1
|
Littlepage-Saunders M, Hochstein MJ, Chang DS, Johnson KA. G protein-coupled receptor modulation of striatal dopamine transmission: Implications for psychoactive drug effects. Br J Pharmacol 2024; 181:4399-4413. [PMID: 37258878 PMCID: PMC10687321 DOI: 10.1111/bph.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Dopamine transmission in the striatum is a critical mediator of the rewarding and reinforcing effects of commonly misused psychoactive drugs. G protein-coupled receptors (GPCRs) that bind a variety of neuromodulators including dopamine, endocannabinoids, acetylcholine and endogenous opioid peptides regulate dopamine release by acting on several components of dopaminergic circuitry. Striatal dopamine release can be driven by both somatic action potential firing and local mechanisms that depend on acetylcholine released from striatal cholinergic interneurons. GPCRs that primarily regulate somatic firing of dopamine neurons via direct effects or modulation of synaptic inputs are likely to affect distinct aspects of behaviour and psychoactive drug actions compared with those GPCRs that primarily regulate local acetylcholine-dependent dopamine release in striatal regions. This review will highlight mechanisms by which GPCRs modulate dopaminergic transmission and the relevance of these findings to psychoactive drug effects on physiology and behaviour.
Collapse
Affiliation(s)
- Mydirah Littlepage-Saunders
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Michael J Hochstein
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Doris S Chang
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Saygı Bacanak M, Aydın B, Cabadak H, Nurten A, Gören MZ, Enginar N. Contribution of M 1 and M 2 muscarinic receptor subtypes to convulsions in fasted mice treated with scopolamine and given food. Behav Brain Res 2019; 364:423-430. [PMID: 29158113 DOI: 10.1016/j.bbr.2017.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023]
Abstract
Treatment of fasted mice and rats with the nonselective muscarinic antagonist, scopolamine or atropine, causes convulsions after food intake. This study evaluated the effect of fasting on the expression of M1 and M2 muscarinic receptors in the brain regions, the relationship between receptor expression and seizure stages, and the muscarinic receptor subtype which plays a role in the occurrence of convulsions. Mice were grouped as allowed to eat ad lib (fed) and deprived of food for 24h (fasted). Fasted animals developed convulsions after being treated with scopolamine (60%) or the selective M1 receptor antagonist pirenzepine (10mg/kg; 20% and 60mg/kg; 70%) and given food. Fasting increased expression of M1 receptors in the frontal cortex and M2 receptors in the hippocampus, but produced no change in the expression of both receptors in the amygdaloid complex. Food intake after fasting decreased M1 receptor expression in the frontal cortex and M1 and M2 receptor expression in the hippocampus. Seizure severity was uncorrelated with muscarinic receptor expression in the brain regions. Taken together, these findings provide evidence for the role of M1 muscarinic receptor antagonism and fasting-induced increases in M1 and M2 expression possible underlying mechanism in the occurrence of convulsions in fasted animals.
Collapse
Affiliation(s)
- Merve Saygı Bacanak
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Banu Aydın
- Department of Biophysics, School of Medicine, Marmara University, Turkey
| | - Hülya Cabadak
- Department of Biophysics, School of Medicine, Marmara University, Turkey
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Turkey
| | - Mehmet Zafer Gören
- Department of Medical Pharmacology, School of Medicine, Marmara University Istanbul, Turkey
| | - Nurhan Enginar
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Turkey.
| |
Collapse
|
3
|
Mann T, Zilles K, Klawitter F, Cremer M, Hawlitschka A, Palomero-Gallagher N, Schmitt O, Wree A. Acetylcholine Neurotransmitter Receptor Densities in the Striatum of Hemiparkinsonian Rats Following Botulinum Neurotoxin-A Injection. Front Neuroanat 2018; 12:65. [PMID: 30147647 PMCID: PMC6095974 DOI: 10.3389/fnana.2018.00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
Cholinergic neurotransmission has a pivotal function in the caudate-putamen, and is highly associated with the pathophysiology of Parkinson's disease. Here, we investigated long-term changes in the densities of the muscarinic receptor subtypes M1, M2, M3 (mAchRs) and the nicotinic receptor subtype α4β2 (nAchRs) in the striatum of the 6-OHDA-induced hemiparkinsonian (hemi-PD) rat model using quantitative in vitro receptor autoradiography. Hemi-PD rats exhibited an ipsilateral decrease in striatal mAchR densities between 6 and 16%. Moreover, a massive and constant decrease in striatal nAchR density by 57% was found. A second goal of the study was to disclose receptor-related mechanisms for the positive motor effect of intrastriatally injected Botulinum neurotoxin-A (BoNT-A) in hemi-PD rats in the apomorphine rotation test. Therefore, the effect of intrastriatally injected BoNT-A in control and hemi-PD rats on mAchR and nAchR densities was analyzed and compared to control animals or vehicle-injected hemi-PD rats. BoNT-A administration slightly reduced interhemispheric differences of mAchR and nAchR densities in hemi-PD rats. Importantly, the BoNT-A effect on striatal nAchRs significantly correlated with behavioral testing after apomorphine application. This study gives novel insights of 6-OHDA-induced effects on striatal mAchR and nAchR densities, and partly explains the therapeutic effect of BoNT-A in hemi-PD rats on a cellular level.
Collapse
Affiliation(s)
- Teresa Mann
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Karl Zilles
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany.,JARA-Translational Brain Medicine, Aachen, Germany
| | - Felix Klawitter
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Markus Cremer
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany
| | | | - Nicola Palomero-Gallagher
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Oliver Schmitt
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Andreas Wree
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| |
Collapse
|
4
|
Joseph L, Thomsen M. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M 1, M 2, and M 4 receptor knockout mice. Behav Brain Res 2017; 329:75-83. [PMID: 28442355 DOI: 10.1016/j.bbr.2017.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 01/14/2023]
Abstract
Muscarinic M1/M4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (SD) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M1, M2, or M4 receptors (M1-/-, M2-/-, M4-/-), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M1, M2, or M4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M1/M4 receptors partially substituted for cocaine and increased the SD effect of cocaine, while M2-preferring antagonists did not substitute, and reduced the SD effect of cocaine. The cocaine-like effects of scopolamine were absent in M1-/- mice. The cocaine SD attenuating effects of methoctramine were absent in M2-/- mice and almost absent in M1-/- mice. The findings indicate that the cocaine-like SD effects of muscarinic antagonists are primarily mediated through M1 receptors, with a minor contribution of M4 receptors. The data also support our previous findings that stimulation of M1 receptors and M4 receptors can each attenuate the SD effect of cocaine, and show that this can also be achieved by blocking M2 autoreceptors, likely via increased acetylcholine release.
Collapse
Affiliation(s)
- Lauren Joseph
- Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Morgane Thomsen
- Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, Belmont, MA, USA; Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Muscarinic acetylcholine M 4 receptors play a critical role in oxotremorine-induced DARPP-32 phosphorylation at threonine 75 in isolated medium spiny neurons. Neuropharmacology 2017; 117:376-386. [PMID: 28257887 DOI: 10.1016/j.neuropharm.2017.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/21/2017] [Accepted: 02/27/2017] [Indexed: 11/22/2022]
Abstract
Dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) play essential roles in dopamine (DA) transmission in the striatum. It is suggested that a link exists between muscarinic acetylcholine receptors (mAChRs) and DA/DARPP-32 signaling, but the molecular mechanisms mediating this relationship have not been elucidated. The predominant mAChRs subtypes in the striatum are M1 and M4. In this study, we investigated the functions of these two receptors, particularly M4, in regulating cAMP production and DARPP-32 phosphorylation in rat striatal medium spiny neurons (MSNs). We used time-resolved fluorescence resonance energy transfer, immunofluorescence confocal microscopy, and western blot assays. In cultured intact MSNs, we confirmed that muscarinic M1 and M4 receptors were highly expressed. Notably, M4 receptors were co-expressed with D1 receptors in only a portion of the cultured MSNs. The nonselective muscarinic agonist oxotremorine M (OX) slightly enhanced cAMP production, but this effect was independent of M1 or M4 receptors. However, OX directly participated in DARPP-32 phosphorylation, phosphorylating DARPP-32 at Thr75 (the CDK5 site) and concomitantly de-phosphorylating DARPP-32 at Thr34 (the PKA site) in virtually cultured MSNs, whereas APO phosphorylated DARPP-32 at both Thr34 and Thr75. The OX-induced time-dependent increase in DARPP-32 phosphorylation at Thr75 was accompanied by increased p35 and CDK5 activity. Specifically, elevated immunoreactivity for phospho-DARPP-32-Thr75 and p35 was detected in M4 receptor-expressing MSNs. Both genetic knockdown and pharmacologic inhibition of M4 receptors with MT3, an M4 receptor-selective antagonist, decreased the OX-induced DARPP-32-Thr75 phosphorylation in MSNs. These results indicate that the M4 muscarinic receptor plays a critical role in modulating phosphorylation of DARPP-32-Thr75 in MSNs. The results suggest that M4 receptor activation acts antagonistically with dopamine D1-like receptors within the striatum, and indicate that M4 receptors may be a potential target for the treatment of Parkinson's disease and other relevant central nervous system disorders.
