1
|
Differential longitudinal changes of neuronal and glial damage markers in anorexia nervosa after partial weight restoration. Transl Psychiatry 2021; 11:86. [PMID: 33558486 PMCID: PMC7870648 DOI: 10.1038/s41398-021-01209-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Atrophic brain changes in acute anorexia nervosa (AN) are often visible to the naked eye on computed tomography or magnetic resonance imaging scans, but it remains unclear what is driving these effects. In neurological diseases, neurofilament light (NF-L) and tau protein have been linked to axonal damage. Glial fibrillary acidic protein (GFAP) has been associated with astroglial injury. In an attempt to shed new light on factors potentially underlying past findings of structural brain alterations in AN, the current study investigated serum NF-L, tau protein, and GFAP levels longitudinally in AN patients undergoing weight restoration. Blood samples were obtained from 54 acutely underweight, predominantly adolescent female AN patients and 54 age-matched healthy control participants. AN patients were studied in the severely underweight state and again after short-term partial weight restoration. Group comparisons revealed higher levels of NF-L, tau protein, and GFAP in acutely underweight patients with AN compared to healthy control participants. Longitudinally, a decrease in NF-L and GFAP but not in tau protein levels was observed in AN patients upon short-term partial weight restoration. These results may be indicative of ongoing neuronal and astroglial injury during the underweight phase of AN. Normalization of NF-L and GFAP but not tau protein levels may indicate an only partial restoration of neuronal and astroglial integrity upon weight gain after initial AN-associated cell damage processes.
Collapse
|
2
|
Sinha S, Patro N, Tiwari PK, Patro IK. Maternal Spirulina supplementation during pregnancy and lactation partially prevents oxidative stress, glial activation and neuronal damage in protein malnourished F1 progeny. Neurochem Int 2020; 141:104877. [PMID: 33049335 DOI: 10.1016/j.neuint.2020.104877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Protein malnutrition (PMN) is a global health issue but most prevalent in Africa and Asia. It exerts detrimental effect on structural and physiological aspects of hippocampal circuitry. Despite accumulating evidence for PMN induced changes in nervous system, relatively very little is known about how maternal nutritional supplementation during malnutrition affects glial cells and neurons. Herein, we aimed to investigate the effects of maternal Spirulina supplementation against PMN induced oxidative stress, reactive gliosis and neuronal damage in hippocampus of F1 progeny. Three months old healthy Sprague Dawley females (n = 24) were shifted to normoprotein (NC; 20% protein) and low protein (LP; 8% protein) diets 15 days before conception. The NC and LP group females were subdivided into two groups according to Spirulina supplementation (400 mg/kg/b.wt. orally throughout gestation and lactation period): normal control with Spirulina (NC SPI) and low protein with Spirulina supplemented group (LP SPI). F1 progeny born were used in present study. Thus, building on earlier results of ameliorated neurobehavioral and cognitive abilities in Spirulina supplemented protein deprived rats, the present study incorporates neurochemical and morphometric analysis of glial cells and neurons and revealed that maternal Spirulina consumption partially prevented the PMN associated neuropathological alterations in terms of attenuated oxidative brain damage, reduced reactive gliosis and apoptotic cell population, improved dendritic branch complexity with few damaged neurons and enhanced mushroom shaped spine density. The results suggest that cellular changes in hippocampus after PMN are partially restored after maternal Spirulina supplementation and one could envision intervention approaches using Spirulina against malnutrition.
Collapse
Affiliation(s)
- Shrstha Sinha
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - P K Tiwari
- School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India.
| |
Collapse
|
3
|
Sarkar T, Patro N, Patro IK. Cumulative multiple early life hits- a potent threat leading to neurological disorders. Brain Res Bull 2019; 147:58-68. [DOI: 10.1016/j.brainresbull.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
|
4
|
Sinha S, Patro N, Patro IK. Maternal Protein Malnutrition: Current and Future Perspectives of Spirulina Supplementation in Neuroprotection. Front Neurosci 2018; 12:966. [PMID: 30618587 PMCID: PMC6305321 DOI: 10.3389/fnins.2018.00966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/03/2018] [Indexed: 12/30/2022] Open
Abstract
Malnutrition has been widely recognized as a grave burden restricting the progress of underdeveloped and developing countries. Maternal, neonatal and postnatal nutritional immunity provides an effective approach to decrease the risk of malnutrition associated stress in adulthood. Particularly, maternal nutritional status is a critical contributor for determining the long-term health aspects of an offspring. Maternal malnutrition leads to increased risk of life, poor immune system, delayed motor development and cognitive dysfunction in the children. An effective immunomodulatory intervention using nutraceutical could be used to enhance immunity against infections. The immune system in early life possesses enormous dynamic capacity to manage both genetic and environment driven processes and can adapt to rapidly changing environmental exposures. These immunomodulatory stimuli or potent nutraceutical strategy can make use of early life plasticity to target pathways of immune ontogeny, which in turn could increase the immunity against infectious diseases arising from malnutrition. This review provides appreciable human and animal data showing enduring effects of protein deprivation on CNS development, oxidative stress and inflammation and associated behavioral and cognitive impairments. Relevant studies on nutritional supplementation and rehabilitation using Spirulina as a potent protein source and neuroprotectant against protein malnutrition (PMN) induced deleterious changes have also been discussed. However, there are many futuristic issues that need to be resolved for proper modulation of these therapeutic interventions to prevent malnutrition.
Collapse
Affiliation(s)
- Shrstha Sinha
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India.,School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India.,School of Studies in Zoology, Jiwaji University, Gwalior, India
| |
Collapse
|
5
|
Reyes-Castro LA, Padilla-Gómez E, Parga-Martínez NJ, Castro-Rodríguez DC, Quirarte GL, Díaz-Cintra S, Nathanielsz PW, Zambrano E. Hippocampal mechanisms in impaired spatial learning and memory in male offspring of rats fed a low-protein isocaloric diet in pregnancy and/or lactation. Hippocampus 2017; 28:18-30. [PMID: 28843045 DOI: 10.1002/hipo.22798] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Maternal nutritional challenges during fetal and neonatal development result in developmental programming of multiple offspring organ systems including brain maturation and function. A maternal low-protein diet during pregnancy and lactation impairs associative learning and motivation. We evaluated effects of a maternal low-protein diet during gestation and/or lactation on male offspring spatial learning and hippocampal neural structure. Control mothers (C) ate 20% casein and restricted mothers (R) 10% casein, providing four groups: CC, RR, CR, and RC (first letter pregnancy, second lactation diet). We evaluated the behavior of young adult male offspring around postnatal day 110. Corticosterone and ACTH were measured. Males were tested for 2 days in the Morris water maze (MWM). Stratum lucidum mossy fiber (MF) area, total and spine type in basal dendrites of stratum oriens in the hippocampal CA3 field were measured. Corticosterone and ACTH were higher in RR vs. CC. In the MWM acquisition test CC offspring required two, RC three, and CR seven sessions to learn the maze. RR did not learn in eight trials. In a retention test 24 h later, RR, CR, and RC spent more time locating the platform and performed fewer target zone entries than CC. RR and RC offspring spent less time in the target zone than CC. MF area, total, and thin spines were lower in RR, CR, and RC than CC. Mushroom spines were lower in RR and RC than CC. Stubby spines were higher in RR, CR, and RC than CC. We conclude that maternal low-protein diet impairs spatial acquisition and memory retention in male offspring, and that alterations in hippocampal presynaptic (MF), postsynaptic (spines) elements and higher glucocorticoid levels are potential mechanisms to explain these learning and memory deficits.
Collapse
Affiliation(s)
- L A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - E Padilla-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - N J Parga-Martínez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - D C Castro-Rodríguez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - G L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071-3684
| | - E Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| |
Collapse
|
6
|
Acute stress enhances the expression of neuroprotection- and neurogenesis-associated genes in the hippocampus of a mouse restraint model. Oncotarget 2017; 7:8455-65. [PMID: 26863456 PMCID: PMC4890979 DOI: 10.18632/oncotarget.7225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022] Open
Abstract
Stress arises from an external demand placed on an organism that triggers physiological, cognitive and behavioural responses in order to cope with that request. It is thus an adaptive response useful for the survival of an organism. The objective of this study was to identify and characterize global changes in gene expression in the hippocampus in response to acute stress stimuli, by employing a mouse model of short-term restraint stress. In our experimental design mice were subjected to a one time exposure of restraint stress and the regulation of gene expression in the hippocampus was examined 3, 12 and 24 hours thereafter. Microarray analysis revealed that mice which had undergone acute restraint stress differed from non-stressed controls in global hippocampal transcriptional responses. An up-regulation of transcripts contributing directly or indirectly to neurogenesis and neuronal protection including, Ttr, Rab6, Gh, Prl, Ndufb9 and Ndufa6, was observed. Systems level analyses revealed a significant enrichment for neurogenesis, neuron morphogenesis- and cognitive functions-related biological process terms and pathways. This work further supports the hypothesis that acute stress mediates a positive action on the hippocampus favouring the formation and the preservation of neurons, which will be discussed in the context of current data from the literature.
