1
|
Marsh SE, Walker AJ, Kamath T, Dissing-Olesen L, Hammond TR, de Soysa TY, Young AMH, Murphy S, Abdulraouf A, Nadaf N, Dufort C, Walker AC, Lucca LE, Kozareva V, Vanderburg C, Hong S, Bulstrode H, Hutchinson PJ, Gaffney DJ, Hafler DA, Franklin RJM, Macosko EZ, Stevens B. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nat Neurosci 2022; 25:306-316. [PMID: 35260865 DOI: 10.1038/s41593-022-01022-8] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
A key aspect of nearly all single-cell sequencing experiments is dissociation of intact tissues into single-cell suspensions. While many protocols have been optimized for optimal cell yield, they have often overlooked the effects that dissociation can have on ex vivo gene expression. Here, we demonstrate that use of enzymatic dissociation on brain tissue induces an aberrant ex vivo gene expression signature, most prominently in microglia, which is prevalent in published literature and can substantially confound downstream analyses. To address this issue, we present a rigorously validated protocol that preserves both in vivo transcriptional profiles and cell-type diversity and yield across tissue types and species. We also identify a similar signature in postmortem human brain single-nucleus RNA-sequencing datasets, and show that this signature is induced in freshly isolated human tissue by exposure to elevated temperatures ex vivo. Together, our results provide a methodological solution for preventing artifactual gene expression changes during fresh tissue digestion and a reference for future deeper analysis of the potential confounding states present in postmortem human samples.
Collapse
Affiliation(s)
- Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alec J Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tushar Kamath
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lasse Dissing-Olesen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Timothy R Hammond
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - T Yvanka de Soysa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam M H Young
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Sarah Murphy
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Abdulraouf Abdulraouf
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Naeem Nadaf
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Connor Dufort
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Alicia C Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Liliana E Lucca
- Department of Neurology and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Velina Kozareva
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soyon Hong
- UK Dementia Research Institute, University College London, London, UK
| | - Harry Bulstrode
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - David A Hafler
- Department of Neurology and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robin J M Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Evan Z Macosko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Rahmani Kukia N, Alipanah-Moghadam R, Delirezh N, Mazani M. Mesenchymal Stromal Stem Cell-Derived Microvesicles Enhance Tumor Lysate Pulsed Dendritic Cell Stimulated
Autologous T lymphocyte Cytotoxicity. Asian Pac J Cancer Prev 2018; 19:1895-1902. [PMID: 30049202 PMCID: PMC6165664 DOI: 10.22034/apjcp.2018.19.7.1895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Immunotherapy is one promising therapeutic strategy against glioma, an aggressive form of brain cancer. Previous studies have demonstrated that multiple tumor antigens exist and can be used to induce tumor specific T cell responses. Furthermore, recently it was shown that TLR4-primed mesenchymal stem cells (MSCs), also known as MSC1, mostly elaborate pro-inflammatory mediators. Compared to MSCs, MSC-derived microvesicles (MVs) have advantageous properties that present them as stable, long lasting effectors with no risk of immune rejection. Therefore, peripheral blood monocyte derived dendritic cells (MoDCs) have been used to load tumor antigens and stimulate T cell mediated responses in the presence of MSC1-derived MVs in vitro. Methods The B92 tumor cell line was heated to 43°C for 90 min prior to preparation of tumor cell lysates. MVs were purified by differential ultracentrifugation after isolation, stimulation of proliferation and treatment of MSCs. Autologous T cells isolated from non-adherent cells were harvested during the procedure to generate MoDCs and then incubated with heat stressed tumor cell lysate pulsed DCs in the presence of MSC1-derived MVs. T cells were then co-cultured with tumor cells in 96-well plates at a final volume of 200 μl CM at an effector: target ratio of 100:1 to determine their specific cytotoxic activity. Results Flow cytometric analysis, T cell mediated cytotoxicity showed that heat stressed tumor antigen pulsed MoDCs and MSC1-derived MVs primed T cells elicited non-significantly enhanced cytotoxic activity toward B92 tumor cells (P≥0.05). Conclusion These findings may offer new insights into tumor antigen presenting technology involving dendritic cells and MSC1-derived MVs. Further exploration of the potential of such nanoscale particles in immunotherapy and in novel cancer vaccine settings appears warranted.
