1
|
Carr JMJR, Koep J, Brewster LM, Getu A, Dizon JC, Isaak D, Steele A, Howe CA, Ainslie PN. Acute selective serotonin-reuptake inhibition elevates basal ventilation and attenuates the rebreathing ventilatory response, independent of cerebral perfusion. J Appl Physiol (1985) 2025; 138:592-602. [PMID: 39819056 DOI: 10.1152/japplphysiol.00751.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Serotonin (5-HT) is integral to signaling in areas of the brainstem controlling ventilation and is involved in central chemoreception. Selective serotonin reuptake inhibitors (SSRIs), used to effectively increase 5-HT concentrations, are commonly prescribed for depression. The effects of SSRIs on the control of breathing and the potential influence of cerebral blood flow (CBF) have not been directly assessed. We hypothesized that a single SSRI dose in healthy adults would not impact resting ventilation, global CBF, or brainstem blood flow reactivity to CO2 but would steepen the slope of the hypercapnic ventilatory response (HCVR). In 15 young, healthy adults (6 females, 25 [Formula: see text] 5 yr, 70 [Formula: see text] 10 kg, 172 [Formula: see text] 15 cm, 24 [Formula: see text] 4 kg/cm2), using a placebo-controlled, double-blind, randomized design, we assessed baseline cardiorespiratory and CBF (duplex ultrasound) responses to SSRI (40 mg citalopram), as well as to hyperoxic hypercapnic rebreathing (as an index of central chemoreception). Baseline measures of mean arterial pressure, heart rate, minute ventilation, CBF, and the pressures of end-tidal oxygen and carbon dioxide were all not influenced by SSRI. Likewise, the sum of blood flowing through both vertebral arteries (as an index of brainstem blood flow) during hypercapnia was also unchanged. In contrast, basal ventilation (during rebreathing following hyperventilation and during hyperoxia) was elevated from 9.5 [Formula: see text] 4.1 to 11.5 [Formula: see text] 5.5 L/min (interaction P = 0.023); and counter to our hypothesis, the central chemoreceptor-mediated ventilatory response to CO2 was reduced following SSRI from 7.5 [Formula: see text] 5.3 to 5.1 [Formula: see text] 4.1 L/min/mmHg (interaction P = 0.027). The implications of these findings in health and pathology remain to be determined.NEW & NOTEWORTHY Acute inhibition of serotonin reuptake with citalopram diminishes the ventilatory response to hyperoxic hypercapnic rebreathing, possibly indicating decreased sensitivity of the central chemoreceptors and respiratory control centers. Additionally, ventilation during minimal chemoreceptor activation-i.e., following hypocapnia during hyperoxia-is elevated, perhaps signifying an increased tonic activity of the respiratory control areas. These changes appear to be independent of brainstem blood flow. These findings may have implications for antidepressant drug use.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jodie Koep
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - L Madden Brewster
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Ayechew Getu
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jonah C Dizon
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Declan Isaak
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Andrew Steele
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
2
|
POSTER COMMUNICATIONS. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1991.tb14726.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
3
|
Edvinsson L, Uddman R. Neurobiology in primary headaches. ACTA ACUST UNITED AC 2004; 48:438-56. [PMID: 15914251 DOI: 10.1016/j.brainresrev.2004.09.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 08/17/2004] [Accepted: 09/08/2004] [Indexed: 11/23/2022]
Abstract
Primary headaches such as migraine and cluster headache are neurovascular disorders. Migraine is a painful, incapacitating disease that affects a large portion of the adult population with a substantial economic burden on society. The disorder is characterised by recurrent unilateral headaches, usually accompanied by nausea, vomiting, photophobia and/or phonophobia. A number of hypothesis have emerged to explain the specific causes of migraine. Current theories suggest that the initiation of a migraine attack involves a primary central nervous system (CNS) event. It has been suggested that a mutation in a calcium gene channel renders the individual more sensitive to environmental factors, resulting in a wave of cortical spreading depression when the attack is initiated. Genetically, migraine is a complex familial disorder in which the severity and the susceptibility of individuals are most likely governed by several genes that vary between families. Genom wide scans have been performed in migraine with susceptibility regions on several chromosomes some are associated with altered calcium channel function. With positron emission tomography (PET), a migraine active region has been pointed out in the brainstem. In cluster headache, PET studies have implicated a specific active locus in the posterior hypothalamus. Both migraine and cluster headache involve activation of the trigeminovascular system. In support, there is a clear association between the head pain and the release of the neuropeptide calcitonin gene-related peptide (CGRP) from the trigeminovascular system. In cluster headache there is, in addition, release of the parasympathetic neuropeptide vasoactive intestinal peptide (VIP) that is coupled to facial vasomotor symptoms. Triptan administration, activating the 5-HT(1B/1D) receptors, causes the headache to subside and the levels of neuropeptides to normalise, in part through presynaptic inhibition of the cranial sensory nerves. These data suggest a central role for sensory and parasympathetic mechanisms in the pathophysiology of primary headaches. The positive clinical trial with a CGRP receptor antagonist offers a new promising way of treatment.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Internal Medicine, University Hospital, S-221 85 Lund, Sweden.
