1
|
Chen TS, Sheri N, Ehmann DS, Benson MD. Novel heterozygous PRPH2 variant identified in a patient with spinocerebellar ataxia type 14 and macular dystrophy. Ophthalmic Genet 2024; 45:409-412. [PMID: 38419591 DOI: 10.1080/13816810.2024.2321883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE To report on a patient with spinocerebellar ataxia type 14 (SCA14) and macular dystrophy with identification of a novel PRPH2 variant. METHODS Case report. RESULTS A 63-year-old female with molecularly confirmed SCA14 presented with symmetric pigmentary disturbances in a perifoveal distribution resembling a pattern macular dystrophy. She had no history of using medications with recognized toxic macular effects. Subsequent genetic testing confirmed a novel heterozygous missense variant of unknown significance in PRPH2 (PRPH2: c.694 G>A, p.(Ala232Thr)). CONCLUSIONS To our knowledge, this is the first case of macular dystrophy identified in a patient with SCA14. While it is possible that the macular dystrophy observed in this patient might be an under-reported phenotype associated with SCA14, the pattern of macular changes is consistent with PRPH2-related disorders. The identified missense variant is predicted to be damaging by most in silico models, and the residue is highly conserved, adding support to a dual genetic diagnosis in this case.
Collapse
Affiliation(s)
- Tugche S Chen
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| | - Narin Sheri
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| | - David S Ehmann
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| | - Matthew D Benson
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Ihl T, Kadas EM, Oberwahrenbrock T, Endres M, Klockgether T, Schroeter J, Brandt AU, Paul F, Minnerop M, Doss S, Schmitz-Hübsch T, Zimmermann HG. Investigation of Visual System Involvement in Spinocerebellar Ataxia Type 14. CEREBELLUM (LONDON, ENGLAND) 2020; 19:469-482. [PMID: 32338350 PMCID: PMC7351844 DOI: 10.1007/s12311-020-01130-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Spinocerebellar ataxia type 14 (SCA-PRKCG, formerly SCA14) is a rare, slowly progressive disorder caused by conventional mutations in protein kinase Cγ (PKCγ). The disease usually manifests with ataxia, but previous reports suggested PRKCG variants in retinal pathology. To systematically investigate for the first time visual function and retinal morphology in patients with SCA-PRKCG. Seventeen patients with PRKCG variants and 17 healthy controls were prospectively recruited, of which 12 genetically confirmed SCA-PRKCG patients and 14 matched controls were analyzed. We enquired a structured history for visual symptoms. Vision-related quality of life was obtained with the National Eye Institute Visual Function Questionnaire (NEI-VFQ) including the Neuro-Ophthalmic Supplement (NOS). Participants underwent testing of visual acuity, contrast sensitivity, visual fields, and retinal morphology with optical coherence tomography (OCT). Measurements of the SCA-PRKCG group were analyzed for their association with clinical parameters (ataxia rating and disease duration). SCA-PRKCG patients rate their vision-related quality of life in NEI-VFQ significantly worse than controls. Furthermore, binocular visual acuity and contrast sensitivity were worse in SCA-PRKCG patients compared with controls. Despite this, none of the OCT measurements differed between groups. NEI-VFQ and NOS composite scores were related to ataxia severity. Additionally, we describe one patient with a genetic variant of uncertain significance in the catalytic domain of PKCγ who, unlike all confirmed SCA-PRKCG, presented with a clinically silent epitheliopathy. SCA-PRKCG patients had reduced binocular vision and vision-related quality of life. Since no structural retinal damage was found, the pathomechanism of these findings remains unclear.
Collapse
Affiliation(s)
- Thomas Ihl
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ella M Kadas
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Timm Oberwahrenbrock
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site, Berlin, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jan Schroeter
- University Tissue Bank, Cornea Bank Berlin, Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, USA
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology and Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Sarah Doss
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurological Sciences, Movement Disorders Section, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
3
|
Gupta CL, Nag TC, Jha KA, Kathpalia P, Maurya M, Kumar P, Gupta S, Roy TS. Changes in the Inner Retinal Cells after Intense and Constant Light Exposure in Sprague-Dawley Rats. Photochem Photobiol 2020; 96:1061-1073. [PMID: 32112401 DOI: 10.1111/php.13244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Light insult causes photoreceptor death. Few studies reported that continuous exposure to light affects horizontal, Müller and ganglion cells. We aimed to see the effect of constant light exposure on bipolar and amacrine cells. Adult Sprague-Dawley rats were exposed to 300 or 3000 lux for 7 days in 12-h light: 12-h dark cycles (12L:12D). The latter group was then exposed to 24L:0D for 48 h to induce significant damage. The same animals were reverted to 300 lux and reared for 15 days in 12L:12D cycles. They were sacrificed on different days to find the degree of retinal recovery, if any, from light injury. Besides photoreceptor death, continuous light for 48 h resulted in downregulation of parvalbumin in amacrine cells and recoverin in cone bipolar cells (CBC). Rod bipolar cells (RBC) maintained an unaltered pattern of PKC-α expression. Upon reversal, there were increased expressions of parvalbumin in amacrine cells and recoverin in CBC, while RBC showed an increasing trend of PKC-α expression. The data show that damage in bipolar and amacrine cells after exposure to intense, continuous light can be ameliorated upon reversal to normal LD cycles to which the animals were initially acclimated to.
Collapse
Affiliation(s)
- Chandan L Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kumar Abhiram Jha
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Sneha Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tara S Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Haug MF, Berger M, Gesemann M, Neuhauss SCF. Differential expression of PKCα and -β in the zebrafish retina. Histochem Cell Biol 2019; 151:521-530. [PMID: 30604284 DOI: 10.1007/s00418-018-1764-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
Abstract
The retina is a complex neural circuit, which processes and transmits visual information from light perceiving photoreceptors to projecting retinal ganglion cells. Much of the computational power of the retina rests on signal integrating interneurons, such as bipolar cells. Commercially available antibodies against bovine and human conventional protein kinase C (PKC) α and -β are frequently used as markers for retinal ON-bipolar cells in different species, despite the fact that it is not known which bipolar cell subtype(s) they actually label. In zebrafish (Danio rerio) five prkc genes (coding for PKC proteins) have been identified. Their expression has not been systematically determined. While prkcg is not expressed in retinal tissue, the other four prkc (prkcaa, prkcab, prkcba, prkcbb) transcripts were found in different parts of the inner nuclear layer and some as well in the retinal ganglion cell layer. Immunohistochemical analysis in adult zebrafish retina using fluorescent in situ hybridization and PKC antibodies showed an overlapping immunolabeling of ON-bipolar cells that are most likely of the BON s6 and BON s6L or RRod type. However, comparison of transcript expression with immunolabeling, implies that these antibodies are not specific for one single zebrafish conventional PKC, but rather detect a combination of PKC -α and -β variants.
Collapse
Affiliation(s)
- Marion F Haug
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Manuela Berger
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Gesemann
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
5
|
Liu ZC, Yu EH, Liu W, Liu XC, Tang SB, Zhu BH. Translocation of protein kinase C δ contributes to the moderately high glucose-, but not hypoxia-induced proliferation in primary cultured human retinal endothelial cells. Mol Med Rep 2014; 9:1780-6. [PMID: 24626810 DOI: 10.3892/mmr.2014.2049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/10/2014] [Indexed: 11/05/2022] Open
Abstract
Diabetic retinopathy is one of the most common complications in patients with diabetes and affects ~75% of them within 15 years of the onset of the disease. Activation of protein kinase C (PKC) is a key feature of diabetes mellitus and may be involved in the pathogenesis of diabetic retinopathy. The present study aimed to examine the translocation of protein kinase C (PKC) isoforms, which are triggered by high an moderately high glucose levels as well as hypoxic conditions. The underlying cell mechanisms of PKC translocation in primary cultured human retinal endothelial cells (HRECs) were also investigated. The expression levels of PKC isoforms were assessed using western blot analysis. Cell proliferation was determined using the MTT assay and DNA synthesis was assessed by bromodeoxyuridine incorporation. Translocation of PKC isoforms was examined by western blot analysis and immunofluorescence. The expression of PKC α, βI, βII, δ and ε was detected, while PKC ζ was not detected in HRECs. The results of the present study were consistent with the findings of a previous study by our group, reporting that moderately high glucose levels and hypoxia, but not high glucose levels, significantly increased cell proliferation. It was demonstrated that the PKC δ isoform was translocated from the cytosol to the membrane only under moderately high glucose conditions, while PKC α and ε isoforms were translocated from the cytosol to the membrane at high glucose conditions. In addition, PKC βI was translocated under all three conditions. Translocation of PKC βII was comparable among all groups. Furthermore, rottlerin, an inhibitor of PKC δ, blocked cell proliferation, which was induced by moderately high glucose levels, but not by hypoxia. Ro32-0432, an inhibitor of PKC α, βI and ε, did not significantly affect proliferation of HRECs in all treatment groups. In conclusion, the present study suggested that PKC α, βI, βII, δ and ε were expressed in primary cultured HRECs, whereas PKC ζ was not. Cell proliferation induced by moderately high glucose concentrations was associated with translocation of the PKC δ isoform; however, hypoxic conditions did not induce translocation.
Collapse
Affiliation(s)
- Zhao-Chun Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - En-Hong Yu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiao-Chang Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shi-Bo Tang
- Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bang-Hao Zhu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
6
|
Abstract
The protein kinase C (PKC) family of enzymes regulates cell physiology through phosphorylation of serine and threonine residues of many proteins in most cell types. Here we identify PKC-β1 and PKC-γ as isoforms that are essential for rod photoreceptor differentiation in mouse retinas. Using ex vivo retinal explants, we found that phorbol ester 12-myristate 13-acetate and insulin-like growth factor 1 (IGF1) induced rod differentiation, as defined by opsin or Crx expression, in a PKC-dependent manner days ahead of rod development in untreated explants. PKC-β1 and PKC-γ were colocalized with proliferating cell nuclear antigen (PCNA)- and STAT3-positive progenitors through the later differentiation period. Pharmacological or genetic inhibition of either isoform resulted in a partial reduction in the appearance of rods, whereas removing both isoforms resulted in their complete absence. Furthermore, a significant decline of STAT3 tyrosine phosphorylation was observed by activation of PKC, while inhibition of PKC resulted in an increase of phosphorylated STAT3 along with a delayed cell cycle exit of progenitors with prolonged PCNA expression. In adult retinas, IGF1 activates PI-3 kinase (PI3K), but in neonatal retinas its action is identical to the action of an PI3K inhibitor. These data unveil a novel signaling cascade that coordinates and regulates rod differentiation through specific PKC isoforms in mammals.
