1
|
Bonelli R, Woods SM, Lockwood S, Bishop PN, Khan KN, Bahlo M, Ansell BRE, Fruttiger M. Spatial distribution of metabolites in the retina and its relevance to studies of metabolic retinal disorders. Metabolomics 2023; 19:10. [PMID: 36745234 PMCID: PMC9902429 DOI: 10.1007/s11306-022-01969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/21/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The primate retina has evolved regional specialisations for specific visual functions. The macula is specialised towards high acuity vision and is an area that contains an increased density of cone photoreceptors and signal processing neurons. Different regions in the retina display unique susceptibility to pathology, with many retinal diseases primarily affecting the macula. OBJECTIVES To better understand the properties of different retinal areas we studied the differential distribution of metabolites across the retina. METHODS We conducted an untargeted metabolomics analysis on full-thickness punches from three different regions (macula, temporal peri-macula and periphery) of healthy primate retina. RESULTS Nearly half of all metabolites identified showed differential abundance in at least one comparison between the three regions. Furthermore, mapping metabolomics results from macula-specific eye diseases onto our region-specific metabolite distributions revealed differential abundance defining systemic metabolic dysregulations that were region specific. CONCLUSIONS The unique metabolic phenotype of different retinal regions is likely due to the differential distribution of different cell types in these regions reflecting the specific metabolic requirements of each cell type. Our results may help to better understand the pathobiology of retinal diseases with region specificity.
Collapse
Affiliation(s)
- Roberto Bonelli
- Population Health & Immunity Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sasha M Woods
- UCL Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK
| | - Sarah Lockwood
- UC Davis, CA National Primate Research Centre, Davis, CA, 95616, USA
| | - Paul N Bishop
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Kamron N Khan
- The Leeds Teaching Hospitals NHS Trust, St. James's Hospital, Leeds, LS9 7TF, UK
| | - Melanie Bahlo
- Population Health & Immunity Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brendan R E Ansell
- Population Health & Immunity Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK.
| |
Collapse
|
2
|
Becker I, Wang-Eckhardt L, Lodder-Gadaczek J, Wang Y, Grünewald A, Eckhardt M. Mice deficient in the NAAG synthetase II gene Rimkla are impaired in a novel object recognition task. J Neurochem 2021; 157:2008-2023. [PMID: 33638175 DOI: 10.1111/jnc.15333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 12/27/2022]
Abstract
N-acetylaspartylglutamate (NAAG) is an abundant neuropeptide in the mammalian nervous system, synthesized by two related NAAG synthetases I and II (NAAGS-I and -II) encoded by the genes Rimklb and Rimkla, respectively. NAAG plays a role in cognition and memory, according to studies using inhibitors of the NAAG hydrolase glutamate carboxypeptidase II that increase NAAG concentration. To examine consequences of reduced NAAG concentration, Rimkla-deficient (Rimkla-/- ) mice were generated. These mice exhibit normal NAAG level at birth, likely because of the intact Rimklb gene, but have significantly reduced NAAG levels in all brain regions in adulthood. In wild type mice NAAGS-II was most abundant in brainstem and spinal cord, as demonstrated using a new NAAGS-II antiserum. In the hippocampus, NAAGS-II was only detectable in neurons expressing parvalbumin, a marker of GABAergic interneurons. Apart from reduced open field activity, general behavior of adult (6 months old) Rimkla-/- mice examined in different tests (dark-light transition, optokinetic behavior, rotarod, and alternating T-maze) was not significantly altered. However, Rimkla-/- mice were impaired in a short-term novel object recognition test. This was also the case for mice lacking NAA synthase Nat8l, which are devoid of NAAG. Together with results from previous studies showing that inhibition of the NAAG degrading enzyme glutamate carboxypeptidase II is associated with a significant improvement in object recognition, these results suggest a direct involvement of NAAG synthesized by NAAGS-II in the memory consolidation underlying the novel object recognition task.
Collapse
Affiliation(s)
- Ivonne Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Julia Lodder-Gadaczek
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yong Wang
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Agathe Grünewald
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Kozik EM, Marzluff EM, Lindgren CA. Evidence of NAAG-family tripeptide NAAG 2 in the Drosophila nervous system. J Neurochem 2020; 156:38-47. [PMID: 32885844 DOI: 10.1111/jnc.15173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023]
Abstract
N-acetylaspartylglutamate (NAAG) is a common neurotransmitter in the mammalian nervous system; however, it has never been reported in the nervous system of the fruit fly, Drosophila melanogaster. Using antiserum against NAAG, we localized NAAG-like immunoreactivity to neurons in the ventral nerve cord and to type Is glutamatergic nerve terminals in larval neuromuscular junctions. Using liquid chromatography tandem mass spectrometry (LC-MS), we failed to find NAAG but found the related peptide N-acetylaspartylglutamylglutamate (NAAG2 ) in Drosophila CNS and body wall tissue. This is the first report of any NAAG-family peptide in the nervous system of Drosophila and is also the first report of NAAG2 being present in a much higher concentration than NAAG in the nervous system of any species. Thus, the larval fruit fly presents an interesting model for the study of the functional role of NAAG2 of which very little is known-especially in the absence of an abundance of NAAG.
Collapse
Affiliation(s)
- Emily M Kozik
- Biology Department, Grinnell College, Grinnell, IA, USA
| | | | | |
Collapse
|
4
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
5
|
Becker I, Lodder J, Gieselmann V, Eckhardt M. Molecular characterization of N-acetylaspartylglutamate synthetase. J Biol Chem 2010; 285:29156-64. [PMID: 20643647 DOI: 10.1074/jbc.m110.111765] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dipeptide N-acetylaspartyl-glutamate (NAAG) is an abundant neuropeptide in the mammalian brain. Despite this fact, its physiological role is poorly understood. NAAG is synthesized by a NAAG synthetase catalyzing the ATP-dependent condensation of N-acetylaspartate and glutamate. In vitro NAAG synthetase activity has not been described, and the enzyme has not been purified. Using a bioinformatics approach we identified a putative dipeptide synthetase specifically expressed in the nervous system. Expression of the gene, which we named NAAGS (for NAAG synthetase) was sufficient to induce NAAG synthesis in primary astrocytes or CHO-K1 and HEK-293T cells when they coexpressed the NAA transporter NaDC3. Furthermore, coexpression of NAAGS and the recently identified N-acetylaspartate (NAA) synthase, Nat8l, in CHO-K1 or HEK-293T cells was sufficient to enable these cells to synthesize NAAG. Identity of the reaction product of NAAGS was confirmed by HPLC and electrospray ionization tandem mass spectrometry (ESI-MS). High expression levels of NAAGS were restricted to the brain, spinal cord, and testis. Taken together our results strongly suggest that the identified gene encodes a NAAG synthetase. Its identification will enable further studies to examine the role of this abundant neuropeptide in the vertebrate nervous system.
Collapse
Affiliation(s)
- Ivonne Becker
- Institute of Biochemistry and Molecular Biology, University of Bonn, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
6
|
Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 2007; 81:89-131. [PMID: 17275978 PMCID: PMC1919520 DOI: 10.1016/j.pneurobio.2006.12.003] [Citation(s) in RCA: 1006] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 12/07/2006] [Accepted: 12/11/2006] [Indexed: 01/02/2023]
Abstract
The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal central nervous system (CNS) development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research will be required to more fully understand the biochemical functions served by NAA in CNS development and activity, and additional functions are likely to be discovered.
Collapse
Affiliation(s)
- John R Moffett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Building C, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | | | |
Collapse
|
7
|
Tieman SB. Cellular Localization of NAAG. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:289-301; discussion 361-3. [PMID: 16802721 DOI: 10.1007/0-387-30172-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Suzannah Bliss Tieman
- Center for Neuroscience Research and Department of Biological Sciences, The University at Albany, State University of New York, Albany, New York, 12222 USA.
| |
Collapse
|
8
|
Moffett JR, Namboodiri AMA. Expression of N-Acetylaspartate and N-Acetylaspartylglutamate in the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:7-26; discussion 361-3. [PMID: 16802702 DOI: 10.1007/0-387-30172-0_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- John R Moffett
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda MD, 20814, USA.
| | | |
Collapse
|
9
|
Coyle JT. A brief overview of N-acetylaspartate and N-acetylaspartylglutamate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:1-6; discussion 361-3. [PMID: 16802701 DOI: 10.1007/0-387-30172-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Joseph T Coyle
- Department of Psychiatry and Neuroscience, Harvard Medical School, McLean Hospital, 115 Mill St, Belmont, MA 02178-9106, USA,
| |
Collapse
|
10
|
Wroblewska B. NAAG as a neurotransmitter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:317-25; discussion 361-3. [PMID: 16802723 DOI: 10.1007/0-387-30172-0_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Demonstration of cholinergic ganglion cells in rat retina: expression of an alternative splice variant of choline acetyltransferase. J Neurosci 2003. [PMID: 12684474 DOI: 10.1523/jneurosci.23-07-02872.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine acts as a neurotransmitter in the retina. Although previous physiological studies have indicated that some retinal ganglion cells may be cholinergic, several immunohistochemical studies using antibodies to choline acetyltransferase (ChAT) have stained only amacrine cells but not ganglion cells. Recently, we identified a splice variant of ChAT mRNA, lacking exons 6-9, in rat peripheral nervous system. The encoded protein was designated as ChAT of a peripheral type (pChAT), against which an antiserum was raised. In the present study, we examined expression of pChAT in rat retina, both at the protein level by immunohistochemistry using the antiserum and at the mRNA level by RT-PCR. Immunohistochemistry revealed that although no positive neurons were found in untreated intact retinas, many neurons became immunoreactive for pChAT after intravitreal injection of colchicine. Damage of the optic nerve was also effective in disclosing positive cells. Such positive neurons were shown to be ganglion cells by double labeling with a retrograde tracer that had been injected into the contralateral superior colliculus. Western blot analysis and RT-PCR revealed a corresponding band to the pChAT protein and to the amplified pChAT gene fragment, respectively, in retinal samples. In addition, ChAT activity was definitely detected in retinofugal fibers of the optic nerve. These results indicate the presence of cholinergic ganglion cells in rat retina.