| | | |
Collapse
|
4
|
Abstract
Increasing use of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") has been accompanied by concern about acute and possible long-term toxicity. This article discusses acute serious toxicity, chronic toxicity, and common problems associated with Ecstasy use, as well as the implications of these areas for prevention programs targeted at current Ecstasy users. The low incidence of serious adverse events in users creates difficulties for attempts to develop harm reduction recommendations. Many hypothesized risk factors for serious adverse events cannot be confirmed or denied and may not be associated with dramatic elevations in risk. Research on chronic toxicity in users provides strong evidence of neurophysiological changes and suggestive evidence of possible neurocognitive changes. Because these worrisome changes are clinically subtle, users may not be influenced by concerns of neurotoxicity. In contrast, common Ecstasy-related complaints are relatively well documented and have identified risk factors, including factors relating to extent of Ecstasy use (such as "binges"). Common complaints include modest acute and subacute adverse effects,some lasting several days, and problems in life. The apparent willingness of users to modify drug use and other behaviors to decrease these common problems could be used by harm reduction or other prevention programs to encourage users to decrease the extent of Ecstasy use.
Collapse
|
5
|
Nariai T, Suzuki R, Ohta Y, Ohno K, Hirakawa K. Focal cerebral hyperemia in postconcussive amnesia. J Neurotrauma 2001; 18:1323-32. [PMID: 11780863 DOI: 10.1089/08977150152725623] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transient amnesia caused by minor head injury is commonly encountered in daily neurosurgical practice, but the mechanism of such amnesia has not been extensively studied. We measured the regional cerebral blood flow (rCBF) of patients with postconcussive amnesia with Xe/CT CBF to examine whether a focal disturbance of CBF exists. The Xe/CT CBF study was performed in eight patients with closed head injury without organic cerebral lesion while they were suffering from posttraumatic amnesia (concussion group). The time interval between accident and CBF measurement was less than 2 h in three patients, 5-6 h in two, 8-9 h in two, and 18 in one. The results were compared with those of nine normal volunteers and eight other age-matched patients who recovered without any neurological deficit despite the presence of hemorrhagic regions (mild hemorrhage group). The rCBF of the concussion group was significantly elevated in the bilateral mesial temporal cortex in comparison to the normal group. The rCBF in the mild hemorrhage group was lower than that of normal controls in all regions. The analysis of right-left difference in CBF indicated that there was significant asymmetry (right > left) in the frontal and temporal cortex in the concussion group, but not in the normal and mild hemorrhage group. This Xe/CT CBF study in acute stages of cerebral concussion, in which patients were amnestic, detected focal cerebral hyperemia. Such hyperemia in regions closely related to human memory function may be the result of vasoparalysis or the compensatory activation of memory circuits after denervation injury.
Collapse
Affiliation(s)
- T Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Japan.
| | | | | | | | | |
Collapse
|
6
|
Cidis Meltzer C. Brain aging research at the close of the 20th century: from bench to bedside. DIALOGUES IN CLINICAL NEUROSCIENCE 2001. [PMID: 22034395 PMCID: PMC3181658 DOI: 10.31887/dcns.2001.3.3/ccmeltzer] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Remarkable and continued growth in the field of brain aging research has been fueled by a confluence of factors. Developments in molecular biology, imaging, and genetics coupled with the imperative caused by the aging of the population has created fertile ground for improved understanding of the interaction between brain function and behavior. Aging changes in neurochemical systems may account for the spectrum of cognitive and behavioral states of successfully aged pen sons, but may also contribute to enhanced vulnerability to depressive or dementing illness. In particular, the refinement of in vivo imaging approaches to investigating the structure and function of the aging brain has provided the opportunity to strengthen our knowledge of the biological substrate of the aging brain and neuropsychiatrie disorders, and translate these into therapeutics.
Collapse
|
7
|
Abstract
Functional neuroimaging using positron emission tomography has recently yielded original data on the functional neuroanatomy of human sleep. This paper attempts to describe the possibilities and limitations of the technique and clarify its usefulness in sleep research. A short overview of the methods of acquisition and statistical analysis (statistical parametric mapping, SPM) is presented before the results of PET sleep studies are reviewed. The discussion attempts to integrate the functional neuroimaging data into the body of knowledge already acquired on sleep in animals and humans using various other techniques (intracellular recordings, in situ neurophysiology, lesional and pharmacological trials, scalp EEG recordings, behavioural or psychological description). The published PET data describe a very reproducible functional neuroanatomy in sleep. The core characteristics of this 'canonical' sleep may be summarized as follows. In slow-wave sleep, most deactivated areas are located in the dorsal pons and mesencephalon, cerebellum, thalami, basal ganglia, basal forebrain/hypothalamus, prefrontal cortex, anterior cingulate cortex, precuneus and in the mesial aspect of the temporal lobe. During rapid-eye movement sleep, significant activations were found in the pontine tegmentum, thalamic nuclei, limbic areas (amygdaloid complexes, hippocampal formation, anterior cingulate cortex) and in the posterior cortices (temporo-occipital areas). In contrast, the dorso-lateral prefrontal cortex, parietal cortex, as well as the posterior cingulate cortex and precuneus, were the least active brain regions. These preliminary studies open up a whole field in sleep research. More detailed explorations of sleep in humans are now accessible to experimental challenges using PET and other neuroimaging techniques. These new methods will contribute to a better understanding of sleep functions.