Collapse
|
6
|
Campos-Jurado Y, Martí-Prats L, Zornoza T, Polache A, Granero L, Cano-Cebrián MJ. Regional differences in mu-opioid receptor-dependent modulation of basal dopamine transmission in rat striatum. Neurosci Lett 2016; 638:102-108. [PMID: 27986497 DOI: 10.1016/j.neulet.2016.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 11/30/2022]
Abstract
The nigrostriatal dopamine system is implicated in the regulation of reward and motor activity. Dopamine (DA) release in dorsal striatum (DS) is controlled by the firing rate of DA neurons in substantia nigra pars compacta. However, influences at terminal level, such as those involving activation of mu opioid receptors (MORs), can play a key role in determining DA levels in striatum. Nonetheless, published data also suggest that the effect of opioid drugs on DA levels may differ depending on the DS subregion analyzed. In this study, in vivo microdialysis in rats was used to explore this regional dependence. Changes in basal DA levels induced by local retrodialysis application of DAMGO (selective MORs agonist) in three different subregions of DS along the rostro-caudal axis were studied. Our results indicate that whereas administration of 10μM DAMGO into the rostral and caudal DS significantly reduced DA levels, in medial DS an increase in DA levels was observed. These data reveal a regional-dependent MOR modulation of DA release in DS, similar to that described in the ventral striatum. Our findings may lead to a better understanding of the nigrostriatal DA system regulation.
Collapse
Affiliation(s)
- Y Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - L Martí-Prats
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - T Zornoza
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - A Polache
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - L Granero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - M J Cano-Cebrián
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain.
| |
Collapse
|
7
|
Sulzer D, Cragg SJ, Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. ACTA ACUST UNITED AC 2016; 6:123-148. [PMID: 27141430 DOI: 10.1016/j.baga.2016.02.001] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients.
Collapse
Affiliation(s)
- David Sulzer
- Depts of Psychiatry, Neurology, & Pharmacology, NY State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Stephanie J Cragg
- Dept Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Margaret E Rice
- Depts of Neurosurgery & Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
8
|
Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol 2015; 127-128:91-107. [PMID: 25697043 DOI: 10.1016/j.pneurobio.2015.02.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
Dystonia is a movement disorder of both genetic and non-genetic causes, which typically results in twisted posturing due to abnormal muscle contraction. Evidence from dystonia patients and animal models of dystonia indicate a crucial role for the striatal cholinergic system in the pathophysiology of dystonia. In this review, we focus on striatal circuitry and the centrality of the acetylcholine system in the function of the basal ganglia in the control of voluntary movement and ultimately clinical manifestation of movement disorders. We consider the impact of cholinergic interneurons (ChIs) on dopamine-acetylcholine interactions and examine new evidence for impairment of ChIs in dysfunction of the motor systems producing dystonic movements, particularly in animal models. We have observed paradoxical excitation of ChIs in the presence of dopamine D2 receptor agonists and impairment of striatal synaptic plasticity in a mouse model of DYT1 dystonia, which are improved by administration of recently developed M1 receptor antagonists. These findings have been confirmed across multiple animal models of DYT1 dystonia and may represent a common endophenotype by which to investigate dystonia induced by other types of genetic and non-genetic causes and to investigate the potential effectiveness of pharmacotherapeutics and other strategies to improve dystonia.
Collapse
|
9
|
Roy A, Fields WC, Rocha‐Resende C, Resende RR, Guatimosim S, Prado VF, Gros R, Prado MAM. Letters to the Editor. FASEB J 2014; 28:2-3. [DOI: 10.1096/fj.14-0102lte] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it's implications for psychiatric disorders. Front Cell Neurosci 2013; 7:55. [PMID: 23653591 PMCID: PMC3642390 DOI: 10.3389/fncel.2013.00055] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Andrew S. Gibbons
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Jaclyn Neo
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience, The University of MelbourneParkville, VIC, Australia
| | - Brian Dean
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| |
Collapse
|
11
|
Muscarinic receptors acting at pre- and post-synaptic sites differentially regulate dopamine/DARPP-32 signaling in striatonigral and striatopallidal neurons. Neuropharmacology 2012; 63:1248-57. [DOI: 10.1016/j.neuropharm.2012.07.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/13/2012] [Accepted: 07/27/2012] [Indexed: 01/05/2023]
|
12
|
Laplante F, Dufresne MM, Ouboudinar J, Ochoa-Sanchez R, Sullivan RM. Reduction in cholinergic interneuron density in the nucleus accumbens attenuates local extracellular dopamine release in response to stress or amphetamine. Synapse 2012; 67:21-9. [PMID: 23034725 DOI: 10.1002/syn.21612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 01/24/2023]
Abstract
Depletion of cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) in adult rats increases the locomotor activating effects of amphetamine. It also impairs sensorimotor gating processes, an effect reversed by the antipsychotic haloperidol. These behavioral effects are suggestive of pronounced hyper-responsiveness of the mesolimbic dopamine (DA) projection to the N.Acc. However, it is unclear whether local cholinergic depletion results predominantly in exaggerated presynaptic DA release or a postsynaptic upregulation of DAergic function. The purpose of the present study is to test the former possibility by employing in vivo voltammetry to examine changes in the levels of extracellular DA within the N.Acc. in response to either mild tail pinch stress or amphetamine administration. While both cholinergic-lesioned and control rats showed reliable stress-induced increases in extracellular DA on two consecutive test days, those in the lesioned rats were significantly less pronounced. In response to amphetamine, a separate cohort of lesioned rats also exhibited smaller increases in extracellular DA release than controls, despite showing greater locomotor activity. Moreover, the increased behavioral response to amphetamine in lesioned rats coincided temporally with decreasing levels of DA in the N.Acc. The results confirm that cholinergic depletion within the N.Acc. suppresses presynaptic DA release and suggest that lesion-induced behavioral effects are more likely due to postsynaptic DA receptor upregulation. The results are also discussed in the context of schizophrenia, where post mortem studies have revealed a selective loss of cholinergic interneurons within the ventral striatum.
Collapse
Affiliation(s)
- François Laplante
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
13
|
Zhang H, Sulzer D. Regulation of striatal dopamine release by presynaptic auto- and heteroreceptors. ACTA ACUST UNITED AC 2012; 2:5-13. [PMID: 22712055 DOI: 10.1016/j.baga.2011.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Striatal dopamine neurotransmission is critical for normal voluntary movement, affect and cognition. Dysfunctions of its regulation are implicated in a broad range of behaviors and disorders including Parkinson's disease, schizophrenia and drug abuse. Extracellular dopamine levels result from a dynamic equilibrium between release and reuptake by dopaminergic terminals. Both processes are regulated by multiple mechanisms. Here we review data characterizing how dopamine levels are regulated by presynaptic autoreceptors and heteroreceptors, an area intensively investigated due to advances in real time electrochemical detection of extracellular dopamine, i.e., fast-scan cyclic voltammetry and amperometry, and the development of mutant mouse lines with deletions for specific receptors.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Psychiatry and Neurology, Columbia University, New York
| | | |
Collapse
|
14
|
Abstract
Schizophrenia is a devastating disease with several broad symptom clusters and the current monoamine-based treatments do not adequately treat the disease, especially negative and cognitive symptoms. A proposed alternative approach for treating schizophrenia is through the use of compounds that activate certain muscarinic receptor subtypes, the so-called muscarinic cholinergic hypothesis theory. This theory has been revitalized with a number of recent and provocative findings including postmortem reports in schizophrenia patients showing decreased numbers of muscarinic M(1) and M(4) receptors in brain regions associated with schizophrenia as well as decreased muscarinic receptors in an in vivo imaging study. Studies with M(4) knockout mice have shown that there is a reciprocal relationship between M(4) and dopamine receptor function, and a number of muscarinic agonists have shown antidopaminergic activity in a variety of preclinical assays predictive of antipsychotic efficacy in the clinic. Furthermore, the M(1)/M(4) preferring partial agonist xanomeline has been shown to have antipsychotic-like and pro-cognitive activity in preclinical models and in clinical trials to decrease psychotic-like behaviors in Alzheimer's patients and positive, negative, and cognitive symptoms in patients with schizophrenia. Therefore, we propose that an agonist with M(1) and M(4) interactions would effectively treat core symptom clusters associated with schizophrenia. Currently, research is focused on developing subtype-selective muscarinic agonists and positive allosteric modulators that have reduced propensity for parasympathetic side-effects, but retain the therapeutic benefit observed with their less selective predecessors.