Collapse
|
7
|
Jeong C, Shin T. Immunohistochemical localization of protein kinase C (PKC) beta I in the pig retina during postnatal development. Acta Histochem 2012; 114:18-23. [PMID: 21474165 DOI: 10.1016/j.acthis.2011.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/23/2011] [Accepted: 01/24/2011] [Indexed: 01/07/2023]
Abstract
In order to investigate the expression of protein kinase C (PKC) beta I in the retinas of pigs during postnatal development, we analyzed retinas sampled from 3-day-old and 6-month-old pigs by Western blotting and immunohistochemistry. Western blot analysis detected the expression of PKC beta I in the retinas of 3-day-old piglets and it was increased significantly in the retinas of 6-month-old adult pigs. Immunohistochemical staining showed PKC beta I in the retinas of both groups. Immunohistochemistry of 3-day-old retinas revealed weak PKC beta I reactivity in the ganglion cell layer, inner plexiform layer, inner nuclear cell layer, outer plexiform layer and rod and cone cell layer. In the 6-month-old pig retina, the cellular localization of PKC beta I immunostaining was similar to that of the 3-day-old retina, where PKC beta I was localized in some glial fibrillary acidic protein-positive cells, glutamine synthetase-positive cells, parvalbumin-positive cells, and PKC alpha-positive cells in the retina. This is the first study to show the expression and cellular localization of PKC beta I in the retina of pigs with development, and these results suggest that PKC beta I, in accordance with PKC alpha, plays important roles in signal transduction pathways in the pig retina with development.
Collapse
|
8
|
Fradot M, Busskamp V, Forster V, Cronin T, Léveillard T, Bennett J, Sahel JA, Roska B, Picaud S. Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes. Hum Gene Ther 2011; 22:587-93. [PMID: 21142470 DOI: 10.1089/hum.2010.157] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gene therapy studies in primates can provide important information regarding vector tropism, specific cellular expression, biodistribution, and safety prior to clinical trials. In this study, we report the assessment of transduction efficiency of recombinant adeno-associated virus (rAAV) vectors using human postmortem retina. Transductions were performed using two in vitro models prepared from human tissue: dissociated cell cultures and retinal explants. These models were used to assess cellular tropism and selectivity of rAAV vectors encoding for fluorescent proteins under the control of different promoters. These promoters were a ubiquitous cytomegalovirus promoter and a cell type-specific promoter targeting expression in ON bipolar cells. The results demonstrate that this in vitro approach can limit the use of living primates for the validation of gene therapy in vision and ophthalmology.
Collapse
|
9
|
Downie LE, Hatzopoulos KM, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Kalloniatis M, Fletcher EL. Angiotensin type-1 receptor inhibition is neuroprotective to amacrine cells in a rat model of retinopathy of prematurity. J Comp Neurol 2010; 518:41-63. [DOI: 10.1002/cne.22205] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Chua J, Fletcher EL, Kalloniatis M. Functional remodeling of glutamate receptors by inner retinal neurons occurs from an early stage of retinal degeneration. J Comp Neurol 2009; 514:473-91. [PMID: 19350664 DOI: 10.1002/cne.22029] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retinitis pigmentosa reflects a family of diseases that result in retinal photoreceptor death and functional blindness. The natural course of retinal changes secondary to photoreceptor degeneration involves anatomical remodeling (cell process alterations and soma displacement) and neurochemical remodeling. Anatomical remodeling predominantly occurs late in the disease process and cannot explain the significant visual deficits that occur very early in the disease process. Neurochemical remodeling includes modified glutamate receptor disposition and altered responses secondary to functional activation of glutamate receptors. We investigated the neurochemical remodeling of retinal neurons in the rd/rd (rd1) mouse retina by tracking the functional activation of glutamate receptors with a cation probe, agmatine. We provide evidence that bipolar cells and amacrine cells undergo selective remodeling of glutamate receptors during the early phases of retinal degeneration. These early neurochemical changes in the rd/rd mouse retina include the expression of aberrant functional ionotropic glutamate receptors on the cone ON bipolar cells from postnatal day 15 (P15), poor functional activation of metabotropic glutamate receptors on both rod and cone ON bipolar cells throughout development/degeneration, and poor functional activation of N-methyl-D-aspartate receptors on amacrine cells from P15. Our results suggest that major neurochemical remodeling occurs prior to anatomical remodeling, and likely accounts for the early visual deficits in the rd/rd mouse retina.
Collapse
Affiliation(s)
- Jacqueline Chua
- Department of Optometry and Vision Science, University of Auckland, Private Bag 92010, Auckland, New Zealand
| | | | | |
Collapse
|
11
|
Yevseyenkov VV, Das S, Lin D, Willard L, Davidson H, Sitaramayya A, Giblin FJ, Dang L, Takemoto DJ. Loss of protein kinase Cgamma in knockout mice and increased retinal sensitivity to hyperbaric oxygen. ACTA ACUST UNITED AC 2009; 127:500-6. [PMID: 19365031 DOI: 10.1001/archophthalmol.2009.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To determine if loss of protein kinase Cgamma (PKCgamma) results in increased structural damage to the retina by hyperbaric oxygen (HBO), a treatment used for several ocular disorders. METHODS Six-week-old mice were exposed in vivo to 100% HBO 3 times a week for 8 weeks. Eyes were dissected, fixed, embedded in Epon, sectioned, stained with toluidine blue O, and examined by light microscopy. RESULTS The thicknesses of the inner nuclear and ganglion cell layers were increased. Destruction of the outer plexiform layer was observed in the retinas of the PKCgamma-knockout mice relative to control mice. Exposure to HBO caused significant degradation of the retina in knockout mice compared with control mice. Damage to the outer segments of the photoreceptor layer and ganglion cell layer was apparent in central retinas of HBO-treated knockout mice. CONCLUSIONS Protein kinase Cgamma-knockout mice had increased retinal sensitivity to HBO. Results demonstrate that PKCgamma protects retinas from HBO damage. CLINICAL RELEVANCE Care should be taken in treating patients with HBO, particularly if they have a genetic disease, such as spinocerebellar ataxia type 14, a condition in which the PKCgamma is mutated and nonfunctional.
Collapse
Affiliation(s)
- Vladimir V Yevseyenkov
- Department of Biochemistry, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Downie LE, Vessey K, Miller A, Ward MM, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL. Neuronal and glial cell expression of angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the rat retina. Neuroscience 2009; 161:195-213. [PMID: 19298848 DOI: 10.1016/j.neuroscience.2009.02.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 02/27/2009] [Accepted: 02/28/2009] [Indexed: 10/21/2022]
Abstract
The bio-active peptide, angiotensin II (Ang II), has been suggested to exert a neuromodulatory effect on inner retinal neurons. In this study, we examined the distribution of angiotensin receptors (ATRs) in the developing and mature rat retina and optic nerve using immunofluorescence immunocytochemistry. Double-labeling experiments were performed with established markers to identify different retinal cell populations. In adult retinae, ATRs were observed on neurons involved in "ON" pathways of neurotransmission. Angiotensin II type 1 receptors (AT(1)Rs) were expressed by a sub-population of "ON" cone bipolar cells that also labeled for G alpha(0) and islet-1. Extra-neuronal expression of AT(1)Rs was evident on retinal astrocytes, Müller cells and blood vessels. Immunoreactivity for the angiotensin II type 2 receptor (AT(2)R) was observed on conventional and displaced GABAergic amacrine cells. Co-localization studies showed that AT(2)R-expressing amacrine cells constituted at least two separate sub-populations. Cell counts revealed that all wide-field amacrine cells expressing protein kinase C-alpha were also AT(2)R-positive; a further subset of amacrine cells expressing AT(2)Rs and stratifying in sublamina "b" of the inner plexiform layer (IPL) was identified. Developmental expression of AT(1)Rs was dynamic, involving multiple inner neuronal classes. At postnatal day 8 (P8), AT(1)R immunoreactivity was observed on putative ganglion cells. The characteristic bipolar cell labeling observed in adults was not evident until P13. In contrast, AT(2)Rs were detected as early as P2 and localized specifically to amacrine cells from this age onward. These data provide further evidence for the potential role of angiotensin II in the modulation of retinal neurons and glia. The differential pattern of expression of these receptors across these cell types is similar to that observed in the brain and suggests that a similar functional role for Ang II may also exist within the retina.
Collapse
Affiliation(s)
- L E Downie
- Department of Anatomy and Cell Biology, The University of Melbourne, Grattan Street, Parkville 3010, Victoria, Australia 3010
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ding J, Ding N, Wang N, Lu Q, Lu N, Yang D, Bu X, Han S, Li J. Determination of conventional protein kinase C isoforms involved in high intraocular pressure-induced retinal ischemic preconditioning of rats. Vision Res 2008; 49:315-21. [PMID: 19013479 DOI: 10.1016/j.visres.2008.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/13/2008] [Accepted: 10/13/2008] [Indexed: 01/26/2023]
Abstract
Evidence indicates that conventional protein kinase C (cPKC) plays a pivotal role in the development of retinal ischemic preconditioning (IPC). In this study, the effect of high intraocular pressure (IOP)-induced retinal IPC on cPKC isoform-specific membrane translocation and protein expression were observed. We found that cPKCgamma membrane translocation increased significantly at the early stage (20min-1h), while the protein expression levels of cPKCalpha and gamma were markedly elevated in the delayed retinal IPC (12-168h) of rats. The increased protein expressions of cPKCalpha at 72h and cPKCgamma at 24h after IPC were further confirmed by immunofluorescence staining. In addition, we found that cPKCgamma co-localized with retinal ganglion cell (RGC)-specific marker, neurofilaments heavy chain (NF-H) by using double immunofluorescence labeling. These results suggest that increased cPKCgamma membrane translocation and up-regulated protein expressions of cPKCalpha and gamma are involved in the development of high IOP-induced rat retinal IPC.