Collapse
|
12
|
Moffett JR. Reductions in N-acetylaspartylglutamate and the 67 kDa form of glutamic acid decarboxylase immunoreactivities in the visual system of albino and pigmented rats after optic nerve transections. J Comp Neurol 2003; 458:221-39. [PMID: 12619078 DOI: 10.1002/cne.10570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study compares the immunohistochemical distributions of N-acetylaspartylglutamate (NAAG) and the large isoform of the gamma-aminobutyric acid (GABA)-synthesizing enzyme glutamic acid decarboxylase (GAD(67)) in the visual system of albino and pigmented rats. Most retinal ganglion cells and their axons were strongly immunoreactive for NAAG, whereas GAD(67) immunoreactivity was very sparse in these cells and projections. In retinorecipient zones, NAAG and GAD(67) immunoreactivities occurred in distinct populations of neurons and in dense networks of strongly immunoreactive fibers and synapses. Dual-labeling immunohistochemistry indicated that principal neurons were stained for NAAG, whereas local interneurons were stained for GAD(67). In contrast to the distribution observed in retinorecipient zones, most or all neurons were doubly stained for NAAG and GAD(67) in the thalamic reticular nucleus. Ten days after unilateral optic nerve transection, NAAG-immunoreactive fibers and synapses were substantially reduced in all contralateral retinal terminal zones. The posttransection pattern of NAAG-immunoreactive synaptic loss demarcated the contralateral and ipsilateral divisions of the retinal projections. In addition, an apparent transynaptic reduction in GAD(67) immunoreactivity was observed in some deafferented areas, such as the lateral geniculate. These findings suggest a complicated picture in which NAAG and GABA are segregated in distinct neuronal populations in primary visual targets, yet they are colocalized in neurons of the thalamic reticular nucleus. This is consistent with NAAG acting as a neurotransmitter release modulator that is coreleased with a variety of classical transmitters in specific neural pathways.
Collapse
Affiliation(s)
- John R Moffett
- Department of Biology, Georgetown University, Washington, DC 20057-1229, USA.
| |
Collapse
|
13
|
Williamson LC, Eagles DA, Brady MJ, Moffett JR, Namboodiri MAA, Neale JH. Localization and Synaptic Release of N-acetylaspartylglutamate in the Chick Retina and Optic Tectum. Eur J Neurosci 2002; 3:441-451. [PMID: 12106183 DOI: 10.1111/j.1460-9568.1991.tb00831.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The neuropeptide, N-acetylaspartylglutamate (NAAG), was identified in the chick retina (1.4 nmol/retina) by HPLC, radioimmunoassay and immunohistochemistry. This acidic dipeptide was found within retinal ganglion cell bodies and their neurites in the optic fibre layer of the retina. Substantial, but less intense, immunoreactivity was detected in many amacrine-like cells in the inner nuclear layer and in multiple bands within the inner plexiform layer. In addition, NAAG immunoreactivity was observed in the optic fibre layer and in the neuropil of the superficial layers of the optic tectum, as well as in many cell bodies in the tectum. Using a newly developed, specific and highly sensitive (3 fmol/50 microl) radioimmunoassay for NAAG, peptide release was detected in isolated retinas upon depolarization with 55 mM extracellular potassium. This assay also permitted detection of peptide release from the optic tectum following stimulation of action potentials in retinal ganglion cell axons of the optic tract. Both of these release processes required the presence of extracellular calcium. Electrically stimulated release from the tectum was reversibly blocked by extracellular cadmium. These findings suggest that NAAG serves an extracellular function following depolarization-induced release from retinal amacrine neurons and from ganglion cell axon endings in the chick optic tectum. These data support the hypothesis that NAAG functions in synaptic communication between neurons in the visual system.
Collapse
Affiliation(s)
- Lura C. Williamson
- Department of Biology, Georgetown University, Washington D.C., USA 20057
| | | | | | | | | | | |
Collapse
|
14
|
Neale JH, Bzdega T, Wroblewska B. N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem 2000; 75:443-52. [PMID: 10899918 DOI: 10.1046/j.1471-4159.2000.0750443.x] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the progress of science, as in life, timing is important. The acidic dipeptide, N-acetylaspartylglutamate (NAAG), was discovered in the mammalian nervous system in 1965, but initially was not considered to be a neurotransmitter candidate. In the mid-1980s, a few laboratories revisited the question of NAAG's role in the nervous system and pursued hypotheses regarding its function that ranged from a precursor for the transmitter pool of glutamate to a direct role as a peptide transmitter. Since that time, NAAG has been tested against nearly all of the established criteria for identification of a neurotransmitter. It successfully meets each of these tests, including a concentrated presence in neurons and synaptic vesicles, release from axon endings in a calcium-dependent manner following initiation of action potentials, and extracellular hydrolysis by membrane-bound peptidase activity. NAAG is the most prevalent and widely distributed neuropeptide in the mammalian nervous system. NAAG activates NMDA receptors with a low potency that may vary among receptor subtypes, and it is a highly selective agonist at the type 3 metabotropic glutamate receptor (mGluR3). Acting through this receptor, NAAG reduces cyclic AMP levels, decreases voltage-dependent calcium conductance, suppresses excitotoxicity, influences long-term potentiation and depression, regulates GABA(A) receptor subunit expression, and inhibits synaptic release of GABA from cortical neurons. Cloning of peptidase activities against NAAG provides opportunities to study the cellular and molecular mechanisms by which synaptic NAAG peptidase activity is controlled. Given the codistribution of this peptide with a spectrum of traditional transmitters and its ability to activate mGluR3, we speculate that one role for NAAG following synaptic release is the activation of metabotropic autoreceptors that inhibit subsequent transmitter release. A second role is the production of extracellular glutamate following NAAG hydrolysis.
Collapse
Affiliation(s)
- J H Neale
- Department of Biology, Georgetown University, Washington, D.C., USA.
| | | | | |
Collapse
|
15
|
Harata N, Katayama J, Akaike N. Excitatory amino acid responses in relay neurons of the rat lateral geniculate nucleus. Neuroscience 1999; 89:109-25. [PMID: 10051221 DOI: 10.1016/s0306-4522(98)00308-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Responses to glutamate receptor agonists were recorded from identified relay neurons in the dorsal lateral geniculate nucleus of the rat, using the nystatin-perforated patch-clamp technique. Rapid application of glutamate, N-methyl-D-aspartate, (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate induced inward currents at a holding potential of -44 mV. The responses to low concentrations of each agonist were composed only of steady-state currents, but the responses to high concentrations were additionally composed of a rapid transient peak component except in the kainate-induced current. The currents induced by 10(-3)M N-methyl-D-aspartate in the external solution containing 0 mM Mg2+ and 10(-6)M glycine were reduced in amplitude when the external solution contained 1 mM Mg2+, and were abolished when the solution contained no glycine. The currents induced by a neurotransmitter candidate at retinogeniculate synapses, N-acetyl-aspartyl-glutamate, were markedly reduced in amplitude when the solution contained 1 mM Mg2+ or 10(-4)M DL-2-amino-5-phosphonovaleric acid. The current abolished in the Mg2+-containing, glycine-free solution (N-methyl-D-aspartate component) and the current remaining in the same solution (non-N-methyl-D-aspartate component) of the N-acetyl-aspartyl-glutamate response were both increased in a concentration-dependent manner, as the N-acetyl-aspartyl-glutamate concentration was increased. The current-voltage relationship of the currents induced by N-methyl-D-aspartate and N-acetyl-aspartyl-glutamate was characterized by Mg2+-dependent block at hyperpolarized potentials. The inward currents induced by 3 x 10(-4)M AMPA and 3 x 10(-4)M glutamate were markedly potentiated by 10(-4)M cyclothiazide, but the currents induced by 3 x 10(-4)M kainate and 10(-3)M N-acetyl-aspartyl-glutamate (non-N-methyl-D-aspartate component) were little affected. The currents induced by any agonist were not affected by 3 x 10(-4)g/ml concanavalin A. The current induced by 10(-4)M kainate was markedly suppressed by pretreatment with 10(-4)M AMPA or 10(-4)M glutamate, but only weakly by 10(-3)M N-acetyl-aspartylglutamate. The Ca2+ permeability (PCa/PCs) of the N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors was 9.57 and 0.16, respectively. These results suggest that dorsal lateral geniculate nucleus relay neurons of the rat possessed both Ca2+-permeable N-methyl-D-aspartate receptors and less permeable non-N-methyl-D-aspartate (presumably AMPA) receptors, and that N-acetyl-aspartyl-glutamate mainly acts at N-methyl-D-aspartate receptors with a weak kainate-like action on non-N-methyl-D-aspartate receptors.