Collapse
Affiliation(s)
- David L McKinzie
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, IN 46285, USA.
| | | |
Collapse
|
15
|
Xie K, Martemyanov KA. Control of striatal signaling by g protein regulators. Front Neuroanat 2011; 5:49. [PMID: 21852966 PMCID: PMC3151604 DOI: 10.3389/fnana.2011.00049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 07/23/2011] [Indexed: 12/03/2022] Open
Abstract
Signaling via heterotrimeric G proteins plays a crucial role in modulating the responses of striatal neurons that ultimately shape core behaviors mediated by the basal ganglia circuitry, such as reward valuation, habit formation, and movement coordination. Activation of G protein-coupled receptors (GPCRs) by extracellular signals activates heterotrimeric G proteins by promoting the binding of GTP to their α subunits. G proteins exert their effects by influencing the activity of key effector proteins in this region, including ion channels, second messenger enzymes, and protein kinases. Striatal neurons express a staggering number of GPCRs whose activation results in the engagement of downstream signaling pathways and cellular responses with unique profiles but common molecular mechanisms. Studies over the last decade have revealed that the extent and duration of GPCR signaling are controlled by a conserved protein family named regulator of G protein signaling (RGS). RGS proteins accelerate GTP hydrolysis by the α subunits of G proteins, thus promoting deactivation of GPCR signaling. In this review, we discuss the progress made in understanding the roles of RGS proteins in controlling striatal G protein signaling and providing integration and selectivity of signal transmission. We review evidence on the formation of a macromolecular complex between RGS proteins and other components of striatal signaling pathways, their molecular regulatory mechanisms and impacts on GPCR signaling in the striatum obtained from biochemical studies and experiments involving genetic mouse models. Special emphasis is placed on RGS9-2, a member of the RGS family that is highly enriched in the striatum and plays critical roles in drug addiction and motor control.
Collapse
Affiliation(s)
- Keqiang Xie
- The Scripps Research Institute Jupiter, FL, USA
| | | |
Collapse
|
16
|
Threlfell S, Cragg SJ. Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci 2011; 5:11. [PMID: 21427783 PMCID: PMC3049415 DOI: 10.3389/fnsys.2011.00011] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/17/2011] [Indexed: 11/13/2022] Open
Abstract
Mesostriatal dopaminergic neurons and striatal cholinergic interneurons participate in signaling the motivational significance of environmental stimuli and regulate striatal plasticity. Dopamine (DA) and acetylcholine (ACh) have potent interactions within the striatum at multiple levels that include presynaptic regulation of neurotransmitter release and postsynaptic effects in target cells (including ACh neurons). These interactions may be highly variable given the dynamic changes in the firing activities of parent DA and ACh neurons. Here, we consider how striatal ACh released from cholinergic interneurons acting at both nicotinic and muscarinic ACh receptors powerfully modulates DA transmission. This ACh–DA interaction varies in a manner that depends on the frequency of presynaptic activation, and will thus strongly influence how DA synapses convey discrete changes in DA neuron activity that are known to signal events of motivational salience. Furthermore, this ACh modulation of DA transmission within striatum occurs via different profiles of nicotinic and muscarinic receptors in caudate–putamen compared to nucleus accumbens, which may ultimately enable region-specific targeting of striatal function.
Collapse
Affiliation(s)
- Sarah Threlfell
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | | |
Collapse
|
17
|
Klinkenberg I, Blokland A. A comparison of scopolamine and biperiden as a rodent model for cholinergic cognitive impairment. Psychopharmacology (Berl) 2011; 215:549-66. [PMID: 21336581 PMCID: PMC3090581 DOI: 10.1007/s00213-011-2171-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 01/09/2011] [Indexed: 10/26/2022]
Abstract
RATIONALE The nonselective muscarinic antagonist scopolamine hydrobromide (SCOP) is employed as the gold standard for inducing memory impairments in healthy humans and animals. However, its use remains controversial due to the wide spectrum of behavioral effects of this drug. OBJECTIVE The present study investigated whether biperiden (BIP), a muscarinic m1 receptor antagonist, is to be preferred over SCOP as a pharmacological model for cholinergic memory deficits in rats. This was done by comparing the effects of SCOP and BIP using a battery of operant tasks: fixed ratio (FR5) and progressive ratio (PR10) schedules of reinforcement, an attention paradigm and delayed nonmatching to position task. RESULTS SCOP induced diffuse behavioral disruption, which included sensorimotor responding (FR5, 0.3 and 1 mg/kg), food motivation (PR10, 1 mg/kg), attention (0.3 mg/kg, independent of stimulus duration), and short-term memory (delayed nonmatching to position (DNMTP), 0.1 and 0.3 mg/kg, delay-dependent but also impairment at the zero second delay). BIP induced relatively more selective deficits, as it slowed sensorimotor responding (FR5, 10 mg/kg) and disrupted short-term memory (DNMTP, 3 mg/kg, delay-dependent but no impairment at the zero second delay). BIP had no effect on food motivation (PR10) or attention. CONCLUSION Muscarinic m1 antagonists should be considered an interesting alternative for SCOP as a pharmacological model for cholinergic mnemonic deficits in animals.
Collapse
Affiliation(s)
- Inge Klinkenberg
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands.
| | - Arjan Blokland
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, European Graduate School of Neuroscience (EURON), Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
18
|
Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum. J Neurosci 2010; 30:3398-408. [PMID: 20203199 DOI: 10.1523/jneurosci.5620-09.2010] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Striatal dopamine (DA) and acetylcholine (ACh) regulate motivated behaviors and striatal plasticity. Interactions between these neurotransmitters may be important, through synchronous changes in parent neuron activities and reciprocal presynaptic regulation of release. How DA signaling is regulated by striatal muscarinic receptors (mAChRs) is unresolved; contradictory reports indicate suppression or facilitation, implicating several mAChR subtypes on various neurons. We investigated whether mAChR regulation of DA signaling varies with presynaptic activity and identified the mAChRs responsible in sensorimotor- versus limbic-associated striatum. We detected DA in real time at carbon fiber microelectrodes in mouse striatal slices. Broad-spectrum mAChR agonists [oxotremorine-M, APET (arecaidine propargyl ester tosylate)] decreased DA release evoked by low-frequency stimuli (1-10 Hz, four pulses) but increased the sensitivity of DA release to presynaptic activity, even enhancing release by high frequencies (e.g., >25 Hz for four pulses). These bidirectional effects depended on ACh input to striatal nicotinic receptors (nAChRs) on DA axons but not GABA or glutamate input. In caudate-putamen (CPu), knock-out of M(2)- or M(4)-mAChRs (not M(5)) prevented mAChR control of DA, indicating that M(2)- and M(4)-mAChRs are required. In nucleus accumbens (NAc) core or shell, mAChR function was prevented in M(4)-knock-outs, but not M(2)- or M(5)-knock-outs. These data indicate that striatal mAChRs, by inhibiting ACh release from cholinergic interneurons and thus modifying nAChR activity, offer variable control of DA release probability that promotes how DA release reflects activation of dopaminergic axons. Furthermore, different coupling of striatal M(2)/M(4)-mAChRs to the control of DA release in CPu versus NAc suggests targets to influence DA/ACh function differentially between striatal domains.
Collapse
|
19
|
Regulation of Extracellular Dopamine. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374767-9.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Othman AA, Newman AH, Eddington ND. The novel N-substituted benztropine analog GA2-50 possesses pharmacokinetic and pharmacodynamic profiles favorable for a candidate substitute medication for cocaine abuse. J Pharm Sci 2008; 97:5453-70. [PMID: 18425847 PMCID: PMC2673089 DOI: 10.1002/jps.21389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
GA2-50 is a novel N-substituted benztropine analog with improved potency and selectivity for the dopamine transporter. The pharmacokinetic and pharmacodynamic properties of GA2-50 were characterized as a part of its preclinical evaluation as a substitute medication for cocaine abuse. In vitro transport and metabolism studies as well as pharmacokinetic studies in rats were conducted. Effect of GA2-50 on the extracelluar nucleus accumbens (NAc) dopamine levels and on cocaine's induced dopamine elevation was evaluated using intracerebral microdialysis. GA2-50 showed high transcellular permeability despite being a P-glycoprotein substrate. GA2-50 was a substrate of human CYP2D6, CYP2C19, CYP2E1, rat CYP2C11, CYP2D1, CYP3A1, and CYP1A2; with low intrinsic clearance values. In vivo, GA2-50 showed high brain uptake (R(i) approximately 10), large volume of distribution (V(ss) = 37 L/kg), and long elimination half-life (t((1/2)) = 19 h). GA2-50 resulted in 1.6- and 2.7-fold dopamine elevation at the 5 and 10 mg/kg i.v. doses. Dopamine elevation induced by GA2-50 was significantly reduced, slower and longer lasting than previously observed for cocaine. GA2-50 had no significant effect on cocaine's induced dopamine elevation upon simultaneous administration. Results from the present study indicate that GA2-50 possesses several attributes sought after for a substitute medication for cocaine abuse.