Collapse
Affiliation(s)
- Jingwen Ding
- Beijing Tongren Eye Center, Capital Medical University Affiliated Beijing Tongren Hospital, Vision Science Laboratory, School of Ophthalmology, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fox DA, Kala SV, Hamilton WR, Johnson JE, O'Callaghan JP. Low-level human equivalent gestational lead exposure produces supernormal scotopic electroretinograms, increased retinal neurogenesis, and decreased retinal dopamine utilization in rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:618-25. [PMID: 18470321 PMCID: PMC2367685 DOI: 10.1289/ehp.11268] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 02/21/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Postnatal lead exposure in children and animals produces alterations in the visual system primarily characterized by decreases in the rod-mediated (scotopic) electroretinogram (ERG) amplitude (subnormality). In contrast, low-level gestational Pb exposure (GLE) increases the amplitude of scotopic ERGs in children (supernormality). OBJECTIVES The goal of this study was to establish a rat model of human equivalent GLE and to determine dose-response effects on scotopic ERGs and on retinal morphology, biochemistry, and dopamine metabolism in adult offspring. METHODS We exposed female Long-Evans hooded rats to water containing 0, 27 (low), 55 (moderate), or 109 (high) ppm of Pb beginning 2 weeks before mating, throughout gestation, and until postnatal day (PND) 10. We measured maternal and litter indices, blood Pb concentrations (BPb), retinal Pb concentrations, zinc concentrations, and body weights. On PND90, we performed the retinal experiments. RESULTS Peak BPb concentrations were < 1, 12, 24, and 46 microg/dL in control, low-, moderate- and high-level GLE groups, respectively, at PNDs 0-10. ERG supernormality and an increased rod photoreceptor and rod bipolar cell neurogenesis occurred with low- and moderate-level GLE. In contrast, high-level GLE produced ERG subnormality, rod cell loss, and decreased retinal Zn levels. GLE produced dose-dependent decreases in dopamine and its utilization. CONCLUSIONS Low- and moderate-level GLE produced persistent scotopic ERG supernormality due to an increased neurogenesis of cells in the rod signaling pathway and/or decreased dopamine utilization, whereas high-level GLE produced rod-selective toxicity characterized by ERG subnormality. The ERG is a differential and noninvasive biomarker of GLE. The inverted U-shaped dose-response curves reveal the sensitivity and vulnerability of the developing retina to GLE.
Collapse
Affiliation(s)
- Donald A Fox
- College of Optometry, University of Houston, 4901 Calhoun Rd., Houston, TX 77204-2020, USA.
| | | | | | | | | |
Collapse
|
15
|
Cristofanilli M, Akopian A. Calcium channel and glutamate receptor activities regulate actin organization in salamander retinal neurons. J Physiol 2006; 575:543-54. [PMID: 16777935 PMCID: PMC1819466 DOI: 10.1113/jphysiol.2006.114108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intracellular Ca2+ regulates a variety of neuronal functions, including neurotransmitter release, protein phosphorylation, gene expression and synaptic plasticity. In a variety of cell types, including neurons, Ca2+ is involved in actin reorganization, resulting in either actin polymerization or depolymerization. Very little, however, is known about the relationship between Ca2+ and the actin cytoskeleton organization in retinal neurons. We studied the effect of high-K+-induced depolarization on F-actin organization in salamander retina and found that Ca2+ influx through voltage-gated L-type channels causes F-actin disruption, as assessed by 53 +/- 5% (n = 23, P < 0.001) reduction in the intensity of staining with Alexa-Fluor488-phalloidin, a compound that permits visualization and quantification of polymerized actin. Calcium-induced F-actin depolymerization was attenuated in the presence of protein kinase C antagonists, chelerythrine or bis-indolylmaleimide hydrochloride (GF 109203X). In addition, phorbol 12-myristate 13-acetate (PMA), but not 4alpha-PMA, mimicked the effect of Ca2+ influx on F-actin. Activation of ionotropic AMPA and NMDA glutamate receptors also caused a reduction in F-actin. No effect on F-actin was exerted by caffeine or thapsigargin, agents that stimulate Ca2+ release from internal stores. In whole-cell recording from a slice preparation, light-evoked 'off' but not 'on' EPSCs in 'on-off' ganglion cells were reduced by 60 +/- 8% (n = 8, P < 0.01) by cytochalasin D. These data suggest that elevation of intracellular Ca2+ during excitatory synaptic activity initiates a cascade for activity-dependent actin remodelling, which in turn may serve as a feedback mechanism to attenuate excitotoxic Ca2+ accumulation induced by synaptic depolarization.
Collapse
Affiliation(s)
- Massimiliano Cristofanilli
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue PHL 843, New York, NY 10016, USA
| | | |
Collapse
|
16
|
Horner TJ, Osawa S, Schaller MD, Weiss ER. Phosphorylation of GRK1 and GRK7 by cAMP-dependent protein kinase attenuates their enzymatic activities. J Biol Chem 2005; 280:28241-50. [PMID: 15946941 DOI: 10.1074/jbc.m505117200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phosphorylation of G protein-coupled receptors is a critical step in the rapid termination of G protein signaling. In rod cells of the vertebrate retina, phosphorylation of rhodopsin is mediated by GRK1. In cone cells, either GRK1, GRK7, or both, depending on the species, are speculated to initiate signal termination by phosphorylating the cone opsins. To compare the biochemical properties of GRK1 and GRK7, we measured the K(m) and V(max) of these kinases for ATP and rhodopsin, a model substrate. The results demonstrated that these kinases share similar kinetic properties. We also determined that cAMP-dependent protein kinase (PKA) phosphorylates GRK1 at Ser(21) and GRK7 at Ser(23) and Ser(36) in vitro. These sites are also phosphorylated when FLAG-tagged GRK1 and GRK7 are expressed in HEK-293 cells treated with forskolin to stimulate the endogenous production of cAMP and activation of PKA. Rod outer segments isolated from bovine retina phosphorylated the FLAG-tagged GRKs in the presence of dibutyryl-cAMP, suggesting that GRK1 and GRK7 are physiologically relevant substrates. Although both GRKs also contain putative phosphorylation sites for PKC and Ca(2+)/calmodulin-dependent protein kinase II, neither kinase phosphorylated GRK1 or GRK7. Phosphorylation of GRK1 and GRK7 by PKA reduces the ability of GRK1 and GRK7 to phosphorylate rhodopsin in vitro. Since exposure to light causes a decrease in cAMP levels in rod cells, we propose that phosphorylation of GRK1 and GRK7 by PKA occurs in the dark, when cAMP levels in photoreceptor cells are elevated, and represents a novel mechanism for regulating the activities of these kinases.
Collapse
Affiliation(s)
- Thierry J Horner
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Carolina 27599-7090, USA
| | | | | | | |
Collapse
|
17
|
Ghosh F, Gjörloff K. Protein kinase C expression in the rabbit retina after laser photocoagulation. Graefes Arch Clin Exp Ophthalmol 2005; 243:803-10. [PMID: 15778843 DOI: 10.1007/s00417-004-1112-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 12/03/2004] [Accepted: 12/04/2004] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Laser photocoagulation is a well-established treatment for diabetic retinopathy but the mechanism behind its effectiveness has not been elucidated. The protein kinase C (PKC) family is a group of enzymes which has been the subject of extensive interest in clinically related research since the advent of its role in the pathogenesis of diabetic retinopathy. With this study we wanted to explore whether PKC expression is altered in the retina after laser photocoagulation. METHODS Normal rabbit eyes were treated with laser photocoagulation of varying intensity and examined after 30 min to 7 weeks. Treated and untreated regions of the retina were investigated histologically with the MC5 monoclonal antibody against PKC. Labeling for glial fibrillary acidic protein (GFAP), as well as hematoxylin and eosin (H&E) staining was also performed to assess the laser-induced trauma. RESULTS In the normal retina, the MC5 antibody labeled rod bipolar cells and photoreceptor outer segments corresponding to PKC alpha. A translocated PKC expression with labeling concentrated in the rod bipolar terminals was seen in specimens examined 30 min after laser treatment, and after 1 week, no expression was seen in any part of the retina. After 2 weeks, PKC expression again indicated a translocated labeling pattern. After 5 weeks, labeling was found only in rod bipolar terminals in the peripheral retina. When comparing high- and low-intensity laser treatment 7 weeks postoperatively, no labeling was found in the high intensity-treated retinas, whereas low intensity-treated eyes displayed a near-normal labeling pattern. H&E staining revealed focal neuroretinal edema immediately after laser treatment, also in untreated areas. At later stages, destruction of the outer nuclear layer and migration of pigment epithelial cells in laser-lesioned areas was seen. GFAP-labeled Müller cells were seen 1 week postoperatively in the entire retina. Labeling after this time decreased, but was still present in laser spots after 5 and 7 weeks. CONCLUSIONS Laser photocoagulation alters the expression of PKC in the entire normal rabbit retina. The response follows a temporal pattern and is also related to laser intensity. These findings may help to explain the high efficacy of laser treatment in diabetic retinopathy.
Collapse
Affiliation(s)
- Fredrik Ghosh
- Department of Ophthalmology, Lund University Hospital, 22185 Lund, Sweden.
| | | |
Collapse
|
18
|
Cheung R, Kassirian S, Mitchell J. Diurnal Regulation of the G Protein G11α and Guanine Nucleotide-regulated Phospholipase C Activity in Rat Retina. Exp Eye Res 2002. [DOI: 10.1006/exer.2002.2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Rosdahl JA, Mourton TL, Brady-Kalnay SM. Protein kinase C delta (PKCdelta) is required for protein tyrosine phosphatase mu (PTPmu)-dependent neurite outgrowth. Mol Cell Neurosci 2002; 19:292-306. [PMID: 11860281 DOI: 10.1006/mcne.2001.1071] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein tyrosine phosphatase mu (PTPmu) is an adhesion molecule in the immunoglobulin superfamily and is expressed in the developing nervous system. We have shown that PTPmu can promote neurite outgrowth of retinal ganglion cells and it regulates neurite outgrowth mediated by N-cadherin (S. M. Burden-Gulley and S. M. Brady-Kalnay, 1999, J. Cell Biol. 144, 1323-1336). We previously demonstrated that PTPmu binds to the scaffolding protein RACK1 in yeast and mammalian cells (T. Mourton et al., 2001, J. Biol. Chem. 276, 14896-14901). RACK1 is a receptor for activated protein kinase C (PKC). In this article, we demonstrate that PKC is involved in PTPmu-dependent signaling. PTPmu, RACK1, and PKCdelta exist in a complex in cultured retinal cells and retinal tissue. Using pharmacologic inhibition of PKC, we demonstrate that PKCdelta is required for neurite outgrowth of retinal ganglion cells on a PTPmu substrate. These results suggest that PTPmu signaling via RACK1 requires PKCdelta activity to promote neurite outgrowth.