Collapse
Affiliation(s)
- N Harata
- Department of Physiology, Kyushu University Faculty of Medicine, Fukuoka, Japan
| | | | | |
Collapse
|
16
|
Abstract
N-Acetylaspartylglutamate (NAAG) is a neuropeptide found in millimolar concentrations in brain that is localized to subpopulations of glutamatergic, cholinergic, GABAergic, and noradrenergic neuronal systems. NAAG is released upon depolarization by a Ca(2+)-dependent process and is an agonist at mGluR3 receptors and an antagonist at NMDA receptors. NAAG is catabolized to N-acetylaspartate and glutamate primarily by glutamate carboxypeptidase II, which is expressed on the extracellular surface of astrocytes. The levels of NAAG and the activity of carboxypeptidase II are altered in a regionally specific fashion in several neuropsychiatric disorders.
Collapse
Affiliation(s)
- J T Coyle
- Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts 02178, USA.
| |
Collapse
|
17
|
Renno WM, Lee JH, Beitz AJ. Light and electron microscopic immunohistochemical localization of N-acetylaspartylglutamate (NAAG) in the olivocerebellar pathway of the rat. Synapse 1997; 26:140-54. [PMID: 9131773 DOI: 10.1002/(sici)1098-2396(199706)26:2<140::aid-syn5>3.0.co;2-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The inferior olive (IO) is the sole contributor of climbing fibers (CF) to the Purkinje cells of the cerebellar cortex. Although the anatomy and the connectivity between the IO and the cerebellum have been well established, there is still controversy regarding the neurotransmitter systems mediating olivocerebellar projections. The excitatory amino acids, glutamate (Glu) and aspartate (Asp), have both been considered as neurotransmitter candidates of olivocerebellar projections in the rat. More recently N-acetylaspartylglutamate (NAAG) has also been proposed as a transmitter of cerebellar climbing fibers based on biochemical and electrophysiological data. The aim of the present study was to determine whether NAAG immunoreactivity is present in the IO and CF at the light and electron microscopic levels and to quantitate the amount of immunogold labeling in olivary neurons and climbing fiber terminals containing this dipeptide. A polyclonal antisera against NAAG was utilized with a peroxidase-labeled avidin-biotin procedure to demonstrate these immunoreactive neurons in the IO at the light microscopic level. Approximately 45% of olivary neurons display NAAG-like immunoreactivity, and their distribution is unevenly clustered throughout the inferior olive. Using postembedding immunogold electron microscopy in combination with quantitative procedures, we found the highest densities of gold particles in the axonal terminals synapsing on olivary neurons (101.0 particles/microns2), in CF terminals (96.3 particles/microns2), and in some mossy fiber terminals (101.0 particles/microns2). Approximately half of the climbing fiber terminals examined were unlabeled. Moderate labeling occurred in CF axons (70.8 particles/microns2), while IO neuronal perikarya were lightly but significantly labeled (41.6 particles/microns2). The localization of NAAG in the subset of cerebellar climbing fiber terminals provides anatomical support for the hypothesis that NAAG may serve as a neurotransmitter/neuromodulator candidate in the olivocerebellar pathway.
Collapse
Affiliation(s)
- W M Renno
- Department of Anatomy, King Saud University, College of Medicine, Abha, Saudi Arabia. A03A002@SAKSU00
| | | | | |
Collapse
|
18
|
Repérant J, Rio JP, Ward R, Wasowicz M, Miceli D, Medina M, Pierre J. Enrichment of glutamate-like immunoreactivity in the retinotectal terminals of the viper Vipera aspis: an electron microscope quantitative immunogold study. J Chem Neuroanat 1997; 12:267-80. [PMID: 9243346 DOI: 10.1016/s0891-0618(97)00018-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A post-embedding immunogold study was carried out to estimate the immunoreactivity to glutamate in retinal terminals, P axon terminals and dendrites containing synaptic vesicles in the superficial layers of the optic tectum of Vipera. Retinal terminals, identified following either intraocular injection of tritiated proline, horseradish peroxidase (HRP) or short-term survivals after retinal ablation, were observed to be highly glutamate-immunoreactive. A detailed quantitative analysis showed that about 50% of glutamate immunoreactivity was localized over the synaptic vesicles, 35.8% over mitochondria and 14.2% over the axoplasmic matrix. The close association of immunoreactivity with the synaptic vesicles could indicate that Vipera retino-tectal terminals may use glutamate as their neurotransmitter. P axon terminals and dendrites containing synaptic vesicles, strongly gamma-aminobutyric (GABA)-immunoreactive, were shown to be also moderately glutamate-immunoreactive, but two to three times less than retinal terminals. Moreover, in P axon terminals, the glutamate immunoreactivity was denser over mitochondria than over synaptic vesicles, possibly reflecting the 'metabolic' pool of glutamate, which serves as a precursor in the formation of GABA.
Collapse
Affiliation(s)
- J Repérant
- INSERM U-106, Laboratoire de Neuromorphologie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Endogenous circadian rhythms govern most aspects of physiology and behaviour in mammals, including body temperature, autonomic and endocrine function, and sleep-wake cycles. Such rhythms are generated by the suprachiasmatic nucleus of the hypothalamus (SCN), but are synchronised to the environmental light-dark cycle by photic cues perceived by the retina and conveyed to the SCN via the retinohypothalamic tract (RHT). This review considers many lines of evidence from diverse experimental approaches indicating that the RHT employs glutamate (or a related excitatory amino acid) as a neurotransmitter. Ultrastructural studies demonstrate the presence of glutamate in presynaptic terminals within the SCN. In situ hybridisation and immunocytochemical studies reveal the presence of several NMDA (NMDAR1, NMDAR2C), non-NMDA (GluR1, GluR2, GluR4) and metabotropic (mGluR1) glutamate receptor subunits in the SCN. Messenger RNA encoding a glutamate transporter protein is also present. In behavioural tests, glutamate antagonists can block the effects of light in phase-shifting circadian rhythms. Such treatments also block the induction of c-fos within SCN cells by light, whereas a glutamate agonist (NMDA) induces c-fos expression. In hypothalamic slice preparations in vitro, electrical stimulation of the optic nerves induces release of glutamate and aspartate, and glutamate antagonists block field potentials in the SCN evoked by stimulation of the optic nerve. Circadian rhythms of electrical activity which persist in vitro are phase shifted by application of glutamate in a manner which mimics the phase shifting effects of light in vivo. This wide range of experimental findings provides strong support for the hypothesis that glutamate is the principal neurotransmitter within the RHT, and thus conveys photic cues to the circadian timing system in the SCN.
Collapse
Affiliation(s)
- F J Ebling
- Department of Anatomy, University of Cambridge, U.K
| |
Collapse
|
20
|
Mize RR, Butler GD. Postembedding immunocytochemistry demonstrates directly that both retinal and cortical terminals in the cat superior colliculus are glutamate immunoreactive. J Comp Neurol 1996; 371:633-48. [PMID: 8841915 DOI: 10.1002/(sici)1096-9861(19960805)371:4<633::aid-cne11>3.0.co;2-k] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the excitatory neurotransmitter glutamate is known to be present in the cat superior colliculus (SC), the types of synapses that contain glutamate have not been examined. We, therefore, studied the ultrastructure of synaptic profiles labeled by a glutamate antibody by using electron microscopic postembedding immunocytochemistry. In addition, unilateral aspiration lesions of areas 17-18 were made at 5-28 days before death in order to determine whether degenerating terminals from visual cortex were glutamate immunoreactive (Glu-ir). Three types of axon terminal were glu-ir: 1) those containing large, round synaptic vesicles and pale mitochondria, characteristic of retinal terminals (RT profiles); 2) those containing small, round synaptic vesicles and dark mitochondria (RSD profiles); and 3) those containing large, round synaptic vesicles and dark mitochondria (RLD profiles). Measures of mean gold particle density revealed that RT, RSD, and RLD profiles had similar average grain densities (11.3-12.7 particles/unit area). Other labeled profile types included cell bodies, large-calibre dendrites, and myelinated axons. Axon terminals containing flattened synaptic vesicles and vesicle-containing presynaptic dendrites, both of which contain gamma-aminobutyric acid (GABA), had many fewer gold particles (3.6 and 4.8 mean particles/unit area, respectively). Following unilateral removal of visual cortex, normal RSD terminals were observed infrequently in the SC ipsilateral to the lesion. Synaptic terminals in the initial stages of degeneration were heavily labeled by the glutamate antibody, as were axon terminals and myelinated axons undergoing hypertrophied or neurofilamentous degeneration. These results show that both major sensory afferents to the superficial layers of cat SC contain glutamate--RT terminals from the retina and RSD terminals from visual cortex. The origin of RLD terminals is unknown.
Collapse
Affiliation(s)
- R R Mize
- Department of Anatomy, Louisiana State University Medical Center, New Orleans 70112, USA
| | | |
Collapse
|
21
|
Abstract
The acidic dipeptide N-acetylaspartylglutamate (NAAG), which satisfies many of the criteria for a neurotransmitter, was identified immunohistochemically within two human retinae. We observed NAAG immunoreactivity in retinal ganglion cells, their dendrites in the inner plexiform layer, and their axons in the optic nerve fiber layer. The vast majority of ganglion cells were stained, including displaced ganglion cells, ganglion cells of different sizes, and those whose dendrites arborized in the inner and outer sublaminae of the inner plexiform layer, that is, presumed On- and Off- cells. The sizes of labeled and unlabeled cells in the ganglion cell layer, as measured in counterstained material, suggest that the unlabeled cells consist primarily or only of displaced amacrine cells. We also saw immunoreactivity in small cells along the inner margin of the inner nuclear layer, presumably amacrine cells, and in small cells with little cytoplasm in the inner plexiform and ganglion cell layers, presumably displaced amacrine cells. These results are consistent with a role for NAAG in the transmission of visual information from the retina to the rest of the brain. Further, they are similar to those reported previously in rat, cat and monkey, thus demonstrating the relevance of previous studies to humans.