Collapse
Affiliation(s)
- Ahmed A Othman
- Pharmacokinetics-Biopharmaceutics Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, 20 North Pine Street, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
21
|
Walker RH, Koch RJ, Moore C, Meshul CK. Subthalamic nucleus stimulation and lesioning have distinct state-dependent effects upon striatal dopamine metabolism. Synapse 2008; 63:136-46. [DOI: 10.1002/syn.20592] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Cholinergic innervation and thalamic input in rat nucleus accumbens. J Chem Neuroanat 2008; 37:33-45. [PMID: 18773952 DOI: 10.1016/j.jchemneu.2008.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/08/2008] [Accepted: 08/09/2008] [Indexed: 11/23/2022]
Abstract
Cholinergic interneurons are the only known source of acetylcholine in the rat nucleus accumbens (nAcb); yet there is little anatomical data about their mode of innervation and the origin of their excitatory drive. We characterized the cholinergic and thalamic innervations of nAcb with choline acetyltransferase (ChAT) immunocytochemistry and anterograde transport of Phaseolus vulgaris-leucoagglutinin (PHA-L) from the midline/intralaminar/paraventricular thalamic nuclei. The use of a monoclonal ChAT antiserum against whole rat ChAT protein allowed for an optimal visualization of the small dendritic branches and fine varicose axons of cholinergic interneurons. PHA-L-labeled thalamic afferents were heterogeneously distributed throughout the core and shell regions of nAcb, overlapping regionally with cholinergic somata and dendrites. At the ultrastructural level, several hundred single-section profiles of PHA-L and ChAT-labeled axon terminals were analyzed for morphology, synaptic frequency, and the nature of their synaptic targets. The cholinergic profiles were small and apposed to various neuronal elements, but rarely exhibited a synaptic membrane specialization (5% in single ultrathin sections). Stereological extrapolation indicated that less than 15% of these cholinergic varicosities were synaptic. The PHA-L-labeled profiles were comparatively large and often synaptic (37% in single ultrathin sections), making asymmetrical contacts primarily with dendritic spines (>90%). Stereological extrapolation indicated that all PHA-L-labeled terminals were synaptic. In double-labeled material, some PHA-L-labeled terminals were directly apposed to ChAT-labeled somata or dendrites, but synapses were never seen between the two types of elements. These observations demonstrate that the cholinergic innervation of rat nAcb is largely asynaptic. They confirm that the afferents from midline/intralaminar/paraventricular thalamic nuclei to rat nAcb synapse mostly on dendritic spines, presumably of medium spiny neurons, and suggest that the excitatory drive of nAcb cholinergic interneurons from thalamus is indirect, either via substance P release from recurrent collaterals of medium spiny neurons and/or by extrasynaptic diffusion of glutamate.
Collapse
|
23
|
Lee KW, Tian YH, You IJ, Kwon SH, Ha RR, Lee SY, Kim HC, Jang CG. Blockade of M1 muscarinic acetylcholine receptors modulates the methamphetamine-induced psychomotor stimulant effect. Neuroscience 2008; 153:1235-44. [DOI: 10.1016/j.neuroscience.2008.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 02/12/2008] [Accepted: 02/16/2008] [Indexed: 11/27/2022]
|
24
|
Wang Q, Zengin A, Ying W, Newell KA, Wang P, Yeo W, Wong PTH, Yenari MA, Huang XF. Chronic treatment with simvastatin upregulates muscarinic M1/4 receptor binding in the rat brain. Neuroscience 2008; 154:1100-6. [PMID: 18501522 DOI: 10.1016/j.neuroscience.2008.04.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
Statins are increasingly being used for the treatment of a variety of conditions beyond their original indication for cholesterol lowering. We previously reported that simvastatin affected the dopaminergic system in the rat brain. This study aims to investigate regional changes of muscarinic M1/4 receptors in the rat brain after 4-week administration of simvastatin (1 or 10 mg/kg/day). M1/4 receptor distribution and alterations in the post-mortem rat brain were detected by [(3)H]pirenzepine binding autoradiography. Simvastatin (1 mg/kg/day) increased [(3)H]pirenzepine binding, predominantly in the prefrontal cortex (171%, P<0.001), primary motor cortex (153%, P=0.001), cingulate cortex (109%, P<0.001), hippocampus (138%, P<0.001), caudate putamen (122%, P=0.002) and nucleus accumbens (170%, P<0.001) compared with controls; while lower but still significant increases of [(3)H]pirenzepine binding were observed in the examined regions following simvastatin (10 mg/kg/day) treatment. Our results also provide strong evidence that chronic simvastatin administration, especially at a low dosage, up-regulates M1/4 receptor binding, which is likely to be independent of its muscarinic agonist-like effect. Alterations in [(3)H]pirenzepine binding in the examined brain areas may represent the specific regions that mediate the clinical effects of simvastatin treatment on cognition and memory via the muscarinic cholinergic system. These findings contribute to a better understanding of the critical roles of simvastatin in treating neurodegenerative disorders, via muscarinic receptors.
Collapse
Affiliation(s)
- Q Wang
- Neurobiology Research Centre, School of Health Sciences and Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Preda S, Govoni S, Lanni C, Racchi M, Mura E, Grilli M, Marchi M. Acute beta-amyloid administration disrupts the cholinergic control of dopamine release in the nucleus accumbens. Neuropsychopharmacology 2008; 33:1062-70. [PMID: 17581530 DOI: 10.1038/sj.npp.1301485] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinical presentation of Alzheimer's disease is characterized by memory deficits but it also involves the impairment of several cognitive functions. Some of these cognitive and executive functions are mediated by limbic areas and are regulated by dopaminergic neurotransmission. Furthermore, literature data suggest that beta-amyloid (Abeta) can influence synaptic activity in absence of neurotoxicity and in particular can impair cholinergic modulation of other neurotransmitter actions. In the present study, we evaluated whether small concentrations of Abeta could disrupt cholinergic control of dopamine (DA) release in nucleus accumbens using in vivo (brain dialysis) and in vitro (isolated synaptosomes) models. The cholinergic agonist carbachol (CCh) greatly enhanced DA release from dopaminergic nerve endings in nucleus accumbens both in vivo and in vitro. This effect was mainly exerted on muscarinic receptors because it was inhibited by the muscarinic antagonist atropine and it was unaffected by the nicotinic antagonist mecamylamine. Also the nicotinic agonists epibatidine and nicotine evoked a dopaminergic outflow in nucleus accumbens, which, however, was lower. Abeta 1-40 in absence of neurotoxicity fully inhibited the DA release evoked by CCh and only marginally affected the DA release evoked by epibatidine. The PKC inhibitor GF109203X mimicked the effect of Abeta on DA release and, in turn, Abeta impaired PKC activation by CCh. We can suggest that, in nucleus accumbens, Abeta disrupted in vivo and in vitro cholinergic control of DA release by acting on muscarinic transduction machinery.
Collapse
Affiliation(s)
- Stefania Preda
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Although the neurotransmitter dopamine plays a prominent role in the pathogenesis and treatment of schizophrenia, the dopamine hypothesis of schizophrenia fails to explain all aspects of this disorder. It is increasingly evident that the pathology of schizophrenia also involves other neurotransmitter systems. Data from many streams of research including pre-clinical and clinical pharmacology, treatment studies, post-mortem studies and neuroimaging suggest an important role for the muscarinic cholinergic system in the pathophysiology of schizophrenia. This review will focus on evidence that supports the hypothesis that the muscarinic system is involved in the pathogenesis of schizophrenia and that muscarinic receptors may represent promising novel targets for the treatment of this disorder.
Collapse
Affiliation(s)
- T J Raedler
- Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
27
|
Tanda G, Ebbs AL, Kopajtic TA, Elias LM, Campbell BL, Newman AH, Katz JL. Effects of Muscarinic M1 Receptor Blockade on Cocaine-Induced Elevations of Brain Dopamine Levels and Locomotor Behavior in Rats. J Pharmacol Exp Ther 2007; 321:334-44. [PMID: 17255465 DOI: 10.1124/jpet.106.118067] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic muscarinic systems have been shown to influence dopaminergic function in the central nervous system. In addition, previous studies of benztropine analogs that inhibit dopamine uptake and show antagonism at muscarinic receptors show these drugs to be less effective than cocaine in producing its various prototypic effects such as locomotor stimulation. Because previous pharmacological studies on these topics have used nonselective M1 antagonists, we examined the interactions of preferential M1 muscarinic antagonists and cocaine. Dose-dependent increases in extracellular levels of dopamine in selected brain areas, the nucleus accumbens (NAc) shell and core, and the prefrontal cortex, were produced by cocaine but not by the preferential M1 antagonists telenzepine and trihexyphenidyl. When administered with cocaine, however, both M1 antagonists dose-dependently increased the effects of cocaine on dopamine in the NAc shell, and these effects were selective in that they were not obtained in the NAc core or in the prefrontal cortex. Telenzepine also increased locomotor activity, although the effect was small compared with that of cocaine. The locomotor stimulant effects of trihexyphenidyl, in contrast, approached those of cocaine. Telenzepine attenuated, whereas trihexyphenidyl enhanced the locomotor stimulant effects of cocaine, with neither drug facilitating cocaine-induced stereotypy. The present results indicate that preferential antagonist effects at muscarinic M1 receptors do not uniformly alter all of the effects of cocaine, nor do they explain the differences in effects of cocaine and benztropine analogs, and that the alterations in dopamine levels in the NAc shell do not predict the behavioral effects of the interactions with cocaine.
Collapse
Affiliation(s)
- Gianluigi Tanda
- Psychobiology, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Pratt WE, Kelley AE. Nucleus Accumbens Acetylcholine Regulates Appetitive Learning and Motivation for Food via Activation of Muscarinic Receptors. Behav Neurosci 2004; 118:730-9. [PMID: 15301600 DOI: 10.1037/0735-7044.118.4.730] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
These experiments tested whether nucleus accumbens muscarinic or nicotinic acetylcholine receptor activation is required for rats to learn to lever press for sucrose. Muscarinic blockade with scopolamine (1.0 microg/side or 10.0 microg/side), but not nicotinic antagonism with mecamylamine (10.0 microg/side), inhibited learning and performance when applied to the core or shell. Further experiments showed that acute accumbens scopolamine treatment increased locomotor activity and reduced sucrose consumption. However, microanalyses of behavioral events in the instrumental chamber revealed that reductions of lever press performance during muscarinic blockade were not due to gross motor dysfunction. Accumbens core scopolamine was subsequently shown to reduce the amount of work rats would expend under a progressive ratio paradigm. These novel results implicate nucleus accumbens muscarinic receptors in the modulation of appetitive learning, performance, and motivation for food.