Collapse
Affiliation(s)
- Jullia A Rosdahl
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4960, USA
| | | | | |
Collapse
|
20
|
Gabriel R, Lesauter J, Silver R, Garcia-España A, Witkovsky P. Diurnal and circadian variation of protein kinase C immunoreactivity in the rat retina. J Comp Neurol 2001; 439:140-50. [PMID: 11596044 PMCID: PMC3271847 DOI: 10.1002/cne.1338] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We studied the dependence of the expression of protein kinase C immunoreactivity (PKC-IR) in the rat retina on the light:dark (LD) cycle and on circadian rhythmicity in complete darkness (DD). Two anti-PKC alpha antibodies were employed: One, which we call PKCalphabeta recognized the hinge region; the other, here termed PKCalpha, recognized the regulatory region of the molecule. Western blots showed that both anti-PKC antibodies stained an identical single band at approximately 80 kD. The retinal neurons showing PKC-IR were rod bipolar cells and a variety of amacrine neurons. After 3 weeks on an LD cycle, PKCalphabeta-IR in both rod bipolar and certain amacrine cells manifested a clear rhythm with a peak at zeitgeber time (ZT) of 06-10 hours and a minimum at ZT 18. No rhythm in total PKC-IR was observed when using the PKCalpha antibody, but, at ZT 06-10 hours, rod bipolar axon terminals showed increased immunostaining. After 48 hours in DD, with either antibody, rod bipolar cells showed increased PKC-IR. The PKCalpha antibody alone revealed that, after 48 hours, AII amacrine neurons, which lacked PKC-IR in an LD cycle, manifested marked PKC-IR, which became stronger after 72 hours. Light administered early in the dark period greatly increased PKCalphabeta-IR in rod bipolar and some amacrine neurons. Our data indicate that light and darkness exert a strong regulatory influence on PKC synthesis, activation, and transport in retinal neurons.
Collapse
Affiliation(s)
- Robert Gabriel
- Department of General Zoology and Neurobiology, University of Pecs, H-7604 Pecs, Hungary
- Department of Ophthalmology, New York University School of Medicine, New York, New York 10016
| | - Joseph Lesauter
- Department of Psychology, Barnard College, New York, New York 10027
| | - Rae Silver
- Department of Psychology, Barnard College, New York, New York 10027
- Department of Psychology, Columbia University, New York, New York 10027
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, New York, New York 10032
| | - Antonio Garcia-España
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Paul Witkovsky
- Department of Ophthalmology, New York University School of Medicine, New York, New York 10016
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016
- Correspondence to: Dr. Paul Witkovsky, Department of Ophthalmology, New York University School of Medicine, 550 First Ave., New York, NY 10016.
| |
Collapse
|
21
|
Liu LO, Li G, McCall MA, Cooper NG. Photoreceptor regulated expression of Ca(2+)/calmodulin-dependent protein kinase II in the mouse retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 82:150-66. [PMID: 11042368 DOI: 10.1016/s0169-328x(00)00203-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this investigation is to determine mechanisms for regulation of retinal calmodulin kinase II (CaMKII). To this end, the expression and activity of CaMKII are examined in the retina of the rdta mouse, in which rod photoreceptors have been genetically ablated [47]. CaMKII levels are compared between rdta mice and the normal, littermate control mice. It is demonstrated that retinal CaMKII protein, enzyme activity and mRNA are significantly increased in response to the genetic ablation of rod photoreceptors. The data indicate that CaMKII expression/activity in amacrine and ganglion cells is negatively regulated by the rod photoreceptor-mediated visual input. The regulation appears to occur primarily at the transcriptional level. It is shown that the cytoplasmic polyadenylation element binding protein (CPEB), a regulatory factor for translation that is known to promote CaMKIIalpha translation in dendrites [83], is also present in the mouse retina. However, the polyadenylation-mediated translational control mechanism is not activated in this experimental paradigm.
Collapse
Affiliation(s)
- L O Liu
- Department of Ophthalmology and Visual Sciences, School of Medicine University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
22
|
Li B, Yang C, Rosenbaum DM, Roth S. Signal transduction mechanisms involved in ischemic preconditioning in the rat retina in vivo. Exp Eye Res 2000; 70:755-65. [PMID: 10843780 DOI: 10.1006/exer.2000.0843] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic preconditioning (IPC) protects the rat retina against the injury that ordinarily follows severe ischemia. We showed previously that release of adenosine and de novo protein synthesis were required for IPC protection. The mechanisms of IPC were studied in the rat retina by examining the signal transduction mediators responsible, in particular, those theorized to be downstream of adenosine receptors. In addition, we examined the hypothesis that nitric oxide and hydroxyl radicals were involved in the IPC protective phenomenon. Retinal ischemia was produced for 60 min in ketamine/xylazine-anesthetized Sprague-Dawley rats, and recovery was measured using electroretinography. We tested the effects on the protective effect of IPC resulting from antagonism of protein kinase C, potassium ATP channels, nitric oxide synthase, or hydroxyl radicals. The effects of the inhibition of de novo protein synthesis or of protein kinase C, and blockade of potassium ATP channels on the mimicking of IPC by adenosine receptor agonists was examined.IPC protection was strongly attenuated by inhibition of protein kinase C and by blockade of potassium ATP channels, but unaffected by the inhibition of hydroxyl radicals. Blockade of nitric oxide synthase produced a trend toward enhancement of IPC protection. Mimicking of IPC protection by adenosine receptor agonists was inhibited by blockade of protein synthesis or of protein kinase C, as well as by potassium ATP channel antagonism. These results demonstrate that protein kinase C and potassium ATP channels are mediators of the protective effect produced by IPC. In addition, the results show that stimulation of adenosine receptor subtypes A1 and A2a is responsible for IPC protection via downstream stimulation of protein kinase C, the opening of potassium ATP channels, and de novo protein synthesis.
Collapse
Affiliation(s)
- B Li
- Department of Anaesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Extracellular Zn2+ modulates current passage through voltage- and neurotransmitter-gated ion channels, at concentrations less than, or near, those produced by release at certain synapses. Electrophysiological effects of cytoplasmic Zn2+ are less well understood, and effects have been observed at concentrations that are orders of magnitude greater than those found in resting and stimulated neurons. To examine whether and how neurons are affected by lower levels of cytoplasmic Zn2+, we tested the effect of Zn2+-selective chelators, Zn2+-preferring ionophores, and exogenous Zn2+ on neuronal somata during whole-cell patch-clamp recordings. We report here that cytoplasmic zinc facilitates the downward regulation of a background Cl- conductance by an endogenous protein kinase C (PKC) in fish retinal ganglion cell somata and that this regulation is maintained if nanomolar levels of free Zn2+ are available. This regulation has not been described previously in any tissue, as other Cl- currents have been described as reduced by PKC alone, reduced by Zn2+ alone, or reduced by both independently. Moreover, control of cation currents by a zinc-dependent PKC has not been reported previously. The regulation we have observed thus provides the first electrophysiological measurements consistent with biochemical measurements of zinc-dependent PKC activity in other systems. These results suggest that contributions of background Cl- conductances to electrical properties of neurons are susceptible to modulation.
Collapse
|
24
|
Militante JD, Lombardini JB. Taurine uptake activity in the rat retina: protein kinase C-independent inhibition by chelerythrine. Brain Res 1999; 818:368-74. [PMID: 10082822 DOI: 10.1016/s0006-8993(98)01318-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Taurine, a regulatory amino acid of various biochemical processes in the retina, requires an efficient uptake system to maintain the high physiological concentration of taurine in the retina. Taurine uptake was characterized in both whole retinal preparations and in isolated rod outer segments (ROS) in terms of uptake kinetics and possible protein kinase C (PKC)-dependent regulation. Two uptake systems, a high- and a low-affinity system, were found in whole retinal preparations while only the high-affinity system was found in the isolated ROS. All the uptake systems characterized were inhibited by guanidinoethane sulfonate (GES), a well-known competitive inhibitor of taurine uptake. Stimulation and inhibition of PKC activity with phorbol myristate acetate and with staurosporine, respectively, produced no significant effect on taurine uptake. On the other hand, chelerythrine (CHT), a documented potent PKC inhibitor, was found to cause significant inhibition of the two taurine uptake systems, presumably through a PKC-independent mechanism. The data demonstrate that CHT may be a useful tool in studying taurine uptake in the retina and specifically in the ROS.