Collapse
|
7
|
Rideau Batista Novais A, Pham H, Van de Looij Y, Bernal M, Mairesse J, Zana-Taieb E, Colella M, Jarreau PH, Pansiot J, Dumont F, Sizonenko S, Gressens P, Charriaut-Marlangue C, Tanter M, Demene C, Vaiman D, Baud O. Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction. Glia 2016; 64:2306-2320. [PMID: 27687291 DOI: 10.1002/glia.23079] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 11/06/2022]
Abstract
Fetal growth restriction (FGR) is a major complication of human pregnancy, frequently resulting from placental vascular diseases and prenatal malnutrition, and is associated with adverse neurocognitive outcomes throughout life. However, the mechanisms linking poor fetal growth and neurocognitive impairment are unclear. Here, we aimed to correlate changes in gene expression induced by FGR in rats and abnormal cerebral white matter maturation, brain microstructure, and cortical connectivity in vivo. We investigated a model of FGR induced by low-protein-diet malnutrition between embryonic day 0 and birth using an interdisciplinary approach combining advanced brain imaging, in vivo connectivity, microarray analysis of sorted oligodendroglial and microglial cells and histology. We show that myelination and brain function are both significantly altered in our model of FGR. These alterations, detected first in the white matter on magnetic resonance imaging significantly reduced cortical connectivity as assessed by ultrafast ultrasound imaging. Fetal growth retardation was found associated with white matter dysmaturation as shown by the immunohistochemical profiles and microarrays analyses. Strikingly, transcriptomic and gene network analyses reveal not only a myelination deficit in growth-restricted pups, but also the extensive deregulation of genes controlling neuroinflammation and the cell cycle in both oligodendrocytes and microglia. Our findings shed new light on the cellular and gene regulatory mechanisms mediating brain structural and functional defects in malnutrition-induced FGR, and suggest, for the first time, a neuroinflammatory basis for the poor neurocognitive outcome observed in growth-restricted human infants. GLIA 2016;64:2306-2320.
Collapse
Affiliation(s)
- Aline Rideau Batista Novais
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service de Réanimation et Pédiatrie Néonatales, Groupe Hospitalier Robert Debré, Paris, France.,Université Paris Diderot, Paris, France.,Fondation PremUp, Paris, France
| | - Hoa Pham
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France
| | - Yohan Van de Looij
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Division of Development and Growth, Department of Child and Adolescent Medicine, Geneva University Hospital and School of Medicine, Geneva, Switzerland
| | - Miguel Bernal
- Institut Langevin, CNRS UMR 7587, Inserm U979, ESPCI ParisTech, PSL Research University, Paris, France
| | - Jerome Mairesse
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France
| | - Elodie Zana-Taieb
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France.,Université Paris-Descartes, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service de Médecine et Réanimation Néonatales de Port-Royal, Groupe Hospitalier Cochin, Broca, Hôtel-Dieu, Paris, France
| | - Marina Colella
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France
| | - Pierre-Henri Jarreau
- Fondation PremUp, Paris, France.,Université Paris-Descartes, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service de Médecine et Réanimation Néonatales de Port-Royal, Groupe Hospitalier Cochin, Broca, Hôtel-Dieu, Paris, France
| | - Julien Pansiot
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France
| | - Florent Dumont
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Paris, France
| | - Stéphane Sizonenko
- Division of Development and Growth, Department of Child and Adolescent Medicine, Geneva University Hospital and School of Medicine, Geneva, Switzerland
| | - Pierre Gressens
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Université Paris Diderot, Paris, France.,Fondation PremUp, Paris, France
| | - Christiane Charriaut-Marlangue
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Université Paris Diderot, Paris, France.,Fondation PremUp, Paris, France
| | - Mickael Tanter
- Institut Langevin, CNRS UMR 7587, Inserm U979, ESPCI ParisTech, PSL Research University, Paris, France
| | - Charlie Demene
- Institut Langevin, CNRS UMR 7587, Inserm U979, ESPCI ParisTech, PSL Research University, Paris, France
| | - Daniel Vaiman
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Paris, France
| | - Olivier Baud
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France. .,Assistance Publique - Hôpitaux de Paris, Service de Réanimation et Pédiatrie Néonatales, Groupe Hospitalier Robert Debré, Paris, France. .,Université Paris Diderot, Paris, France. .,Fondation PremUp, Paris, France.
| |
Collapse
|
8
|
Lima J, de Oliveira L, Almeida S. Effects of Early Concurrent Protein Malnutrition and Environmental Stimulation on the Central Nervous System and Behavior. Nutr Neurosci 2016; 1:439-48. [DOI: 10.1080/1028415x.1998.11747254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Seitz J, Herpertz-Dahlmann B, Konrad K. Brain morphological changes in adolescent and adult patients with anorexia nervosa. J Neural Transm (Vienna) 2016; 123:949-59. [DOI: 10.1007/s00702-016-1567-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/30/2016] [Indexed: 01/17/2023]
|
10
|
Bernardoni F, King JA, Geisler D, Stein E, Jaite C, Nätsch D, Tam FI, Boehm I, Seidel M, Roessner V, Ehrlich S. Weight restoration therapy rapidly reverses cortical thinning in anorexia nervosa: A longitudinal study. Neuroimage 2016; 130:214-222. [PMID: 26876474 DOI: 10.1016/j.neuroimage.2016.02.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/23/2015] [Accepted: 02/04/2016] [Indexed: 01/07/2023] Open
Abstract
Structural magnetic resonance imaging studies have documented reduced gray matter in acutely ill patients with anorexia nervosa to be at least partially reversible following weight restoration. However, few longitudinal studies exist and the underlying mechanisms of these structural changes are elusive. In particular, the relative speed and completeness of brain structure normalization during realimentation remain unknown. Here we report from a structural neuroimaging study including a sample of adolescent/young adult female patients with acute anorexia nervosa (n=47), long-term recovered patients (n=34), and healthy controls (n=75). The majority of acutely ill patients were scanned longitudinally (n=35): at the beginning of standardized weight restoration therapy and again after partial weight normalization (>10% body mass index increase). High-resolution structural images were processed and analyzed with the longitudinal stream of FreeSurfer software to test for changes in cortical thickness and volumes of select subcortical regions of interest. We found globally reduced cortical thickness in acutely ill patients to increase rapidly (0.06 mm/month) during brief weight restoration therapy (≈3 months). This significant increase was predicted by weight restoration alone and could not be ascribed to potentially mediating factors such as duration of illness, hydration status, or symptom improvements. By comparing cortical thickness in partially weight-restored patients with that measured in healthy controls, we confirmed that cortical thickness had normalized already at follow-up. This pattern of thinning in illness and rapid normalization during weight rehabilitation was largely mirrored in subcortical volumes. Together, our findings indicate that structural brain insults inflicted by starvation in anorexia nervosa may be reversed at a rate much faster than previously thought if interventions are successful before the disorder becomes chronic. This provides evidence drawing previously speculated mechanisms such as (de-)hydration and neurogenesis into question and suggests that neuronal and/or glial remodeling including changes in macromolecular content may underlie the gray matter alterations observed in anorexia nervosa.
Collapse
Affiliation(s)
- Fabio Bernardoni
- Eating Disorder Services and Researech Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph A King
- Eating Disorder Services and Researech Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Daniel Geisler
- Eating Disorder Services and Researech Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Elisa Stein
- Eating Disorder Services and Researech Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Jaite
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dagmar Nätsch
- Eating Disorder Services and Researech Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Friederike I Tam
- Eating Disorder Services and Researech Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ilka Boehm
- Eating Disorder Services and Researech Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Maria Seidel
- Eating Disorder Services and Researech Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Eating Disorder Services and Researech Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Eating Disorder Services and Researech Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Simão F, Habekost Oliveira V, Nunes ML. Enhanced susceptibility to seizures modulated by high interleukin‐1β levels during early life malnutrition. Dev Neurobiol 2016; 76:1150-9. [DOI: 10.1002/dneu.22381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/13/2015] [Accepted: 01/13/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Fabrício Simão
- Neuroscience LaboratoryBiomedical Research Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS)Porto Alegre RS Brazil
| | - Victória Habekost Oliveira
- Neuroscience LaboratoryBiomedical Research Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS)Porto Alegre RS Brazil
| | - Magda Lahourgue Nunes
- Neuroscience LaboratoryBiomedical Research Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS)Porto Alegre RS Brazil
- School of Medicine and Brain Institute (InsCer)Pontifical Catholic University of Rio Grande Do Sul (PUCRS)Porto Alegre RS Brazil
| |
Collapse
|
12
|
Ubaldi M, Ricciardelli E, Pasqualini L, Sannino G, Soverchia L, Ruggeri B, Falcinelli S, Renzi A, Ludka C, Ciccocioppo R, Hardiman G. Biomarkers of hippocampal gene expression in a mouse restraint chronic stress model. Pharmacogenomics 2016; 16:471-82. [PMID: 25916519 DOI: 10.2217/pgs.15.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Acute stress provides many beneficial effects whereas chronic stress contributes to a variety of human health issues including anxiety, depression, gastrointestinal problems, cardiac disease, sleep disorders and obesity. The goal of this work was to identify, using a rodent model, hippocampal gene signatures associated with prolonged chronic stress representing candidate biomarkers and therapeutic targets for early diagnosis and pharmacological intervention for stress induced disease. MATERIALS & METHODS Mice underwent 'restraint stress' over 7 consecutive days and hippocampal gene-expression changes were analyzed at 3, 12 and 24 h following the final restraint treatment. RESULTS Data indicated that mice exposed to chronic restraint stress exhibit a differential gene-expression profile compared with non-stressed controls. The greatest differences were observed 12 and 24 h following the final stress test. CONCLUSION Our study indicated that Gpr88, Ttr, Gh and Tac1 mRNAs were modulated in mice exposed to chronic restraint stress. These transcripts represent a panel of biomarkers and druggable targets for further analysis in the context of chronic stress associated disease in humans.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Maiti P, Manna J, Ilavazhagan G, Rossignol J, Dunbar GL. Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neurosci Biobehav Rev 2015; 59:208-37. [PMID: 26562682 DOI: 10.1016/j.neubiorev.2015.09.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
The structure and dynamics of dendritic spines reflect the strength of synapses, which are severely affected in different brain diseases. Therefore, understanding the ultra-structure, molecular signaling mechanism(s) regulating dendritic spine dynamics is crucial. Although, since last century, dynamics of spine have been explored by several investigators in different neurological diseases, but despite countless efforts, a comprehensive understanding of the fundamental etiology and molecular signaling pathways involved in spine pathology is lacking. The purpose of this review is to provide a contextual framework of our current understanding of the molecular mechanisms of dendritic spine signaling, as well as their potential impact on different neurodegenerative and psychiatric diseases, as a format for highlighting some commonalities in function, as well as providing a format for new insights and perspectives into this critical area of research. Additionally, the potential strategies to restore spine structure-function in different diseases are also pointed out. Overall, these informations should help researchers to design new drugs to restore the structure-function of dendritic spine, a "hot site" of synaptic plasticity.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - G Ilavazhagan
- Hindustan University, Rajiv Gandhi Salai (OMR), Padur, Kelambakam, Chennai, TN, India.