Collapse
Affiliation(s)
- Wayne E Pratt
- Wisconsin Psychiatric Institute and Clinics, Department of Psychiatry, University of Wisconsin-Madison Medical School, Madison, WI 53719, USA.
| | | |
Collapse
|
29
|
Abstract
The article provides a broad assessment of the occurrence of hormetic-like biphasic dose-response relationships by over 30 peptides representing many major peptide classes. These peptide-induced biphasic dose responses were observed to occur in a extensive range of tissues, affecting an diverse range of biological endpoints. Despite diversity of peptides, models and endpoints, the quantitative features of the biphasic dose responses are remarkably similar with respect to the amplitude and width of the stimulatory response. These findings strongly suggest that hormetic-like biphasic dose responses represent a broadly generalizable biological phenomenon.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
30
|
Fitzgerald RS, Wang HYJ, Hirasawa S, Shirahata M. Neurotransmitter Relationships in the Hypoxia-challenged Cat Carotid Body. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 536:255-61. [PMID: 14635675 DOI: 10.1007/978-1-4419-9280-2_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
- Robert S Fitzgerald
- Department of Environmental Health Sciences (Division of Physiology), The Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
31
|
Ichikawa J, Chung YC, Li Z, Dai J, Meltzer HY. Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 2002; 958:176-84. [PMID: 12468043 DOI: 10.1016/s0006-8993(02)03692-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Behavioral evidence suggests that muscarinic/cholinergic inhibition of brain dopaminergic activity may be a useful principle for developing novel antipsychotic drugs (APDs). Thus, oxotremorine, a muscarinic agonist, attenuates amphetamine-induced locomotor activity in rodents, an effect also produced by a wide variety of proven APDs, whereas scopolamine, a muscarinic antagonist, has the opposite effect. Since atypical APDs such as clozapine, olanzapine, risperidone, ziprasidone and quetiapine, increase brain acetylcholine as well as dopamine (DA) release in a region-specific manner, their effects on cholinergic and dopaminergic neurotransmission may also contribute to various actions of these drugs. Oxotremorine (0.5-1.5 mg/kg) dose-dependently and preferentially increased DA release in rat medial prefrontal cortex (mPFC), compared to the nucleus accumbens (NAC). However, S-(-)-scopolamine (0.5-1.5 mg/kg) produced similar increases in DA release in the mPFC, but the effect was much less than that of oxotremorine. Whereas a dose of S-(-)-scopolamine of 0.5 mg/kg comparably increased DA release in the mPFC and NAC, 1.5 mg/kg had no effect on DA release in the NAC. Oxotremorine-M (0.5 mg/kg), a M(1/4)-preferring agonist, also increased DA release in the mPFC, but not the NAC, an effect completely abolished by telenzepine (3 mg/kg), a M(1/4)-preferring antagonist, which by itself had no effect on DA release in either region. Oxotremorine (0.5, but not 1.5, mg/kg) attenuated amphetamine (1 mg/kg)-induced DA release in the NAC, whereas S-(-)-scopolamine did not. Oxotremorine (1.5 mg/kg) and S-(-)-scopolamine (0.5 mg/kg) modestly but significantly potentiated amphetamine (1 mg/kg)-induced DA release in the mPFC. These results suggest that stimulation of muscarinic receptors, in particular M(1/4), as indicated by the effect of oxotremorine-M and telenzepine, may preferentially increase cortical DA release and inhibit amphetamine-induced DA release in the NAC.
Collapse
Affiliation(s)
- Junji Ichikawa
- Division of Psychopharmacology, Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA.
| | | | | | | | | |
Collapse
|
32
|
Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J Neurosci 2002. [PMID: 12151512 DOI: 10.1523/jneurosci.22-15-06347.2002] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A proper balance between striatal muscarinic cholinergic and dopaminergic neurotransmission is required for coordinated locomotor control. Activation of striatal muscarinic acetylcholine receptors (mAChRs) is known to modulate striatal dopamine release. To identify the mAChR subtype(s) involved in this activity, we used genetically altered mice that lacked functional M1-M5 mAChRs [knock-out (KO) mice]. In superfused striatal slices from wild-type mice, the non-subtype-selective muscarinic agonist oxotremorine led to concentration-dependent increases in potassium-stimulated [3H]dopamine release (by up to 60%). The lack of M1 or M2 receptors had no significant effect on the magnitude of these responses. Strikingly, oxotremorine-mediated potentiation of stimulated striatal [3H]dopamine release was abolished in M4 receptor KO mice, significantly increased in M3 receptor-deficient mice, and significantly reduced (but not abolished) in M5 receptor KO mice. Additional release studies performed in the presence of tetrodotoxin suggested that the dopamine release-stimulating M4 receptors are probably located on neuronal cell bodies, but that the release-facilitating M5 and the release-inhibiting M3 receptors are likely to be located on nerve terminals. Studies with the GABA(A) receptor blocker bicuculline methochloride suggested that M3 and M4 receptors mediate their dopamine release-modulatory effects via facilitation or inhibition, respectively, of striatal GABA release. These results provide unambiguous evidence that multiple mAChR subtypes are involved in the regulation of striatal dopamine release. These findings should contribute to a better understanding of the important functional roles that the muscarinic cholinergic system plays in striatal function.
Collapse
|
33
|
Böhme TM, Augelli-Szafran CE, Hallak H, Pugsley T, Serpa K, Schwarz RD. Synthesis and pharmacology of benzoxazines as highly selective antagonists at M(4) muscarinic receptors. J Med Chem 2002; 45:3094-102. [PMID: 12086495 DOI: 10.1021/jm011116o] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, we reported on PD 102807 (41) as being the most selective synthetic M(4) muscarinic antagonist identified to date. Synthesized analogues of 41 showed no improvement in affinity and selectivity at that time. However, several newly synthesized compounds exhibit a 7-fold higher affinity at M(4) receptors and demonstrate a selectivity of at least 100-fold over all other muscarinic receptor subtypes. For example, compound 28 showed an affinity of pK(i) = 9.00 at M(4) receptors and a selectivity of M(1)/M(4) = 13 183-fold, M(2)/M(4) = 339-fold, M(3)/M(4) = 151-fold, and M(5)/M(4) = 11 220-fold. This high selectivity along with high affinity has not been reported for any synthetic muscarinic antagonist, nor for natural occurring M(4) antagonists such as the M(4) selective Eastern Green Mamba venom MT3 (M(4) pK(b) = 8.7, M(1)/M(4) = 40-fold, M(2)/M(4) > or = 500-fold, M(3)/M(4) > or = 500-fold, and M(5)/M(4) > or = 500-fold). Derivative 24, a compound with a high selectivity pattern as well, has been tested for in vivo efficacy. It was able to block the L-3,4-dihydroxyphenylalanine accumulation produced by CI-1017, an M(1)/M(4) selective muscarinic agonist, in the mesolimbic region and striatum, which suggests that 24 is capable of crossing the blood-brain barrier and confirms the pharmacokinetic data obtained on this compound. This is evidence that suggests that agonist-induced increase in catecholamine synthesis observed in these regions is mediated by M(4) receptors.
Collapse
Affiliation(s)
- Thomas M Böhme
- Department of Medicinal Chemistry, Pfizer Global Research and Development, Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Wang HY, Fitzgerald RS. Muscarinic receptors influence catecholamine release from the cat carotid body during hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 499:45-8. [PMID: 11729924 DOI: 10.1007/978-1-4615-1375-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- H Y Wang
- Department of Environmental Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | |
Collapse
|
35
|
Hartvig P, Nordberg A, Torstenson R, Sjöberg P, Fasth KJ, Långström B. Interaction of a muscarinic cholinergic agonist on acetylcholine and dopamine receptors in the monkey brain studied with positron emission tomography. Dement Geriatr Cogn Disord 2002; 13:199-204. [PMID: 12006729 DOI: 10.1159/000057697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The effects on the binding to cholinergic and dopaminergic receptors in the brain during continuous intravenous infusion of the muscarinic cholinergic receptor agonist milameline (CI-979) were studied in the rhesus monkey by means of positron emission tomography. Binding to milameline cholinergic receptors was quantified using the muscarinic receptor antagonist [(11)C]-N-methyl-4-piperidinylbenzilate ([(11)C]NMP), and the effects on nicotine receptor binding were measured with (S)-[(11)C-methyl]nicotine. Changes in the binding of the D(2) dopamine receptor antagonist [(11)C]raclopride were measured as well. The binding of [(11)C]NMP increased in most brain regions with the infusion of increasing doses of milameline from 0.5 to 10 microg/kg/h. (S)-[(11)C-methyl]nicotine binding was unchanged or increased somewhat. Binding of [(11)C]raclopride to the D(2) dopaminergic receptors in the striatum of the brain increased by 10 +/- 4% following 2 microg/kg/h of milameline. The results suggest a possible action of milameline both on presynaptic muscarinic receptor subtypes as well as dopamine levels dependent on the receptor reserve of the muscarinic receptor subtypes.