Collapse
Affiliation(s)
- S B Tieman
- Department of Biological Sciences, State University of New York, Albany 12222, USA.
| | | |
Collapse
|
22
|
Li X, Hallqvist A, Jacobson I, Orwar O, Sandberg M. Studies on the identity of the rat optic nerve transmitter. Brain Res 1996; 706:89-96. [PMID: 8720495 DOI: 10.1016/0006-8993(95)01185-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The possible role of glutamate, aspartate, sulfur-containing excitatory amino acids and gamma-glutamyl peptides as major transmitters in the rat optic nerve was evaluated. Four days following optic nerve lesion the K(+)-evoked Ca(2+)-dependent glutamate release was reduced to 31 +/- 16% (+/- S.D., n = 9) comparing release from slices of the denervated (contralateral to the lesion) and non-denervated (ipsilateral) superior colliculus, indicative of a major transmitter function for glutamate. However, significant decreases in glutamate release could not be detected seven days following the lesion (n = 5). Other studies have shown that optic nerve denervation induce formation of synapses of non-retinal origin and cause other cellular changes which may reduce the effect of deafferentation on glutamate release after 7 days. No significant change was observed in aspartate release following the lesion. The concentrations of cysteine sulfinate, cysteate, homocysteine sulfinate, homocysteate and O-sulfo-serine in the optic layers of the superior colliculus were below 1 nmol/g tissue (n = 6). Theoretical considerations indicate that this level is too low for a function of any of these as a major optic nerve transmitter. All postsynaptic components in the rat superior colliculus response, evoked by electrical optic nerve stimulation, were reduced by kynurenate (1-10 mM), a broad spectrum glutamate-receptor antagonist. The study gives further support for the view that glutamate is a major transmitter in the rat optic nerve.
Collapse
Affiliation(s)
- X Li
- Institute of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
23
|
Chen B, Pourcho RG. Morphological diversity and glutamate immunoreactivity of retinal terminals in the suprachiasmatic nucleus of the cat. J Comp Neurol 1995; 361:108-18. [PMID: 8550873 DOI: 10.1002/cne.903610109] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although the cat visual system has been the subject of intensive investigation, little attention has been given to the morphological features of ganglion cell projections to the suprachiasmatic nucleus. The present study has utilized anterograde transport of horseradish peroxidase and wheat germ agglutinin-conjugated horseradish peroxidase to label ganglion cell terminals in the cat suprachiasmatic nucleus. Visualization of the reaction product was facilitated through the use of gold-substituted silver intensification. Ganglion cell terminals were found to be morphologically diverse, making both asymmetric and symmetric contacts with postsynaptic processes. Synaptic vesicles were either scattered or densely packed, sometimes forming paracrystalline arrays. In contrast to other retinorecipient areas in which ganglion cell terminals have been characterized by the presence of lightly staining mitochondria, many of the retinal terminals in the suprachiasmatic nucleus were seen to contain darkly stained mitochondria. Postembedding antiglutamate immunocytochemistry was used to evaluate the level of endogenous glutamate in these ganglion cell terminals. Although morphologically diverse, all of the retinal terminals in the suprachiasmatic nucleus were glutamate positive, consistent with the postulated role of glutamate as the neurotransmitter of retinal ganglion cells.
Collapse
Affiliation(s)
- B Chen
- Department of Anatomy/Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
24
|
Ortega F, Hennequet L, Sarría R, Streit P, Grandes P. Changes in the pattern of glutamate-like immunoreactivity in rat superior colliculus following retinal and visual cortical lesions. Neuroscience 1995; 67:125-34. [PMID: 7477893 DOI: 10.1016/0306-4522(95)00057-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have investigated the pattern of glutamate-like immunoreactivity in the superficial layers of the rat superior colliculus by means of postembedding immunocytochemical methods for light and electron microscopy. At the light microscopic level, labelling was faintly to moderately intense in most perikarya of the stratum zonale, stratum griseum superficiale and stratum opticum. Furthermore, strong glutamate-immunoreactive terminal-like elements were accumulated most densely in stratum zonale, stratum griseum superficiale and stratum opticum. At the electron microscopic level, a postembedding immunogold method revealed that the vast majority of those labelled elements corresponded to retinal and visual cortical terminals. These profiles were about twice as heavily labelled as their postsynaptic partners. To determine the contribution of retinal and cortical afferents to the pattern of glutamate-like immunoreactivity, rats were subjected to right retinal ablation, left cortical ablation or combined right retinal and left cortical ablations. After retinal ablation, strongly labelled perikarya were observed in the retinorecipient layers. Furthermore, a prominent loss of glutamate-immunoreactive terminal-like elements occurred in stratum zonale and stratum griseum superficiale. Ipsilateral superior colliculus to cortical ablation exhibited subtle changes characterized by a moderate increase in perikaryal immunostaining in stratum zonale, stratum griseum superficiale and stratum opticum and by an apparent discrete reduction of labelled dots in stratum griseum superficiale and stratum opticum. In cases with combined lesions, strongly immunoreactive cell bodies and dendrites were accompanied by a massive disappearance of labelled terminal-like elements in stratum zonale, stratum griseum superficiale and stratum opticum. The effect of retinal and visual cortical ablations on the pattern of glutamate-like immunoreactivity suggests that these afferents are the major sources for glutamate-immunoreactive terminals in the rat superior colliculus. In addition, these findings provide further evidence for glutamate as neurotransmitter in the visual pathways studied.
Collapse
Affiliation(s)
- F Ortega
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | | | | | | | | |
Collapse
|
25
|
Moffett JR, Palkovits M, Namboodiri A, Neale JH. Comparative distribution of N-acetylaspartylglutamate and GAD67 in the cerebellum and precerebellar nuclei of the rat utilizing enhanced carbodiimide fixation and immunohistochemistry. J Comp Neurol 1994; 347:598-618. [PMID: 7814677 DOI: 10.1002/cne.903470410] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The most prevalent peptide in the nervous system, N-acetylaspartylglutamate (NAAG), specifically activates N-methyl D-aspartate (NMDA) receptors and a subclass of metabotropic glutamate receptors. One action of this peptide may be to modulate the release of other neurotransmitters, including gamma-aminobutyric acid (GABA). The present study describes the cellular distribution of NAAG, relative to GABA, in the cerebellum and precerebellar nuclei as a foundation for further physiological investigations. Numerous cells of origin for mossy fibers, including many of the larger neurons of the pontine nuclei, lateral reticular nuclei, vestibular nuclei, reticulotegmental nuclei, and spinal grey, were moderately to strongly stained for NAAG. Many NAAG-labeled fibers were clearly visible in the cerebellar peduncles and central white matter. Mossy fibers and mossy endings were among the most prominent NAAG-immunoreactive elements in the cerebellar cortex. Most neurons in the inferior olive were not stained for NAAG, and only sparse, lightly immunoreactive, climbing fiber-like endings could be identified in restricted regions of the cortical molecular layer. Purkinje neurons ranged from nonreactive to moderately positive, with the great majority being unstained. Cerebellar granule cells did not exhibit any NAAG immunoreactivity. A population of neurons in the deep cerebellar nuclei was highly immunoreactive for NAAG. Additionally, many neurons of the red nucleus were intensely stained for NAAG. Comparisons with staining for the 67 kD form of glutamic acid decarboxylase in serial sections revealed complementary distributions, with NAAG in excitatory pathways and cell groups, and glutamic acid decarboxylase in inhibitory systems. These findings suggest a significant functional involvement of NAAG in the excitatory afferent and efferent projection systems and provide an anatomical basis for investigations into the interactions of NAAG and GABA in the cerebellum.
Collapse
Affiliation(s)
- J R Moffett
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | | | | |
Collapse
|
26
|
Hartwich M, Kalsbeek A, Pévet P, Nürnberger F. Effects of illumination and enucleation on substance-P-immunoreactive structures in subcortical visual centers of golden hamster and Wistar rat. Cell Tissue Res 1994; 277:351-61. [PMID: 7521793 DOI: 10.1007/bf00327783] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The undecapeptide substance P is found in different entities of the visual system that control eye movement and synchronize endogenous rhythms with the light cycle (i.e., superior colliculus, suprachiasmatic nucleus, intergeniculate leaflet). Immunocytochemical methods were used to compare the reactivity to substance P in the brain of five groups of golden hamsters and two groups of Wistar rats: (1) untreated hamsters kept under 14L:10D and sacrificed at noon; (2) identically maintained animals sacrificed at midnight; (3) enucleated animals kept under control conditions; (4) hamsters kept under constant darkness; (5) hamsters kept under the same conditions as the controls, but intraventricularly injected with colchicine. The results obtained in golden hamsters of groups (1) and (3) were compared with findings in Wistar rats treated accordingly [groups (6) and (7)]. Substance P-immunoreactive perikarya were found in the suprachiasmatic nucleus and superior colliculus of hamsters and Wistar rats. Substance P-immunoreactive nerve fibers were abundant in the hypothalamic area ventral to the paraventricular nucleus, in the intergeniculate leaflet, in some thalamic nuclei, and in the superior colliculus. Immunoreactivity to substance P in the suprachiasmatic nucleus and intergeniculate leaflet did not vary among the experimental groups. However, a conspicuous decrease in reactivity to substance P was observed in the superficial layers of the superior colliculus of enucleated hamsters and rats, compared with all other groups. These results indicate that substance P immunoreactivity in the superior colliculus, but not that in the suprachiasmatic nucleus or intergeniculate leaflet, depends on the integrity of the retinal projection.