Collapse
Affiliation(s)
- J D Militante
- Department of Pharmacology, Texas Tech University, Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | | |
Collapse
|
25
|
Job C, Lagnado L. Calcium and protein kinase C regulate the actin cytoskeleton in the synaptic terminal of retinal bipolar cells. J Cell Biol 1998; 143:1661-72. [PMID: 9852158 PMCID: PMC2132988 DOI: 10.1083/jcb.143.6.1661] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The organization of filamentous actin (F-actin) in the synaptic pedicle of depolarizing bipolar cells from the goldfish retina was studied using fluorescently labeled phalloidin. The amount of F-actin in the synaptic pedicle relative to the cell body increased from a ratio of 1.6 +/- 0.1 in the dark to 2.1 +/- 0.1 after exposure to light. Light also caused the retraction of spinules and processes elaborated by the synaptic pedicle in the dark. Isolated bipolar cells were used to characterize the factors affecting the actin cytoskeleton. When the electrical effect of light was mimicked by depolarization in 50 mM K+, the actin network in the synaptic pedicle extended up to 2.5 micrometer from the plasma membrane. Formation of F-actin occurred on the time scale of minutes and required Ca2+ influx through L-type Ca2+ channels. Phorbol esters that activate protein kinase C (PKC) accelerated growth of F-actin. Agents that inhibit PKC hindered F-actin growth in response to Ca2+ influx and accelerated F-actin breakdown on removal of Ca2+. To test whether activity-dependent changes in the organization of F-actin might regulate exocytosis or endocytosis, vesicles were labeled with the fluorescent membrane marker FM1-43. Disruption of F-actin with cytochalasin D did not affect the continuous cycle of exocytosis and endocytosis that was stimulated by maintained depolarization, nor the spatial distribution of recycled vesicles within the synaptic terminal. We suggest that the actions of Ca2+ and PKC on the organization of F-actin regulate the morphology of the synaptic pedicle under varying light conditions.
Collapse
Affiliation(s)
- C Job
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
26
|
Kosaka J, Suzuki A, Morii E, Nomura S. Differential localization and expression of alpha and beta isoenzymes of protein kinase C in the rat retina. J Neurosci Res 1998; 54:655-63. [PMID: 9843156 DOI: 10.1002/(sici)1097-4547(19981201)54:5<655::aid-jnr10>3.0.co;2-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Expression and cellular localization of three isoenzymes of Ca2+-dependent protein kinase C (PKCalpha, PKCbeta, and PKCgamma) in the adult rat retina were revealed by immunohistochemistry and in situ hybridization histochemistry with isoenzyme-specific antibodies and cRNA probes. Immunoreactivities and mRNA signals for PKCalpha were conspicuous in rod bipolar cells. A subgroup of amacrine cells expressed PKCalpha. The cells in the ganglion cell layer also displayed PKCalpha gene products. Positive immunoreactivities for PKCbeta were localized as stripe patterns in the inner plexiform layer, corresponding to the stratification levels of axon terminals of cone bipolar cells. The somata of cone bipolar cells expressed PKCbeta. Amacrine cells and retinal ganglion cells also displayed PKCbeta gene products. The results obtained by immunohistochemistry were confirmed with colocalization of mRNA signals for PKCalpha and PKCbeta on the somata. The cell membranes showed stronger immunoreactivities than did the cytoplasms for both PKCalpha and PKCbeta. Neither immunoreactivities nor mRNA signals for PKCgamma were detected in all retinal regions. The differential roles of Ca2+-dependent PKC isoenzymes could be revealed in physiological defined retinal neurons.
Collapse
Affiliation(s)
- J Kosaka
- Department of Anatomy, Okayama University Medical School, Okayama, Japan.
| | | | | | | |
Collapse
|
27
|
Schmidt JT. Up-regulation of protein kinase C in regenerating optic nerve fibers of goldfish: immunohistochemistry and kinase activity assay. JOURNAL OF NEUROBIOLOGY 1998; 36:315-24. [PMID: 9733068 DOI: 10.1002/(sici)1097-4695(19980905)36:3<315::aid-neu1>3.0.co;2-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein kinase C (PKC) activation has been associated with synaptic plasticity in many projections, and manipulating PKC in the retinotectal projection strongly affects the activity-driven sharpening of the retinotopic map. This study examined levels of PKC in the regenerating retinotectal projection via immunostaining and assay of activity. A polyclonal antibody to the conserved C2 (Ca2+ binding) domain of classical PKC isozymes (anti-panPKC) recognized a single band at 79-80 kD on Western blots of goldfish brain. It stained one class of retinal bipolar cells and the ganglion cells in normal retina, as shown previously. Strong staining was not present in the optic fiber layer of retina or in optic nerve, optic tract, or terminal zone in tectum, with the exception of a single fascicle of optic nerve fibers that by their location and by L1 (E587) staining were identified as those arising from newly added ganglion cells at the retinal margin. Normal tectal sections showed dark staining of a subclass of type XIV neuron with somas at the top of the periventricular layer and an apical dendrite ascending to stratum opticum. In regenerating retina, swollen ganglion cells stained darkly and stained axons were seen in the optic fiber layer. In regenerating optic nerve (2-11 weeks postcrush), all fascicles of optic fibers stained darkly for both PKC and L1(E587). At 5 weeks postcrush, PKC staining could also be seen in the medial and lateral optic tracts and stratum opticum at the front half of the tectum and very lightly over the terminal zones. PKC activity was measured in homogenized tissues dissected from a series of fish with unilateral nerve crush from 1 to 5 weeks previously. Activity levels stimulated by phorbols and Ca2+ were measured by phosphorylation of a specific peptide and referred to levels measured in the opposite control side. Regeneration did not increase overall PKC activity in retina or tectum, but in optic nerve there was an 80% rise after the first week. The increased activity verifies that the increased staining in nerve represented an up-regulation of functional PKC during nerve regeneration.
Collapse
Affiliation(s)
- J T Schmidt
- Department of Biological Sciences and Neurobiology Research Center, State University of New York at Albany, 12222, USA
| |
Collapse
|
28
|
Al-Maghtheh M, Vithana EN, Inglehearn CF, Moore T, Bird AC, Bhattacharya SS. Segregation of a PRKCG mutation in two RP11 families. Am J Hum Genet 1998; 62:1248-52. [PMID: 9545390 PMCID: PMC1377077 DOI: 10.1086/301819] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
29
|
Xiong W, Nakatani K, Ye B, Yau K. Protein kinase C activity and light sensitivity of single amphibian rods. J Gen Physiol 1997; 110:441-52. [PMID: 9379174 PMCID: PMC2229376 DOI: 10.1085/jgp.110.4.441] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/1997] [Accepted: 07/23/1997] [Indexed: 02/05/2023] Open
Abstract
Biochemical experiments by others have indicated that protein kinase C activity is present in the rod outer segment, with potential or demonstrated targets including rhodopsin, transducin, cGMP-phosphodiesterase (PDE), guanylate cyclase, and arrestin, all of which are components of the phototransduction cascade. In particular, PKC phosphorylations of rhodopsin and the inhibitory subunit of PDE (PDE ) have been studied in some detail, and suggested to have roles in downregulating the sensitivity of rod photoreceptors to light during illumination. We have examined this question under physiological conditions by recording from a single, dissociated salamander rod with a suction pipette while exposing its outer segment to the PKC activators phorbol-12-myristate,13-acetate (PMA) or phorbol-12,13-dibutyrate (PDBu), or to the PKC-inhibitor GF109203X. No significant effect of any of these agents on rod sensitivity was detected, whether in the absence or presence of a background light, or after a low bleach. These results suggest that PKC probably does not produce any acute downregulation of rod sensitivity as a mechanism of light adaptation, at least for isolated amphibian rods.
Collapse
Affiliation(s)
- W Xiong
- Howard Hughes Medical Institute, Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
30
|
The mGluR6 5' upstream transgene sequence directs a cell-specific and developmentally regulated expression in retinal rod and ON-type cone bipolar cells. J Neurosci 1997. [PMID: 9096137 DOI: 10.1523/jneurosci.17-09-03014.1997] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We generated transgenic mice, using 9.5 kilobase pairs of the 5' upstream sequence from the mouse metabotropic glutamate receptor subtype 6 (mGluR6) gene fused to the beta-galactosidase (lacZ) reporter gene, and investigated the promoter function of the cell-specific and developmentally regulated expression of mGluR6. Most of the independent transgenic lines commonly showed the lacZ expression in the defined cell layers of the retina, and four transgenic lines were characterized in detail for cell-specific lacZ expression patterns by X-gal staining and lacZ immunostaining. The lacZ-expressing retinal cells were classified into two cell types. One cell type was identified as rod bipolar cells on the basis of colocalization of protein kinase C (PKC) immunoreactivity and morphological criteria. The other cell type was PKC-immunonegative and resided at the cell layers corresponding precisely to ON-type cone bipolar cells. The latter bipolar cells were found to exist as a large cell population comparable to rod bipolar cells. This observation was confirmed by coimmunostaining of dissociated retinal cells with the lacZ and PKC antibodies. The ontogeny analysis indicated that the lacZ expression completely agrees with a temporal expression pattern of mGluR6 during retinal development. This study demonstrates that the mGluR6 5' upstream genomic sequence is capable of directing a cell-specific and developmentally regulated expression of mGluR6 in ON-type bipolar cells and supports the view that mGluR6 is responsible for ON responses in both the rod and cone systems.
Collapse
|
31
|
Cazevieille C, Osborne NN. Retinal neurones containing kainate receptors are influenced by exogenous kainate and ischaemia while neurones lacking these receptors are not -- melatonin counteracts the effects of ischaemia and kainate. Brain Res 1997; 755:91-100. [PMID: 9163544 DOI: 10.1016/s0006-8993(97)00090-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present experiments were carried out on three types of neurone in primary rabbit retinal cultures. One cell-type, bipolar neurones, have glutamate APB-type metabotropic receptors and can be identified by the presence of thetaPKC-immunoreactivity. The other two cell-types are primarily amacrine cells and can be 'stained' for the localisation of GABA immunoreactivity or for serotonin taken up from the medium. Most of the serotonin-accumulating and GABA-containing neurones contain glutamate kainate-type receptors. Exposure of the cultures to treatment of kainate (50 microM) or experimental ischaemia (8 h followed by 16 h reoxygenation) produced essentially similar findings. The serotonin-accumulating and GABA cells were affected as they were drastically reduced in numbers while the numbers of thetaPKC-containing cells were unaffected. Inclusion of the kainate/AMPA antagonist CNQX (100 microM) or melatonin (100 microM) to the medium during kainate or ischaemia treatments largely prevented the detrimental influences on the serotonin-accumulating and GABA cells. It is concluded that during experimental ischaemia excessive glutamate is released to influence cells which contain kainate and APB-type receptors. However, only the neurones containing the kainate receptors are negatively affected with the generation of free radicals. Melatonin or CNQX protects against this effect by scavenging free radicals or acting at the receptor level, respectively.
