connor WT, Berman RF. Changes in purine levels and adenosine receptors in kindled seizures in the rat. Neuroreport 2004; 15:1585-9. [PMID: 15232288 DOI: 10.1097/01.wnr.0000133227.94662.c9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adenosine is an inhibitory modulator of neuronal activity and its possible involvement in seizures is of interest. We have examined changes in adenosine, its metabolites and receptors in brains of hippocampus-kindled rats, a model of partial epilepsy. Purine levels were measured by in vivo microdialysis and showed a small increase in adenosine and a dramatic increase in its metabolites after kindled seizures. Adenosine A1 receptor binding using [H]DPCPX was unaltered after seizures, whereas A1 agonist stimulated binding of GTP[gamma-S] and A1 mRNA expression increased in the CA3 and other regions. Striatal adenosine A2A mRNA and receptor binding with [H]SCH-58261 decreased. These findings indicate that kindled seizures increase adenosine release and metabolism and induces adaptive changes in adenosine receptors.
Collapse
Affiliation(s)
- Ulrika Adén
- Department of Woman and Child Health, Karolinska Institutet, S-171 76 Stockholm, Sweden.
| | | | | |
Collapse
|
22
|
Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 2004; 73:1-60. [PMID: 15193778 DOI: 10.1016/j.pneurobio.2004.03.009] [Citation(s) in RCA: 613] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/24/2004] [Indexed: 01/09/2023]
Abstract
This review focuses on the remodeling of brain circuitry associated with epilepsy, particularly in excitatory glutamate and inhibitory GABA systems, including alterations in synaptic efficacy, growth of new connections, and loss of existing connections. From recent studies on the kindling and status epilepticus models, which have been used most extensively to investigate temporal lobe epilepsy, it is now clear that the brain reorganizes itself in response to excess neural activation, such as seizure activity. The contributing factors to this reorganization include activation of glutamate receptors, second messengers, immediate early genes, transcription factors, neurotrophic factors, axon guidance molecules, protein synthesis, neurogenesis, and synaptogenesis. Some of the resulting changes may, in turn, contribute to the permanent alterations in seizure susceptibility. There is increasing evidence that neurogenesis and synaptogenesis can appear not only in the mossy fiber pathway in the hippocampus but also in other limbic structures. Neuronal loss, induced by prolonged seizure activity, may also contribute to circuit restructuring, particularly in the status epilepticus model. However, it is unlikely that any one structure, plastic system, neurotrophin, or downstream effector pathway is uniquely critical for epileptogenesis. The sensitivity of neural systems to the modulation of inhibition makes a disinhibition hypothesis compelling for both the triggering stage of the epileptic response and the long-term changes that promote the epileptic state. Loss of selective types of interneurons, alteration of GABA receptor configuration, and/or decrease in dendritic inhibition could contribute to the development of spontaneous seizures.
Collapse
Affiliation(s)
- Kiyoshi Morimoto
- Department of Neuropsychiatry, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
23
|
He XP, Kotloski R, Nef S, Luikart BW, Parada LF, McNamara JO. Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron 2004; 43:31-42. [PMID: 15233915 DOI: 10.1016/j.neuron.2004.06.019] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 04/05/2004] [Accepted: 06/04/2004] [Indexed: 11/21/2022]
Abstract
Epileptogenesis is the process whereby a normal brain becomes epileptic. We hypothesized that the neurotrophin brain-derived neurotrophic factor (BDNF) activates its receptor, TrkB, in the hippocampus during epileptogenesis and that BDNF-mediated activation of TrkB is required for epileptogenesis. We tested these hypotheses in Synapsin-Cre conditional BDNF(-/-) and TrkB(-/-) mice using the kindling model. Despite marked reductions of BDNF expression, only a modest impairment of epileptogenesis and increased hippocampal TrkB activation were detected in BDNF(-/-) mice. In contrast, reductions of electrophysiological measures and no behavioral evidence of epileptogenesis were detected in TrkB(-/-) mice. Importantly, TrkB(-/-) mice exhibited behavioral endpoints of epileptogenesis, tonic-clonic seizures. Whereas TrkB can be activated, and epileptogenesis develops in BDNF(-/-) mice, the plasticity of epileptogenesis is eliminated in TrkB(-/-) mice. Its requirement for epileptogenesis in kindling implicates TrkB and downstream signaling pathways as attractive molecular targets for drugs for preventing epilepsy.
Collapse
Affiliation(s)
- Xiao-Ping He
- Department of Medicine (Neurology), Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
24
|
Baratta MV, Lamp T, Tallent MK. Somatostatin depresses long-term potentiation and Ca2+ signaling in mouse dentate gyrus. J Neurophysiol 2002; 88:3078-86. [PMID: 12466431 DOI: 10.1152/jn.00398.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The selective loss of somatostatin (SST)-containing interneurons from the hilus of the dentate gyrus is a hallmark of epileptic hippocampus. The functional consequence of this loss, including its contribution to postseizure hyperexcitability, remains unclear. We address this issue by characterizing the actions of SST in mouse dentate gyrus using electrophysiological techniques. Although the majority of dentate SST receptors are located in the outer molecular layer adjacent to lateral perforant path (LPP) synapses, we found no consistent action of SST on standard synaptic responses generated at these synapses. However, when SST was present during application of high-frequency trains that normally generate long-term potentiation (LTP), the induction of LTP was impaired. SST did not alter the maintenance of LTP when applied after its induction. To examine the mechanism by which SST inhibits LTP, we recorded from dentate granule cells and examined the actions of this neuropeptide on synaptic transmission and postsynaptic currents. Unlike findings in the CA1 hippocampus, we observed no postsynaptic actions on K(+) currents. Instead, SST inhibited Ca(2+)/Ba(2+) spikes evoked by depolarization. This inhibition was dependent on N-type Ca(2+)currents. Blocking these currents also blocked LTP, suggesting a mechanism through which SST may inhibit LTP. Our results indicate that SST reduction of dendritic Ca(2+) through N-type Ca(2+) channels may contribute to modulation of synaptic plasticity at LPP synapses. Therefore the loss of SST function postseizure could result in abnormal synaptic potentiation that contributes to epileptogenesis.