| | - Julien Rossignol
- Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA; College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| |
Collapse
|
14
|
Seitz J, Walter M, Mainz V, Herpertz-Dahlmann B, Konrad K, von Polier G. Brain volume reduction predicts weight development in adolescent patients with anorexia nervosa. J Psychiatr Res 2015; 68:228-37. [PMID: 26228424 DOI: 10.1016/j.jpsychires.2015.06.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Acute anorexia nervosa (AN) is associated with marked brain volume loss potentially leading to neuropsychological deficits. However, the mechanisms leading to this brain volume loss and its influencing factors are poorly understood and the clinical relevance of these brain alterations for the outcome of these AN-patients is yet unknown. METHODS Brain volumes of 56 female adolescent AN inpatients and 50 healthy controls (HCs) were measured using MRI scans. Multiple linear regression analyses were used to determine the impact of body weight at admission, prior weight loss, age of onset and illness duration on volume loss at admission and to analyse the association of brain volume reduction with body weight at a 1-year follow-up (N = 25). RESULTS Cortical and subcortical grey matter (GM) and cortical white matter (WM) but not cerebellar GM or WM were associated with low weight at admission. Amount of weight loss, age of onset and illness duration did not independently correlate with any volume changes. Prediction of age-adjusted standardized body mass index (BMI-SDS) at 1-year follow-up could be significantly improved from 34% of variance explained by age and BMI-SDS at admission to 47.5-53% after adding cortical WM, cerebellar GM or WM at time of admission. CONCLUSION Whereas cortical GM changes appear to be an unspecific reflection of current body weight ("state marker"), cortical WM and cerebellar volume losses seem to indicate a longer-term risk (trait or "scar" of the illness), which appear to be important for the prediction of weight rehabilitation and long-term outcome.
Collapse
Affiliation(s)
- Jochen Seitz
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum RWTH Aachen, Neuenhofer Weg 21, 52074 Aachen, Germany; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfoordlaan 55, Postbox 616, 6200 MD, Maastricht, The Netherlands.
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University, ZENIT, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Verena Mainz
- Institute of Medical Psychology and Medical Sociology, University Hospital of RWTH Aachen University Aachen, Germany.
| | - Beate Herpertz-Dahlmann
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum RWTH Aachen, Neuenhofer Weg 21, 52074 Aachen, Germany.
| | - Kerstin Konrad
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum RWTH Aachen, Neuenhofer Weg 21, 52074 Aachen, Germany.
| | - Georg von Polier
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum RWTH Aachen, Neuenhofer Weg 21, 52074 Aachen, Germany.
| |
Collapse
|
15
|
Maldonado-Cedillo BG, Díaz-Ruiz A, Montes S, Galván-Arzate S, Ríos C, Beltrán-Campos V, Alcaraz-Zubeldia M, Díaz-Cintra S. Prenatal malnutrition and lead intake produce increased brain lipid peroxidation levels in newborn rats. Nutr Neurosci 2015; 19:301-9. [DOI: 10.1179/1476830515y.0000000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Brenda Gabriela Maldonado-Cedillo
- Departamento de Neurofisiología del Desarrollo y Neurofisiología, Instituto de Neurobiología Campus UNAM-Juriquilla, Santiago de Querétaro, Querétaro, México
| | - Araceli Díaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, DF, México
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, DF, México
| | - Sonia Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, DF, México
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, DF, México
- Departamento de Sistemas Biológicos de la Universidad Autónoma Metropolitana, Unidad Xochimilco México, Delegación Coyoacán, DF, México
| | - Vicente Beltrán-Campos
- División de Ciencias de las Salud e Ingenierías, Universidad de Guanajuato, Campus Celaya-Salvatierra, Celaya, Guanajuato, México
| | - Mireya Alcaraz-Zubeldia
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, DF, México
| | - Sofia Díaz-Cintra
- Departamento de Neurofisiología del Desarrollo y Neurofisiología, Instituto de Neurobiología Campus UNAM-Juriquilla, Santiago de Querétaro, Querétaro, México
| |
Collapse
|
16
|
Vasu V, Durighel G, Thomas L, Malamateniou C, Bell JD, Rutherford MA, Modi N. Preterm nutritional intake and MRI phenotype at term age: a prospective observational study. BMJ Open 2014; 4:e005390. [PMID: 24860004 PMCID: PMC4039783 DOI: 10.1136/bmjopen-2014-005390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To describe (1) the relationship between nutrition and the preterm-at-term infant phenotype, (2) phenotypic differences between preterm-at-term infants and healthy term born infants and (3) relationships between somatic and brain MRI outcomes. DESIGN Prospective observational study. SETTING UK tertiary neonatal unit. PARTICIPANTS Preterm infants (<32 weeks gestation) (n=22) and healthy term infants (n=39) MAIN OUTCOME MEASURES: Preterm nutrient intake; total and regional adipose tissue (AT) depot volumes; brain volume and proximal cerebral arterial vessel tortuosity (CAVT) in preterm infants and in term infants. RESULTS Preterm nutrition was deficient in protein and high in carbohydrate and fat. Preterm nutrition was not related to AT volumes, brain volume or proximal CAVT score; a positive association was noted between human milk intake and proximal CAVT score (r=0.44, p=0.05). In comparison to term infants, preterm infants had increased total adiposity, comparable brain volumes and reduced proximal CAVT scores. There was a significant negative correlation between deep subcutaneous abdominal AT volume and brain volume in preterm infants (r=-0.58, p=0.01). CONCLUSIONS Though there are significant phenotypic differences between preterm infants at term and term infants, preterm macronutrient intake does not appear to be a determinant. Our preliminary data suggest that (1) human milk may exert a beneficial effect on cerebral arterial vessel tortuosity and (2) there is a negative correlation between adiposity and brain volume in preterm infants at term. Further work is warranted to see if our findings can be replicated and to understand the causal mechanisms.