Collapse
Affiliation(s)
- P Maquet
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| |
Collapse
|
8
|
Chang L, Grob CS, Ernst T, Itti L, Mishkin FS, Jose-Melchor R, Poland RE. Effect of ecstasy [3,4-methylenedioxymethamphetamine (MDMA)] on cerebral blood flow: a co-registered SPECT and MRI study. Psychiatry Res 2000; 98:15-28. [PMID: 10708923 DOI: 10.1016/s0925-4927(99)00048-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA), an illicit recreational drug, damages serotonergic nerve endings. Since the cerebrovasculature is regulated partly by the serotonergic system, MDMA may affect cerebral blood flow (CBF) in humans. We evaluated 21 abstinent recreational MDMA users and 21 age- and gender-matched healthy subjects with brain SPECT and MRI. Ten of the MDMA subjects also had repeat SPECT and MRI after receiving two doses of MDMA. Abstinent MDMA users showed no significantly different global or regional CBF (rCBF) compared to the control subjects. However, within 3 weeks after MDMA administration, rCBF remained decreased in the visual cortex, the caudate, the superior parietal and dorsolateral frontal regions compared to baseline rCBF. The decreased rCBF tended to be more pronounced in subjects who received the higher dosage of MDMA. Two subjects who were scanned at 2-3 months after MDMA administration showed increased rather than decreased rCBF. Low-dose recreational MDMA use does not cause detectable persistent rCBF changes in humans. The lack of long-term rCBF changes may be due to a non-significant effect of serotonergic deficits on rCBF, or regeneration of serotonergic nerve terminals. The subacute decrease in rCBF after MDMA administration may be due to the direct effect of MDMA on the serotonergic system or the indirect effects of its metabolites on the dopaminergic system; the preliminary data suggest these effects may be transient.
Collapse
Affiliation(s)
- L Chang
- Department of Neurology, UCLA School of Medicine, Harbor-UCLA Medical Center, 1000 W. Carson Street, B-4, Torrance, CA 90509, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
McBean DE, Ritchie IM, Olverman HJ, Kelly PA. Effects of the specific serotonin reuptake inhibitor, citalopram, upon local cerebral blood flow and glucose utilisation in the rat. Brain Res 1999; 847:80-4. [PMID: 10564738 DOI: 10.1016/s0006-8993(99)02033-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of the potent selective 5-HT reuptake blocking agent, citalopram (10 mg/kg, i.v.), on local cerebral blood flow (lCBF) and local cerebral metabolic rate of glucose (lCMRglu) were measured using [14C]iodoantipyrine (IAP) and [14C]2-deoxyglucose (2-DG) autoradiography, respectively. Significant decreases in lCBF were observed in nine of the 27 brain areas analysed, with significant decreases in lCMRglu observed in 17 areas. While decreases in blood flow were observed, it cannot be concluded that these were in fact the result of a direct action of 5-HT upon serotonergic receptors in cerebrovascular smooth muscle, since the dynamic relationship between flow and metabolism remains largely intact. The reductions in lCBF may be explained entirely by the secondary effects of depressed cerebral metabolic demand induced by citalopram which would, once again, question the role of specifically perivascular serotonergic nerve activity in the tonic control of cerebral blood flow.
Collapse
Affiliation(s)
- D E McBean
- Faculty of Health Sciences, Queen Margaret University College, Clerwood Terrace, Edinburgh, UK.
| | | | | | | |
Collapse
|
10
|
Simpson KL, Fisher TM, Waterhouse BD, Lin RC. Projection patterns from the raphe nuclear complex to the ependymal wall of the ventricular system in the rat. J Comp Neurol 1998; 399:61-72. [PMID: 9725701 DOI: 10.1002/(sici)1096-9861(19980914)399:1<61::aid-cne5>3.0.co;2-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The goal of the present study was to characterize the anatomical and neurochemical relationships that the raphe nuclear complex maintains with respect to lateralized and centralized components of the ventricular system. From this investigation, we 1) determined the ipsilateral vs. contralateral distribution of raphe efferents to the ependymal wall of the lateral ventricle, 2) assessed the degree of collateralization of individual ependymal projection neurons to other sites along the ventricular path, 3) compared the topography of raphe neurons that project to the ventricular lining as well as the lumen of the fourth and lateral ventricles, and 4) evaluated the neurochemical identity of raphe neurons that innervate the ventricular system. After tracer injections into the lateral ventricle, labeled cells were distributed evenly on both sides of the midline in the dorsomedial subregion of the intermediate dorsal raphe nucleus. Further rostrally, labeled cells were clustered bilaterally above the medial longitudinal fasciculi and extended into the median raphe nucleus. Injections that involved the ependymal wall of the lateral ventricle resulted in prominent ipsilateral labeling within the dorsal raphe nucleus, just ventral to the cerebral aqueduct. Most of the labeled cells in this latter group had collateral projections to other sites along the ventricular path. Most of the ventricle projection cells contained serotonin but not nicotinamide adenine dinucleotide phosphate diaphorase. These findings indicate that the raphe nuclear complex is topographically organized with respect to the ventricular system. Selected subsets of serotoninergic dorsal raphe neurons may influence discrete segments of the ventricular system independently as well as coordinate functions throughout the system through axon collaterals to other sites along the ventricular neuraxis.