Collapse
Affiliation(s)
- Michael V Baratta
- Department of Neuropharmacology, The Scripps Research Institute La Jolla, California 92037, USA
| | | | | |
Collapse
|
25
|
Gilbert ME. Does the kindling model of epilepsy contribute to our understanding of multiple chemical sensitivity? Ann N Y Acad Sci 2001; 933:68-91. [PMID: 12000037 DOI: 10.1111/j.1749-6632.2001.tb05815.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Multiple chemical sensitivity (MCS) is a phenomenon whereby individuals report an increased sensitivity to low levels of chemicals in the environment. Kindling is a model of synaptic plasticity whereby repeated low-level electrical stimulation to a number of brain sites leads to permanent increases in seizure susceptibility. Stimulation that is initially subthreshold for subclinical seizure provocation comes, over time, to elicit full-blown motor seizures. Kindling can also be induced by chemical stimulation, and repeated exposures to some pesticides have been shown to induce signs of behavioral seizure, facilitate subsequent electrical kindling, and induce subclinical electrographic signs of hyperexcitability in the amygdala. Many of the symptoms of MCS suggest that CNS limbic pathways involved in anxiety are altered in individuals reporting MCS. Limbic structures are among the most susceptible to kindling-induced seizures, and persistent cognitive and emotional sequelae have been associated with temporal lobe epilepsy (TLE) in humans and kindling in animals. Thus, a number of parallels exist between kindling and MCS phenomena, leading to initial speculations that MCS may occur via a kindling-like mechanism. However, kindling requires the activation of electrographic seizure discharge and has thus been primarily examined as a model for TLE. Events leading to the initial evocation of a subclinical electrographic seizure have been much less well studied. It is perhaps these events that may serve as a more appropriate model for the enhanced chemical responsiveness characteristic of MCS. Alternatively, kindling may be useful as a tool to selectively increase sensitivity in subcomponents of the neural fear circuit to address questions relating the role of anxiety in the development and expression of MCS.
Collapse
Affiliation(s)
- M E Gilbert
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| |
Collapse
|
26
|
Lynch M, Sayin U, Golarai G, Sutula T. NMDA receptor-dependent plasticity of granule cell spiking in the dentate gyrus of normal and epileptic rats. J Neurophysiol 2000; 84:2868-79. [PMID: 11110816 DOI: 10.1152/jn.2000.84.6.2868] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because granule cells in the dentate gyrus provide a major synaptic input to pyramidal neurons in the CA3 region of the hippocampus, spike generation by granule cells is likely to have a significant role in hippocampal information processing. Granule cells normally fire in a single-spike mode even when inhibition is blocked and provide single-spike output to CA3 when afferent activity converging into the entorhinal cortex from neocortex, brainstem, and other limbic regions increases. The effects of enhancement of N-methyl-D-aspartate (NMDA) receptor-dependent excitatory synaptic transmission and reduction in gamma-aminobutyric acid-A (GABA(A)) receptor-dependent inhibition on spike generation were examined in granule cells of the dentate gyrus. In contrast to the single-spike mode observed in normal bathing conditions, perforant path stimulation in Mg(2+)-free bathing conditions evoked graded burst discharges in granule cells which increased in duration, amplitude, and number of spikes as a function of stimulus intensity. After burst discharges were evoked during transient exposure to bathing conditions that relieve the Mg(2+) block of the NMDA receptor, there was a marked increase in the NMDA receptor-dependent component of the EPSP, but no significant increase in the non-NMDA receptor-dependent component of the EPSP in normal bathing medium. Supramaximal perforant path stimulation still evoked only a single spike, but granule cell spike generation was immediately converted from a single-spike firing mode to a graded burst discharge mode when inhibition was then reduced. The induction of graded burst discharges in Mg(2+)-free conditions and the expression of burst discharges evoked in normal bathing medium with subsequent disinhibition were both blocked by DL-2-amino-4-phosphonovaleric acid (APV) and were therefore NMDA receptor dependent, in contrast to long-term potentiation (LTP) in the perforant path, which is induced by NMDA receptors and is also expressed by alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA) receptors. The graded burst discharge mode was also observed in granule cells when inhibition was reduced after a single epileptic afterdischarge, which enhances the NMDA receptor-dependent component of evoked synaptic response, and in the dentate gyrus reorganized by mossy fiber sprouting in kindled and kainic acid-treated rats. NMDA receptor-dependent plasticity of granule cell spike generation, which can be distinguished from LTP and induces long-term susceptibility to epileptic burst discharge under conditions of reduced inhibition, could modify information processing in the hippocampus and promote epileptic synchronization by increasing excitatory input into CA3.