Collapse
Affiliation(s)
- M Hartwich
- Institut für Anatomie und Zytobiologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | |
Collapse
|
27
|
Montero VM. Quantitative immunogold evidence for enrichment of glutamate but not aspartate in synaptic terminals of retino-geniculate, geniculo-cortical, and cortico-geniculate axons in the cat. Vis Neurosci 1994; 11:675-81. [PMID: 7918218 DOI: 10.1017/s0952523800002984] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A postembedding immunogold procedure was used on thin sections of the dorsal lateral geniculate nucleus (LGN) and perigeniculate nucleus (PGN) of the cat to estimate qualitatively and quantitatively, at the electron-microscopic (EM) level, the intensity of glutamate or aspartate immunoreactivities on identifiable synaptic terminals and other profiles of the neuropil. On sections incubated with a glutamate antibody, terminals of retinal and cortical axons in the LGN, and of collaterals of geniculo-cortical axons in the PGN, contain significantly higher density of immunogold particles than GABAergic terminals, glial cells, dendrites, and cytoplasm of geniculate cells. By contrast, in sections incubated with an aspartate antibody, terminals of retino-geniculate, cortico-geniculate, and geniculo-cortical axons did not show a selective enrichment of immunoreactivity, but instead the density of immunogold particles was generally low in the different profiles of the neuropil, with the exception of nucleoli. These results suggest that glutamate, but not aspartate, is a neurotransmitter candidate in the retino-geniculo-cortical pathways.
Collapse
Affiliation(s)
- V M Montero
- Department of Neurophysiology, University of Wisconsin, Madison
| |
Collapse
|
28
|
Godfrey DA, Ross CD, Parli JA, Carlson L. Aspartate aminotransferase and glutaminase activities in rat olfactory bulb and cochlear nucleus; comparisons with retina and with concentrations of substrate and product amino acids. Neurochem Res 1994; 19:693-703. [PMID: 7915016 DOI: 10.1007/bf00967708] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The quantitative distributions of aspartate aminotransferase and glutaminase were mapped in subregions of olfactory bulb and cochlear nucleus of rat, and were compared with similar data for retina and with the distributions of their substrate and product amino acids aspartate, glutamate, and glutamine. The distributions of both enzymes paralleled that of aspartate in the olfactory bulb and that of glutamate in the cochlear nucleus. In retina (excluding inner segments), there were similarities between aspartate aminotransferase and both glutamate and aspartate distributions. The distribution of gamma-aminobutyrate (GABA) was similar to those of both enzymes in olfactory bulb, to aspartate aminotransferase in cochlear nucleus, and to glutaminase in retina (excluding inner segments). The results are consistent with significant involvement of aspartate aminotransferase, especially the cytosolic isoenzyme, and glutaminase in accumulation of the neurotransmitter amino acids glutamate, aspartate, and GABA, although with preferential accumulation of different amino acids in different brain regions.
Collapse
Affiliation(s)
- D A Godfrey
- Department of Otolaryngology-Head and Neck Surgery, Medical College of Ohio, Toledo 43699-0008
| | | | | | | |
Collapse
|
29
|
Berretta S, Bosco G, Giaquinta G, Smecca G, Perciavalle V. Cerebellar influences on accessory oculomotor nuclei of the rat: a neuroanatomical, immunohistochemical, and electrophysiological study. J Comp Neurol 1993; 338:50-66. [PMID: 7507941 DOI: 10.1002/cne.903380105] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
With the aim to evaluate a possible neocerebellar control on eye movements, the projections from the cerebellar lateral nucleus (LN) to the accessory oculomotor nuclei (i.e., the nucleus of posterior commissure, the nucleus of Darkschewitsch, and the interstitial nucleus of Cajal), the putative neurotransmitters subserving this pathway, and the nature of the synaptic influences exerted by these projections were studied in adult rats. We used the orthograde transport of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) to identify the mesencephalic areas where cerebellofugal fibers terminate, and retrograde labeling with the fluorescent dye fluoro-gold to estimate the incidence of cerebellar neurons projecting to the accessory oculomotor nuclei. Orthograde labeling showed that only a small contingent of cerebellofugal fibers reaches the contralateral accessory oculomotor nuclei. The retrogradely labeled cells were located primarily in the small-celled part of LN. By immunohistochemistry, we observed that all the cells retrogradely labeled from the accessory oculomotor area were also stained by using glutamate or aspartate antisera, but none of them were double-stained with a GABA antiserum. Electrical stimulation of the contralateral LN elicited changes in firing rate of a significant fraction of cells belonging to the accessory oculomotor nuclei (36.4% in the nucleus of posterior commissure, 47.1% in the nucleus of Darkschewitsch, and 44.6% in the interstitial nucleus of Cajal). In 57.8% of the cases, the responses were excitations, most of which had latencies and response characteristics compatible with a monosynaptic linkage. The remaining 42.2% of the cases were inhibitions with latencies ranging between 5 and 22 ms. Extracellular field potential recordings within the contralateral accessory oculomotor nuclei were interpreted as arising from impulses propagating along excitatory axons projecting in a bundle from the cerebellum. Stimulation of LN area in rats following intranuclear injection of kainic acid was not capable of evoking short latency excitations, so these responses can be considered to depend on the activation of LN efferents. The LN projection on accessory oculomotor nuclei could be part of the final precise control exerted by the neocerebellum on those brain structures concerned with movements of the eyes.
Collapse
Affiliation(s)
- S Berretta
- Institute of Human Physiology, University of Catania, Italy
| | | | | | | | | |
Collapse
|
30
|
Tsai G, Slusher BS, Sim L, Coyle JT. Immunocytochemical distribution of N-acetylaspartylglutamate in the rat forebrain and glutamatergic pathways. J Chem Neuroanat 1993; 6:277-92. [PMID: 7903856 DOI: 10.1016/0891-0618(93)90033-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
N-acetylaspartylglutamate (NAAG) is an acidic dipeptide found in high concentration throughout the rat central nervous system. NAAG has been proposed as a neurotransmitter/modulator in some excitatory glutamatergic pathways where it is released by a Ca(2+)-dependent process with neuronal activity. Previous immunocytochemical studies have revealed few neurons exhibiting NAAG-like immunoreactivity (LI) in the forebrain, especially in putative glutamatergic neurons. In this study, we present a detailed map of NAAG-LI in rat forebrain utilizing a modified fixation technique that markedly enhances sensitivity. NAAG-LI is located in most of the putative glutamatergic pathways in the forebrain including pyramidal neurons in motor and sensory cortices and the hippocampal formation. Co-localization of NAAG-LI to cholinergic systems of the forebrain was quite extensive with the exception of the striatal local circuit neurons. A noteworthy feature of NAAG-LI-positive neuronal groups is that they were often configured in hierarchical relationships. For example, the pyramidal neurons of the motor cortex and the motor neurons of the brainstem and and spinal cord expressed NAAG-LI; also, several inter-related components of the limbic system stained for NAAG-LI. Taken together, these findings indicate that NAAG is a neuropeptide localized to subpopulations of neurons throughout forebrain as well as in brainstem and spinal cord.
Collapse
Affiliation(s)
- G Tsai
- Department of Neuroscience, Harvard Medical School, Belmont, MA 02178
| | | | | | | |
Collapse
|
31
|
Immunohistochemical analysis of glutamate, cholecystokinin and vasoactive intestinal polypeptide in the lateral geniculate complex of albino rat: A developmental study. J Biosci 1993. [DOI: 10.1007/bf02703120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Xing LC, Tieman SB. Relay cells, not interneurons, of cat's lateral geniculate nucleus contain N-acetylaspartylglutamate. J Comp Neurol 1993; 330:272-85. [PMID: 8098338 DOI: 10.1002/cne.903300208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
N-acetylaspartylglutamate (NAAG) is an endogenous brain dipeptide that satisfies many of the criteria for a neurotransmitter. We have previously identified NAAG immunoreactivity in neurons of the lateral geniculate nucleus (LGN) of the cat and monkey. To determine whether all LGN neurons contain NAAG, we treated sections of cat LGN with affinity-purified antibodies to NAAG and counterstained them with thionin. The larger neurons contained NAAG, but the smaller neurons did not. We treated other sections with antiserum to glutamic acid decarboxylase (GAD), the rate-limiting enzyme in the synthesis of gamma-aminobutyric acid (GABA), in order to label interneurons of the LGN. In these sections, the smaller cells were labeled; the larger neurons were not. We hypothesized that NAAG was present in relay cells, but not interneurons. We used two double-labeling paradigms to test this hypothesis. We combined immunocytochemistry for NAAG using a fluorescent secondary antibody with either (1) fluorescent retrograde tracers (true blue, granular blue, rhodamine beads, or propidium iodide) injected into areas 17 and/or 18 or (2) immunocytochemistry for GAD using a second fluorescent secondary antibody. In the LGN, over 99% of retrogradely labeled cells contained NAAG, but few GAD-positive neurons did. In contrast, neurons of the perigeniculate nucleus contained both NAAG and GAD, demonstrating that staining by one set of antisera did not inhibit staining by the other and that perigeniculate neurons are chemically distinct from the interneurons of the LGN. We conclude that in LGN, the relay cells, which project to visual cortex, contain NAAG, whereas most of the interneurons, which contain GABA, do not.