Collapse
Affiliation(s)
- K L Simpson
- Department of Neurobiology and Anatomy, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | | | | | | |
Collapse
|
11
|
Kelly PA, McBean DE, Ritchie IM. Intracerebral fetal raphé implants normalize hippocampal function but not cerebrovascular control in serotonin-depleted adult rat brain. Neuroscience 1998; 85:63-72. [PMID: 9607703 DOI: 10.1016/s0306-4522(97)00617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of hypercapnia upon local cerebral blood flow and local cerebral glucose utilization were measured by quantitative autoradiography in parallel groups of rats (six per group) which 14-16 weeks previously had been treated with the serotonergic neurotoxin, methylenedioxymethamphetamine, followed by implantation of fetal raphé or basal forebrain tissues. Following the experiments, transplants were visualized by acetylcholinesterase histochemistry, and serotonergic reinnervation assessed using [3H]paroxetine binding to serotonin reuptake sites. In methylenedioxymethamphetamine-treated rats, contralateral to the implants, [3H]paroxetine binding was reduced by between 50 and 90% in the neocortex and hippocampus. Hippocampal glucose utilization was significantly increased in these rats, and the normal increase in flow which accompanies hypercapnia was also significantly enhanced. High levels of [3H]paroxetine binding were found within the raphé transplants (308 +/- 13 fmol/mg tissue). In host brain adjacent to the implant, binding levels were normalized, and in these same areas glucose utilization was also normalized. Basal forebrain implants had no effect upon either [3H]paroxetine binding or glucose utilization. Raphé transplants did not, however, alter the enhanced cerebrovascular response to hypercapnia induced by methylenedioxymethamphetamine, even in those areas where there was evidence of serotonergic reinnervation. The transplants also showed the same enhanced response. In conclusion, intracerebral fetal raphé implants normalize hippocampal function but not cerebrovascular control in serotonin-depleted adult rat brain, and despite not sharing the serotonergic deficit, blood flow in the implants follows that of the dysfunctional host.
Collapse
Affiliation(s)
- P A Kelly
- Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, UK
| | | | | |
Collapse
|
12
|
Bonvento G, Borredon J, Seylaz J, Lacombe P. Cerebrovascular consequences of altering serotonergic transmission in conscious rat. Brain Res 1997; 767:208-13. [PMID: 9367249 DOI: 10.1016/s0006-8993(97)00577-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many therapeutic strategies aim at altering serotonin brain levels. However, serotonin (5-HT) is known to influence the cerebral circulation. The purpose of this study was to determine the effects of acutely decreasing intracerebral serotonin release upon cerebral blood flow and cerebrovascular reactivity to hypercapnia in conscious rats. To this end, (1) we analyzed the time-course of cortical blood flow changes measured with laser-Doppler flowmetry following injection of 0.1 mg kg(-1) 8-OHDPAT (5-HT1A agonist), and (2) we evaluated the cerebrovascular reactivity to hypercapnia using a quantitative multiregional diffusible tracer technique 5 and 60 min following 8-OHDPAT administration. 8-OHDPAT induced a rapid and transient increase in cortical blood flow (+34%) that was prevented totally by WAY100135 (5-HT1A antagonist) pre-treatment. Five min following 8-OHDPAT administration, the cerebrovascular responsiveness to hypercapnia was increased significantly in striatum (+27%) and fronto-parietal cortex (+61%). This result is consistent with a vasoconstrictor role of the serotonergic system that becomes manifest during hyperemic conditions.