Collapse
Affiliation(s)
- Vimal Vasu
- Section of Neonatal Medicine, Department of Medicine, Imperial College London, Chelsea & Westminster Hospital Campus, London, UK
- Department of Child Health, William Harvey Hospital, Ashford, Kent, UK
| | - Giuliana Durighel
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Louise Thomas
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Christina Malamateniou
- Division of Clinical Sciences, Imperial College London, MRC Clinical Sciences Centre Hammersmith Hospital, London, UK
- Department of Perinatal Imaging & Health, Division of Imaging Sciences & Biomedical Engineering, Faculty of Medicine, Centre for the Developing Brain, King's College London, St Thomas’ Hospital, London, UK
| | - Jimmy D Bell
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Mary A Rutherford
- Division of Clinical Sciences, Imperial College London, MRC Clinical Sciences Centre Hammersmith Hospital, London, UK
- Department of Perinatal Imaging & Health, Division of Imaging Sciences & Biomedical Engineering, Faculty of Medicine, Centre for the Developing Brain, King's College London, St Thomas’ Hospital, London, UK
| | - Neena Modi
- Section of Neonatal Medicine, Department of Medicine, Imperial College London, Chelsea & Westminster Hospital Campus, London, UK
| |
Collapse
|
17
|
Seitz J, Bühren K, von Polier GG, Heussen N, Herpertz-Dahlmann B, Konrad K. Morphological Changes in the Brain of Acutely Ill and Weight-Recovered Patients with Anorexia Nervosa. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2014; 42:7-17; quiz 17-8. [DOI: 10.1024/1422-4917/a000265] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective: Acute anorexia nervosa (AN) leads to reduced gray (GM) and white matter (WM) volume in the brain, which however improves again upon restoration of weight. Yet little is known about the extent and clinical correlates of these brain changes, nor do we know much about the time-course and completeness of their recovery. Methods: We conducted a meta-analysis and a qualitative review of all magnetic resonance imaging studies involving volume analyses of the brain in both acute and recovered AN. Results: We identified structural neuroimaging studies with a total of 214 acute AN patients and 177 weight-recovered AN patients. In acute AN, GM was reduced by 5.6% and WM by 3.8% compared to healthy controls (HC). Short-term weight recovery 2–5 months after admission resulted in restitution of about half of the GM aberrations and almost full WM recovery. After 2–8 years of remission GM and WM were nearly normalized, and differences to HC (GM: –1.0%, WM: –0.7%) were no longer significant, although small residual changes could not be ruled out. In the qualitative review some studies found GM volume loss to be associated with cognitive deficits and clinical prognosis. Conclusions: GM and WM were strongly reduced in acute AN. The completeness of brain volume rehabilitation remained equivocal.
Collapse
Affiliation(s)
- Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Germany
| | - Katharina Bühren
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Germany
| | - Georg G. von Polier
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Germany
| | - Nicole Heussen
- Department of Medical Statistics, University Hospital RWTH Aachen, Germany
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Germany
| | - Kerstin Konrad
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Germany
| |
Collapse
|
18
|
Effects of undernourishment, recurrent seizures and enriched environment during early life in hippocampal morphology. Int J Dev Neurosci 2013; 33:81-7. [DOI: 10.1016/j.ijdevneu.2013.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 11/21/2022] Open
|
19
|
Chaudhary R, Chugh M, Darokhan Z, Katreddi RR, Ramachandra R, Rema V. Physiological slowing and upregulation of inhibition in cortex are correlated with behavioral deficits in protein malnourished rats. PLoS One 2013; 8:e76556. [PMID: 24098531 PMCID: PMC3789706 DOI: 10.1371/journal.pone.0076556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
Protein malnutrition during early development has been correlated with cognitive and learning disabilities in children, but the neuronal deficits caused by long-term protein deficiency are not well understood. We exposed rats from gestation up to adulthood to a protein-deficient (PD) diet, to emulate chronic protein malnutrition in humans. The offspring exhibited significantly impaired performance on the 'Gap-crossing' (GC) task after reaching maturity, a behavior that has been shown to depend on normal functioning of the somatosensory cortex. The physiological state of the somatosensory cortex was examined to determine neuronal correlates of the deficits in behavior. Extracellular multi-unit recording from layer 4 (L4) neurons that receive direct thalamocortical inputs and layers 2/3 (L2/3) neurons that are dominated by intracortical connections in the whisker-barrel cortex of PD rats exhibited significantly low spontaneous activity and depressed responses to whisker stimulation. L4 neurons were more severely affected than L2/3 neurons. The response onset was significantly delayed in L4 cells. The peak response latency of L4 and L2/3 neurons was delayed significantly. In L2/3 and L4 of the barrel cortex there was a substantial increase in GAD65 (112% over controls) and much smaller increase in NMDAR1 (12-20%), suggesting enhanced inhibition in the PD cortex. These results show that chronic protein deficiency negatively affects both thalamo-cortical and cortico-cortical transmission during somatosensory information processing. The findings support the interpretation that sustained protein deficiency interferes with features of cortical sensory processing that are likely to underlie the cognitive impairments reported in humans who have suffered from prolonged protein deficiency.
Collapse
Affiliation(s)
| | - Manisha Chugh
- National Brain Research Centre, Manesar, Haryana, India
| | | | | | | | - V. Rema
- National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
20
|
Almeida MFL, Silveira ACD, Guedes RCA, Hokoç JN, Martinez AMB. Quantitative ultrastructural evidence of myelin malformation in optic nerves of rats submitted to a multideficient diet. Nutr Neurosci 2013; 8:91-9. [PMID: 16053241 DOI: 10.1080/10284150500049597] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pups were subjected to malnutrition by feeding the lactating mothers a multi-deficient (8% protein content) diet, known as regional basic diet (RBD), from birth up to weaning. The weanings were fed the same diet until 60 days of age. Ultrastructure of the optic nerve was analyzed at postnatal (P) day P8, P13, P21, P30 and P60. Electron microscopy revealed that at P8 the process of myelination has not started yet in neither groups. At P 13 different stages of myelination were observed and, in the experimental group, the optic nerve showed non-organized axon bundles and empty spaces. Control optic nerve at P21 exhibited axons with fully developed myelin sheath; whereas malnourished group had many axons being enveloped by myelin with anomalous alteration. These alterations were present in malnourished group at P30 and P60. Quantitative analysis showed statistically significant difference between control and malnourished groups when compared to the percentage of myelinated axons, axons with myelin anomalous alterations (MAA) and non-myelinated axons. Also, the myelin area was significantly smaller in malnourished groups when compared to control group. Finally, a high percentage of large non-myelinated fibers were found in the malnourished group. In conclusion, our results show that early malnutrition by a multideficient diet (RBD) affects permanently the optic nerve organization and myelination, indicating an impairment of nerve transmission and a probable dysfunction in the visual ability.
Collapse
Affiliation(s)
- M F L Almeida
- Laboratório de Neurobiologia da Retina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
21
|
Assessment of the Effects of Protein Malnutrition on Cerebellar Purkinje Cells in Adult Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.5812/thrita.7272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Partadiredja G, Bedi K. Undernutrition during the gestation and suckling periods does not cause any loss of pyramidal neurons in the CA2–CA3 region of the rat hippocampus. Nutr Neurosci 2013; 13:102-8. [DOI: 10.1179/147683010x12611460764165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Alamy M, Bengelloun WA. Malnutrition and brain development: an analysis of the effects of inadequate diet during different stages of life in rat. Neurosci Biobehav Rev 2012; 36:1463-80. [PMID: 22487135 DOI: 10.1016/j.neubiorev.2012.03.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/19/2012] [Accepted: 03/25/2012] [Indexed: 12/22/2022]
Abstract
Protein malnutrition or undernutrition can result in abnormal development of the brain. Depending on type, age at onset and duration, different structural and functional deficits can be observed. In the present review, we discuss the neuroanatomical, behavioral, neurochemical and oxidative status changes associated with protein malnutrition or undernutrition at different ages during prenatal and immediately postnatal periods as well as in adult rat. Analysis of all data suggests that protein malnutrition as well as undernutrition induced impaired learning and retention when imposed during the immediately postnatal period and in adulthood, whereas hyperactivity including increased impulsiveness and greater reactivity to aversive stimuli occurred when malnutrition or undernutrition was imposed either pre or postnatally. This general state of hyperreactivity may be linked essentially to an alteration in dopaminergic system. Hence, the present review shows that in spite of the attention devoted in the literature to prenatal effects, cognitive deficits are more serious following malnutrition or undernutrition after birth. We thus clearly establish a special vulnerability to malnutrition after weaning in rats.
Collapse
Affiliation(s)
- Meryem Alamy
- Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco
| | | |
Collapse
|
24
|
Sanches EF, Arteni NS, Spindler C, Moysés F, Siqueira IR, Perry ML, Netto CA. Effects of pre- and postnatal protein malnutrition in hypoxic-ischemic rats. Brain Res 2011; 1438:85-92. [PMID: 22244305 DOI: 10.1016/j.brainres.2011.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 11/17/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HI) is a major cause of nervous system damage and neurological morbidity. Perinatal malnutrition affects morphological, biochemical and behavioral aspects of neural development, including pathophysiological cascades of cell death triggered by ischemic events, so modifying resulting brain damage. Female Wistar rats were subjected to protein restriction during pregnancy and lactation (control group: 25% soybean protein; malnourished group: 7%). Seven days after delivery (PND7), their offspring were submitted to unilateral cerebral HI; rats were then tested for sensorimotor (PND7 and PND60) and memory (PND60) functions. Offspring of malnourished mothers showed marked reduction in body weight starting in lactation and persisting during the entire period of observation. There was a greater sensorimotor deficit after HI in malnourished (M) animals, in righting reflex and in home bedding task, indicating an interaction between diet and hypoxia-ischemia. At PND60, HI rats showed impaired performance when compared to controls in training and test sessions of rota-rod task, however there was no effect of malnutrition per se. In the open field, nourished HI (HI-N) presented an increase in crossings number; this effect was not present in HI-M group. Surprisingly, HI-M rats presented a better performance in inhibitory avoidance task and a smaller hemispheric brain damage as compared to HI-N animals. Our data points to a possible metabolic adaptation in hypoxic-ischemic animals receiving protein malnutrition during pregnancy and lactation; apparently we observed a neuroprotective effect of diet, possibly decreasing the brain energy demand, under a hypoxic-ischemic situation.