Collapse
Affiliation(s)
- M Lynch
- Department of Neurology, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
27
|
Omrani A, Fathollahi Y, Mohajerani HR, Semnanian S. Primed-burst potentiation occludes the potentiation phenomenon and enhances the epileptiform activity induced by transient pentylenetetrazol in the CA1 region of rat hippocampal slices. Brain Res 2000; 877:176-83. [PMID: 10986330 DOI: 10.1016/s0006-8993(00)02672-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of pentylenetetrazol (PTZ) following induction of long-term potentiation (LTP) on population spikes in CA1 of hippocampal slices were investigated. Population spikes were evoked by activation of Schaffer collaterals with a range of stimulation intensities. LTP was induced using θ-pattern primed burst tetanic stimulation. Changes in the population spike amplitude and number of population spikes were used as indices to quantify the effects of PTZ exposure in the control (non-tetanized) and LTP (tetanized) conditions. The amplitude of population spike was measured 20 min before, during 20 min chemical application (3 mM), and also after 30 or 60 min washout period. In non-tetanized slices, the population spike input-output curve was significantly increased 20 min after PTZ application and persisted at least for 60 min. Multiple population spikes or after potentials also appeared, but did not persist. When PTZ was applied on tetanized slices, 60 min after LTP induction, the amplitude increase produced by PTZ was smaller than the increase seen in the control condition. Also LTP induction preceding PTZ exposure increased the number of population spikes evoked by stimulation of Schaffer collaterals. It is concluded that a transient PTZ application produces a long-lasting increase in population spike amplitude. Primed burst LTP occludes PTZ-induced potentiation while also increasing the epileptogenic effect of PTZ.
Collapse
Affiliation(s)
- A Omrani
- Department of Physiology, School of Medical Sciences, Tarbiat Modarres University, P.O. Box: 14115-111, Tehran, Iran
| | | | | | | |
Collapse
|
28
|
Greenwood RS, Fan Z, McHugh R, Meeker R. Inhibition of hippocampal kindling by metabotropic glutamate receptor antisense oligonucleotides. Mol Cell Neurosci 2000; 16:233-43. [PMID: 10995550 DOI: 10.1006/mcne.2000.0862] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent work has shown that metabotropic glutamate receptors (mGluRs) increase in response to seizure activity and can contribute significantly to the expression and progression of partial seizures. Using the kindling model of temporal lobe seizures, we evaluated the ability of local hippocampal injections of mGluR1 antisense or mGluR3 antisense oligonucleotides to suppress receptor expression and alter hippocampal kindling. Daily antisense injections in the hippocampus resulted in a significant decrease in mGluR1 or mGluR2/3 immunoreactivity. Rats injected with mGluR3 antisense showed a brief suppression of afterdischarge duration when compared to matched rats injected with a nonsense-oligonucleotide. Rats injected with a mGluR1 antisense oligonucleotide had a dramatic suppression of the rate of seizure progression with no significant effect on afterdischarge duration. Suppression of mGluR1 synthesis by local antisense inhibition may provide a new therapeutic approach for the control of epileptogenesis.
Collapse
Affiliation(s)
- R S Greenwood
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599, USA
| | | | | | | |
Collapse
|
29
|
Minamiura Y, Hirayama K, Murata R, Matsuura S. Effect of hyperthermia on hippocampal synaptic transmission and CA3 kindling in developing rats. Brain Res 1996; 732:209-14. [PMID: 8891286 DOI: 10.1016/0006-8993(96)00522-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of hyperthermia on excitatory synaptic transmission in the hippocampal CA1 area in response to contralateral CA3 stimuli at 23-26 days of age and the influence of hyperthermia-induced seizures (HS) on the kindling phenomenon induced by CA3 stimulation at 27-29 days of age were investigated in developing rats. When hyperthermia (43.6 +/- 0.5 degrees C) did not induced seizures in conscious unrestrained rats, transient (< 1 h) potentiation was observed in electrically evoked synaptic responses (EPSP and population spikes). When generalized seizures were induced by hyperthermia (43.3 +/- 0.4 degrees C), long-term potentiation (LTP) was observed over 24 h. The difference in time course of the potentiation depended on whether high-voltage multispikes on the EEG, which sustained for longer than 20-30 s and associated with behavioral convulsions, appeared or not. In the following kindling session, the threshold intensity required to produce afterdischarges (ADs) in the HS rats (187 +/- 16 microA) was significantly lower than in the rats without HS (293 +/- 41 microA). However, there was no clear difference between the development of the kindling phenomenon to repeated tetanus at the threshold intensity in the rats with and without HS. It was concluded that potentiation of synaptic responses consists of two different components, transient potentiation induced by hyperthermia alone and LTP induced by HS, and that developing rats were susceptible to kindling epilepsy at the lower AD threshold intensity when experienced HS.
Collapse
Affiliation(s)
- Y Minamiura
- Department of Pediatrics, Osaka City University Medical School, Japan
| | | | | | | |
Collapse
|
30
|
Rossi J. Sensitization induced by kindling and kindling-related phenomena as a model for multiple chemical sensitivity. Toxicology 1996; 111:87-100. [PMID: 8711751 DOI: 10.1016/0300-483x(96)03394-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has been suggested that the neurobehavioral dysfunction observed in persons presenting with symptoms of Multiple Chemical Sensitivity (MCS) syndrome involves sensitization of neural circuits. Two hypotheses for the route of exposure in induction of neural sensitization in MCS are: (a) direct chemical stimulation of olfactory processes, or (b) general systemic response to inhaled chemicals. In either case, the mechanism of action may involve chemical kindling or kindling-related phenomena. A neural sensitization mechanism based on kindling or kindling-related phenomena is attractive and has been previously demonstrated in both in vitro and in vivo animal models. Without a testable animal model for chemically mediated induction of MCS, however, any argument that MCS is mediated by kindling or kindling-related phenomena is reduced to the circular argument "the mechanism of sensitization is sensitization." The present survey provides an overview of the experimental paradigms that result in sensitization, differentiated on the basis of probable neurophysiological and neurochemical mechanisms. Neurophysiological potentiation, electrical kindling, chemical kindling and behavioral sensitization are evaluated and discussed in relationship to MCS.