Collapse
Affiliation(s)
- G Bonvento
- Laboratoire de Recherches Cérébrovasculaires, CNRS UA 641, Université Paris 7, France.
| | | | | | | |
Collapse
|
13
|
Abstract
Manipulation of brainstem serotonin (5-HT) raphe neurons induces significant alterations in local cerebral metabolism and perfusion. The vascular consequences of intracerebrally released 5-HT point to a major vasoconstrictor role, resulting in cerebral blood flow (CBF) decreases in several brain regions such as the neocortex. However, vasodilatations, as well as changes in blood-brain barrier (BBB) permeability, which are blocked by 5-HT receptor antagonists also can be observed. A lack of relationship between the changes in flow and metabolism indicates uncoupling between the two variables and is suggestive of a direct neurogenic control by brain intrinsic 5-HT neurons on the microvascular bed. In line with these functional data are the close associations that exist between 5-HT neurons and the microarterioles, capillaries and perivascular astrocytes of various regions but more intimately and/or more frequently so in those where CBF is altered significantly following manipulation of 5-HT neurons. The ability of the microvascular bed to respond directly to intracerebrally released 5-HT is underscored by the expression of distinct 5-HT receptors in the various cellular compartments of the microvascular bed. Thus, it appears that while some 5-HT-mediated microvascular functions involve directly the blood vessel wall, others would be relayed through the perivascular astrocyte. The strategic localization of perivascular astrocytes and the different 5-HT receptors that they harbor strongly emphasize their putative pivotal role in transmitting information between 5-HT neurons and microvessels. It is concluded that the cerebral circulation has full capacity to adequately and locally adapt brain perfusion to changes in central 5-HT neurotransmission either directly or indirectly via the neuronal-astrocytic-vascular tripartite functional unit. Dysfunctions in these neurovascular interactions might result in perfusion deficits and might be involved in specific pathological conditions.
Collapse
Affiliation(s)
- Z Cohen
- Laboratory of Cerebrovascular Research, Montréal Neurological Institute, McGill University, Québec, Canada
| | | | | | | |
Collapse
|
14
|
Mann JJ, Malone KM, Diehl DJ, Perel J, Nichols TE, Mintun MA. Positron emission tomographic imaging of serotonin activation effects on prefrontal cortex in healthy volunteers. J Cereb Blood Flow Metab 1996; 16:418-26. [PMID: 8621746 DOI: 10.1097/00004647-199605000-00008] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serotonergic system abnormalities have been implicated in major depression, suicide, violence, alcoholism, and other psychopathologies. The prolactin response to fenfluramine has been widely used as a neuroendocrine probe to study brain serotonin responsivity. We have extended this methodology by using the positron emission tomography (PET) 18F-fluorodeoxyglucose (18FDG) method to examine the fenfluramine-induced changes in regional cerebral glucose metabolism (rCMRglu), an indicator of changes in regional neuronal activity. We report results on 16 healthy controls, each of whom underwent two PET studies. One group of six subjects had a placebo on day 1 and a single 60 mg oral dose of fenfluramine on day 2. The second group, of 10 subjects, was tested on two consecutive occasions without drug or placebo. Data were analyzed for significant rCMRglu changes on day 2 vs day 1 using the statistical parametric mapping method (p < 0.01). Subjects who did not receive drugs showed no statistically significant areas of rCMRglu increase or decrease on day 2 versus day 1. In contrast, the group that received fenfluramine showed significant fenfluramine-induced responses. Areas of rCMRglu increases involved mainly the left prefrontal and left temperoparietal cortex. Within the prefrontal cortex, two major areas of rCMRglu increase included, first, an area centered on the anterior cingulate and, second, an area in the lateral prefrontal cortex involving principally the inferior, middle, and superior frontal gyri. Some decreases in rCMRglu were observed, principally in the right hemisphere. This PET-fenfluramine paradigm is a potentially useful method for studying abnormalities of serotonin function in the prefrontal cortex.
Collapse
Affiliation(s)
- J J Mann
- Department of Neuroscience, New York Psychiatric Institute, New York, USA
| | | | | | | | | | | |
Collapse
|
15
|
Kelly PA, Ritchie IM, McBean DE, Sharkey J, Olverman HJ. Enhanced cerebrovascular responsiveness to hypercapnia following depletion of central serotonergic terminals. J Cereb Blood Flow Metab 1995; 15:706-13. [PMID: 7790420 DOI: 10.1038/jcbfm.1995.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Serotonin-containing nerve fibres innervate cerebral blood vessels, but the source of this innervation and the physiological effects of perivascular serotonin release remain controversial. The purpose of the present study was to examine the effects of central serotonergic depletion upon the relationship between CBF and glucose utilization under both normo- and hypercapnic conditions. To induce the loss of serotonergic terminals, rats were injected twice daily for 4 consecutive days with 20 mg/kg of the specific serotonergic neurotoxin methylenedioxyamphetamine (MDA). Between 4 and 6 weeks later, local CBF and glucose utilization were measured using the fully quantitative [14C]iodoantipyrine and [14C]2-deoxyglucose autoradiographic techniques, respectively, and the efficacy of the lesioning protocol was assessed using [3H]paroxetine radioligand binding analysis. In all animals treated with MDA, there was a significant decrease in serotonin uptake sites throughout the brain, falling from 223 +/- 20 to 40 +/- 16 fmol/mg tissue in parietal cortex, for example, although the raphe nuclei themselves were unaffected (300 +/- 20 fmol/mg tissue in controls and 291 +/- 18 in MDA-treated rats). In normocapnic rats, the effects of MDA pretreatment upon blood flow and glucose use were slight and focally concentrated. However, when the animals were rendered hypercapnic, CBF was significantly higher in MDA-treated rats than in normal controls, for example, increasing from 356 +/- 22 ml 100 g-1 min-1 in frontal cortex of hypercapnic controls to 700 +/- 81 ml 100 g-1 min-1 in MDA-pretreated rats with similar levels of hypercapnia. In some brain areas of hypercapnic MDA-pretreated rats, blood flows were too high (> 800 ml 100 g-1 min-1) to be accurately quantified.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P A Kelly