Collapse
Affiliation(s)
- L C Xing
- Neurobiology Research Center, State University of New York, Albany 12222
| | | |
Collapse
|
33
|
Arai M, Arai R, Kani K, Jacobowitz DM. Immunohistochemical localization of calretinin in the rat lateral geniculate nucleus and its retino-geniculate projection. Brain Res 1992; 596:215-22. [PMID: 1467985 DOI: 10.1016/0006-8993(92)91550-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, we examined the distribution of calretinin-immunoreactive neuronal cell bodies and fibers in the lateral geniculate nucleus of the rat. In normal rats, clusters of immunoreactive cell bodies were found in: (i) the rostral portion of the ventral lateral geniculate nucleus pars medialis (VLGM), (ii) the intergeniculate leaflet (IGL), (iii) the intermediate region between the VLGM and the ventral lateral geniculate nucleus pars lateralis (VLGL), (iv) the caudomedial portion of the VLGM, and (v) the caudolateral portion of the VLGM. In the dorsal lateral geniculate nucleus (DLG), immunoreactive cell bodies were rarely observed. After uni- or bilateral eye enucleation, no significant alteration in the morphological features or distribution of immunoreactive cell bodies was detected in the lateral geniculate nucleus. In normal rats, immunoreactive fibers formed dense plexuses in: (i) the DLG, (ii) the external layer of the VLGL, (iii) the internal layer of the VLGL, (iv) the IGL, (v) the caudomedial portion of the VLGM, and (vi) the optic tract. After unilateral eye enucleation, immunoreactive fibers in the external layer of the VLG and in the optic tract almost totally disappeared on the contralateral side to the lesion. Unilateral eye enucleation caused a significant decrease of immunoreactive fibers in the DLG and in the internal layer of the VLGL, but a substantial number of immunoreactive fibers still remained there. In the IGL and the caudomedial portion of the VLGM, no observable alteration in the distribution of immunoreactive fibers was detected after uni- or bilateral eye enucleation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Arai
- Department of Ophthalmology, Shiga University of Medical Science, Japan
| | | | | | | |
Collapse
|
34
|
Reiner A. The neurotensin-related hexapeptide LANT6 is found in retinal ganglion cells and in their central projections in pigeons. Vis Neurosci 1992; 9:217-23. [PMID: 1390381 DOI: 10.1017/s0952523800010622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous biochemical and immunohistochemical studies have shown that the neurotensin-related hexapeptide LANT6 is widespread and abundant in the avian nervous system. In the present study, immunohistochemical techniques were used to show that LANT6 is present in numerous cells of the retinal ganglion cell layer in pigeons. Consistent with the possibility that these LANT6+ retinal cells might be retinal ganglion cells, it was found that (1) the distribution of LANT6+ fibers and terminals in the central retinal target areas matched the distribution of central retinal projections; (2) the LANT6+ fibers and terminals are eliminated from retinal target areas by transection of the contralateral optic nerve; and (3) LANT6+ retinal cells in the ganglion cell layer can be retrogradely labeled by injections of fluorogold in the tectum. These results suggest that LANT6 may be utilized as a neuroactive substance by the central terminals of numerous retinal ganglion cells in birds. Similar anatomical findings have been previously reported for members of several other vertebrate groups, giving rise to the possibility that LANT6 (or its homologues in nonavians) may be a phylogenetically ubiquitous neuroactive substance used by retinal ganglion cells.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis 38163
| |
Collapse
|
35
|
Williamson LC, Neale JH. Uptake, Metabolism, and Release of N-[3H]-Acetylaspartylglutamate by the Avian Retina. J Neurochem 1992; 58:2191-9. [PMID: 1349345 DOI: 10.1111/j.1471-4159.1992.tb10963.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
N-Acetylaspartylglutamate (NAAG) is a nervous system-specific dipeptide that is released from retinal neurons on depolarization. In the present study, extracellular metabolism, uptake, and release of [3H]NAAG were examined in the chick retina. After in vitro incubation with NAAG radiolabeled in the glutamate moiety, [3H]glutamate and [3H]NAAG increased in retinal cells through time- and temperature-dependent processes, which were reduced in the absence of extracellular sodium. Coincubation of cells with [3H]NAAG and aspartylglutamate or phosphate resulted in the decreased extracellular appearance of [3H]glutamate, produced by hydrolysis of radiolabeled NAAG, and a consequent increased availability of [3H]NAAG for transport into the retinal cells. When this tissue was incubated with radiolabeled NAAG, glutamate, glutamine, or aspartate under similar conditions, only [3H]NAAG served as a significant source for the appearance of intracellular [3H]NAAG. These data support the conclusion that [3H]NAAG can be transported into retinal cells, whereas [3H]glutamate transport is the predominant process after release of this amino acid from NAAG by extracellular peptidase activities. After uptake, [3H]NAAG entered a cellular pool, from which the peptide was secreted under depolarizing conditions and in a calcium-dependent manner.
Collapse
Affiliation(s)
- L C Williamson
- Department of Biology, Georgetown University, Washington, DC 20057
| | | |
Collapse
|
36
|
Sakurai T, Okada Y. Selective reduction of glutamate in the rat superior colliculus and dorsal lateral geniculate nucleus after contralateral enucleation. Brain Res 1992; 573:197-203. [PMID: 1354547 DOI: 10.1016/0006-8993(92)90763-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of afferent lesions on the levels of glutamate, aspartate and gamma-aminobutyric acid (GABA) in the laminae of the superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN) of the rat were studied, using microassay methods for these amino acids. The analysis was performed 12-14 days after left eye enucleation, or ablation of right visual cortical area, or both left eye enucleation and ablation of right visual cortex. Superficial gray layer (SGL) and deep layers in the SC were dissected out from the thin-sectioned, freeze-dried sample. In the dLGN, the outer and inner laminae were separately dissected. The glutamate contents in the upper half of SGL and outer lamina of dLGN contralateral to eye enucleation decreased significantly (15%). Combination of eye enucleation and visual cortical ablation further decreased the glutamate content in the upper half of the right SGL (29.3%). On the other hand, aspartate and GABA concentrations in the SC and dLGN exhibited no significant reduction after deafferentations. These results indicate that the retino-tectal and retino-geniculate pathway of the rat may be glutamatergic in nature.
Collapse
Affiliation(s)
- T Sakurai
- Department of Physiology, School of Medicine, Kobe University, Japan
| | | |
Collapse
|
37
|
Slusher BS, Tsai G, Yoo G, Coyle JT. Immunocytochemical localization of the N-acetyl-aspartyl-glutamate (NAAG) hydrolyzing enzyme N-acetylated alpha-linked acidic dipeptidase (NAALADase). J Comp Neurol 1992; 315:217-29. [PMID: 1545010 DOI: 10.1002/cne.903150208] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
N-acetylated alpha-linked acidic dipeptidase (NAALADase) is a membrane bound enzyme that cleaves glutamate from the endogenous neuropeptide N-acetyl-aspartyl-glutamate (NAAG). We report the immunocytochemical localization of NAALADase in rat brain and kidney by using specific anti-NAALADase antiserum. NAALADase-immunoreactivity (NAALADase-IR) was widely distributed, abundant in neuropil, absent from neuronal cytoplasm, and displayed regional heterogeneity. Staining was selectively enriched in several structures previously reported to contain NAAG-immunoreactivity (NAAG-IR) including the amygdala, caudate-putamen, central gray, dorsal raphe, globus pallidus, hippocampus, hypothalamus, locus coerulus, medial and lateral geniculate, olfactory bulb, periaqueductal gray, solitary nucleus, spinal trigeminal nucleus, substantia nigra, superior colliculus, and thalamus. Staining within these structures was enriched in neuropil; no intracellular staining was detected, even after colchicine treatment. In addition, NAALADase-IR was observed in some NAAG-containing fiber tracts including the corpus callosum, fornix, habenular commissure, solitary tract, stria medularis, and stria terminalis. The co-localization of NAALADase-IR and NAAG-IR support the hypothesis that NAALADase is responsible for the catabolism of NAAG in vivo. NAALADase-IR was also detected in brain regions that, to date, have not revealed NAAG-IR, including the bed nucleus of the stria terminalis and the median eminence. In addition, NAALADase-IR was detected in the rat kidney cortex, specifically in the brush border of the proximal convoluted tubules. The observation that NAALADase-IR was more widespread than NAAG-IR suggests that NAALADase may also be involved in the catabolism of other structurally related neural and renal peptides.