Collapse
Affiliation(s)
- Nasim Rahmani Kukia
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran. ,
| | | | | | | |
Collapse
|
3
|
Takeuchi T. Non-cell Autonomous Maintenance of Proteostasis by Molecular Chaperones and Its Molecular Mechanism. Biol Pharm Bull 2018; 41:843-849. [PMID: 29863073 DOI: 10.1248/bpb.b18-00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular chaperones have essential roles in cell survival, to prevent misfolding, aggregation, and aberrant accumulation of cellular proteins, and thus to maintain protein homeostasis (proteostasis). However, recent studies using animal models suggest that transcriptional upregulation of molecular chaperones in response to various types of stresses does not ubiquitously occur in all cells and tissues, but is a cell type-specific event. The imbalanced response to stresses between cells and tissues has been pointed out since more than 30 years ago, but the molecular basis as to how organisms maintain proteostasis in all cells, especially cells deficient for chaperone induction, remains unknown. In this review, I introduce the non-cell autonomous function of molecular chaperones that has been suggested in animal studies, especially focusing on our recent findings, and discuss the possibility that the non-cell autonomous function might provide a potential explanation as to how organisms would maintain proteostasis despite the imbalanced stress response between cells and tissues. Further elucidation of the molecular basis underlying the non-cell autonomous function of molecular chaperones would provide not only better understanding as to how organisms maintain proteostasis but also important insights into the potential development of therapies and diagnostics for the currently intractable neurodegenerative diseases that are associated with protein misfolding and aggregation.
Collapse
Affiliation(s)
- Toshihide Takeuchi
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine.,JST, PRESTO
| |
Collapse
|
4
|
Herzfeld E, Strauss C, Simmermacher S, Bork K, Horstkorte R, Dehghani F, Scheller C. Investigation of the neuroprotective impact of nimodipine on Neuro2a cells by means of a surgery-like stress model. Int J Mol Sci 2014; 15:18453-65. [PMID: 25318050 PMCID: PMC4227225 DOI: 10.3390/ijms151018453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/09/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022] Open
Abstract
Nimodipine is well characterized for the management of SAH (subarachnoid hemorrhage) and has been shown to promote a better outcome and less DIND (delayed ischemic neurological deficits). In rat experiments, enhanced axonal sprouting and higher survival of motoneurons was demonstrated after cutting or crushing the facial nerve by nimodipine. These results were confirmed in clinical trials following vestibular Schwannoma surgery. The mechanism of the protective competence of nimodipine is unknown. Therefore, in this study, we established an in vitro model to examine the survival of Neuro2a cells after different stress stimuli occurring during surgery with or without nimodipine. Nimodipine significantly decreased ethanol-induced cell death of cells up to approximately 9% in all tested concentrations. Heat-induced cell death was diminished by approximately 2.5% by nimodipine. Cell death induced by mechanical treatment was reduced up to 15% by nimodipine. Our findings indicate that nimodipine rescues Neuro2a cells faintly, but significantly, from ethanol-, heat- and mechanically-induced cell death to different extents in a dosage-dependent manner. This model seems suitable for further investigation of the molecular mechanisms involved in the neuroprotective signal pathways influenced by nimodipine.
Collapse
Affiliation(s)
- Eva Herzfeld
- Department of Neurosurgery, Martin-Luther University of Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Christian Strauss
- Department of Neurosurgery, Martin-Luther University of Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Sebastian Simmermacher
- Department of Neurosurgery, Martin-Luther University of Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Kaya Bork
- Institute for Physiological Chemistry, Martin-Luther University of Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany.
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Martin-Luther University of Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany.
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin-Luther University of Halle-Wittenberg, Große Steinstraße 52, 06108 Halle (Saale), Germany.
| | - Christian Scheller
- Department of Neurosurgery, Martin-Luther University of Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| |
Collapse
|
5
|
Mansilla MJ, Montalban X, Espejo C. Heat shock protein 70: roles in multiple sclerosis. Mol Med 2012; 18:1018-28. [PMID: 22669475 DOI: 10.2119/molmed.2012.00119] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/31/2012] [Indexed: 11/06/2022] Open
Abstract
Heat shock proteins (HSP) have long been considered intracellular chaperones that possess housekeeping and cytoprotective functions. Consequently, HSP overexpression was proposed as a potential therapy for neurodegenerative diseases characterized by the accumulation or aggregation of abnormal proteins. Recently, the discovery that cells release HSP with the capacity to trigger proinflammatory as well as immunoregulatory responses has focused attention on investigating the role of HSP in chronic inflammatory autoimmune diseases such as multiple sclerosis (MS). To date, the most relevant HSP is the inducible Hsp70, which exhibits both cytoprotectant and immunoregulatory functions. Several studies have presented contradictory evidence concerning the involvement of Hsp70 in MS or experimental autoimmune encephalomyelitis (EAE), the MS animal model. In this review, we dissect the functions of Hsp70 and discuss the controversial data concerning the role of Hsp70 in MS and EAE.