Collapse
Affiliation(s)
- J Rossi
- Naval Medical Research Institute Detachment, Tri-Service Toxicology Consortium, Wright-Patterson AFB, OH 45433-7903, USA
| |
Collapse
|
31
|
Wada Y, Shiraishi J, Nakamura M, Koshino Y. Biphasic action of the histamine precursor L-histidine in the rat kindling model of epilepsy. Neurosci Lett 1996; 204:205-8. [PMID: 8938266 DOI: 10.1016/0304-3940(96)12358-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of the histamine precursor, L-histidine, were examined in the rat kindling model of epilepsy. The intraperitoneal (i.p.) administration of 800 mg/kg L-histidine significantly prolonged the latency to the onset of bilateral forelimb clonus of previously kindled seizures from the amygdala (AM), with no significant effect observed in the behavioral seizure stage or afterdischarge duration. In contrast, daily administration of L-histidine at the same dose prior to each electrical stimulation to the AM significantly facilitated both behavioral and electrographic seizure development of kindling. The present results indicate that although L-histidine can suppress secondary generalization of AM-kindled seizures, it possesses a facilitatory effect on the acquisition of kindling epileptogenesis, suggesting a biphasic action of histamine in kindling.
Collapse
Affiliation(s)
- Y Wada
- Department of Neuropsychiatry, Kanazawa University School of Medicine, Japan
| | | | | | | |
Collapse
|
32
|
Abstract
The nature and value of various animal models of epilepsy for the study and understanding of the human epilepsies are reviewed, with special reference to the ILAE classification of seizures. Kindling as a model of complex-partial seizures with secondary generalisation is treated in detail, dwelling principally on the evidence that the neurotransmitters glutamate and GABA are centrally involved in the kindling process. Kindling in the entorhinal cortex-hippocampus system and its relationship to LTP are analysed in detail. Changes in amino acid content in animal and human brain tissue following onset of the epileptic state are reviewed with special reference to glutamate and GABA. Studies of changes in the extent of basal and stimulus-evoked release of glutamate and GABA both in vivo (microdialysis) and in vitro (brain slices) are evaluated. This includes both kindling and other models of epilepsy, and microdialysis of human patients with epilepsy. Experiments which study the influence of pre-synaptic metabotropic glutamate receptors on glutamate release, and consequently on the extent of electrical kindling, are described. This pre-synaptic control of glutamate release can be studied using synaptosomes. The significance of the ability of focal intracerebrally injected glutamate and NMDA to cause (chemical) kindling and the strong sensitivity of this process to pre-treatment with NMDA receptor antagonists is analysed. Electrical and chemical kindling effects are additive, indicating the existence of mechanisms in common. They are both sensitive to NMDA antagonists and the common mechanism is probably NMDA receptor activation due to the presence of exogenous (chemical) or endogenous (electrically-released) extracellular glutamate. The participation of the NMDA receptor in the generation of the spontaneous hyperactivity which characterises the chronic epileptic state is reviewed. This includes the entry of Ca2+ to stimulate various post-synaptic phosphorylation processes, and possible modulation of NMDA receptor population size and sensitivity. The question of whether neurotransmitter glutamate is involved in initiation and/or spread of seizures is discussed.
Collapse
Affiliation(s)
- H F Bradford
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, U.K
| |
Collapse
|
33
|
Abstract
Various studies suggest that some sleep functions, especially some slow wave sleep functions, are indispensable in mammals and related to brain regulation. It has been proposed that two of these functions are the adjustment of emotional balance and the processing of acquired emotional memories. During waking, the gradual accumulation of various randomly learned emotional memories in the limbic structures would inevitably imbalance and disorganize emotional behaviors. Although the emotional balance can be restored during waking by the ascending NA, DA, ACh and 5-HT systems, their roles in memory retention and emotional regulation may sometimes be dissociated and their adjustment of the emotional balance can only be a transient effect. On the other hand, the function of slow wave sleep for emotional adjustment can be long-lasting and is in agreement with its function on the processing of emotional memories. As a result, these sleep functions become indispensable in preventing the emotional imbalance inevitably caused by the accumulation of emotional memories. The effects of rapid eye movement sleep on memory and emotional regulation are just opposite to those of slow wave sleep. Low vigilance is required as premise for sleep to accomplish these indispensable functions.
Collapse
Affiliation(s)
- Z J Cai
- Neurobehavioral Laboratory, Shanghai Brain Research Institute, P.R. China
| |
Collapse
|
34
|
Lopes da Silva FH, Kamphuis W, Titulaer M, Vreugdenhil M, Wadman WJ. An experimental model of progressive epilepsy: the development of kindling of the hippocampus of the rat. ITALIAN JOURNAL OF NEUROLOGICAL SCIENCES 1995; 16:45-57. [PMID: 7642351 DOI: 10.1007/bf02229074] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Kindling epileptogenesis was induced by periodic electrical stimulation of the Schaffer collateral/commissural pathway in the CA1 area of the rat hippocampus. The progressive nature of hippocampal kindling is demonstrated by a detailed description of the behavioral signs and the progressive increase of the after-discharge duration in the course of kindling acquisition. Furthermore, the evolution of the alterations in the paired-pulse local evoked field potentials and the modifications of the GABAA receptor binding and of the expression of mRNAs encoding for the subunits of the GABAA and glutamate receptors are considered. Evidence is presented that during kindling opposite changes occur in the CA1 and the fascia dentata in terms of the balance between excitation and inhibition due to contrasting changes in GABA-mediated inhibitory function.