Collapse
Affiliation(s)
- Per Hartvig
- Uppsala University PET Centre and Hospital Pharmacy, University Hospital, University of Uppsala, Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
36
|
Roman S, Vivas NM, Badia A, Clos MV. Interaction of a new potent anticholinesterasic compound (+/-)huprine X with muscarinic receptors in rat brain. Neurosci Lett 2002; 325:103-6. [PMID: 12044632 DOI: 10.1016/s0304-3940(02)00245-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The interaction of rac-12-amine-3-clor-6,7,10,11-tetrahydro-9-ethyl-7-11-methanecyclo-octane[b]quinoline ((+/-)huprine X) with M(1) and M(2) receptors has been studied in rat brain. Specific binding of [(3)H]pirenzepine or [(3)H]quinuclinidylbenzylate to hippocampus preparations was inhibited by (+/-)huprine X. This drug displayed a greater affinity for M(1) (K(i)=0.338+/-0.41 microM) than M(2) (K(i)=4.66+/-0.32 microM) receptors. In functional studies, (+/-)huprine X (1 microM) increased the release of [(3)H]dopamine in cortical synaptosomes, and this effect was partially reverted by atropine and mecamylamine, suggesting an agonistic effect on both M(1) and nicotinic receptors. The inhibitory effect of (+/-)huprine X (10 microM) on [(3)H]acetylcholine release and the subsequent reversion by atropine suggests that the drug also has an agonist effect on M(2) receptors. The present results demonstrate that this acetylcholinesterase inhibitor has an ample cholinergic profile, which suggests a potential source of interest of (+/-)huprine X in Alzheimer's disease therapy.
Collapse
Affiliation(s)
- S Roman
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
37
|
Wang HYJ, Fitzgerald RS. Muscarinic modulation of hypoxia-induced release of catecholamines from the cat carotid body. Brain Res 2002; 927:122-37. [PMID: 11821006 DOI: 10.1016/s0006-8993(01)03334-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chemotransduction of arterial hypoxemia by the cat carotid body is generally thought to begin with a hypoxia-induced depolarization of the glomus cells (GCs) of the carotid body (CB). This depolarization activates voltage-gated calcium channels with the subsequent entry of calcium, movement of transmitter-containing vesicles to the synaptic-like juncture between the GC and apposed sensory afferent neuron. The vesicles exocytotically release their transmitters which then proceed to the receptors on both the postsynaptic neuron and on the GCs themselves (autoreceptors). Action potentials and their modulation in the sensory fibers are the result, along with the modulation of further neurotransmitter release from the GCs. The purpose of the present study was to: (1) determine the parameters of an incubated cat CB preparation capable of releasing measurable amounts of catecholamines (CAs) in response to hypoxia; (2) determine the impact of muscarinic activities on CA release during the hypoxic challenge; (3) determine if the muscarinic activity preferentially modified the release of one CA more than another; (4) determine if there were any differences in the pattern of hypoxia-induced release of dopamine (DA) vs. norepinephrine (NE). CBs were harvested from deeply anesthetized cats. Cleaned of fat and connective tissue, they were incubated in Krebs Ringer bicarbonate solution at 37 degrees C, and bubbled with a hyperoxic mixture of gases (95% O(2)-5% CO(2)) for 30 min. The first series of experiments to address the CB's hypoxia-induced release of CAs explored the effects of incubating CBs for 2 h with hyperoxia vs. normoxia (21% O(2)-6% CO(2)) followed by a 30 min hypoxic challenge, with or without L-dihydroxyphenylalanine (L-DOPA). In the second series of experiments the CBs, after the first 30 min of hyperoxia, were next challenged with hypoxia (4% O(2)-5% CO(2)) for intervals of 3-20 min with intervening recovery periods of hyperoxia to determine the effect of the duration of the hypoxic exposure on CA release. In the third series of experiments the CBs, after the first 30 min of hyperoxia, were challenged with hypoxia for intervals of 10-40 min in the presence or absence of an M1 or M2 muscarinic receptor antagonist. CAs released into the incubation medium were analyzed by means of high performance liquid chromatography-electrochemical detection using standard procedures. Incubated cat CBs challenged for 2 h with hyperoxia followed by 30 min of hypoxia, released much more measurable amounts of CAs in the presence of 40 microM L-DOPA than without it. Moving from hyperoxia to hypoxia produced a better yield than moving from normoxia to hypoxia, and at least 10-20 min exposures were needed for measurable amounts of CAs. The M1 muscarinic receptor antagonist, pirenzepine, reduced the hypoxia-induced release of CAs during each exposure. Further, the reduction appeared to be dose-related. The M2 muscarinic receptor antagonist, methoctramine, enhanced the hypoxia-induced release of CAs during each exposure. These data support a role for acetylcholine (ACh) in the hypoxia-induced release of CAs, and suggest a significant, if modest, muscarinic dimension to it. And although hypoxia induced a greater release of DA than of NE, the muscarinic modulation of the release (both decreasing it and increasing it) may have had a greater impact on NE release than on DA release. Finally, the patterns of hypoxia-induced release of DA and NE from incubated cat carotid bodies are significantly different.
Collapse
Affiliation(s)
- Hay-Yan Jack Wang
- Department of Environmental Health Sciences, Division of Physiology, The Johns Hopkins Medical Institutions, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
38
|
Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci U S A 2001; 98:15312-7. [PMID: 11752469 PMCID: PMC65026 DOI: 10.1073/pnas.261583798] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Acetylcholine serves an important modulatory role in the central nervous system. Pharmacological evidence has suggested that cholinergic activity can modulate central dopaminergic transmission; however, the nature of this interaction and the receptors involved remain undefined. In this study we have generated mice lacking the M1 muscarinic acetylcholine receptor and examined the effects of M1 deletion on dopaminergic transmission and locomotor behavior. We report that M1 deficiency leads to elevated dopaminergic transmission in the striatum and significantly increased locomotor activity. M1-deficient mice also have an increased response to the stimulatory effects of amphetamine. Our results provide direct evidence for regulation of dopaminergic transmission by the M1 receptor and are consistent with the idea that M1 dysfunction could be a contributing factor in psychiatric disorders in which altered dopaminergic transmission has been implicated.
Collapse
Affiliation(s)
- D J Gerber
- Howard Hughes Medical Institute, RIKEN-Massachusetts Institute of Technology Neuroscience Research Center, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
39
|
Guo J, Chiappinelli VA. Distinct muscarinic receptors enhance spontaneous GABA release and inhibit electrically evoked GABAergic synaptic transmission in the chick lateral spiriform nucleus. Neuroscience 2001; 104:1057-66. [PMID: 11457590 DOI: 10.1016/s0306-4522(01)00152-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of muscarinic agonists on GABAergic synaptic transmission were examined using whole-cell patch-clamp recording in chick brain slices containing the lateral spiriform nucleus. Bath application of muscarine (10 microM) both increased the frequency of spontaneous GABAergic postsynaptic currents and reduced the amplitude of evoked GABAergic polysynaptic postsynaptic currents elicited by focal afferent fiber electrical stimulation. Both of these muscarinic actions were reversible and dose-dependent. Two M(1) antagonists, telenzepine and pirenzipine, and to a lesser extent the M(2) antagonist methoctramine, protected against muscarine's inhibition of the evoked polysynaptic currents. Other M(2) antagonists (tripitramine and gallamine) as well as the M(3) antagonist 4-DAMP mustard (4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride) and an M(4) antagonist (tropicamide) provided little or no protection against muscarine in this assay. In contrast, 4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride, tropicamide and telenzepine, but not pirenzepine, methoctramine, tripitramine and gallamine, blocked muscarine's enhancement of spontaneous GABAergic currents. McN-A-343 [(4-hydroxy-2-butynyl)-1-trimethylammonium-m-chlorocarbanilate chloride] and CDD-0097 (5-propargyloxycarbonyl-1,4,5,6-tetrahydropyrimidine hydrochloride), two M(1) agonists, mimicked muscarine's inhibition of the evoked polysynaptic GABAergic currents but did not mimic muscarine's enhancement of spontaneous GABAergic currents. Both actions of muscarine persisted when slices were pretreated with pertussis toxin or N-ethylmaleimide, which inactivate G-proteins coupled to M(2) and M(4) receptors while leaving G-proteins coupled to M(1), M(3) and M(5) receptors intact. Muscarine had no significant effect on the amplitude of the direct postsynaptic current elicited by exogenous GABA in the presence of tetrodotoxin. The results demonstrate that distinct muscarinic receptors oppositely modulate GABAergic transmission in the lateral spiriform nucleus. The receptor mediating the inhibition of evoked GABAergic polysynaptic currents is pharmacologically similar to an M(1) receptor, while the enhancement of spontaneous GABAergic currents appears to be mediated by an M(3) receptor.