Collapse
Affiliation(s)
- B S Slusher
- Department of Neuroscience, John Hopkins School of Medicine, Baltimore, Maryland 21205
| | | | | | | |
Collapse
|
38
|
Tieman SB, Neale JH, Tieman DG. N-acetylaspartylglutamate immunoreactivity in neurons of the monkey's visual pathway. J Comp Neurol 1991; 313:45-64. [PMID: 1662235 DOI: 10.1002/cne.903130105] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The acidic dipeptide N-acetylaspartylglutamate (NAAG) was identified immunohistochemically within neurons of the visual pathways of two adult macaque monkeys which had undergone midsagittal sectioning of the optic chiasm 6 or 9 years earlier. In both temporal and nasal retinae, amacrine cells, including some displaced amacrine cells, expressed NAAG immunoreactivity. In temporal but not nasal retina, retinal ganglion cells were stained, as were their dendrites in the inner plexiform layer, and their axons in the optic nerve fiber layer. In nasal retina, the ganglion cells had degenerated because they were axotomized by the optic chiasm section. In the target regions of the retinal ganglion cells, the superior colliculus and the lateral geniculate nucleus (LGN), both neuropil and cell bodies were stained. In LGN, staining was confined to layers 2, 3, and 5, that is, to the layers innervated by the intact ipsilateral pathway. Immunoreactivity was also seen in the cells of layers 2, 3A, 4B, 5, and 6 of area 17 and layers 3 and 5 of area 18. The neuropil was stained in all layers of area 17, but more heavily in layers 1, 2, 4B, the bottom of 4C beta, 5B, and 6B. Within 4C the staining was patchy; in tangential sections there were alternating bands of light and dark label which matched the ocular dominance bands demonstrated by cytochrome oxidase histochemistry in adjacent sections. This banding pattern is consistent with the presence of NAAG in geniculocortical terminals of the intact ipsilateral pathway and the absence of such terminals for the contralateral pathway, which had undergone transneuronal degeneration due to the optic chiasm sectioning. Overall, our results for monkey are very similar to those in cat and suggest that NAAG or a structurally related molecule may have a prominent role in the communication of visual signals at retinal, thalamic, and cortical levels.
Collapse
Affiliation(s)
- S B Tieman
- Neurobiology Research Center, State University of New York, Albany 12222
| | | | | |
Collapse
|
39
|
Tieman SB, Moffett JR, Irtenkauf SM. Effect of eye removal on N-acetylaspartylglutamate immunoreactivity in retinal targets of the cat. Brain Res 1991; 562:318-22. [PMID: 1685346 DOI: 10.1016/0006-8993(91)90638-c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The endogenous brain dipeptide N-acetylaspartylglutamate (NAAG) has previously been demonstrated in the somata of retinal ganglion cells and the neuropil of retinal targets. In this paper we report that the NAAG immunoreactivity of the neuropil in the retinal targets is dependent on an intact optic pathway. Removal of one eye produced a marked decrease in the staining of the neuropil in layer A of the contralateral geniculate nucleus (LGN) and layer A1 of the ipsilateral LGN. There was also decreased staining in the superficial layers of the superior colliculus contralateral to the removal. These results suggest that NAAG is present in the terminals of retinal ganglion cells and is consistent with a role for NAAG in visual synaptic transmission.
Collapse
Affiliation(s)
- S B Tieman
- Neurobiology Research Center, State University of New York, Albany 12222
| | | | | |
Collapse
|
40
|
Schmidt M. Mediation of visual responses in the nucleus of the optic tract in cats and rats by excitatory amino acid receptors. Neurosci Res 1991; 12:111-21. [PMID: 1684237 DOI: 10.1016/0168-0102(91)90104-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The contribution of excitatory amino acid receptors to visual responses of directional selective neurons in the nucleus of the optic tract (NOT) was examined in anesthetized cats and rats by iontophoretic application of glutamate (GLU), quisqualate (QQL), N-methyl-D-aspartate (NMDA), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 6,7-dinitroquinoxaline-2,3-dione (DNQX) and 2-amino-5-phosphonovalerate (APV). Spontaneous and visually evoked NOT cell activities were increased by GLU, QQL and NMDA. CNQX and DNQX decreased activities predominantly during stimulus movement in the preferred direction, while APV decreased activities to preferred and non-preferred directed stimulus movement. Spontaneous activities were suppressed only following APV application. The results were similar in both species. Furthermore, the effects were similar during binocular stimulation and during monocular stimulation of either eye in the cat. The results indicate a functional role of both non-NMDA and NMDA receptors for the transfer of visual input to directional selective NOT cells in cat and rat.
Collapse
Affiliation(s)
- M Schmidt
- Department of Zoology and Neurobiology, Ruhr University of Bochum, F.R.G
| |
Collapse
|
41
|
Moffett JR, Williamson LC, Neale JH, Palkovits M, Namboodiri MA. Effect of optic nerve transection on N-acetylaspartylglutamate immunoreactivity in the primary and accessory optic projection systems in the rat. Brain Res 1991; 538:86-94. [PMID: 2018935 DOI: 10.1016/0006-8993(91)90380-e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Evidence has been presented in recent years that support the hypothesis that N-acetylaspartylglutamate (NAAG) may be involved in synaptic transmission in the optic tract of mammals. Using a modified fixation protocol, we have determined the detailed distribution of NAAG immunoreactivity (NAAG-IR) in retinal ganglion cells and optic projections of the rat. Following optic nerve transection, dramatic losses of NAAG-IR were observed in the neuropil of all retinal target zones including the lateral geniculate nucleus, superior colliculus, nucleus of the optic tract, the dorsal and medial terminal nuclei and suprachiasmatic nucleus. Brain regions were microdissected and NAAG levels measured by a radioimmunoassay (RIA) (IC50: NAAG = 2.5 nM, NAA = 100 microM; smallest detectable amount = 1-2 pg/assay). Large decreases (50-60%) in NAAG levels were detected in the lateral geniculate, superior colliculus and suprachiasmatic nucleus. Moderate losses (25-45%) were noted in the pretectal nucleus and the nucleus of the optic tract. Smaller changes (15-20%) were detected in the paraventricular nucleus and the pretectal area. These results are consistent with a synaptic communication role for NAAG in the visual system.
Collapse
Affiliation(s)
- J R Moffett
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | | | | | | |
Collapse
|
42
|
Wadhwa S, Rath S, Jotwani G, Bijlani V. Development of substance P, Leu-enkephalin and serotonin profiles in the lateral geniculate nuclear complex of albino rat. Neurosci Lett 1990; 120:146-50. [PMID: 1705673 DOI: 10.1016/0304-3940(90)90024-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immunohistochemical studies for analysing the development of the profile of two peptides--substance P (SP) and Leu-enkephalin (Leu-ENK), and serotonin (SER)--have been conducted on the lateral geniculate nuclear (LGN) complex of albino rats at gestation day 18 and various postnatal age periods. SP immunoreactivity is found to increase from 1 day postnatal (DPN) up to 20 DPN and decrease thereafter, whereas the SER and Leu-ENK-immunoreactive fibres and terminals seen as occasional fibres at 1, 5, and 10 DPN are better visualized from 20 DPN and gradually increase up to 40 DPN. The possible role and significance of the changes seen in these putative neurotransmitters/neuromodulators with development are discussed.
Collapse
Affiliation(s)
- S Wadhwa
- Department of Anatomy, All-India Institute of Medical Sciences, New Delhi
| | | | | | | |
Collapse
|
43
|
Radel JD, Hankin MH, Lund RD. Proximity as a factor in the innervation of host brain regions by retinal transplants. J Comp Neurol 1990; 300:211-29. [PMID: 2175316 DOI: 10.1002/cne.903000206] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Embryonic mouse retinae transplanted to a variety of locations within the rostral midbrain of neonatal rats exhibit selective innervation of host visual nuclei when studied at maturity. Some of these nuclei (superior colliculus, nucleus of the optic tract, dorsal terminal nucleus) usually receive extensive transplant projections, others are innervated partially (dorsal division of the lateral geniculate nucleus, olivary pretectal nucleus, medial terminal nucleus), while a few (ventral division of the lateral geniculate nucleus, suprachiasmatic nucleus, intergeniculate leaflet) are not innervated at all. The selectivity of this innervation is largely independent of the transplant's position within the rostral brainstem, while the density of innervation of individual nuclei depends in part upon the proximity of the transplant to the nucleus and upon whether the host retinal projection to that nucleus is present or absent. These findings provide a foundation for further studies of the behavioral capabilities of retinal transplants, for developmental studies of factors responsible for the establishment of normal neural projections, and for examination of the immunological consequences of transplantation.
Collapse
Affiliation(s)
- J D Radel
- Department of Neurobiology, Anatomy, and Cell Science, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | | | |
Collapse
|
44
|
N-acetylaspartylglutamate: a transmitter candidate for the retinohypothalamic tract. Proc Natl Acad Sci U S A 1990; 87:8065-9. [PMID: 1978319 PMCID: PMC54893 DOI: 10.1073/pnas.87.20.8065] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The retinohypothalamic tract is the neural pathway mediating the photic entrainment of circadian rhythms in mammals. Important targets for these retinal fibers are the suprachiasmatic nuclei (SCN) of the hypothalamus, which are thought to be primary sites for the biological clock. The neurotransmitters that operate in this projection system have not yet been determined. Immunohistochemistry and radioimmunoassay performed with affinity-purified antibodies to N-acetylaspartylglutamate (NAAG) demonstrate that this neuron-specific dipeptide, which may act as an excitatory neurotransmitter, is localized extensively in the retinohypothalamic tract and its target zones, including the SCN. Optic nerve transections resulted in significant reductions in NAAG immunoreactivity in the optic chiasm and SCN. Analysis of NAAG concentrations in micropunches of SCN, by means of radioimmunoassay, showed approximately 50% reductions in NAAG levels. These results suggest that this peptide may act as one of the neurotransmitters involved in retinohypothalamic communication and circadian rhythm entrainment.