Collapse
Affiliation(s)
- Eduardo Farias Sanches
- Programa de Pós-Graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | |
Collapse
|
25
|
Martínez Y, Díaz-Cintra S, León-Jacinto U, Aguilar-Vázquez A, Medina AC, Quirarte GL, Prado-Alcalá RA. Effects of postnatal malnutrition and senescence on learning, long-term memory, and extinction in the rat. Behav Brain Res 2009; 203:48-53. [PMID: 19389427 DOI: 10.1016/j.bbr.2009.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/04/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
There is a wealth of information indicating that the hippocampal formation is important for learning and memory consolidation. The hippocampus is very sensitive to ageing and developmentally stressful factors such as prenatal malnutrition, which produces anatomical alterations of hippocampal pyramidal cells as well as impaired spatial learning. On the other hand, there are no reports about differential effects of postnatal malnutrition, installed at birth and maintained all through life in young and aged rats, on learning and memory of active avoidance, a task with an important procedural component. We now report that learning and long-term retention of this task were impaired in young malnourished animals, but not in young control, senile control, and senile malnourished Sprague-Dawley rats; young and senile rats were 90 and 660 days of age, respectively. Extinction tests showed, however, that long-term memory of the malnourished groups and senile control animals is impaired as compared with the young control animals. These data strongly suggest that the learning and long-term retention impairments seen in the young animals were due to postnatal malnutrition; in the senile groups, this cognitive alteration did not occur, probably because ageing itself is an important factor that enables the brain to engage in compensatory mechanisms that reduce the effects of malnutrition. Nonetheless, ageing and malnutrition, conditions known to produce anatomic and functional hippocampal alterations, impede the maintenance of long-term memory, as seen during the extinction test.
Collapse
Affiliation(s)
- Yvonne Martínez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | | | | | | | | | | | | |
Collapse
|
26
|
Rojas-Castañeda J, Vigueras-Villaseñor RM, Rojas P, Rojas C, Cintra L. Immunoreactive vasoactive intestinal polypeptide and vasopressin cells after a protein malnutrition diet in the suprachiasmatic nucleus of the rat. Lab Anim 2008; 42:360-8. [DOI: 10.1258/la.2007.007008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to evaluate the effects of prenatal and postnatal protein deprivation on the morphology and density of vasopressin (VP) and vasoactive intestinal polypeptide (VIP) immunoreactive neurons in the suprachiasmatic nucleus (SCN) of young rats. Female Wistar rats were fed either 6% (malnourished group) or 25% (control group) casein diet five weeks before conception, during gestation and lactation. After weaning, the pups were maintained on the same diet until sacrificed at 30 days of age. The major and minor axes, somatic area and the density of VP- and VIP-immunoreactive neurons were evaluated in the middle sections of the SCN. The present study shows that chronic protein malnutrition (ChPM) in VP neurons induces a significant decrease in number of cells (–31%,) and a significant increase in major and minor axes and somatic area (+12.2%, +21.1% and +15.0%, respectively). The VIP cells showed a significant decrease in cellular density (–41.5%) and a significant increase in minor axis (+13.5%) and somatic area (+10.1%). Our findings suggest that ChPM induces abnormalities in the density and morphology of the soma of VP and VIP neurons. These alterations may be a morphological substrate underlying circadian alterations previously observed in malnourished rats.
Collapse
Affiliation(s)
- J Rojas-Castañeda
- Laboratorio de Histomorfología, Torre de Investigación ‘Dr Joaquín Cravioto’, Instituto Nacional de Pediatría, SS, Av Insurgentes Sur No 3700-C, Col Insurgentes Cuicuilco, CP 04530, México
| | - R M Vigueras-Villaseñor
- Laboratorio de Histomorfología, Torre de Investigación ‘Dr Joaquín Cravioto’, Instituto Nacional de Pediatría, SS, Av Insurgentes Sur No 3700-C, Col Insurgentes Cuicuilco, CP 04530, México
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootécnia, Universidad Nacional Autónoma de México, México DF, México
| | - P Rojas
- Laboratorio de Neurotoxicología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez SS, Av Insurgentes Sur No 3877, México DF, CP 14269, México
| | - C Rojas
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, México DF, CP 04510, México
| | - L Cintra
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM, Juriquilla, Qro, Km 15 Carr Qro-SLP, CP 76230, México
| |
Collapse
|
27
|
Abstract
Growth is the traditional means of assessing the impact of newborn nutrition. We argue that this approach is flawed as the optimum pattern of postnatal growth after extremely preterm birth is unknown and both growth restraint and growth acceleration are associated with beneficial as well as adverse outcomes. Clinical trials examining nutritional regimens should be designed to achieve specific patterns of postnatal growth. Clinical practice should include the systematic capture of neonatal nutritional intake. As the ultimate goals are adult health and wellbeing, long-term follow-up is essential.
Collapse
Affiliation(s)
- Vimal Vasu
- Division of Medicine, Imperial College London, Chelsea & Westminster Campus, London, UK
| | | |
Collapse
|
28
|
Díaz-Cintra S, González-Maciel A, Morales MA, Aguilar A, Cintra L, Prado-Alcalá RA. Protein malnutrition differentially alters the number of glutamic acid decarboxylase-67 interneurons in dentate gyrus and CA1–3 subfields of the dorsal hippocampus. Exp Neurol 2007; 208:47-53. [PMID: 17706195 DOI: 10.1016/j.expneurol.2007.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/28/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
In 30- and 90-day-old rats, using immunohistochemistry for glutamic acid decarboxylase 67 (GAD-67), we have tested whether malnutrition during different periods of hippocampal development produces deleterious effects on the population of GABA neurons in the dentate gyrus (DG) and cornu Ammonis (CA1-3) of the dorsal hippocampus. Animals were under one of four nutritional conditions: well-nourished controls (Con), prenatal protein malnourished (PreM), postnatal protein malnourished (PostM), and chronic protein malnourished (ChroM). We found that the number of GAD-67-positive (GAD-67+) interneurons was higher in the DG than in the CA1-3 areas of both Con and malnourished groups. Regarding the DG, the number of GAD-67+ interneurons was increased in PreM and PostM and decreased in ChroM at 30 days. At 90 days of age the number of GAD-67+ interneurons was increased in PostM and ChroM and remained unchanged in PreM. With respect to CA1-3, the number of labeled interneurons was decreased in PostM and ChroM at 30 days of age, but no change was found in PreM. At 90 days no changes in the number of these interneurons were found in any of the groups. These observations suggest that 1) the cell death program starting point is delayed in DG GAD-67+ interneurons, and 2) protein malnutrition differentially affects GAD-67+ interneuron development throughout the dorsal hippocampus. Thus, these changes in the number of GAD-67+ interneurons may partly explain the alterations in modulation of dentate granule cell excitability, as well as in the emotional, motivational, and memory disturbances commonly observed in malnourished rats.
Collapse
Affiliation(s)
- Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | | | | | | | | | | |
Collapse
|
29
|
Feoli AM, Siqueira IR, Almeida L, Tramontina AC, Vanzella C, Sbaraini S, Schweigert ID, Netto CA, Perry MLS, Gonçalves CA. Effects of protein malnutrition on oxidative status in rat brain. Nutrition 2006; 22:160-5. [PMID: 16459228 DOI: 10.1016/j.nut.2005.06.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 06/04/2005] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study evaluated the effects of protein malnutrition on oxidative status in rat brain areas. METHODS We investigated various parameters of oxidative status, free radical content (dichlorofluorescein formation), indexes of damage to lipid (thiobarbituric acid-reactive substances assay), and protein damage (tryptophan and tyrosine content) in addition to total antioxidant reactivity levels and antioxidant enzyme activities of superoxide dismutase, glutathione peroxidase, and catalase in different cerebral regions (cortex, hippocampus, and cerebellum) from rats subjected to prenatal and postnatal protein malnutrition (control 25% casein and protein malnutrition 7% casein). RESULTS Protein malnutrition altered various parameters of oxidative stress, especially damage to macromolecules. Free radical content was unchanged by protein malnutrition. There was an increase in levels of thiobarbituric acid-reactive substances, the index of lipid peroxidation, in the cerebellum and cerebral cortex (P < 0.05) from protein-malnourished rats. Moreover, significant decreases in tryptophan and tyrosine in all tested brain structures (P < 0.05) were observed. Catalase activity was significantly decreased in the cerebellum (P < 0.05). In addition, a significant decrease in total antioxidant reactivity levels (P < 0.05) was observed in the cerebral cortex from protein-malnourished rats. CONCLUSIONS The present data indicated that protein malnutrition increased oxidative damage to lipids and proteins from the studied brain areas. These results may be an indication of an important mechanism for changes in brain development that are caused by protein malnutrition.