Collapse
Affiliation(s)
- F H Lopes da Silva
- Graduate School of Neurosciences Amsterdam, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Geinisman Y, Detoledo-Morrell L, Morrell F, Heller RE. Hippocampal markers of age-related memory dysfunction: behavioral, electrophysiological and morphological perspectives. Prog Neurobiol 1995; 45:223-52. [PMID: 7777673 DOI: 10.1016/0301-0082(94)00047-l] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Y Geinisman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
36
|
Iwasa H, Hasegawa S, Kikuchi S, Watanabe K, Sato T. Amygdaloid kindling elicits persistent changes in pertussis toxin-catalyzed ADP-ribosylation. Epilepsia 1994; 35:855-60. [PMID: 8082634 DOI: 10.1111/j.1528-1157.1994.tb02523.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We examined the changes in pertussis toxin (PTX)-catalyzed ADP-ribosylation in amygdaloid-kindled rats to clarify the role of G proteins in the basic mechanisms of epilepsies. Autoradiographic analysis showed a remarkable increase in PTX-catalyzed ADP-ribosylation in 39-41-kDa proteins in hippocampus and cerebral cortex of kindled animals. The 39- to 41-kDa proteins were shown to be alpha-subunits of Gi and Go by immunoblotting with specific anti-Gi alpha and anti-Go alpha. The increase in ADP-ribosylation of these proteins was observed on stimulated and unstimulated sides of brains 24 h after the last generalized seizure and persisted for at least 3-4 weeks. These results suggest that persistent alterations in signal transduction through Gi and Go might be related to acquisition of long-lasting epileptogenesis.
Collapse
Affiliation(s)
- H Iwasa
- Department of Neuropsychiatry, Faculty of Medicine, Chiba University, Japan
| | | | | | | | | |
Collapse
|
37
|
Sutula TP, Cavazos JE, Woodard AR. Long-term structural and functional alterations induced in the hippocampus by kindling: implications for memory dysfunction and the development of epilepsy. Hippocampus 1994; 4:254-8. [PMID: 7842046 DOI: 10.1002/hipo.450040305] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T P Sutula
- Department of Neurology, University of Wisconsin, Madison 53792
| | | | | |
Collapse
|
38
|
Hirayama K, Murata R, Matsuura S. Effects of an N-methyl-D-aspartate antagonist and a GABAergic antagonist on entorhinal tetanic responses during the early stages of amygdala kindling in rats. Neurosci Res 1994; 19:397-405. [PMID: 8090369 DOI: 10.1016/0168-0102(94)90081-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Changes in synaptic potentials during each train stimulation (tetanic responses) have been suggested to intimately relate to the development of kindling. We examined the effects of an NMDA antagonist, carboxypiperazinephosphonate (CPP), and a GABAergic antagonist, picrotoxin, on entorhinal tetanic responses evoked by train stimuli (10 Hz, 100 pulses) at the developmental stage (seizure stage; 0-2) of amygdala kindling in conscious rats, to clarify the significance of facilitation in tetanic responses and the roles of NMDA and GABA receptors in the development of kindling. Facilitation of tetanic responses was noted as a progressive increase in both amplitude and duration of negative potentials in the tetanic responses, especially during the later half of train pulses (51-100). The negative potential area (mV x ms) of the averaged tetanic responses was used as an estimate of the magnitudes of excitatory synaptic activity in the tetanic responses, and correlated significantly (P < 0.001) with the duration of afterdischarges (AD). CPP (10 mg/kg) reversibly blocked AD in association with a significant decrease (P < 0.05) in the negative potential area. The CPP-sensitive component consisted of a slow negative potential with a duration longer than 60 ms and was greater in the later tetanic responses (51-100) than the earlier ones (1-50). Picrotoxin (2-3 mg/kg), which did not produce convulsions, significantly (P < 0.005) increased the negative potential area in the tetanic responses in association with a reversible decrease in the AD threshold. Although positive potentials ascribable to inhibitory synaptic activity were often negligible in the tetanic responses in controls, picrotoxin further decreased the positive potentials of tetanic responses, if any.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Hirayama
- Department of Physiology, Osaka City University Medical School, Japan
| | | | | |
Collapse
|
39
|
Trommer BL, Pasternak JF, Nelson PJ, Colley PA, Kennelly JJ. Perforant path kindling alters dentate gyrus field potentials and paired pulse depression in an age-dependent manner. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 79:115-21. [PMID: 8070055 DOI: 10.1016/0165-3806(94)90054-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of rapid perforant path kindling on field potentials and paired pulse depression were studied in the dentate gyrus of rats at four developmental stages: 14-16 days, 20-22 days, 27-29 days and 40-60 days (adult). In rats 14-29 days kindling was associated with sustained potentiation of population spike amplitude and population EPSP slope; in adults a progressive decline was seen in both measures. Inhibitory circuitry as assessed by paired pulse depression was intact at all ages studied. Kindling produced no lasting changes in this measure at 14-22 days; in the older age groups a significant increase in paired pulse depression was seen. Thus immature animals differed from adults in that they manifested persistent facilitation of excitatory transmission as a result of kindling and failed to mount a compensatory inhibitory response. These results suggest that the balance between excitation and inhibition is more readily shifted toward excitation in immature animals in a manner that may contribute to their unique vulnerability to epileptogenesis.