Collapse
Affiliation(s)
- María José Mansilla
- Unitat de Neuroimmunologia Clínica, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
6
|
Cheng L, Smith DJ, Anderson RL, Nagley P. Human neuroblastoma SH-SY5Y cells show increased resistance to hyperthermic stress after differentiation, associated with elevated levels of Hsp72. Int J Hyperthermia 2011; 27:415-26. [DOI: 10.3109/02656736.2010.531075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
|
8
|
Roh K, Roh S, Yang BH, Lee JS, Chai YG, Choi MR, Park YC, Kim DJ, Kim D, Choi J, Kim SH. Effects of haloperidol and risperidone on the expression of heat shock protein 70 in MK-801-treated rat C6 glioma cells. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1793-7. [PMID: 18721842 DOI: 10.1016/j.pnpbp.2008.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/24/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
Abstract
Non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists such as dizocilpine (MK-801) produce schizophrenia-like psychosis in humans and induce the expression of heat shock protein 70 (HSP70) in rats. The present study examines the effects of antipsychotic drugs, haloperidol and risperidone, on the expression of HSP70 produced by MK-801 in rat C6 glioma cells. After pretreating with haloperidol and risperidone for 1 h, 6 h, 24 h and 72 h, respectively, C6 glioma cells were cultivated again in MK-801 for 6 h, and then, the extent of HSP70 expression was measured by immunoblotting using anti-HSP70 monoclonal antibody. The expression of HSP70 induced by MK-801 significantly decreased as the duration of haloperidol pretreatment was extended (p=0.002). Risperidone also increasingly attenuated the expression of HSP70 produced by MK-801 as the duration of pretreatment grew longer (p=0.003). The present findings show that haloperidol and risperidone decrease the HSP70 expression in MK-801-treated rat C6 glioma cells. These results suggest that HSP70 and NMDA receptors may play a significant role in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Kyungsoo Roh
- Department of Neuropsychiatry, Hanyang University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Umegae N, Nagai A, Terashima M, Watanabe T, Shimode K, Kobayashi S, Masuda J, Kim SU, Yamaguchi S. Cystatin C expression in ischemic white matter lesions. Acta Neurol Scand 2008; 118:60-7. [PMID: 18261165 DOI: 10.1111/j.1600-0404.2007.00984.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To study the involvement of cystatin C in the progression of ischemic white matter lesions (WMLs). MATERIALS AND METHODS Cystatin C levels in the cerebrospinal fluid (CSF) of patients with cerebrovascular disease, and also in primary and established human neural cell cultures were investigated. For pathologic analysis, cystatin C immunoreactivity was investigated in the white matter of patients with severe WMLs, mild WMLs or controls. RESULTS Cystatin C levels in the CSF of patients with Fazekas WML grade 3 [14 with hypertension; W/HT(+) and nine without hypertension; W/HT(-)] were lower than those in 38 patients with grade 0-1 (P = 0.0022 and P < 0.0001 respectively). Immunohistochemical study showed that the cystatin C immunoreactivity was found in astrocytes, and the number of astrocytes in the white matter in the severe WML group was decreased when compared with that in controls (P = 0.0027) and in the mild WML group (P = 0.0024). In human neural cell cultures, treatments with thrombin, matrix metalloproteinases and interleukin 1 beta increased the expression of cystatin C mRNA in human astrocytes and hybrid neurons, but an enzyme-linked immunosorbent assay revealed that only thrombin significantly increased the production and secretion of cystatin C in astrocytes. CONCLUSIONS These results suggest that low levels of CSF cystatin C in ischemic WMLs might be due to the decreased number of astrocytes that secrete cystatin C in response to the stimuli of proteases and inflammatory cytokines.