Collapse
Affiliation(s)
- Ana M Feoli
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bonatto F, Polydoro M, Andrades ME, da Frota Júnior MLC, Dal-Pizzol F, Rotta LN, Souza DO, Perry ML, Moreira JCF. Effect of protein malnutrition on redox state of the hippocampus of rat. Brain Res 2005; 1042:17-22. [PMID: 15823248 DOI: 10.1016/j.brainres.2005.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 11/20/2022]
Abstract
The protein malnutrition is a worldwide problem, affecting mainly newborns and children of developing countries. This deficiency reaches the brain in the most critical period of the development. Various consequences are related to this insult, such as memory disturbance, learning, and behavioral impairment. Protein content of the diet plays an important role on antioxidant mechanisms. This study observed the effects of protein malnutrition on rat hippocampus redox state. Wistar rats were separate in four groups, receiving different diets: first group with 25% casein, protein deficient group with 8% casein, and the same two groups supplemented with methionine (0.15%). Diets were isocaloric and were administered since the prenatal period up to the sacrifice. Rats were decapitated at 21 or 75 days old and hippocampus were isolated for measuring the lipoperoxidation by TBARS method, protein oxidative damage by carbonyl (DNPH) levels, and the activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). There was significant alterations in the activities of the enzyme SOD, lipoperoxidation, and protein oxidation in hippocampus of 21 and 75 day-old rats fed with 25% of protein with methionine and the groups fed with low levels of protein (8%) both supplemented or not with methionine. Our data suggest that both the content of protein in the diet and the essential amino acid methionine may alter the antioxidant system and the redox state of the brain.
Collapse
Affiliation(s)
- Fernanda Bonatto
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcelos, 2600-anexo, Porto Alegre 90035-003, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Granados-Rojas L, Aguilar A, Díaz-Cintra S. The mossy fiber system of the hippocampal formation is decreased by chronic and postnatal but not by prenatal protein malnutrition in rats. Nutr Neurosci 2005; 7:301-8. [PMID: 15682926 DOI: 10.1080/10284150400017306] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We tested in 70-day-old Sprague-Dawley rats, whether malnutrition imposed during different periods of hippocampal development produced deleterious effects on the total reference volume of the mossy fiber system. Animals were treated under four nutritional conditions: (a) well nourished; (b) prenatal protein malnourished; (c) chronic protein malnourished and (d) postnatal protein malnourished. Timm's stained material was used in coronal hippocampal sections (40 microm) to estimate--using the Principle of Cavalieri--the total reference volume of the mossy fiber system in each experimental group. Our results show that chronic and postnatal protein malnourished, but not prenatal malnourished rats, decrease the mossy fiber system and the total reference volume of the mossy fiber system are selectively vulnerable to the type of dietary restriction. Thus, chronic and posnatal protein malnutrition produce deleterious effects, but only rats under prenatal protein malnutrition were able to reorganize synapses in this plexus. These findings raise the possibility that chronic malnutrition, as a long-term stressful factor, might be an important paradigm to test structural hippocampal changes that produce physiological and pathophysiological effects, or the possibility to recover its function for nutritional rehabilitation.
Collapse
Affiliation(s)
- Leticia Granados-Rojas
- Departamento de Neurobiología del Desarrollo y Neurofisiologia, Instituto de Neurobiologia, Universidad Nacional Autónoma de México, Campus UNAM-UAQ Juriquilla, Querétaro, Qro 76001, Mexico
| | | | | |
Collapse
|
32
|
Fiala JC, Spacek J, Harris KM. Dendritic spine pathology: cause or consequence of neurological disorders? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 39:29-54. [PMID: 12086707 DOI: 10.1016/s0165-0173(02)00158-3] [Citation(s) in RCA: 618] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered dendritic spines are characteristic of traumatized or diseased brain. Two general categories of spine pathology can be distinguished: pathologies of distribution and pathologies of ultrastructure. Pathologies of spine distribution affect many spines along the dendrites of a neuron and include altered spine numbers, distorted spine shapes, and abnormal loci of spine origin on the neuron. Pathologies of spine ultrastructure involve distortion of subcellular organelles within dendritic spines. Spine distributions are altered on mature neurons following traumatic lesions, and in progressive neurodegeneration involving substantial neuronal loss such as in Alzheimer's disease and in Creutzfeldt-Jakob disease. Similarly, spine distributions are altered in the developing brain following malnutrition, alcohol or toxin exposure, infection, and in a large number of genetic disorders that result in mental retardation, such as Down's and fragile-X syndromes. An important question is whether altered dendritic spines are the intrinsic cause of the accompanying neurological disturbances. The data suggest that many categories of spine pathology may result not from intrinsic pathologies of the spiny neurons, but from a compensatory response of these neurons to the loss of excitatory input to dendritic spines. More detailed studies are needed to determine the cause of spine pathology in most disorders and relationship between spine pathology and cognitive deficits.
Collapse
Affiliation(s)
- John C Fiala
- Department of Biology, Boston University, 5 Cummington Street, MA 02215, USA.
| | | | | |
Collapse
|
33
|
Granados-Rojas L, Larriva-Sahd J, Cintra L, Gutiérrez-Ospina G, Rondán A, Díaz-Cintra S. Prenatal protein malnutrition decreases mossy fibers-CA3 thorny excrescences asymmetrical synapses in adult rats. Brain Res 2002; 933:164-71. [PMID: 11931861 DOI: 10.1016/s0006-8993(02)02314-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prenatal protein malnutrition has deleterious effects on hippocampal structure and function that likely result from decreased synapse number. We thus evaluated long-term effects of prenatal protein malnutrition on the mossy fibers-CA3 thorny excrescences asymmetrical synapses in 220-day-old rats. Protein malnourished rats born from pregnant dams fed with 6% casein diet were cross-fostered to lactating control rats at birth. Control animals were fed with a 25% casein diet. Timm's stained material was used to estimate the total reference volume of the mossy fiber system suprapyramidal bundle by means of stereology. The mossy fiber-CA3 asymmetrical synapse numerical density was obtained by electron microscopy, using the physical disector method. The total number of mossy fiber-CA3 asymmetrical synapses was determined on the basis of the total reference volume of the mossy fiber system suprapyramidal bundle and the mossy fiber-CA3 asymmetrical synapse numerical density. Prenatal protein malnutrition produced long-lasting, significant decreases in the volume of the mossy fiber system suprapyramidal bundle and in the numerical density of mossy fiber-CA3 asymmetrical synapse, suggesting a reduction in the total number of this synapse type. Hence, prenatal protein malnutrition induces long lasting deleterious effects on the progression of developmental programs controlling synaptogenesis and/or synaptic consolidation, likely by affecting a myriad of cellular processes.
Collapse
Affiliation(s)
- Leticia Granados-Rojas
- División de Medicina Experimental, Instituto Nacional de Pediatría S.S., México, D.F. 04530, Mexico.
| | | | | | | | | | | |
Collapse
|
34
|
Avraham Y, Hao S, Mendelson S, Bonne O, Berry EM. Diet restriction in mice causes a decrease in hippocampal choline uptake and muscarinic receptors that is restored by administration of tyrosine: interaction between cholinergic and adrenergic receptors influencing cognitive function. Nutr Neurosci 2002; 4:153-67. [PMID: 11842883 DOI: 10.1080/1028415x.2001.11747359] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have studied the effects of diet restriction (DR) to 60% and 40% of daily requirements, and tyrosine administration on cognitive function in mice, to define the nutritional-neurochemical interactions on autonomic tone involved in behavior and energy regulation. Cognitive function in the Morris Water maze was significantly impaired after 40% DR compared to both control and 60% DR. It was restored after tyrosine in association with increased M1 cholinergic and beta-adrenergic receptor function, and decreased alpha-adrenergic function. DR to 40% significantly decreased choline uptake (p <.05) and M1 receptor number (Bmax) (p <.05), without changes in affinity (Kd), choline acetyl transferase (ChAT) or acetyl cholinesterase (AChE) activity. Tyrosine administration significantly increased choline uptake (Bmax) (p <.05) and M1 density in the 40% DR (p <.01) without changes in affinity. ChAT activity was decreased after tyrosine--significantly after 40% DR (p <.05) while AChE was not affected. Both M1 mRNA and protein were not influenced by DR or tyrosine administration. Tyrosine hydroxylase mRNA was decreased significantly by 40% DR (p <.01). The effect of DR and tyrosine appeared to be both pre- and post-synaptic, indicating modulation of cholinergic activity by adrenergic tone. Nutritional effect on behavior and autonomic tone may have implications for the treatment of mood changes associated with weight loss and semi-starvation.