- Department of Clinical Neurosciences, University of Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
16
|
Cohen Z, Ehret M, Maitre M, Hamel E. Ultrastructural analysis of tryptophan hydroxylase immunoreactive nerve terminals in the rat cerebral cortex and hippocampus: their associations with local blood vessels. Neuroscience 1995; 66:555-69. [PMID: 7644020 DOI: 10.1016/0306-4522(94)00625-f] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Physiological evidence has indicated that serotonin (5-hydroxytryptamine) could be a regulator of cerebral blood flow in various regions of the brain. In the present study, tryptophan hydroxylase immunocytochemistry was used to characterize, both at the light and electron microscopic levels, serotonergic nerve terminals and primarily their relationships with intraparenchymal microarterioles and capillaries in the rat frontoparietal cortex, entorhinal cortex and hippocampus. Irrespective of the brain area, serotonergic varicosities were primarily apposed to either dendrites or nerve terminals, were on average 0.37 micron2 in surface area (0.69 micron calculated diameter) and 12-22% of them engaged in synaptic junctions, mostly with dendritic elements. Perivascular terminals (defined as immunolabelled varicosities located within a 3 micron perimeter around the vessel basal lamina) in the frontoparietal cortex represented 8-11% of all immunoreactive terminals counted, as determined by light and electron microscopy, respectively. In the entorhinal cortex and hippocampus, the proportion of perivascular terminals was only determined at the ultrastructural level and corresponded to 10% and 4%, respectively. In the frontoparietal cortex, serotonergic varicosities were located significantly closer (n = 250, 0.98 +/- 0.05 micron; P < 0.001) to the blood vessels than those of the entorhinal cortex (n = 116, 1.41 +/- 0.08 microns) or hippocampus (n = 105, 1.31 +/- 0.08 microns). Of all perivascular serotonergic terminals in the frontoparietal cortex, 26% were in the immediate vicinity (0-0.25 micron) of the vessel wall, with 2.8% directly abutting on the basement membrane, while 11.6% were separated from it only by a thin astrocytic leaflet. This situation contrasts with that observed in the entorhinal cortex and hippocampus, where no immunoreactive varicosity was ever seen directly contacting the vessel basal lamina and with only 10-13% of the terminals being within 0.25 micron from the vessels. The surface area of perivascular serotonergic terminals was comparable in all regions studied and corresponded to 0.22 micron2; these virtually never engaged in synaptic contacts with adjacent neuronal structures. Our results indicate that tryptophan hydroxylase-immunolabelled terminals are identical to previously characterized serotonin-containing varicosities. Furthermore, the present data show intimate associations between serotonergic terminals and microvessels in the three regions examined. However, perivascular terminals in the frontoparietal cortex were more frequent and/or located much closer to local microvessels than those in the other regions, and might be more directly involved in neurogenic control of local cerebral blood flow.
Collapse
Affiliation(s)
- Z Cohen
- Cerebrovascular Research Laboratory, Montreal Neurological Institute, McGill University, Québec, Canada
| | | | | | | |
Collapse
|
17
|
Bonvento G, MacKenzie ET, Seylaz J, Lacombe P. The cerebrovascular role of the ascending serotonergic system: new vistas. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1994; 49 Suppl:S37-42. [PMID: 7836684 DOI: 10.1016/0165-1838(94)90084-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- G Bonvento
- Laboratoire de Recherches Cérébrovasculaires, CNRS UA 641, Université Paris VII, France
| | | | | | | |
Collapse
|
18
|
Kelly PA, Ritchie IM, Sharkey J, McBean DE. Alterations in local cerebral blood flow in mature rats following prenatal exposure to cocaine. Neuroscience 1994; 60:183-9. [PMID: 8052411 DOI: 10.1016/0306-4522(94)90213-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Time-mated female Sprague-Dawley rats were injected subcutaneously with either 40 mg/kg cocaine-HCl or saline once daily on gestational days 13 through to 16. Local cerebral blood flow and glucose use were measured in the mature male offspring from these dams using the fully quantitative [14C]2-deoxyglucose and [14C]iodoantipyrine autoradiographic techniques, respectively. The effects of the treatment upon the integrity of central serotonergic terminals was assessed using [3H]paroxetine radioligand binding autoradiography. There were no significant changes in glucose use in any of the 40 brain areas analysed in this study, and although there was a generalized tendency towards increases, these never exceeded +15% of control values. In contrast, significant increases in local cerebral blood flow were measured in more than one-third of the areas examined in cocaine-treated rats, ranging from +20% in dorsal raphe nucleus to +95% in some parts of the neocortex. In all but three brain areas, the ratio of cerebral blood flow to metabolic demand was found to increase following cocaine exposure, resetting the relationship from an overall ratio of 1.6 in controls to 2.5 in treated rats. This relative hyperaemia, which must result from excessive dilatation of the cerebrovascular bed under normal physiological conditions, could not be explained by a direct effect of the treatment on serotonergic constrictor neurons as there was no evidence for any changes in [3H]paroxetine binding. Whatever the underlying cause, we conclude that the effects upon cerebrovascular control mechanisms of prenatal exposure to cocaine identified here, might present a further source of difficulty in the management of "crack babies".