Collapse
Affiliation(s)
- B L Trommer
- Division of Neurology, Evanston Hospital, IL 60201
| | | | | | | | | |
Collapse
|
40
|
Schneiderman JH, Sterling CA, Luo R. Hippocampal plasticity following epileptiform bursting produced by GABAA antagonists. Neuroscience 1994; 59:259-73. [PMID: 7911981 DOI: 10.1016/0306-4522(94)90594-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of epileptiform bursts on hippocampal excitability were examined in the CA3 region of guinea-pig hippocampal slices. Partial blockade of gamma-aminobutyric acidA (GABAA)-mediated inhibition by 500 IU/ml penicillin produced low frequency (2-4 Hz) "pro-convulsant" field potential oscillations. Normal spontaneous activity recovered less than 30 min after the penicillin was rinsed out providing bursting was prevented. Synchronized bursting rarely began on its own even after 1 h in penicillin 500 IU/ml, but could be initiated in most slices after one to eight all-or-none bursts were evoked by low-intensity, low-frequency (0.2-0.25 Hz) stimuli. Spontaneous bursting, once initiated, persisted for at least 1 h without further stimulation suggesting that a small number of bursts produced a long-lasting increase in excitability. Bursts disappeared more slowly than anticipated after convulsants were rinsed out and were followed by "post-burst" oscillations with different frequency characteristics than proconvulsant oscillations which persisted for at least 4 h. Selective augmentation of evoked N-methyl-D-aspartate excitatory postsynaptic potentials appeared to be the critical first step in the initiation of bursting. The specific N-methyl-D-aspartate antagonist, 2-amino-5-phosphonovaleric acid (50-100 microM), only partially suppressed pro-convulsant oscillations in partially disinhibited slices but completely prevented stimulus-triggered spontaneous bursting and prolonged hyperexcitability. Although N-methyl-D-aspartate receptors were necessary for the induction of bursting in partially disinhibited slices, they were not required to initiate bursting after more complete disinhibition. However, when 2-amino-5-phosphonovaleric acid was applied prior to and during perfusion with 2000 IU/ml penicillin, spontaneous bursts occurred at long, irregular intervals and lacked afterdischarges. These bursts rapidly disappeared upon penicillin washout and were not followed by persistent post-burst oscillations. N-methyl-D-aspartate antagonists applied only after bursts already established in penicillin blocked the afterdischarges but did not reduce the burst frequency. These observations indicate that epileptiform bursts can produce long-lasting, hippocampal hyperexcitability. The induction of these plastic changes requires N-methyl-D-aspartate receptor activation which then enhances both N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor mechanisms. Furthermore, N-methyl-D-aspartate excitatory postsynaptic potentials can participate in triggering spontaneous bursts but this role is masked once plasticity has occurred. Partial disinhibition produces a pro-convulsant state which does not induce long-lasting changes in hippocampal excitability but renders the neuronal network vulnerable to develop persistent epileptiform bursting with small additional excitatory inputs.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
41
|
Leung LS, Au AS. Long-term potentiation as a function of test pulse intensity: a study using input/output profiles. Brain Res Bull 1994; 33:453-60. [PMID: 8124583 DOI: 10.1016/0361-9230(94)90289-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Input/output profiles of the population responses in CA1 were recorded in the rat hippocampal slice in vitro following stimulation of the Schaffer collaterals before and after theta-frequency patterned primed-bursts (PBs). The most robust potentiation was found for the population spike amplitude, which reached > 200% at low intensity test pulses, but decreased at high intensity. The latency of the population spike was more consistently decreased at high than low stimulus intensities. The enhancement of the population dendritic EPSPs was larger at low than high intensity. Intracellular recordings from CA1 neurons indicated that the intracellular and population EPSPs showed a similar saturation with stimulus intensity, while all single neurons fired at 60 microA intensity when the population spike only reached a mean 70% of its maximal amplitude, suggesting that population spike increase at > 60 microA intensity or following potentiation was caused by increased firing synchrony among neurons. It is suggested that input/output profiles are necessary for the standardization of the degree of long-term potentiation among different laboratories.
Collapse
Affiliation(s)
- L S Leung
- Department of Clinical Neurological Sciences, University Hospital, University of Western Ontario, London, Canada
| | | |
Collapse
|
42
|
Wieraszko A, Seyfried TN. Influence of audiogenic seizures on synaptic facilitation in mouse hippocampal slices is mediated by N-methyl-D-aspartate receptor. Epilepsia 1993; 34:979-84. [PMID: 7902271 DOI: 10.1111/j.1528-1157.1993.tb02122.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The influence of audiogenic seizures (AGS) on synaptic facilitation was studied in DBA/2J (D2) and C57BL/6J (B6) mice. AGS susceptibility is inherited in D2 mice, but can be acquired in AGS-resistant B6 mice through acoustic priming. The experiments were performed on hippocampal slices obtained from D2 and B6 mice both with and without seizures. Long-term potentiation (LTP) and low-Mg(2+)-induced synaptic facilitation (LMISF) were evaluated after stimulation of Schaffer collaterals. The magnitude of LTP and LMISF was significantly greater in slices obtained from mice with seizures than from mice without seizures in both strains. Seizure-induced enhancement of LTP and LMISF was markedly reduced by the N-methyl-D-aspartate (NMDA) receptor antagonist AP-5. The noncompetitive NMDA receptor antagonist MK 801 reduced the efficiency of priming in B6 mice and abolished AGS in D2 mice and primed B6 mice. The data suggest that audiogenic seizures can enhance synaptic facilitation through activation of the NMDA receptor.