Collapse
Affiliation(s)
- Y Avraham
- Department of Human Nutrition and Metabolism, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
35
|
Nunes ML, Liptáková S, Velísková J, Sperber EF, Moshé SL. Malnutrition increases dentate granule cell proliferation in immature rats after status epilepticus. Epilepsia 2000; 41 Suppl 6:S48-52. [PMID: 10999519 DOI: 10.1111/j.1528-1157.2000.tb01556.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Nutritional insults early in life have a profound and often permanent effect on the development of the central nervous system. A direct relationship between malnutrition and epilepsy has not been established; however, it is believed that inadequate nutrition may predispose the brain to seizures. This study was designed to determine whether neonatally malnourished rats are different from nourished rats in terms of flurothyl seizure susceptibility at postnatal day (P)15, in the behavioral manifestations of seizures, and in status epilepticus-induced hippocampal injury. METHODS Sprague-Dawley rat pups were maintained on a starvation regimen from P2 until P17. Age-matched control rats were not exposed to starvation. At P15, all animals were exposed to flurothyl-induced status epilepticus. At P17, the rats received a single injection of bromodeoxyuridine (50 mg/kg intraperitoneal) to determine the extent of genesis of new cells in the dentate gyrus. At P18, the rats were killed, and the brains were processed for histology and immunohistochemistry. RESULTS Preliminary analysis indicates that early malnutrition did not modify flurothyl seizure susceptibility or the behavioral manifestations of seizures at P15. Histological assessment did not reveal any evidence of hippocampal cell loss after status epilepticus in either group. Malnutrition per se induced an increase in the genesis of new cells in the anterior dentate granule cell layer. Although exposure to status epilepticus augmented the expression of new cells in the dentate gyrus in both groups, this expression was more pronounced in the malnourished group. CONCLUSIONS The findings suggest that malnutrition early in life alters dentate plasticity but not the susceptibility to flurothyl seizures. Although status epilepticus can increase the expression of new cells in the dentate gyrus in immature rats, malnutrition followed by status epilepticus further increases dentate granule cell proliferation.
Collapse
Affiliation(s)
- M L Nunes
- Department of Neurology, Albert Einstein College of Medicine and the Einstein/Montefiore Epilepsy Management Center, Bronx, New York, USA.
| | | | | | | | | |
Collapse
|
36
|
Borba JM, Araújo MS, Picanço-Diniz CW, Manhães-de-Castro R, Guedes RC. Permanent and transitory morphometric changes of NADPH-diaphorase-containing neurons in the rat visual cortex after early malnutrition. Brain Res Bull 2000; 53:193-201. [PMID: 11044596 DOI: 10.1016/s0361-9230(00)00334-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the histochemical positivity to NADPH-diaphorase, which reveals nitric oxide synthase activity, in area 17 of rats malnourished early in life, both in the post-weaning period (group M1), and in adulthood after nutritional recovering (group M2). Control pups (C1 and C2 groups) received ad libitum after weaning the same diets as their mothers. Rats of group M2 were nutritionally recovered by receiving the control diet from post-natal day 42 until adulthood. Aldehyde-fixed sections (200-microm thick) through area 17 were processed for NADPH-diaphorase histochemistry following the malic enzyme indirect method. The features of NADPH-diaphorase-containing neurons of area 17 of malnourished young (M1) and adult (M2) rats were analyzed quantitatively in comparison to the matched groups C1 and C2. Permanent changes, represented by increase in the density and dendritic field areas of NADPH-diaphorase-positive cells, and transitory ones, represented by decreased values of soma areas, were observed in area 17 of the M1 and M2 cases. However, some other features, such as dendritic branch angle and number of dendrites per cell in the gray matter, remained unchanged after malnutrition. Thus, the findings indicate a possible relationship between early malnutrition and alterations in nitric oxide synthase-containing cells in the visual cortex. Physiological implications of these data may be related to synaptic plasticity and refinement of developmental brain circuits.
Collapse
Affiliation(s)
- J M Borba
- Laboratório de Fisiologia da Nutrição Naide Teodósio, Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
37
|
Nutan KS, Meti BL. Deficits in operant behavior and alteration of CA1, CA3 hippocampal dendritic arborization due to subicular lesions. J Neurosci Res 2000; 59:806-12. [PMID: 10700018 DOI: 10.1002/(sici)1097-4547(20000315)59:6<806::aid-jnr13>3.0.co;2-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The deficits in operant behavior and the alterations in dendritic arborizations of Cornu Ammonis 1 and Cornu Ammonis 3 (CA1 and CA3) hippocampal areas were investigated in subicular lesioned rats. The subjects were female Wistar rats aged 120 days, and were divided into four groups: one serving as age-matched untrained control, a second group received training and sham lesioning, a third group were only trained, and the fourth group were first trained and then subjected to subicular lesions. The rats were food-deprived 24 hours prior to operant behavior training sessions. Two training sessions for operant behavior with continuous reinforcement of 10 minutes duration per day were done during the shaping session, following which rats were allowed 10 minutes of operant food reward for 10 days. On the eleventh day, only the operant behavior and sham-operated rats were used for subicular lesion and sham surgery, respectively. After 72 hours of surgical recovery, operant behavioral testing was performed daily as before for a further period of 10 days. Later, all groups of rats were killed and the hippocampus was processed for rapid Golgi staining. Our results suggest that subicular lesions produce a significant reduction in operant learning. Further, the Golgi studies revealed a reduction in dendritic branching points and intersections of apical and basal CA1, CA3 neurons in lesioned rats.
Collapse
Affiliation(s)
- K S Nutan
- Department of Neurophysiology, Nimhans, Bangalore, India.
| | | |
Collapse
|
38
|
González-Pardo H, Pérez-Leizea J, Alvarez-Grueso N, Menéndez-Patterson A, Arias JL. Undernutrition and Postnatal Development of Brain Oxidative Metabolism in Limbic Structures: A Quantitative Study. Nutr Neurosci 1999; 2:311-22. [PMID: 27415804 DOI: 10.1080/1028415x.1999.11747286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effects of food restriction during gestation, lactation and post-weaning were studied in rat brain structures (14,21 and 30 days). Oxidative metabolism was quantified in neurons from the anterior thalamus and mammillary bodies using a quantitative histochemical method for cytochrome c oxidase (CO). In all the rat brains studied, a significant increase in activity occurred in the control group from 14 to 21 days after birth which then remained constant up to 30 days. A similar pattern was observed in the undernourished group, although in the anterodorsal and anteromedial thalamic nuclei the rise in CO only occurred between day 14 and 30 and there were no significant age-related changes in the lateral mammillary nucleus. Undernutrition produced a significant drop in CO activity after 21 days in all the nuclei except the lateral mammillary nucleus. In the latter nucleus and also in the pars medialis of the medial mammillary nucleus this parameter decreased at 30 days. Our results suggest that undernutrition and nutritional rehabilitation have different effects on the diencephalic regions studied, which depends on age and region.
Collapse
Affiliation(s)
- H González-Pardo
- a Laboratory of Psychobiology, Faculty of Psychology , University of Oviedo , E-33003, Oviedo , Spain
| | - J Pérez-Leizea
- b Department of Functional Biology (Physiology) , University of Oviedo , 33006, Oviedo , Spain
| | - N Alvarez-Grueso
- b Department of Functional Biology (Physiology) , University of Oviedo , 33006, Oviedo , Spain
| | - A Menéndez-Patterson
- b Department of Functional Biology (Physiology) , University of Oviedo , 33006, Oviedo , Spain
| | - J L Arias
- a Laboratory of Psychobiology, Faculty of Psychology , University of Oviedo , E-33003, Oviedo , Spain
| |
Collapse
|
39
|
Shankaranarayana Rao BS, Raju TR, Meti BL. Alterations in the density of excrescences in CA3 neurons of hippocampus in rats subjected to self-stimulation experience. Brain Res 1998; 804:320-4. [PMID: 9757075 DOI: 10.1016/s0006-8993(98)00684-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Self-stimulation (SS) rewarding experience induced alterations in the density of excrescences in the apical dendrites of CA3 neurons were studied in adult male Wistar rats. SS experience was provided daily for an hour over a period of 10 days, through bipolar stainless steel electrodes implanted bilaterally in lateral hypothalamus and substantia nigra-ventral tegmental area. The results revealed a significant (P<0.001) increase in the number of excrescences in both main shaft and sub branches of the apical dendrites in SS experienced group compared to control groups of rats. The increased number of excrescences in CA3 neurons might be due to an enhancement in the synaptic transmission in the mossy fiber pathway following SS experience.
Collapse
Affiliation(s)
- B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, P.B. # 2900, Hosur Road, Bangalore 560 029, India
| | | | | |
Collapse
|
40
|
Cintra L, Granados L, Aguilar A, Kemper T, DeBassio W, Galler J, Morgane P, Durán P, Díaz-Cintra S. Effects of prenatal protein malnutrition on mossy fibers of the hippocampal formation in rats of four age groups. Hippocampus 1997; 7:184-91. [PMID: 9136048 DOI: 10.1002/(sici)1098-1063(1997)7:2<184::aid-hipo5>3.0.co;2-n] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study was undertaken to investigate the effect of prenatal protein deprivation on the postnatal development of the mossy fiber plexus of the hippocampal formation on postnatal (P) days 15, 30, 90, and 220. Although there is extensive information about the effects of malnutrition on cell body and dendrite morphology, little attention has been paid to axons or axon plexuses. The mossy fiber plexus represents the dentate gyrus granule cell axonal projection to areas CA4 and CA3 of the hippocampal formation and is readily demonstrated with Timm's heavy metal stain. With the use of this stain, the plexus was measured at 13 levels throughout the hippocampal complex. There was no effect of the diet on the anatomical distribution of the plexus. The current study, however, does show significant effects of prenatal protein malnutrition on postnatal development of the mossy fiber plexus that are age dependent. The prenatally malnourished rats show significant deficits in the total rostro-caudal extent and volume of the plexus on P15, P90, and P220, with the most marked dietary effect on P220. There was no significant diet effect on P30 in either extent or volume.