Collapse
Affiliation(s)
- N Umegae
- Department of Internal Medicine III, University Hospital, Shimane University, Izumo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Awad H, Suntres Z, Heijmans J, Smeak D, Bergdall-Costell V, Christofi FL, Magro C, Oglesbee M. Intracellular and extracellular expression of the major inducible 70kDa heat shock protein in experimental ischemia-reperfusion injury of the spinal cord. Exp Neurol 2008; 212:275-84. [PMID: 18511046 DOI: 10.1016/j.expneurol.2008.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
Inflammatory responses exacerbate ischemia-reperfusion (IR) injury of spinal cord, although understanding of mediators is incomplete. The major inducible 70kDa heat shock protein (hsp70) is induced by ischemia and extracellular hsp70 (e-hsp70) can modulate inflammatory responses, but there is no published information regarding e-hsp70 levels in the cerebrospinal fluid (CSF) or serum as part of any neurological disease state save trauma. The present work addresses this deficiency by examining e-hsp70 in serum and CSF of dogs in an experimental model of spinal cord IR injury. IR injury of spinal cord caused hind limb paraplegia within 2-3 h that was correlated to lumbosacral poliomalacia with T cell infiltrates at 3 d post-ischemia. In this context, we showed a 5.2-fold elevation of e-hsp70 in CSF that was induced by ischemia and was sustained for the following 3 d observation interval. Plasma e-hsp70 levels were unaffected by IR injury, indicating e-hsp70 release from within the central nervous system. A putative source of this e-hsp70 was ependymal cells in the ischemic penumbra, based upon elevated i-hsp70 levels detected within these cells. Results warrant further investigation of e-hsp70's potential to modulate spinal cord IR injury.
Collapse
Affiliation(s)
- Hamdy Awad
- Department of Anesthesiology, College of Medicine and Public Health, The Ohio State University, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Pavlik A, Aneja IS. Cerebral neurons and glial cell types inducing heat shock protein Hsp70 following heat stress in the rat. PROGRESS IN BRAIN RESEARCH 2007; 162:417-31. [PMID: 17645930 DOI: 10.1016/s0079-6123(06)62020-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this chapter, the distribution of Hsp70 in brain cell types following whole body hyperthermia is reviewed. The prevalence of Hsp70 expression in oligodendrocytes, microglia, and vascular cells in this type of stress contrasts with scarcity of Hsp70 induction in astrocytes and most neurons of the hyperthermic brain. However, a similarity between hyperthermic- and arsenite-induced brain patterns of Hsp70 expression supports the view that denaturation of specific proteins plays a major role in the selectivity of glial/vascular expression also during hyperthermia in vivo. The mechanism of neuronal Hsp70 non-responsiveness in heat stress despite their ability to use Hsc70 in a partial heat stress response remains to be elucidated.
Collapse
Affiliation(s)
- Alfred Pavlik
- Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | | |
Collapse
|
12
|
Ahn TB, Jeon BS. Protective role of heat shock and heat shock protein 70 in lactacystin-induced cell death both in the rat substantia nigra and PC12 cells. Brain Res 2006; 1087:159-67. [PMID: 16626658 DOI: 10.1016/j.brainres.2006.02.097] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/20/2006] [Accepted: 02/22/2006] [Indexed: 11/25/2022]
Abstract
Proteasomal dysfunction plays an important role in the pathogenesis of Parkinson disease (PD). Although clinical and experimental evidence continues to accumulate indicating heat shock protein 70 (HSP70) is significant in the pathogenesis of PD, few studies have been made to investigate the role of HSP70 under the condition of proteasome dysfunction. In in vivo study, we infused lactacystin into the unilateral substantia nigra (SN) of Sprague-Dawley rats with or without preceding whole body hyperthermia (WBH). Immunohistochemical studies showed the death of dopaminergic neurons and activated microglia in the SN. Lactacystin with prior WBH increased the expression of HSP70 more than did lactacystin alone and decreased lactacystin-induced dopaminergic neuronal death in the SN. In PC12 cells, heat shock pretreatment decreased lactacystin-induced cell death. Although additional treatment of nocodazole, ammonium chloride, and 3-methyladenine augmented cell death by lactacystin, heat shock pretreated to these drugs offsets their additional toxicity. These results indicate that heat shock proteins, especially HSP70, could play an important role under the condition of proteasome dysfunction in part by fostering aggresome formation and lysosome-mediated autophagy.