Collapse
Affiliation(s)
- C Cazevieille
- Nuffield Laboratory of Ophthalmology, University of Oxford, UK
| | | |
Collapse
|
32
|
Abstract
We reported previously that an antibody to the alpha isoform of protein kinase C (PKC) immunostained rod bipolar cells and bipolar cells that could be blue-cone (B-cone)-specific in postmortem human retina (Kolb et al. (1993) Vis. Neurosci. 10:341-351). In addition, we showed that antibodies to the beta isoform of PKC immunostained cone system bipolar, amacrine, and ganglion cells. Since the fixation of the human material was poor, we were unable to make positive identifications of the specific cell types that were immunoreactive, particularly in the case of PKC-beta antibodies. Thus, herein we have repeated the study on well-fixed monkey foveal retina. PKC-alpha immunoreactivity (IR) was restricted to a single type of cone bipolar cell that contacted only a minority of the cone pedicles at central invaginating contacts of ribbon triads. This bipolar type shares some morphological characteristics of B-cone-specific bipolar cells of primate retina. PKC-beta immunoreactivity was found in cone bipolar cells that made primarily basal contacts with cone pedicles and had axon terminals in sublamina alpha of the inner plexiform layer (IPL). Immunoreactivity also occurred in a type of cone bipolar that made central element contacts and had axon terminals in sublamina b of the IPL. Some ganglion cells, particularly those postsynaptic to flat midget bipolar cells also exhibited PKC-beta-IR. One type of amacrine with an 8 microns diameter cell body showed strong PKC-beta-IR. It was postsynaptic to cone bipolar cells in both sublamina a and b and presynaptic to bipolar axons, other immunoreactive amacrine cells, and ganglion cell dendrites and bodies. The other amacrine cell type showed less strong PKC-beta-IR, large-bodied (12-15 microns cell body diameter), and probably diffuse in branching pattern. The latter interacted with the intensely immunoreactive amacrines, bipolars, and ganglion cells. By comparison to cat and primate retinas where morphology and physiology of many retinal neurons are well documented, we suggest that PKC-beta may be specific to flat midget, flat diffuse, and invaginating diffuse cone bipolar cells and to at least two amacrine cells. Some of these neural types are proposed to be involved in OFF-center cone pathways in the monkey retina.
Collapse
Affiliation(s)
- H Kolb
- Department of Ophthalmology, John Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
33
|
Schlemermeyer E, Chappell RL. Two classes of bipolar cell in the retina of the skate Raja erinacea. JOURNAL OF NEUROCYTOLOGY 1996; 25:625-35. [PMID: 9013424 DOI: 10.1007/bf02284829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have used immunoreactions against serotonin and protein kinase C to visualize two distinct classes of bipolar cell in the all-rod retina of the skate, Raja erinacea. To enhance the immunoreaction in serotonin-accumulating bipolar cells, prior to fixation, some retinas were incubated in Ringer's solution containing serotonin and pargyline. We found the somata of serotonin-accumulating bipolar cells to be located slightly distal to the midline of the inner nuclear layer. With increasing eccentricity from the visual streak, the size of the perikarya increases, concomitant with a decline in density of their distribution. Dendrites emanate from stout primary stalks and branch out before reaching the outer plexiform layer. Axons are bistratified within the inner plexiform layer with ramifications at the border of strata 1 and 2 and in stratum 4. The overall morphology of serotonin-accumulating bipolar cells is similar to that of serotonin-accumulating OFF bipolar cells of other non-mammalian vertebrates. Protein kinase C immunoreactive cells display the typical appearance of rod bipolar cells. Somata of protein kinase C immunoreactive bipolar cells are spindle-shaped and located distal to the serotonin-accumulating bipolar cells. Dendrites of these bipolars do not ramify before reaching the outer plexiform layer. Thin axons of protein kinase C immunoreactive bipolar cells end in large, club-shaped terminals in stratum 5 of the inner plexiform layer, bearing a striking similarity to axon terminals of mammalian ON rod bipolar cells. Our findings suggest that the all-rod retina of the skate contains at least two distinct vertical pathways including an OFF bipolar cell pathway in addition to a classical rod ON bipolar pathway.
Collapse
|
34
|
Sakagami H, Kondo H. Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase type IV in the mature and developing rat retina. Brain Res 1996; 719:154-60. [PMID: 8782875 DOI: 10.1016/0006-8993(96)00088-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The localization of Ca2+/calmodulin-dependent protein kinase IV (CaM kinase IV) in the mature and developing rat retina was examined by immunohistochemistry and in situ hybridization histochemistry. In immunoblotting analysis, a single band of 63 kDa was detected in the crude homogenate of the adult rat retina, indicating the presence of the alpha polypeptide of CaM kinase IV. In the adult rat retina, most of the bipolar cells and some ganglion cells exhibited CaM kinase IV-immunoreactivity. By immunoelectron microscopy, the immunoreactive product was predominantly localized to the nucleus of immunoreactive cells. In the developing rat retina, immunoreactive bipolar cells were first detected on postnatal day 10 (P10), and they were abundant on P14. All these findings suggest that CaM kinase IV may participate in some yet unknown nuclear Ca(2+)-relating visual signal-processing of the retina.
Collapse
Affiliation(s)
- H Sakagami
- Department of Anatomy, Tohoku University, School of Medicine, Sendai, Japan
| | | |
Collapse
|
35
|
Husain S, Abdel-Latif AA. Protein kinase C isoforms in iris sphincter smooth muscle: differential effects of phorbol ester on contraction and cAMP accumulation are species specific. Curr Eye Res 1996; 15:329-34. [PMID: 8654114 DOI: 10.3109/02713689609007628] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Objectives were to identify PKC isoforms in iris sphincter isolated from rabbit, cat, dog and bovine irides, to determine their subcellular distribution, and to investigate the effects of the phorbol ester, PDBu, on contraction and cAMP accumulation in this tissue. Using six isoform (alpha, beta, gamma, epsilon, delta, zeta)-specific polyclonal antibodies, PKC alpha, beta, epsilon, delta, and zeta were detected in the four species, whereas PKC gamma was detected only in dog and bovine. PKC alpha and epsilon are the most abundant isoforms in this tissue. PKC alpha is mainly cytosolic in rabbit and bovine and membrane associated in cat and dog. PKC gamma is equally distributed in cytosol and membrane fractions of bovine, but mostly cytosolic in dog. PKC beta, delta and epsilon are mainly membraneous and PKC zeta is mainly cytosolic in all species. PDBu (100 nM) induced a contractile response in rabbit- and cat-, but not in dog and bovine, sphincters, and increased cAMP accumulation in rabbit, cat, dog and bovine by 111, 130, 458 and 294%, respectively. Therefore, the lack of effect of PDBu on contraction in dog and bovine, as compared to rabbit and cat, may be due: (a) to the presence of PKC gamma isoform, and (b) to the stronger stimulatory effects of the phorbol ester on cAMP production in the non-contracting species. In addition to demonstrating the presence of various PKC isoforms in the iris sphincter and the activation of adenylyl cyclase by this protein kinase, we have shown that the distribution of the PKC isoforms in this tissue is species specific. Furthermore, our data suggest that there may be specific physiological functions associated with each of the PKC isoforms and that PKC is involved in the contractile response of some but not all smooth muscles.
Collapse
Affiliation(s)
- S Husain
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta 30912, USA
| | | |
Collapse
|
36
|
McCord R, Klein A, Osborne NN. The occurrence of protein kinase C theta and lambda isoforms in retina of different species. Neurochem Res 1996; 21:259-66. [PMID: 9182251 DOI: 10.1007/bf02529143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The localization and immunochemical identification of the novel protein kinase C theta (nPKC theta) and the atypical protein kinase C lambda (aPKC lambda) isoforms in retinas of different species were analyzed by immunohistochemistry and SDS-PAGE/Western blotting. nPKC theta immunoreactivity is associated with bipolar cells of mammalian (rabbit, rat and guinea pig) retinas but not the non-mammalian goldfish retina which has a lower concentration of nPKC theta. However, SDS-PAGE and Western blotting data indicate the antigen recognized by the nPKC theta monoclonal antibody in the retina is of a lower molecular weight than that expected for nPKC theta. This would suggest nPKC theta is more susceptible to degradation/breakdown than other PKC isoforms found in the retina or that the nPKC theta antibody may be recognizing an unknown retinal antigen. A comparison of nPKC theta and cPKC alpha immunoreactivities in bipolar cells shows unique distributions exist for the two isoforms. nPKC theta is present in the developing retina at an earlier stage than cPKC alpha. The typical 'transport' of cPKC alpha toward axonal terminals by phorbol-12,13-dibutyrate does not occur for nPKC theta yet both are translocated from the cytosolic to membrane compartments. The inner plexiform layer and the inner nuclear layer (putative horizontal cells) of all species examined (rabbit, rat, guinea pig and goldfish) exhibited positive immunoreactivity for aPKC lambda as confirmed by SDS-PAGE/Western blotting.
Collapse
Affiliation(s)
- R McCord
- Nuffield Laboratory of Ophthalmology, Oxford University, Oxford, U.K
| | | | | |
Collapse
|
37
|
Osborne NN, Wood J, Muller A. The influence of experimental ischaemia on protein kinase C and the GABAergic system in the rabbit retina. Neuropharmacology 1995; 34:1279-88. [PMID: 8570025 DOI: 10.1016/0028-3908(95)00097-p] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pressure-induced ocular ischaemia followed by 25-28 hr of reperfusion to the rabbit retina drastically reduces or eliminates the b-wave of the electroretinogram and results in all the GABA from the amacrine cells being released, as judged by immunohistochemistry. Some of these GABA cells have the capacity to take-up exogenous serotonin and these GABA/serotonin cells have kainate/AMPA receptors. Previous studies have shown that an ischaemic insult causes these receptors to be stimulated to produce a release of the cells' GABA. The majority of the GABA/serotonin cells are also incapable of taking-up exogenous serotonin after ischaemia, which suggests that they are irreversibly damaged. However, there was still a minority of the cells which accumulated serotonin, which shows that neurones containing kainate/AMPA receptors are not irreversibly damaged at the same rate by ischaemia. The "staining" patterns for GABAA-receptor and GABA immunoreactivities in the rabbit retina are very similar and following ischaemia the GABAA-receptor immunoreactivity was reduced in intensity and became patchy in nature. It is not known whether this result reflects a down-regulation of the GABAA-receptors caused by the released GABA or a destruction of cells containing the GABAA-receptors. The ischaemic conditions used caused patchy, irregular and inconsistent signs of histological damage to the retina, even in areas of similar eccentricity, suggesting this parameter should be used with caution when judging the severity of an ischaemic insult. alpha-Protein kinase C (alpha PKC) present in the on-bipolar cells which have glutamate metabotropic APB receptors is both reduced or down-regulated and translocated by ischaemia. This is also the case for delta PKC which is absent from the on-bipolar cells. These data were established by a combination of immunohistochemistry and electrophoresis/blotting experiments. Enzyme analysis also showed that all PKC calcium-dependent and -independent isoenzymes, are translocated and reduced by ischaemia making it difficult to judge whether PKC inhibitors may be appropriate anti-ischaemic agents.