Collapse
Affiliation(s)
- A Wieraszko
- Department of Biology, College of Staten Island/CUNY 10301
| | | |
Collapse
|
43
|
Namba T, Morimoto K, Yamada N, Otsuki S. Antiepileptogenic action of 7-chlorokynurenic acid on amygdala kindling of rats. Pharmacol Biochem Behav 1993; 46:275-81. [PMID: 8265681 DOI: 10.1016/0091-3057(93)90353-u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To investigate the role of strychnine-insensitive glycine receptors in epilepsy, we studied the effects of 7-chlorokynurenic acid (7-CK), a selective strychnine-insensitive glycine receptor antagonist, on amygdala kindling development and previously amygdala-kindled seizures in rats. ICV administration of 7-CK (10 or 20 micrograms) suppressed amygdala kindling development, according to the motor seizure stage and afterdischarge development, in a dose-dependent manner. However, 7-CK had no significant effect on previously kindled seizures at either of these doses nor did 20 micrograms at any time (15 min, 30 min, 2 h, and 24 h) after injection studied. These results demonstrate that this selective strychnine-insensitive glycine receptor antagonist has antiepileptogenic activity and suggest a role for the glycine receptors in the contribution of the NMDA receptor complex to epileptogenic events.
Collapse
Affiliation(s)
- T Namba
- Department of Neuropsychiatry, Okayama University Medical School, Japan
| | | | | | | |
Collapse
|
44
|
Bawin SM, Satmary WM, Adey WR. Roles of the NMDA and quisqualate/kainate receptors in the induction and expression of kindled bursts in rat hippocampal slices. Epilepsy Res 1993; 15:7-13. [PMID: 8391983 DOI: 10.1016/0920-1211(93)90003-p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We used combinations of NMDA and quisqualate/kainate (Q/K) receptor antagonists and low Mg2+ (0.1 mM) solutions to study the respective roles of these receptors during in vitro kindling of interictal bursts in the CA3 area of rat hippocampal slices. Intracellular and extracellular recordings in CA3 showed that Q/K receptors were not necessary for the induction of kindling once the Mg2+ block of NMDA was alleviated, but that the expression of bursts kindled via NMDA-driven mechanisms was Q/K-dependent.
Collapse
Affiliation(s)
- S M Bawin
- Department of Physiology, Loma Linda University, CA
| | | | | |
Collapse
|
45
|
Ishida N, Kasamo K, Nakamoto Y, Suzuki J. Epileptic seizure of El mouse initiates at the parietal cortex: depth EEG observation in freely moving condition using buffer amplifier. Brain Res 1993; 608:52-7. [PMID: 8495349 DOI: 10.1016/0006-8993(93)90773-g] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The initiation site of seizure discharges and the relationship between behavioral manifestations and electroencephalography were investigated in the El mouse, a hereditary epilepsy model. The chronic depth electrodes were implanted stereotaxically into the frontal cortex, parietal cortex, temporal cortex, hippocampus, striatum, amygdaloid complex, non-specific nuclei of thalamus and substantia nigra. Electrical activities were recorded in freely moving condition with use of the buffer amplifier devised in the laboratory and behaviors were monitored simultaneously. Seizure spike discharges started in the parietal cortex and spread out into other brain areas. When the hippocampus was involved, the tonic convulsion occurred behaviorally. The paper describes the first direct evidence of the initiation and propagation of seizure discharges in the brain of El mouse.
Collapse
Affiliation(s)
- N Ishida
- Psychiatric Research Institute of Tokyo, Japan
| | | | | | | |
Collapse
|
46
|
Jones LS, Grooms SY, Lapadula DM, Lewis DV. Protein synthesis inhibition blocks maintenance but not induction of epileptogenesis in hippocampal slice. Brain Res 1992; 599:338-44. [PMID: 1291037 DOI: 10.1016/0006-8993(92)90410-b] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have been examining the role of protein synthesis in the development and maintenance of spontaneous bursting in the rat hippocampal slice. We used stimulus train induced bursting (STIB) as an in vitro model for epileptogenesis, to study the effects of 3 different protein synthesis inhibitors (cycloheximide, anisomycin, puromycin) on the development of bursting. We report here that none of these inhibitors blocked the induction of bursting, suggesting that protein synthesis is not essential for the development of electrically induced bursting. However, when established spontaneous bursting was examined in the presence of cycloheximide, the duration of the bursting phase was markedly reduced, suggesting that the maintenance of spontaneous bursting in the early hours requires ongoing protein synthesis.
Collapse
Affiliation(s)
- L S Jones
- Department of Developmental Biology and Anatomy, University of South Carolina School of Medicine, Columbia 29208
| | | | | | | |
Collapse
|
47
|
Shouse MN, Dittes P, Langer J, Nienhuis R. Ontogeny of feline temporal lobe epilepsy, II: Stability of spontaneous sleep epilepsy in amygdala-kindled kittens. Epilepsia 1992; 33:789-98. [PMID: 1396418 DOI: 10.1111/j.1528-1157.1992.tb02183.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We previously described a model of spontaneous "sleep epilepsy" in kindled kittens with temporal lobe epilepsy (TLE). We now describe the postkindling course of this model from preadolescence to maturity and suggest pathophysiologic mechanisms. Spontaneous epilepsy, particularly generalized tonic-clonic convulsions (GTCs), developed 1h to 4 months after amygdala kindling and persisted to adulthood. At first, GTCs were detected only in sleep; later, convulsions also occurred during wakefulness. Two factors were consistently associated with the sequential onset of sleep and waking GTCs: seizure clusters and anatomic seizure localization. (1) Seizure clusters. Cats with infrequent or unclustered GTCs continued to exhibit "sleep epilepsy," defined by convulsions occurring exclusively during sleep. In contrast, cats with frequent seizure clusters developed recurrent or terminal convulsive status in conjunction with GTCs during waking and sleep. Severe seizure manifestations therefore appeared to contribute to the dissociation of convulsions from the sleep-wake cycle. (2) Anatomical seizure localization. Focal seizure origin appeared to differentiate sleep from waking GTCs. Onset during sleep was first recorded in the kindled amygdala, whereas onset during waking was initially detected outside the temporal lobe. Findings thus suggest secondary "kindling" of multifocal epilepsy. Secondary epileptogenesis is consistent with "transsynaptic" kindling effects. This phenomenon is defined in mature animals by rapid secondary site kindling (transfer) and subtle morphologic changes distal to the stimulating electrode. Transfer may be accentuated by youth, because kittens developed spontaneous seizure foci in previously unstimulated tissue. Moreover, multifocal interactions and diffuse cell loss were implicated as possible mechanisms. Collectively, the findings indicate complications with early onset TLE in kindled cats. Onset during youth can have an unfavorable prognosis, reflected by recurrent status epilepticus and multifocal epilepsy with convulsions distributed throughout the sleep-wake cycle.