Collapse
Affiliation(s)
- P A Kelly
- Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, U.K
| | | | | | | |
Collapse
|
19
|
Cudennec A, Bonvento G, Duverger D, Lacombe P, Seylaz J, MacKenzie ET. Effects of dorsal raphe nucleus stimulation on cerebral blood flow and flow-metabolism coupling in the conscious rat. Neuroscience 1993; 55:395-401. [PMID: 8377932 DOI: 10.1016/0306-4522(93)90508-d] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the present study, we have investigated the effects of an activation of the ascending serotonergic pathway on the cerebral blood supply to a number (63) of well-defined neuroanatomical structures. To this end, we have measured the local cerebral blood flow during electrical stimulation of the dorsal raphe nucleus. Measurement of regional blood flow was performed in the conscious rat through the use of the [14C]iodoantipyrine autoradiographic technique. Stimulation of the dorsal raphe nucleus induced increases (> 15% compared to control) in cerebral blood flow in 17 structures of which statistical significance (P < 0.05) was achieved in nine; raphe stimulation significantly decreased flow in three regions. The greatest increases (+71 and +46%) were found in the frontal sensorimotor and posterior parietal cortices. Other increases were noted in relay stations of the extrapyramidal and limbic systems. Stimulation induced a decrease in two regions of the primary auditory system and in the lateral habenular nucleus. These results show that activation of the serotonergic pathway in the conscious rat effects regional cerebral blood flow heterogeneously, differing from the widespread increase in glucose utilization that we previously observed using the same experimental paradigm. Statistical analyses indicated that activation of the dorsal raphe nucleus resulted in a global modification of the flow-metabolism ratio. Moreover, in 19 out of 31 regions analysed, this ratio is significantly altered as compared to control. The dichotomy between raphe-induced changes in flow and glucose-metabolism could be explained by one or both of two hypotheses; firstly there could be a direct serotonergic innervation of cerebral resistance vessels; secondly, during raphe stimulation it could be that glucose use is not the primary determinant of tissue perfusion.
Collapse
Affiliation(s)
- A Cudennec
- Synthélabo Recherche (LERS), Department of Biology, Bagneux, France
| | | | | | | | | | | |
Collapse
|
20
|
Cohen Z, Bovento G, Lacombe P, Seylaz J, MacKenzie ET, Hamel E. Cerebrovascular nerve fibers immunoreactive for tryptophan-5-hydroxylase in the rat: distribution, putative origin and comparison with sympathetic noradrenergic nerves. Brain Res 1992; 598:203-14. [PMID: 1486481 DOI: 10.1016/0006-8993(92)90184-b] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The distribution of serotonergic nerves in major basal and isolated small pial arteries (diameter > or = 50 microns) was investigated immunohistochemically using an antibody directed against tryptophan-5-hydroxylase (TPOH), the rate-limiting enzyme in the synthesis of 5-hydroxytryptamine (5-HT or serotonin), and compared to that of the noradrenergic system labeled for the selective noradrenaline (NA) synthesizing enzyme, dopamine-beta-hydroxylase (DBH). In addition, the possible peripheral and/or central origins of the cerebrovascular serotonergic (TPOH-positive) nerve fibers were examined. Strongly labeled TPOH-immunoreactive (TPOH-I) fiber bundles were observed in major basal arteries and gave rise to small varicose fibers organized in a meshwork pattern. The highest density of TPOH-I fibers was found in the middle cerebral artery followed by the anterior cerebral and the anterior communicating arteries, with a moderate to low density in the internal carotid and the vertebro-basilar trunk. Of the isolated pial arteries, only the larger ones (diameter > 75 microns) were significantly endowed with TPOH-I varicose fibers. However, free floating TPOH-I nerves were observed coursing through the pia-arachnoid membranes and reaching small pial vessels. In contrast, DBH-I nerve fibers were fine and were visualized primarily as numerous varicosities distributed in a circumferential manner around the vessel wall. A very high density of DBH-I varicosities was seen in the rostral part of the circle of Willis, with the internal carotid being the most richly supplied followed by the anterior cerebral and the anterior communicating arteries; comparatively, the middle cerebral artery was moderately innervated. The differences in distribution pattern and density between TPOH-I and DBH-I cerebrovascular fibers clearly suggest that these two innervation systems are not exactly superimposable. Superior cervical ganglionectomy caused an almost complete disappearance of TPOH-I nerves in all vascular segments, with some residual fibers in selected vessels. Lesion of the central serotonergic component with the neurotoxin 5,7-dihydroxytryptamine had virtually no effect on the TPOH-I fibers in the major basal and isolated pial arteries. These results strongly suggest that the serotonergic innervation of major cerebral as well as pial arteries has a prominent peripheral origin closely related to the sympathetic system. Processing of superior cervical ganglion slices for TPOH immunocytochemistry, however, failed to unequivocally detect TPOH-I neurons.