Collapse
Affiliation(s)
- N N Osborne
- Nuffield Laboratory of Ophthalmology, University of Oxford, England
| | | | | |
Collapse
|
38
|
Fernández E, Cuenca N, García M, De Juan J. Two types of mitochondria are evidenced by protein kinase C immunoreactivity in the Müller cells of the carp retina. Neurosci Lett 1995; 183:202-5. [PMID: 7739794 DOI: 10.1016/0304-3940(94)11151-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The localization of protein kinase C (PKC) was studied immunocytochemically in the Müller cells of the carp retina. Electron microscope immunocytochemistry (using a monoclonal antibody to the alpha and beta isoenzymes of PKC) showed PKC-immunoreactivity mainly inside some mitochondria, especially along the mitochondrial cristae whereas other mitochondria in the same Müller cells showed no staining. Despite a detailed analysis we did not find any significant morphological difference between labeled and unlabeled mitochondria. These results demonstrate, for the first time, the presence of PKC immunoreactivity inside mitochondria and suggest that individual mitochondria may differ in signal transduction pathway.
Collapse
Affiliation(s)
- E Fernández
- Departamento de Histología, Universidad de Alicante, Spain
| | | | | | | |
Collapse
|
39
|
Masutani M, Mizoguchi A, Arii T, Iwasaki T, Ide C. Localization of protein kinase C alpha, beta and gamma subspecies in sensory axon terminals of the rat muscle spindle. JOURNAL OF NEUROCYTOLOGY 1994; 23:811-9. [PMID: 7897445 DOI: 10.1007/bf01268093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The localization of protein kinase C (PKC) alpha, beta and gamma subspecies in sensory axon terminals of muscle spindles in the plantar lumbrical muscles of rat was investigated by light and electron microscopic immunocytochemistry using monoclonal and polyclonal antibodies. Immunoreactivity for these subspecies was detected specifically in sensory axon terminals which wound spirally around the intrafusal muscle fibres of the muscle spindle. Immunostaining was found to be stronger with polyclonal than with monoclonal antibodies. By electron microscopy, immunoreactivity for alpha, beta and gamma subspecies was almost diffusely distributed in the cytoplasm of the axon terminal, and the overall pattern of distribution of immunoreactivity was similar for all three subspecies. In the cases of alpha and beta subspecies, some intensely immunostained regions were found in the cytoplasm, but no definite subcellular structures corresponding to such regions could be identified. Considering that PKC plays a crucial role in the regulation of ion channels, it is suggested that PKC might be involved in the control of mechanoelectric transduction in sensory axon terminals.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Axons/enzymology
- Axons/ultrastructure
- Electrophoresis, Polyacrylamide Gel
- Female
- Immunoblotting
- Immunohistochemistry
- Isoenzymes/analysis
- Microscopy, Electron
- Microscopy, Immunoelectron
- Muscle, Skeletal/cytology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/ultrastructure
- Nerve Endings/enzymology
- Nerve Endings/ultrastructure
- Neurons, Afferent/cytology
- Neurons, Afferent/enzymology
- Neurons, Afferent/ultrastructure
- Protein Kinase C/analysis
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- M Masutani
- Department of Anatomy, Kobe University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
40
|
Abstract
The localization of PKC subspecies alpha, beta, gamma, epsilon and zeta was studied immunocytochemically in the rabbit retina. Conventional, Ca(2+)-sensitive PKC subtypes alpha, beta, gamma were all localized in different neuronal populations. The zeta-subspecies, which does not require Ca2+ for activation, was colocalized with PKC-alpha. PKC-epsilon, which is independent of Ca2+ and DAG, was colocalized with PKC-beta. Some populations of neurons, including cone bipolar cells, contained none of the PKC-subspecies studied. These results imply a cellular segregation of different signaling pathways in mammalian retina.
Collapse
Affiliation(s)
- J Koistinaho
- Department of Biomedical Sciences, University of Tampere, Finland
| | | |
Collapse
|
41
|
Ohki K, Yoshida K, Imaki J, Harada T, Matsuda H. The existence of protein kinase C in cone photoreceptors in the rat retina. Curr Eye Res 1994; 13:547-50. [PMID: 7924418 DOI: 10.3109/02713689408999887] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We examined the localization of protein kinase C (PKC) in the rat retina, using a monoclonal antibody against PKC. The PKC immunoreactivities were localized in bipolar cells as reported previously, and also in outer and inner segments (OS and IS) of photoreceptor cells. As the PKC immunoreactive OS and IS of photoreceptors were very few in number, we hypothesized that these were of cone photoreceptors. We then examined whether the PKC immunoreactive OS and IS were bound by peanut agglutinin which was shown to bind specifically to cone OS and IS. Almost all of the PKC immunoreactive OS and IS showed PNA binding.
Collapse
Affiliation(s)
- K Ohki
- Department of Ophthalmology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
42
|
Schmidt JT. C-kinase manipulations disrupt activity-driven retinotopic sharpening in regenerating goldfish retinotectal projection. JOURNAL OF NEUROBIOLOGY 1994; 25:555-70. [PMID: 8071660 DOI: 10.1002/neu.480250508] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Regenerating optic axons initially branch over a wide area in tectum to form a crude retinotopic map. The map is sharpened, and retinotopically appropriate synapses are stabilized via NMDA receptors that detect, via summation of EPSPs, the coincident activity of neighboring ganglion cells that make synapses onto common tectal cells. Sharpening shares a number of properties with long-term potentiation (LTP) in hippocampus. This study tested whether protein kinase C (PKC) activation is necessary for sharpening as it is for LTP. Intraocular (IO) or intracranial (IC) injections of kinase inhibitors or activators were made every other day from 19 to 37 days postcrush (sensitive period), and the projections formed were later recorded. Retinotopic sharpening was prevented by IC injection of the following agents: (1) general kinase inhibitors sphingosine and H7 (100-200 microM in fluid above brain), (2) active but not inactive phorbols (TPA, 1 microM), and (3) calphostin C (1 microM), a specific and irreversible PKC inhibitor. The mature projection on the opposite tectum, however, when examined was not unsharpened. Lack of sharpening was reflected in multiunit fields at each tectal point that averaged 27 degrees-30 degrees versus 11 degrees in Ringers and inactive phorbol control regenerates. Intraocular injections of either TPA (1 microM), or calphostin C (1 microM) also prevented sharpening (26 degrees and 32 degrees multiunit fields), suggesting action on PKC axonally transported to the presynaptic terminals. Calphostin C had no noticeable effect on the firing patterns of retinal ganglion cells. The endogenous activator of PKC, arachidonic acid (AA), disrupted sharpening at 20 microM or higher (IC injection, 32 degrees multiunit fields), while a control fatty acid, elaidic acid, had no effect. Although AA at 5 microM showed no effect, and diacylglycerol at 5 microM exhibited only small effects, together they produced a large synergistic effect (32 degrees multiunit fields). Such synergy mirrors the synergy in the activation of several isoforms of PKC. Actual concentrations in the extradural fluid around the brain were assayed via injections of 3H-AA. Levels fell about sixfold after a day and by an additional fivefold the second day before the next injection. The results confirm that activity-driven retinotopic sharpening is very sensitive to manipulations of kinases, especially PKC.
Collapse
Affiliation(s)
- J T Schmidt
- Department of Biological Science, State University of New York at Albany 12222
| |
Collapse
|
43
|
Osborne NN, Wood J, Groome N. The occurrence of three calcium-independent protein kinase C subspecies (delta, epsilon and zeta) in retina of different species. Brain Res 1994; 637:156-62. [PMID: 8180793 DOI: 10.1016/0006-8993(94)91228-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The localisation and immunochemical identification of three different forms of calcium-independent protein kinase C (PKC-epsilon, PKC-delta and PKC-zeta) in retinas of different species were analysed by immunohistochemistry and SDS-PAGE/Western blotting, respectively. More than one component of different molecular weights reacted with the polyclonal antibodies in all retinal samples though in all instances a component of molecular weight corresponding to the individual PKCs was recognised and could be eliminated or reduced by preincubating the primary antibodies with the peptides used to generate the antibodies. PKC-zeta immunoreactivity was exclusively associated with the inner segments of the photoreceptors in both mammalian (guinea-pig, rabbit, rat) and non-mammalian (goldfish, chick) retinas. PKC-epsilon immunoreactivity is present in bipolar cells, particularly in their terminals of mammalian and goldfish retinas. In the chick retina immunoreactivity for this enzyme and for PKC-delta was with the inner segments of the photoreceptors. The Müller cells in mammalian retinas and a sub-population of ganglion cells in the goldfish retina exhibited positive immunoreactivity for PKC-delta. The immunoreactivities for all the PKC isoenzymes were eliminated or drastically reduced when the primary antibodies were first preincubated with the peptides used to generate the antibodies.