Collapse
Affiliation(s)
- M N Shouse
- Department of Anatomy and Cell Biology, UCLA School of Medicine
| | | | | | | |
Collapse
|
48
|
Kubota T, Jibiki I, Fujimoto K, Yamaguchi N. Facilitative effect of carbamazepine on previously induced hippocampal long-term potentiation. Pharmacol Biochem Behav 1992; 42:843-7. [PMID: 1513867 DOI: 10.1016/0091-3057(92)90038-h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of carbamazepine (CBZ) on previously induced hippocampal long-term potentiation (LTP) were examined. Acute experiments were performed on 33 adult, male rabbits. Field potentials in the dentate gyrus were elicited by single shocks to the perforant path, and LTP was induced by tetanic stimulation to the pathway without induction of seizure discharge. At a CBZ serum level of about 5 micrograms/ml (value +/- SD = 5.40 +/- 1.28 micrograms/ml), the previously induced LTP in population spikes (PSs) and population excitatory postsynaptic potentials (EPSPs) was facilitated. At a CBZ serum level of about 15 micrograms/ml (value +/- SD = 14.28 +/- 1.29 micrograms/ml), the LTP in PS alone was decreased. The effects of carbamazepine on synaptic inhibition were examined by the paired-pulse test. The inhibition was enhanced with induction of LTP. After administration of CBZ, at a CBZ serum level of about 5 micrograms/ml the inhibition was further enhanced, while it was attenuated at a CBZ serum level of about 15 micrograms/ml. These results suggest that CBZ has a facilitative effect on previously induced LTP.
Collapse
Affiliation(s)
- T Kubota
- Department of Neuropsychiatry, Kanazawa University School of Medicine, Japan
| | | | | | | |
Collapse
|
49
|
Morimoto K, Katayama K, Inoue K, Sato K. Effects of competitive and noncompetitive NMDA receptor antagonists on kindling and LTP. Pharmacol Biochem Behav 1991; 40:893-9. [PMID: 1840082 DOI: 10.1016/0091-3057(91)90103-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the present study, comparative studies of the effects of competitive and noncompetitive antagonists of NMDA receptors (CPP, CGS19755 and MK-801) on two models of neuronal plasticity, kindling and long-term potentiation (LTP), were performed in rats. Systemic administration of CPP (5, 10 mg/kg), CGS19755 (5, 10 mg/kg) or MK-801 (1, 2 mg/kg) strongly retarded kindling development from the amygdala (AM), in which the early stage of kindled seizures and the growth of afterdischarges (ADs) recorded from the AM were significantly suppressed. After establishment of kindling, however, these compounds only reduced the previously AM-kindled seizure stage without shortening the AD duration. These NMDA receptor antagonists with the same dose sufficient for suppressing AM kindling almost completely blocked LTP of the synaptic component in the hippocampal dentate gyrus following high-frequency trains of the perforant path in urethane-anesthetized rats. These results further support the hypothesis that neuronal plasticity is induced by activation of the NMDA receptor complex and one of the basic neuronal mechanisms underlying kindling may be a long-lasting increase in synaptic transmission.
Collapse
Affiliation(s)
- K Morimoto
- Department of Neuropsychiatry, Okayama University Medical School, Japan
| | | | | | | |
Collapse
|
50
|
Robinson GB. Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. II. Effects of the NMDA antagonist MK-801. Brain Res 1991; 562:26-33. [PMID: 1799870 DOI: 10.1016/0006-8993(91)91182-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of the non-competitive N-methyl-D-aspartate antagonist MK-801 on the early development of kindling-induced potentiation was examined in the rabbit hippocampal dentate gyrus. MK-801 (0.5 mg/kg) was administered 2 h before each daily kindling stimulation was applied to the perforant path. This treatment continued for the first 10 days of kindling. MK-801 depressed the growth of the afterdischarge duration and suppressed development of behavioral seizures. MK-801 did not block kindling-induced potentiation of either the perforant path-dentate granule cell population spike or excitatory postsynaptic potential. Random impulse train stimulation and non-linear systems analytic techniques were used to examine kindling-induced potentiation of presumed GABAergic recurrent inhibitory circuits. Both the magnitude and duration of kindling-induced response inhibition, to the second of each pair of impulses within the train, were reduced in rabbits pretreated with MK-801. These results suggest that MK-801 differentially affects kindling-induced potentiation of excitatory and inhibitory circuits within the rabbit hippocampal dentate gyrus.
Collapse
Affiliation(s)
- G B Robinson
- Department of Psychology, University of New Brunswick, Fredericton, Canada
| |
Collapse
|