Collapse
Affiliation(s)
- Tae-Beom Ahn
- Department of Neurology, Kyung Hee University College of Medicine, South Korea
| | | |
Collapse
|
13
|
Ishida Y, Nagai A, Kobayashi S, Kim SU. Upregulation of protease-activated receptor-1 in astrocytes in Parkinson disease: astrocyte-mediated neuroprotection through increased levels of glutathione peroxidase. J Neuropathol Exp Neurol 2006; 65:66-77. [PMID: 16410750 DOI: 10.1097/01.jnen.0000195941.48033.eb] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the present study, we investigated the expression of protease-activated receptors (PARs), receptors for thrombin, in substantia nigra pars compacta (SNpc) of Parkinson disease (PD) brains and cultures of human neurons, astrocytes, oligodendrocytes, and microglia as determined by immunocytochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). Expression of PAR-1 was demonstrated only in glial fibrillary acidic protein-positive astrocytes in SNpc, and the number of astrocytes expressing PAR-1 increased in SNpc of PD as compared with nonneurologic control brain. Immunoreactivity for thrombin and prothrombin was stronger in astrocytes and the vessel walls in SNpc of PD brains. PAR-1 was expressed in human astrocytes and neurons, but not in oligodendrocytes or microglia as determined by RT-PCR. We investigated thrombin-mediated activation of human astrocytes. Thrombin treatment activates human astrocytes and induces morphologic change and a marked increase in proliferation of astrocytes. Increased expression of glial cell line-derived growth factor and glutathione peroxidase (GPx) but no change in the expression of nerve growth factor and inflammatory cytokines/chemokine (IL-1beta, IL-6, IL-8, MCP-1) was found in thrombin/PAR-activated astrocytes. Next, we studied the neuroprotective effect exerted by thrombin-activated astrocytes in human cerebral neuron x human neuroblastoma hybrid neurons. Although thrombin showed neurotoxicity against human hybrid neurons in a dose-dependent manner, the conditioned media derived from thrombin-pretreated astrocyte cultures promoted the survival of human hybrid neurons. The protective effect was completely inhibited with a GPx inhibitor, mercaptosuccinic acid, indicating that GPx released from thrombin/PAR-activated astrocytes is responsible for neuroprotection of hybrid neurons against thrombin cytotoxicity. The present study suggests that the increased expression of PAR-1 in astrocytes in SNpc of PD brain is the restorative move taken by the brain to provide neuroprotection against neuronal degeneration and cell death of dopaminergic neurons caused by noxious insults during the progression of PD pathology.
Collapse
Affiliation(s)
- Yuri Ishida
- Department of Neurology and Department of Laboratory Medicine, Shimane University School of Medicine, Izumo, Japan
| | | | | | | |
Collapse
|
14
|
Nagai A, Ryu JK, Terashima M, Tanigawa Y, Wakabayashi K, McLarnon JG, Kobayashi S, Masuda J, Kim SU. Neuronal cell death induced by cystatin C in vivo and in cultured human CNS neurons is inhibited with cathepsin B. Brain Res 2005; 1066:120-8. [PMID: 16325785 DOI: 10.1016/j.brainres.2005.10.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 10/19/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
Cystatin C, a cysteine protease inhibitor, is implicated in pathogenesis of late-onset Alzheimer's disease and other neurological disorders. Our recent study showed that cystatin C injection into rat hippocampus induced neuronal cell death in granule cell layer of dentate gyrus in vivo. We further confirmed that cystatin C neurotoxicity was inhibited by simultaneous coapplication of cathepsin B, a cysteine protease. In vitro cytotoxicity was also studied in cultures of human CNS neurons, mixed cultures with astrocytes and A1 human hybrid neurons. Cystatin C induced neuronal cell death in a dose-dependent manner, which accompanied increased number of TUNEL (+) cells, up-regulation of active caspase-3 and DNA ladder. The results of the present study indicate that cystatin C participates in the process of apoptotic neuronal cell death in experimental conditions by means of inhibitory activity of cysteine proteases, and that cystatin C might be involved in the pathogenesis in human neurological disorders including Alzheimer's disease.