Collapse
Affiliation(s)
- N N Osborne
- Nuffield Laboratory of Ophthalomology, Oxford University, UK
| | | | | |
Collapse
|
44
|
Ghalayini AJ, Koutz CA, Wetsel WC, Hannun YA, Anderson RE. Immunolocalization of PKC zeta in rat photoreceptor inner segments. Curr Eye Res 1994; 13:145-50. [PMID: 8194361 DOI: 10.3109/02713689409042409] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have utilized several peptide specific antisera directed against the C-terminals (Wetsel et al, 1992) of several protein kinase C (PKC) isozymes (alpha, beta 1, beta 11, gamma, delta, epsilon, zeta) to delineate the cellular localization of these PKC isozymes in rat retina. Antisera against PKC beta 1, beta 11, gamma, delta and epsilon were non-reactive in frozen rat retina sections, whereas, anti PKC alpha was strongly reactive with the outer plexiform, inner plexiform and nerve fiber cell layers. The most specific localization of immunoreactivity was observed with PKC zeta, which reacted strongly and exclusively with photoreceptor inner segments, but not outer segments. Immunoblot analysis of whole rat retina homogenate showed that anti-PKC alpha recognized an antigen of approximately 80kD and anti-PKC zeta recognized a approximately 72kD protein. Immunolocalization of PKC zeta to photoreceptor inner segments and possible functional significance are discussed.
Collapse
Affiliation(s)
- A J Ghalayini
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | |
Collapse
|
45
|
Ochiishi T, Terashima T, Sugiura H, Yamauchi T. Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase II in the rat retina. Brain Res 1994; 634:257-65. [PMID: 8131075 DOI: 10.1016/0006-8993(94)91928-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) consisting of alpha and beta isoforms is highly expressed in the central nervous system and is implicated in the regulation of various Ca(2+)-dependent physiological processes. We investigated the immunohistochemical distribution of the alpha and beta isoforms of this enzyme in the rat retina, using highly specific monoclonal antibodies which recognize each isoform. Immunoblotting revealed that not only the alpha but also the beta isoform of CaM kinase II were expressed in the retina. The immunohistochemical study showed that highly alpha-immunoreactive products were localized in amacrine cells in the inner nuclear layer and displaced amacrine cells and ganglion cells in the ganglion cell layer. In addition, two well-defined bands within the inner plexiform layer were densely stained with the anti-alpha antibody. By contrast, immunoreactivity against the anti-beta antibody was very weak in the same neuronal components of the retina. beta-Immunoreactive products were homogeneously distributed throughout the inner plexiform layer and no well-defined bands were detected in this layer. Glial cells such as Müller cells were immunoreactive neither to alpha nor beta antibody. A possible co-existence of choline acetyl transferase (ChAT) within CaM kinase II alpha-immunopositive neurons was examined by evaluating adjacent sections stained with anti-CaM kinase II alpha antibody and anti-ChAT antibody, respectively. The distribution of CaM kinase II alpha immunoreactivity in the rat retina was remarkably similar to that of ChAT immunoreactivity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Ochiishi
- Department of Cell Biology, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | | | |
Collapse
|
46
|
Kolb H, Zhang L, Dekorver L. Differential staining of neurons in the human retina with antibodies to protein kinase C isozymes. Vis Neurosci 1993; 10:341-51. [PMID: 8485096 DOI: 10.1017/s0952523800003734] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Monoclonal antibodies to the three isozymes of protein kinase C (PKC) (alpha, beta, and gamma) were applied to postmortem human retina. Immunostaining was done on wholemount, or cryostat-sectioned retina, and visualized after ABC/DAB procedures by light (LM) and electron (EM) microscopy. The PCK-alpha antibody stained rod bipolar cells throughout the retina. EM analysis confirmed they were PKC-alpha-immunoreactive (IR) on their characteristic dendritic and axonal synaptology. Putative blue cone bipolar cells with wide-field axon terminals, stratifying in s5 of the inner plexiform layer (IPL), were also PKC-alpha-IR, and EM showed them to engage in narrow-cleft ribbon junctions in blue cone pedicles. The PKC-beta antibody stained cone bipolar cells, many amacrine cells, and most ganglion cells. Cone bipolar cells were stained all the way into the foveal center: both midget and diffuse varieties were included. The IPL was densely PKC-IR and individual neurons could not be identified on stratification patterns. EM of the outer plexiform layer (OPL) revealed that both flat and invaginating cone bipolar types were IR and that IR axon terminals were presynaptic in all strata of the IPL. The occurrence of PKC-beta-IR bipolar axons in stratum 2 of the IPL suggests that OFF-center as well as ON-center types were included. The PKC-gamma antibody gave inferior staining compared with results from the other two antibodies; however, two varieties of wide-field monostratified amacrine cell and a large-bodied ganglion cell type were discernible. PKC in one form or another appears to be a second messenger used in neurotransmission by both rod and cone systems and ON- and OFF-center systems in the human retina.
Collapse
Affiliation(s)
- H Kolb
- Physiology Department, University of Utah, Salt Lake City 84108
| | | | | |
Collapse
|
47
|
Arakawa M, Mizoguchi A, Masutani M, Kawakita N, Ide C. Ultrastructural localization of protein kinase C beta-subspecies in the axon terminal of rat neuromuscular junction. Neurosci Res 1993; 16:125-30. [PMID: 8387168 DOI: 10.1016/0168-0102(93)90079-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ultrastructural localization of protein kinase C (PKC) beta-subspecies in neuromuscular junctions of the rat lumbrical muscle was investigated by the immunoperoxidase and immunofluorescence methods. By light microscopy, PKC beta-like immunoreactivity (PKC beta-LIR) was found in the axon terminal expansions as well as in the preterminal axons. By confocal laser scanning microscopy, the staining for PKC beta-like immunoreactivity was more intense in the presynaptic regions just in contact with the acetylcholine receptor stained by FITC-alpha-bungarotoxin. By electron microscopy, PKC beta-like immunoreactivity was distributed non-uniformly in the terminal expansions. In the terminal expansions, PKC beta-like immunoreactivity was accumulated in the presynaptic regions in contact with the post-synaptic folds. This accumulation was approximately 0.1-0.2 microns in diameter, which comprised a part of the presynaptic plasma membrane and a group of synaptic vesicles adjacent to it. Weak immunoreactivity was also found diffusely in the axoplasmic matrix. The discrete presynaptic accumulation of PKC beta-subspecies may represent the strategical localization specialized for the effective regulation of neurotransmitter release.
Collapse
Affiliation(s)
- M Arakawa
- Department of Anatomy, Kobe University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
48
|
Zhang L, Dekorver L, Kolb H. Immunocytochemical staining with antibodies against protein kinase C and its isozymes in the turtle retina. JOURNAL OF NEUROCYTOLOGY 1992; 21:833-45. [PMID: 1281873 DOI: 10.1007/bf01191681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An LM immunocytochemical study has investigated the patterns of staining in turtle retina with monoclonal antibodies to the alpha, beta and gamma isozymes of protein kinase C. The protein kinase C-gamma antibody reveals cells in the ganglion cell layer, occasional amacrine cells and faint banding in strata 2 and 4 of the inner plexiform layer. The protein kinase C-beta antibody stains primarily amacrine cells that have dendrites running in strata 2, in 4 close to the 3/4 border and on the 4/5 border of the inner plexiform layer. Protein kinase C-alpha immunoreactivity is seen in a population of bipolar cells. The latter are characterized by stained axon terminals in strata 3 and 4 of the inner plexiform layer. A type of amacrine cell, different from those seen with the other antibodies, is also immunoreactive to protein kinase C-alpha. EM immunocytochemistry (using a polyclonal antibody) reveals protein kinase C immunoreactivity in photoreceptor cells, bipolar cells, amacrine cells and ganglion cells. In photoreceptors protein kinase C immunoreactivity occurs as patchy staining associated with vesicles and the plasmalemma in pedicles and telodendria. Some varieties of bipolar cell display protein kinase C reaction product throughout the entire cell. Their dendrites contact photoreceptor pedicles at wide-cleft basal junctions and ribbon and non-ribbon related narrow cleft junctions. A few lateral elements per cone or rod pedicle are always protein kinase C-immunoreactive. Amacrine and ganglion cells typically show small clumps of protein kinase C immunoreactivity around vesicles and close to the postsynaptic membranes. Synaptic boutons of some varieties of amacrine cell stain more uniformly. Protein kinase C-immunoreactive bipolar cells are most commonly presynaptic in stratum 4 of the inner plexiform layer, while protein kinase C-immunoreactive amacrine cells are both pre- and postsynaptic throughout strata 1, 2, 3 and 4. Stratum 5 appears to be almost devoid of protein kinase C-immunoreactive neural profiles.
Collapse
Affiliation(s)
- L Zhang
- Physiology Department, University of Utah School of Medicine, Salt Lake City
| | | | | |
Collapse
|
49
|
Huwiler A, Jung HH, Pfeilschifter J, Remé CE. Protein kinase C in the rat retina: immunocharacterization of calcium-independent delta, epsilon and zeta isoenzymes. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 16:360-4. [PMID: 1337945 DOI: 10.1016/0169-328x(92)90247-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Using isoenzyme-specific antibodies, subtypes of protein kinase C were determined in isolated retinae of dark adapted and light-exposed rats by SDS-PAGE-Western blotting. In addition to the previously observed alpha- and beta-subspecies, the rat retina also expressed the delta-, epsilon- and zeta-isoenzymes of protein kinase C. Exposure of the animals to physiological or high levels of light does not elicit changes in the pattern or in the distribution of the different isoenzymes in the cytosolic or particulate fractions. This study demonstrates, for the first time, the presence of three calcium-independent protein kinase C isoenzymes in the rat retina.
Collapse
Affiliation(s)
- A Huwiler
- Department of Ophthalmology, University Hospital Zürich, Switzerland
| | | | | | | |
Collapse
|
50
|
Abstract
An extract of rat retina was subjected to Mono Q followed by chromatography on hydroxyapatite, and the protein kinase C (PKC) subspecies were identified by immunoblot and biochemical analysis. It was found that, although the relative activities assayed with myelin basic protein as a common phosphate acceptor vary greatly with one another, the alpha-, beta I-, beta II-, gamma-, delta-, epsilon-, zeta-, and another structurally unknown PKC subspecies are expressed in this tissue. Thus, the retina is a unique tissue which expresses most of the PKC subspecies so far identified in mammals.
Collapse
Affiliation(s)
- N Fujisawa
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | |
Collapse
|