Collapse
Affiliation(s)
- J Guo
- Department of Pharmacology, School of Medicine and Health Sciences, The George Washington University, 2300 Eye Street N.W., Washington, DC 20037, USA.
| | | |
Collapse
|
40
|
Whitehead KJ, Rose S, Jenner P. Involvement of intrinsic cholinergic and GABAergic innervation in the effect of NMDA on striatal dopamine efflux and metabolism as assessed by microdialysis studies in freely moving rats. Eur J Neurosci 2001; 14:851-60. [PMID: 11576189 DOI: 10.1046/j.0953-816x.2001.01702.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microdialysis perfusion was used to study the participation of striatal cholinergic and gamma-aminobutyric acid-ergic (GABAergic) neurotransmission in basal and N-methyl-D-aspartate (NMDA) receptor-modulated dopamine release and metabolism in the striatum of the freely moving rat. Reverse dialysis of atropine (1-50 microM) induced a concentration-related increase in dopamine efflux and decrease in 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) efflux. (+)-Bicuculline (10-100 microM) similarly increased dopamine efflux, but was without consistent effect on metabolite efflux. Reverse dialysis of NMDA (1 mM) evoked an approximately twofold increase in dopamine efflux and decreased DOPAC and HVA efflux to 30-40% of basal levels. The effect of NMDA on dopamine efflux was completely abolished by coadministration of tetrodotoxin (TTX; 1 microM) or atropine (10 microM), and markedly potentiated (approximately fourfold) by coadministration of (+)-bicuculline (50 microM). The NMDA-induced decrease in dopamine metabolite efflux was inhibited by coadministration of TTX or (+)-bicuculline, but was unaffected by atropine. Our data suggest that dopamine release in the striatum is subject to both cholinergic and GABAergic tonic inhibitory mechanisms mediated through muscarinic and GABAA receptors, respectively. Furthermore, NMDA-stimulated dopamine release also involves obligatory cholinergic facilitation and an inhibitory GABAergic component mediated through these respective receptors.
Collapse
Affiliation(s)
- K J Whitehead
- Neurodegenerative Diseases Research Centre, Hodgkin Building, Guy's, King's and St Thomas's School of Biomedical Sciences, King's College, Guy's Campus, London SE1 1UL, UK.
| | | | | |
Collapse
|
41
|
Perry KW, Nisenbaum LK, George CA, Shannon HE, Felder CC, Bymaster FP. The muscarinic agonist xanomeline increases monoamine release and immediate early gene expression in the rat prefrontal cortex. Biol Psychiatry 2001; 49:716-25. [PMID: 11313039 DOI: 10.1016/s0006-3223(00)01017-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The muscarinic agonist xanomeline has been shown to reduce antipsychotic-like behaviors in patients with Alzheimer's disease. Because atypical antipsychotic agents increase dopamine release in prefrontal cortex and induce immediate early gene expression in prefrontal cortex and nucleus accumbens, the effect of xanomeline was determined on these indices. METHODS The effect of xanomeline on extracellular levels of monoamines in brain regions was determined using a microdialysis technique, and changes in expression of the immediate early genes c-fos and zif/268 in brain regions were evaluated using in situ hybridization histochemistry. RESULTS Xanomeline increased extracellular levels of dopamine in prefrontal cortex and nucleus accumbens but not in striatum. Xanomeline increased expression of c-fos and zif/268 in prefrontal cortex and nucleus accumbens. There was no change in immediate early gene expression in striatum. CONCLUSIONS Xanomeline increased extracellular levels of dopamine, which is similar to the effects of the atypical antipsychotics clozapine and olanzapine. The regional pattern of immediate early gene expression induced by xanomeline resembled that of atypical antipsychotic agents. Based on the antipsychotic-like activity of xanomeline in Alzheimer's patients and the similarity to atypical antipsychotic agents, we suggest that xanomeline may be a novel antipsychotic agent.
Collapse
Affiliation(s)
- K W Perry
- Eli Lilly and Company Research Laboratories, Neuroscience Research Division, Lilly Corporate Center, Indianapolis, IN 46285-0510, USA
| | | | | | | | | | | |
Collapse
|
42
|
Khan S, Whelpton R, Michael-Titus AT. Substance P modulation of striatal dopamine outflow is determined by M(1) and M(2) muscarinic receptors in male wistar rats. Neurosci Lett 2000; 293:179-82. [PMID: 11036190 DOI: 10.1016/s0304-3940(00)01529-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Substance P (SP) stimulates striatal dopamine outflow through a cholinergic muscarinic link. SP-induced increase in acetylcholine (Ach) is concentration-dependent, whereas the stimulation of dopamine outflow is seen only over a limited concentration range. M(1) and M(2) receptor stimulation has opposite effects on dopamine outflow. We postulated that the effect of SP on dopamine outflow depends on the M(1)/M(2) balance. We show that Ach (10-2500 microM) stimulates dopamine outflow in striatal slices in a biphasic manner, similar to SP (0.01-100 nM). An inactive SP concentration (10 nM) which was higher than the active concentration range, became active in the presence of the M(2) antagonist methoctramine (100 microM). Conversely, the effect of 1 nM SP was reversed by the M(1) antagonist pirenzepine (1 microM). Our observations show that SP modulation of dopamine outflow is determined by a balance between M(1) and M(2) receptors.
Collapse
Affiliation(s)
- S Khan
- Molecular Pharmacology Section, Division of Biomedical Sciences, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary and Westfield College, Mile End Road, E1 4NS, London, UK
| | | | | |
Collapse
|
43
|
Anderson BJ, Gatley SJ, Rapp DN, Coburn-Litvak PS, Volkow ND. The ratio of striatal D1 to muscarinic receptors changes in aging rats housed in an enriched environment. Brain Res 2000; 872:262-5. [PMID: 10924706 DOI: 10.1016/s0006-8993(00)02507-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enriched environment (EC) causes morphological plasticity in striatal cells that express D1 and D2 receptors. We used radioligand binding assays to examine whether EC produces plasticity in striatal receptor density and receptor density ratios. After 30 days of EC, 2-year-old rats had a higher ratio of D1 to muscarinic receptors in striatum relative to singly housed rats. Assays also showed trends for a greater ratio of D1 to cannabinoid receptors and a greater density of D1 receptors in striatum after EC. D2 receptor density was unaffected by the EC condition.
Collapse
MESH Headings
- Aging/metabolism
- Analysis of Variance
- Animals
- Brain Chemistry/physiology
- Corpus Striatum/chemistry
- Corpus Striatum/metabolism
- Environment
- Male
- Radioligand Assay
- Rats
- Rats, Inbred F344
- Receptors, Cannabinoid
- Receptors, Dopamine D1/analysis
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/analysis
- Receptors, Dopamine D2/metabolism
- Receptors, Drug/analysis
- Receptors, Drug/metabolism
- Receptors, Muscarinic/analysis
- Receptors, Muscarinic/metabolism
Collapse
Affiliation(s)
- B J Anderson
- Department of Psychology, SUNY Stony Brook, Stony Brook, NY 11794-2500, USA.
| | | | | | | | | |
Collapse
|
44
|
Izurieta-Sánchez P, Sarre S, Ebinger G, Michotte Y. Muscarinic antagonists in substantia nigra influence the decarboxylation of L-dopa in striatum. Eur J Pharmacol 2000; 399:151-60. [PMID: 10884514 DOI: 10.1016/s0014-2999(00)00353-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study was designed to investigate whether anticholinergic drugs acting at the level of the substantia nigra can affect basal extracellular dopamine concentrations and the levodopa (L-dopa)-induced increases in dopamine levels in the striatum. Dual probe in vivo microdialysis in freely moving rats was used. One microdialysis probe was implanted in the substantia nigra and the other in the ipsilateral striatum. Muscarinic receptor antagonists were perfused into the substantia nigra and changes in neurotransmitter levels in the substantia nigra and at the axon terminals in the striatum were monitored simultaneously. Nigral perfusion of the non-selective muscarinic receptor antagonist trihexyphenidyl (1 mM) produced an increase in extracellular dopamine and gamma-aminobutyric acid (GABA) levels in the substantia nigra. Perfusion with the muscarinic M(1) receptor antagonist telenzepine (0.1 microM) produced a significant decrease in nigral dopamine and GABA levels in the substantia nigra. The muscarinic M(2) receptor antagonist methoctramine (75 microM) produced an increase in dopamine levels in the substantia nigra. No significant changes in nigral extracellular GABA levels were observed. The L-dopa-induced increases in extracellular dopamine levels in the striatum were clearly attenuated under nigral perfusion of these drugs. This in vivo study demonstrates that anticholinergic drugs perfused at the level of the substantia nigra can modulate dopamine and GABA levels and attenuate the L-dopa decarboxylation in the striatum, possibly via modulation of the nigrostriatal dopaminergic system. We add further evidence that the substantia nigra is an important site of action of antimuscarinic drugs. The attenuation of L-dopa-induced dopamine release in the striatum exerted by nigral perfusion of these antimuscarinic drugs is probably mediated via different mechanisms. This attenuation is regarded as a beneficial effect of the muscarinic antagonists as adjuncts to L-dopa in Parkinson's disease treatment. We postulate that drugs that enhance dopamine release, after L-dopa administration, in a less extreme way than L-dopa administered on its own could prevent further neurodegeneration and dyskinesias thought to result from extremely high extracellular dopamine levels following L-dopa treatment.