Collapse
Affiliation(s)
- L Cintra
- Centro de Neurobiología, UNAM, Ciudad Universitaria, México, D.F. México
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cintra L, Aguilar A, Granados L, Galván A, Kemper T, DeBassio W, Galler J, Morgane P, Durán P, Díaz-Cintra S. Effects of prenatal protein malnutrition on hippocampal CA1 pyramidal cells in rats of four age groups. Hippocampus 1997; 7:192-203. [PMID: 9136049 DOI: 10.1002/(sici)1098-1063(1997)7:2<192::aid-hipo6>3.0.co;2-p] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study was undertaken to investigate the effect of prenatal protein deprivation on area CA1 hippocampal pyramidal cells on postnatal (P) days 15, 30, 90 and 220 using Golgi techniques. Age related changes in both groups and diet related changes between groups were assessed. There were significant diet effects at all four ages, with one of 12 different measurements showing a significant diet effect on P15, five on P30, one on P90, and seven on P220. The most marked effect of the diet was on pyramidal cell dendrite spine density in the stratum moleculare and stratum radiatum, with a different pattern of diet effects in the two strata. In pyramidal cell dendrites in the stratum moleculare, there was a deficit in spine density that was significant at three of the four ages and there were similar age-related changes in the two diet groups. Spines on pyramidal cell dendrites in the stratum radiatum showed a lack of synchrony of age-related changes in the two diet groups, with an increased spine density in the malnourished rats on P30 and a widening deficit in this parameter on P90 and P220. The bimodal distribution to these changes, with most marked deficits occurring on P30 and P220, with an intervening period of apparent "catch-up" on P90, is of interest and may be a significant brain adaptation to malnutrition. The present study is the final of three morphometric studies on the effect of prenatal protein restriction on three key neurons in the hippocampal trisynaptic circuit. When compared to our previous studies on the dentate granule cell and the CA3 pyramidal cell, it is noted that there is an effect of the low protein diet on all these neurons, with the most marked effect on the predominantly postnatally generated dentate granule cells.
Collapse
Affiliation(s)
- L Cintra
- Centro de Neurobiología, UNAM, Ciudad Universitaria, México, D.F. México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Avraham Y, Bonne O, Berry EM. Behavioral and neurochemical alterations caused by diet restriction--the effect of tyrosine administration in mice. Brain Res 1996; 732:133-44. [PMID: 8891277 DOI: 10.1016/0006-8993(96)00514-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have investigated the effect of tyrosine administration on the cognitive and neurochemical alterations caused by diet restriction (DR) in mice, as a possible model for some of the behavioral symptoms of patients with anorexia nervosa. Young female mice were fed to 100, 60, and 40% of the calculated daily nutritional requirements for a period of up to 18 days. Cognitive function was evaluated using a modified eight-arm maze with water as a reward. Animals fed to 60% of controls showed significantly improved maze performance while this was impaired in animals on DR to 40%. However, in these animals, injections of tyrosine (100 mg/kg/day) restored performance. Improved maze performance in the 60% DR and 40% DR + tyrosine animals was related to increased beta:alpha tone in the hippocampus- an area, together with the septum, responsible for spatial learning. This was associated with changes in alpha- and beta-receptor density (Bmax), without affecting affinity (Kd); and increased norepinephrine (NE) in the 40% DR + tyrosine group, and methoxyhydroxyphenylglycol (MHPG) in both groups. In the hypothalamus, the brain area responsible for energy metabolism, there was a progressive increase in alpha:beta tone with increasing DR associated with changes in Bmax. Tyrosine treatment reversed these alterations. Tyrosine improves some of the neurobiological disturbances of DR without causing an increase in body weight. Such a strategy might have important implications for the possible treatment of patients with anorexia nervosa.
Collapse
MESH Headings
- 3,4-Dihydroxyphenylacetic Acid/metabolism
- Animals
- Anorexia Nervosa
- Brain/drug effects
- Brain/physiology
- Cognition
- Diet, Reducing
- Disease Models, Animal
- Dopamine/metabolism
- Female
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/physiology
- Maze Learning
- Methoxyhydroxyphenylglycol/metabolism
- Mice
- Mice, Inbred Strains
- Norepinephrine/metabolism
- Nutritional Requirements
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Tyrosine/pharmacology
- Weight Loss
Collapse
Affiliation(s)
- Y Avraham
- Department of Human Nutrition and Metabolism, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
43
|
Andrade JP, Castanheira-Vale AJ, Paz-Dias PG, Madeira MD, Paula-Barbosa MM. The dendritic trees of neurons from the hippocampal formation of protein-deprived adult rats. A quantitative Golgi study. Exp Brain Res 1996; 109:419-33. [PMID: 8817272 DOI: 10.1007/bf00229626] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have recently shown that lengthy periods of low-protein feeding of the adult rat lead to deficits in the number of hippocampal granule and pyramidal cells, and in the number of mossy fiber synapses. These findings prompted us to analyze the dendrites of these neurons to evaluate whether, under the same experimental conditions, degenerative and/or plastic changes also take place at the dendritic level. The hippocampal formations from five 8-month-old rats fed a low-protein diet (casein 8%) for 6 months from the age of 2 months and from five age-matched controls were Golgi-impregnated and the morphology of the dendritic trees quantitatively studied. We found that in malnourished animals there was a reduction in the number of dendritic branches in the dentate granule cells and in the apical dendritic arborizations of CA3 pyramidal neurons. In addition, in the dentate granule cells the spine density was markedly increased and the terminal dendritic segments were elongated in malnourished animals. No alterations were found in the apical dendrites of CA1 pyramidal cells. The results obtained show that long periods of malnutrition induce marked, although not uniform, changes in the dendritic domain of the hippocampal neurons, which reflect the presence of both degenerating and regrowing mechanisms. These alterations are likely to affect the connectivity pattern of the hippocampal formation and, hence, the activity of the neuronal circuitries in which this region of the brain is involved.
Collapse
Affiliation(s)
- J P Andrade
- Department of Anatomy, Porto Medical School, Portugal
| | | | | | | | | |
Collapse
|
44
|
Andrade JP, Castanheira-Vale AJ, Madeira MD. Time scale and extent of neuronal and synaptic loss in the hippocampal formation of malnourished adult rats. Brain Res 1996; 718:1-12. [PMID: 8773761 DOI: 10.1016/0006-8993(95)01544-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have demonstrated that a prolonged low-protein diet induces neuronal and synaptic loss in the hippocampal formation of the adult rat. Because 6 months of protein deprivation was the shortest period analyzed in the previous investigations, in the present study we have evaluated the length of the treatment period necessary to induce significant changes in the numbers of neurons and synapses. Groups of 2-month-old rats were analyzed: (1) and (2) malnourished for 1 and 3 months with a low-protein diet (8% casein): (3) and (4) age-matched control rats fed with a standard diet. Stereological methods were employed to estimate the total number of granule, hilar, CA3 and CA1 pyramidal cells and the volume of the respective cell layers, the volume of the mossy fiber system and the number and related quantitative features of mossy fiber-CA3 synapses. No differences in the number of cells or synapses were found between 1-month malnourished rats and the respective controls. However, in rats treated for 3 months the total number of granule cells. CA3 and CA1 pyramidal cells was reduced, as was the total number of synapses. These findings indicate that the changes induced by protein deprivation progressively increase during the early phases of treatment and that they are already evident after 3 months of protein deprivation.
Collapse
Affiliation(s)
- J P Andrade
- Department of Anatomy, Porto Medical School, Portugal.
| | | | | |
Collapse
|
45
|
Díaz-Cintra S, García-Ruiz M, Corkidi G, Cintra L. Effects of prenatal malnutrition and postnatal nutritional rehabilitation on CA3 hippocampal pyramidal cells in rats of four ages. Brain Res 1994; 662:117-26. [PMID: 7859064 DOI: 10.1016/0006-8993(94)90803-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of prenatal protein malnutrition and postnatal nutritional rehabilitation on CA3 hippocampal pyramidal cells were investigated in rats of 15, 30, 90 and 220 days of age. Female rats were fed either 6% or 25% casein diet 5 weeks before conception. Following delivery, litters born the same day to 6% and 25% casein diet rats were randomly cross-fostered to 25% casein diet dams and maintained on that diet until sacrificed. In 288 rapid-Golgi impregnated cells, we measured somal size, length of the longest apical dendrite, number of apical and basal dendrites intersecting 10 concentric rings 38 microns apart, synaptic spine density in three 50 microns segments of the largest apical dendrite and the thorny excrescence area. Prenatal protein malnutrition produced differential morphological changes on CA3 pyramidal cells. We observed significant decreases of somal size (at 90 and 220 days of age), of length of apical dendrites (at 15 days old), of apical (in 15 day animals) and basal (in 15, 90 and 220 day animals) dendritic branching and of spine density (in 30, 90 and 220 day animals). We also found significant increases of apical dendritic branching in 90 and 220 day old rats. These results indicate that prenatal protein malnutrition affects normal development and produces long-term effects on CA3 pyramidal cells.
Collapse
Affiliation(s)
- S Díaz-Cintra
- Centro de Neurobiología, UNAM, Ciudad Universitaria, México, DF, México
| | | | | | | |
Collapse
|