Collapse
Affiliation(s)
- Z Cohen
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, Qué., Canada
| | | | | | | | | | | |
Collapse
|
21
|
Sato A, Sato Y. Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain. Neurosci Res 1992; 14:242-74. [PMID: 1334245 DOI: 10.1016/0168-0102(92)90071-j] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We review mainly recent studies on vasodilative regulation of cortex and hippocampus by central cholinergic nerves originating in the basal forebrain. We also briefly review the influence of other central noradrenergic fibers originating in the locus ceruleus, serotonergic fibers originating in the dorsal raphe nucleus, dopaminergic fibers originating in the substantia nigra, and peripheral sympathetic and parasympathetic nerve fibers upon regulation of regional cerebral blood flow. Local metabolites have long been considered to play an important physiological role in regulating regional cerebral blood flow. However, the evidence reviewed here emphasizes that the regulation of regional cerebral blood flow by these central cholinergic nerves is independent of regional metabolism. We propose through this review that although studies investigating neural regulation of cortical and hippocampal blood flow by cholinergic fibers originating in the basal forebrain have added much to the understanding of regulation of regional cerebral blood flow further studies are needed to determine the physiological relevance of regional cerebral blood flow in relation to higher nervous functions such as memory, learning, and personality, and changes in these cognitive functions with aging and pathology such as Alzheimer's disease.
Collapse
Affiliation(s)
- A Sato
- Department of Autonomic Nervous System, Tokyo Metropolitan Institute of Gerontology, Japan
| | | |
Collapse
|
22
|
Bonvento G, Lacombe P, MacKenzie ET, Seylaz J. Effects of dorsal raphe stimulation on cerebral glucose utilization in the anaesthetized rat. Brain Res 1991; 567:325-7. [PMID: 1817737 DOI: 10.1016/0006-8993(91)90813-b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of this study was to determine the effects of electrical stimulation of the dorsal raphe nucleus on local cerebral glucose utilization (LCGU) in the alpha-chloralose anaesthetized rat. Activation of the dorsal raphe nucleus effected significant increases in LCGU, ranging from 13 to 52% in 8 brain structures out of 33 investigated. Increases were restricted to extrapyramidal and limbic non-specific areas, and no modifications were observed in cortical areas. The comparison with our previous results, showing that a similar raphe activation induced a global decrease in local cerebral blood flow, suggests that the ascending serotonergic system may be of importance in the regulation of the cerebral circulation.
Collapse
Affiliation(s)
- G Bonvento
- Laboratoire de Recherches Cérébrovasculaires, CNRS, Paris, France
| | | | | | | |
Collapse
|
23
|
Bonvento G, MacKenzie ET, Edvinsson L. Serotonergic innervation of the cerebral vasculature: relevance to migraine and ischaemia. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1991; 16:257-63. [PMID: 1790433 DOI: 10.1016/0165-0173(91)90009-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple and complex interactions exist between the cerebral circulation and a potent vasoactive (and neurotransmitter) agent, serotonin. The nature and bases of the real and potential relationships are often hotly contested, for example, the serotonergic innervation of brain conducting and resistance vessels. In this review, an attempt is made to reconcile the available literature and to indicate future and possibly fruitful research directions. It appears that, by its very nature, the pattern of the serotonergic innervation is singular to blood vessels of the brain and could provide a neuronal link (or coupling) between functional events within the central nervous system and its perfusion which subserves changes in brain function. Finally, there are sufficient data to suggest an involvement of 5-hydroxytryptamine in different cerebrovascular pathologies.
Collapse
Affiliation(s)
- G Bonvento
- Centre Cyceron, CNRS SDI 6129, CEA DSV-DPTE, Caen, France
| | | | | |
Collapse
|
24
|
McBean DE, Sharkey J, Ritchie IM, Kelly PA. Cerebrovascular and functional consequences of 5-HT1A receptor activation. Brain Res 1991; 555:159-63. [PMID: 1834308 DOI: 10.1016/0006-8993(91)90873-t] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral glucose utilization and blood flow were measured in rats using 2-deoxy-D-[14C]glucose and [14C]iodoantipyrine quantitative autoradiography, respectively, following treatment with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT). In control and 8-OH-DPAT-treated animals blood flow and glucose use were similarly correlated, but the ratio was increased following 8-OH-DPAT treatment. Since 5-HT1A receptor activation is known to reduce neuronal 5-HT release, these results are consistent with a vasoconstrictor role for endogenous serotonin.
Collapse
Affiliation(s)
- D E McBean
- Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, U.K
| | | | | | | |
Collapse
|