Collapse
|
45
|
Serval V, Barbeito L, Pittaluga A, Cheramy A, Lavielle S, Glowinski J. Competitive inhibition of N-acetylated-alpha-linked acidic dipeptidase activity by N-acetyl-L-aspartyl-beta-linked L-glutamate. J Neurochem 1990; 55:39-46. [PMID: 2355230 DOI: 10.1111/j.1471-4159.1990.tb08818.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endogenous neuropeptide N-acetyl-L-aspartyl-L-glutamate (NAAG) fulfills several criteria required to be accepted as a neurotransmitter. NAAG inactivation may proceed through enzymatic hydrolysis into N-acetyl-L-aspartate and glutamate by an N-acetylated-alpha-linked acidic dipeptidase (NAALADase). Therefore, some properties of NAALADase activity were investigated using crude membranes from the rat forebrain. Kinetic parameters of the hydrolysis of [Glu-3H]NAAG were determined first (Km = 0.40 +/- 0.05 microM; Vmax = 155 +/- 20 pmol/min/mg of protein). The enzymatic activity, i.e., NAALADase, was inhibited noncompetitively by the glutamatergic agonist quisqualate (Ki = 1.9 +/- 0.3 microM), and competitively by N-acetyl-L-aspartyl-beta-linked L-glutamate (beta-NAAG; Ki = 0.70 +/- 0.05 microM). To determine whether glutamate-containing dipeptides, such as NAAG, beta-NAAG, N-acetyl-L-aspartyl-D-glutamate, L-aspartyl-L-glutamate, L-alanyl-L-glutamate, L-glutamyl-L-glutamate, and L-glutamyl-gamma-linked L-glutamate, were substrates of NAALADase, rat brain membranes were immobilized on a C-8 column. Thus, endogenous trapped glutamate was washed away and formation of unlabelled glutamate could be estimated using an o-phthaldialdehyde/reverse-phase HPLC detection procedure. beta-NAAG was shown to be a nonhydrolyzable competitive inhibitor of NAALADase. L-Aspartyl-L-glutamate was hydrolyzed faster than NAAG, suggesting that the acetylated moiety is not essential for NAALADase specificity. Rat brain membranes also contained nonspecific peptidase activities (insensitive to both quisqualate and beta-NAAG), which, in the case of L-alanyl-L-glutamate, for instance, accounted for all observed hydrolysis.
Collapse
Affiliation(s)
- V Serval
- Laboratoire de Chimie Organique Biologique, Université Pierre et Marie Curie, UA CNRS 493, Paris, France
| | | | | | | | | | | |
Collapse
|
46
|
Tsai G, Stauch BL, Vornov JJ, Deshpande JK, Coyle JT. Selective release of N-acetylaspartylglutamate from rat optic nerve terminals in vivo. Brain Res 1990; 518:313-6. [PMID: 1975216 DOI: 10.1016/0006-8993(90)90989-o] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glutamate (Glu) and aspartate (Asp) are considered to be the neurotransmitters of the optic pathway in submammalian species, but their roles in mammals is uncertain. Recently, N-acetylaspartylglutamate (NAAG) has been proposed as a neurotransmitter in mammalian optic pathway; however, the release of endogenous NAAG on stimulation of the optic pathway has not been demonstrated. Using an in vivo microdialysis technique, we now report that electrical stimulation of rat optic nerve markedly increased the extracellular concentration of NAAG but not Glu/Asp in superficial superior colliculus where retinal afferents terminate, whereas non-specific stimulation of neurotransmitter release by high potassium or veratridine increased both extracellular Glu/Asp and NAAG concentration in the perfusate. The release of NAAG was dependent on Ca2+ and the presence of optic terminals. We conclude that NAAG is a better candidate as a neurotransmitter of rat optic nerve terminals than Glu/Asp.
Collapse
Affiliation(s)
- G Tsai
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | |
Collapse
|
47
|
Abstract
An antiserum directed against tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of dopamine, was used to study the pigeon retina. Labeled cells were observed in both the inner nuclear layer (INL) and ganglion cell layer (GCL). Two populations of TH-immunoreactive neurons were observed in the INL. Some of these cells were 7-10 microns in diameter and gave rise to processes that arborized in three layers of the inner plexiform layer (IPL). These cells appeared similar to the dopaminergic amacrine cells described previously (Marc, 1988). Other labeled cells in the INL were 12-20 microns in diameter and were recognizable as a previously described subpopulation of TH-immunoreactive displaced ganglion cells (Britto et al., 1988). A population of labeled cells was observed in the GCL. Counts of these cells in two retinae revealed 5000 and 7000 cells, respectively. They ranged in size from 8-15 microns in diameter in the central retina and from 8-20 microns in diameter in the peripheral retina. The density of labeled cells was highest in the central retina and red field and lowest in the retinal periphery. The difference in cell size and cell density as a function of eccentricity is characteristic of the total population of ganglion cells in the avian retina (Ehrlich, 1981; Hayes, 1982). Some of the TH-positive cells in the GCL could be classified as ganglion cells for two reasons: (1) The axons of many of the TH-positive cells in the GCL were TH-immunoreactive as well and could be followed to the optic nerve head. (2) The injection of rhodamine-labeled microspheres into the nucleus geniculatus lateralis, pars ventralis (GLv), resulted in the retrograde labeling of many of the TH-positive cells in the contralateral retina.
Collapse
|
48
|
Ray JP, Price JL. Postnatal changes in the density and distribution of neurotensin-like immunoreactive fibers in the mediodorsal nucleus of the thalamus in the rat. J Comp Neurol 1990; 292:269-82. [PMID: 1690761 DOI: 10.1002/cne.902920209] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A previous report (Inagaki et al., Brain Res. 260:143-146, '83) suggested that the peptide neurotensin is contained in neurons of the piriform cortex that project to the mediodorsal thalamic nucleus (MD) in young rats. To confirm this, we have studied the distribution of neurotensin-like immunoreactive (NTIR) fibers in MD during development, using three antisera directed at different parts of the neurotensin molecule (Emson et al., J. Neurochem. 38:992-999, '82). In adult rats, NTIR fibers in MD are sparse. They are located mostly at the medial edge of MD and in the adjacent midline thalamic nuclei, with a few poorly stained NTIR fibers in the central part of MD. In contrast, during the first postnatal week, both the medial and central portions of MD stain heavily for neurotensin. The density of NTIR fibers in MD then progressively decreases until the density typical of adult rats is reached, at about 5 weeks. Changes in the distribution of NTIR fibers in MD also occur. In 7-day-old rats, the patches of NTIR fibers in the medial and central parts of MD are contiguous, but by 10 days a sparsely immunoreactive zone forms between them. With maturation, this zone enlarges as the density of neurotensin staining decreases, until the medial contingent of NTIR fibers reaches its adult position at the medial edge of MD. From a comparison of the distribution of NTIR cells with that of cells that can be retrogradely labeled from MD or the midline thalamus, the probable source of the NTIR fibers to the central part of MD is in the deep layer of the piriform cortex, while the NTIR fibers to the medial edge of MD and the midline nuclei may arise from the preoptic region and the medial amygdala. In neonatal rats, neurons are found in the piriform cortex, the preoptic region, and the medial amygdala, which can be double-labeled both for neurotensin and with a retrograde tracer injected into MD and the midline thalamus. Projections of the preoptic region to the thalamus have a distribution similar to that of the medial population of NTIR fibers, whereas the distribution of piriform cortical afferents in central MD matches the central patch of NTIR fibers.
Collapse
Affiliation(s)
- J P Ray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
49
|
Heizmann CW, Röhrenbeck J, Kamphuis W. Parvalbumin, molecular and functional aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 269:57-66. [PMID: 2191563 DOI: 10.1007/978-1-4684-5754-4_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- C W Heizmann
- Department of Pediatrics, University of Zürich, Switzerland
| | | | | |
Collapse
|
50
|
Dori I, Petrou M, Parnavelas JG. Excitatory transmitter amino acid-containing neurons in the rat visual cortex: a light and electron microscopic immunocytochemical study. J Comp Neurol 1989; 290:169-84. [PMID: 2574198 DOI: 10.1002/cne.902900202] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The distribution and morphology of neurons labelled with antisera to glutamate or aspartate were examined, at the light and electron microscope levels, in the rat visual cortex. Using widely accepted light microscopic features as well as well-established nuclear, cytoplasmic, and synaptic criteria, we noted that glutamate-immunoreactive neurons were pyramidal cells distributed in layers II-VI, with an increased concentration in layers II and III. Aspartate immunoreactivity was localized chiefly to pyramidal neurons in layers II-VI. However, approximately 10% of immunolabeled cells were nonpyramidal neurons scattered throughout the cortex. Cell-body measurements revealed that, for both groups of neurons, layer V contained the largest labelled neurons, whereas layers IV and VI contained the smallest. Furthermore, in every layer, aspartate-stained neurons were larger than glutamate-positive cells. Finally, glutamate- and aspartate-labelled axon terminals formed asymmetrical synapses, which are presumably excitatory in nature, primarily with dendritic spines. These findings, together with recent detailed studies of the projections of glutamate- and aspartate-labelled cortical neurons, may provide essential background information for studies aimed to elucidate the function(s) of excitatory amino acids in the cortex and their role in pathological conditions.
Collapse
Affiliation(s)
- I Dori
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | | | |
Collapse
|