Collapse
Affiliation(s)
- P Izurieta-Sánchez
- Department of Pharmaceutical Chemistry and Drug Analysis, Pharmaceutical Institute, Vrije Universiteit Brussel, Laarbeeklaan, 103, B-1090, Brussels, Belgium
| | | | | | | |
Collapse
|
45
|
Bairam A, Néji H, Marchal F. Cholinergic dopamine release from the in vitro rabbit carotid body. J Appl Physiol (1985) 2000; 88:1737-42. [PMID: 10797137 DOI: 10.1152/jappl.2000.88.5.1737] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to test whether cholinergic mechanisms regulate dopamine (DA) release from the carotid body (CB) and interact with DA D(2) autoreceptors. One hundred forty-two CBs from adult rabbits were infused in vitro in a surviving medium bubbled with O(2) (Bairam A, Marchal F, Cottet-Emard JM, Basson H, Pequignot JM, Hascoet JM, and Lahiri S. J Appl Physiol 80: 20-24, 1996). CB DA content and release were measured after 1 h of exposure to various treatments: control, cholinergic agonist (0.1-50 microM carbachol), full muscarinic antagonist (1 and 10 microM atropine), antagonists of M(1) and M(2) muscarinic receptors (1 and 10 microM pirenzepine and 10 microM AFDX-116, respectively), and the DA D(2) receptor antagonist domperidone (1 microM), alone and with carbachol (1 microM). Compared with control, the release of DA was significantly increased by carbachol (1-50 microM), AFDX-116, and domperidone and decreased by atropine (10 microM) and pirenzepine (10 microM). The effects of domperidone and carbachol were not significantly different but were clearly additive. It is concluded that, in the rabbit CB, M(1) and M(2) muscarinic receptor subtypes may be involved in the control of DA release, in addition to the DA D(2) autoreceptors.
Collapse
Affiliation(s)
- A Bairam
- Unité de Recherche en Périnatologie, Centre Hospitalier Universitaire de Québec, Pavillon Saint François d'Assise, Université Laval, Quebec, Canada G1L 3L5.
| | | | | |
Collapse
|
46
|
Guo JZ, Chiappinelli VA. Muscarinic receptors mediate enhancement of spontaneous GABA release in the chick brain. Neuroscience 2000; 95:273-82. [PMID: 10619484 DOI: 10.1016/s0306-4522(99)00391-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The functional role of muscarinic acetylcholine receptors in the lateral spiriform nucleus was studied in chick brain slices. Whole-cell patch-clamp recordings of neurons in the lateral spiriform nucleus revealed that carbachol enhanced GABAergic spontaneous inhibitory postsynaptic currents. The duration of the response to carbachol was significantly reduced after blockade of muscarinic receptors with atropine. In the presence of the nicotinic receptor antagonist dihydro-beta-erythroidine, carbachol produced a delayed but prolonged enhancement of spontaneous GABAergic inhibitory postsynaptic currents that was completely blocked by atropine. Muscarine also enhanced the frequency of spontaneous GABAergic inhibitory postsynaptic currents in a dose-dependent manner, but had no effect on inhibitory postsynaptic current amplitude. While 4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride, a M3 antagonist, completely blocked muscarine's effect, telenzepine, a M1 antagonist, and tropicamide, a M4 antagonist, only partially decreased the response to muscarine. Pirenzepine, a M1 antagonist, and methoctramine, a M2 antagonist, potentiated muscarine's enhancement of spontaneous GABAergic inhibitory postsynaptic currents. Muscarine's action was blocked by tetrodotoxin, cadmium chloride and omega-conotoxin GVIA, but was not affected by dihydro-beta-erythroidine, 6-cyano-7-nitroquinoxaline-2,3-dione, D(-)-2-amino-5-phosphonopentanoic acid, naloxone or fluphenazine. These results demonstrate that activation of both muscarinic and nicotinic acetylcholine receptors can enhance GABAergic inhibitory postsynaptic currents in the lateral spiriform nucleus. The muscarinic response has a slower onset but lasts longer than the nicotinic effect. The M3 receptor subtype is predominantly involved in enhancing spontaneous GABAergic inhibitory postsynaptic currents. These M3 receptors must be located some distance from GABA release sites, since activation of voltage-dependent sodium channels, and consequent activation of N-type voltage-dependent calcium channels, is required to trigger enhanced GABA release following activation of muscarinic receptors.
Collapse
Affiliation(s)
- J Z Guo
- Department of Pharmacology, The George Washington University, School of Medicine and Health Sciences, Washington, DC 20037, USA
| | | |
Collapse
|
47
|
Izurieta-Sánchez P, Sarre S, Ebinger G, Michotte Y. Effect of trihexyphenidyl, a non-selective antimuscarinic drug, on decarboxylation of L-dopa in hemi-Parkinson rats. Eur J Pharmacol 1998; 353:33-42. [PMID: 9721037 DOI: 10.1016/s0014-2999(98)00393-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vivo microdialysis was used to study the effect of the non-selective muscarinic antagonist, trihexyphenidyl, on the decarboxylation of levodopa (L-dopa) in the striatum of hemi-Parkinson rats. In normal rats, continuous perfusion of trihexyphenidyl (1 mM) via the microdialysis probe induced a significant increase in striatal dopamine release, followed by a decrease to below baseline values. A similar effect was observed, though less pronounced, in denervated striatum of rats with a unilateral 6-hydroxydopamine lesion of the nigrostriatal pathway. In these hemi-Parkinson rats, continuous striatal perfusion of trihexyphenidyl had no effect on the biotransformation of locally applied L-dopa (2 microM for 20 min) to dopamine in either intact or denervated striatum. However, systemic administration of trihexyphenidyl (1.5 mg/kg i.p.) produced an attenuation of the L- dopa-induced dopamine release in the intact striatum (contralateral to the lesion) of hemi-Parkinson rats. This effect was absent in the denervated striatum of these animals. We confirmed that L-dopa induces an increase in striatal dopamine output which is influenced by the severity of the dopaminergic denervation. The absence of an effect of trihexyphenidyl locally applied in the striatum, on biotransformation of L-dopa suggests that the site of action of antimuscarinic drugs may not be in the striatum and, therefore, remains unclear. The mechanism of action of these drugs is not well understood but appears more complicated than previously thought.
Collapse
Affiliation(s)
- P Izurieta-Sánchez
- Department of Pharmaceutical Chemistry and Drug Analysis, Pharmaceutical Institute, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | |
Collapse
|
48
|
Abstract
Recent immunoelectron microscopic studies have revealed a low frequency of synaptic membrane differentiations on ACh (ChAT-immunostained) axon terminals (boutons or varicosities) in adult rat cerebral cortex, hippocampus and neostriatum, suggesting that, besides synaptic transmission, diffuse transmission by ACh prevails in many regions of the CNS. Cytological analysis of the immediate micro-environment of these ACh terminals, as well as currently available immunocytochemical data on the cellular and subcellular distribution of ACh receptors, is congruent with this view. At least in brain regions densely innervated by ACh neurons, a further aspect of the diffuse transmission paradigm is envisaged: the existence of an ambient level of ACh in the extracellular space, to which all tissue elements would be permanently exposed. Recent experimental data on the various molecular forms of AChE and their presumptive role at the neuromuscular junction support this hypothesis. As in the peripheral nervous system, degradation of ACh by the prevalent G4 form of AChE in the CNS would primarily serve to keep the extrasynaptic, ambient level of ACh within physiological limits, rather than totally eliminate ACh from synaptic clefts. Long-lasting and widespread electrophysiological effects imputable to ACh in the CNS might be explained in this manner. The notions of diffuse transmission and of an ambient level of ACh in the CNS could also be of clinical relevance, in accounting for the production and nature of certain cholinergic deficits and the efficacy of substitution therapies.
Collapse
Affiliation(s)
- L Descarries
- Département de physiologie, Faculté de médecine, Université de Montréal, QC, Canada.
| | | | | |
Collapse
|
49
|
Widzowski D, Wu ES, Helander HF. Selective muscarinic M1 antagonists: drug design and discovery. Drug Discov Today 1997. [DOI: 10.1016/s1359-6446(97)01076-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
Dourmap N, Clero E, Costentin J. Involvement of cholinergic neurons in the release of dopamine elicited by stimulation of mu-opioid receptors in striatum. Brain Res 1997; 749:295-300. [PMID: 9138730 DOI: 10.1016/s0006-8993(96)01319-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The involvement of striatal cholinergic neurons in the release of dopamine (DA) elicited by the mu-opioid receptor agonist DAGO ([D-Ala2, NMePhe4-Gly5(ol)]enkephalin) was explored. The striatal release of DA was measured by microdialysis in rats anesthetized with chloral hydrate. When infused in the striatum, through the microdialysis probe, DAGO increased the extracellular levels of DA. The previous injection in striatum of AF 64-A, a toxin for cholinergic neurons, or the concomitant infusion of the M2-muscarinic antagonist methoctramine abolished the effect of DAGO on the DA release. It is concluded that stimulation of mu-opioid receptors, by inhibiting the acetylcholine release which stimulates tonically M2-muscarinic receptors likely associated with dopaminergic nerve endings, indirectly increases the striatal DA release.
Collapse
Affiliation(s)
- N Dourmap
- URA CNRS 1969, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides, Faculté de Médecine et Pharmacie de Rouen, Saint-Etienne du Rouvray, France
| | | | | |
Collapse
|