Collapse
Affiliation(s)
- Atsushi Nagai
- Department of Neurology, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Microglia, one of three glial cell types in the central nervous system (CNS), play an important role as resident immunocompetent and phagocytic cells in the CNS in the event of injury and disease. It was del Rio Hortega in 1927 who determined that microglia belong a distinct glial cell type apart from astrocytes and oligodendrocytes, and since 1970s there has been wide recognition that microglia are immune effectors in the CNS that respond to pathological conditions and participate in initiation and progression of neurological disorders including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and acquired immune deficiency syndrome dementia complex by releasing potentially cytotoxic molecules such as proinflammatory cytokines, reactive oxygen intermediates, proteinases and complement proteins. There is also evidence to suggest that microglia are capable of secreting neurotrophic or neuron survival factors upon activation via inflammation or injury. It is thus timely to review current status of knowledge on biology and immunology of microglia, and consider new directions of investigation on microglia in health and disease.
Collapse
Affiliation(s)
- Seung U Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
16
|
Ahmed RG. Heat stress induced histopathology and pathophysiology of the central nervous system. Int J Dev Neurosci 2005; 23:549-57. [PMID: 16011888 DOI: 10.1016/j.ijdevneu.2005.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/07/2005] [Accepted: 03/11/2005] [Indexed: 11/30/2022] Open
Abstract
The number of reports on the effects of heat stress is still increasing on account of the temperature is one of the most encountered stressful factors on the different biological systems. Because the heat stress (HS) considered a model of thermal injury to the central nervous system (CNS), the purpose of this review was to assess the histopathological changes of HS on CNS. Also, this review emphasized that the heat stress may retard partially the degree of the postnatal neurogenesis and growth of CNS. Taken together, owing to one of the most important functions of heat shock protein is to protect the organisms from the deleterious effects of temperature, thus, it can be hypothesized that the formation of heat shock proteins may be related to the deleterious effect of HS. On the other hands, the alterations of neurotransmitters in the central nervous system might be involved in the physiological and biochemical responses that occur during heat stress. The hypothalamic monoaminergic systems play an important role in the thermoregulation through regulate the heat production and heat dissipation. In addition, the disturbance in the biochemical variables due to the high temperature may be the cause of the histopathological changes and the partial retardation in CNS and the reverse is true. Thus, further studies need to be done to emphasize this concept.
Collapse
Affiliation(s)
- R G Ahmed
- Department of Zoology, Faculty of Science, Cairo University, Beni-Suef, Branch, Beni-Suef, Egypt.
| |
Collapse
|
17
|
Sebastià J, Cristòfol R, Pertusa M, Vílchez D, Torán N, Barambio S, Rodríguez-Farré E, Sanfeliu C. Down's syndrome astrocytes have greater antioxidant capacity than euploid astrocytes. Eur J Neurosci 2004; 20:2355-66. [PMID: 15525277 DOI: 10.1111/j.1460-9568.2004.03686.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Down's syndrome (trisomy 21) brain tissue is considered to be susceptible to oxidative injury, mainly because its increased Cu/Zn-superoxide dismutase (SOD1) activity is not followed by an adaptive rise in hydrogen peroxide metabolizing enzymes. In vitro, trisomic neurons suffer oxidative stress and degenerate. We studied the response of trisomy 21 neuron and astrocyte cultures to hydrogen peroxide injury and found that they were, respectively, more and less vulnerable than their euploid counterparts. Differences were detected 24 h after exposures in the region of 50 microm and 500 microm hydrogen peroxide for neuron and astrocyte cultures, respectively. Cytotoxicity results were paralleled by a decrease in cellular glutathione. In addition, trisomic astrocytes showed a lower basal content of superoxide ion and a higher clearance of hydrogen peroxide from the culture medium. In the presence of hydrogen peroxide, trisomic astrocytes maintained their concentration of intracellular superoxide and hydroperoxides at a lower level than euploid astrocytes. Consistent with these results, trisomic astrocytes in neuron coculture were more neuroprotective than euploid astrocytes against hydrogen peroxide injury. We suggest that SOD1 overexpression has beneficial effects on astrocytes, as it does in other systems with similarly high disposal of hydroperoxides. In addition to a higher enzymatic activity of SOD1, cultures of trisomic astrocytes showed slightly higher glutathione reductase activity than euploid cultures. Thus, trisomy 21 astrocytes showed a greater antioxidant capacity against hydrogen peroxide than euploid astrocytes, and they partially counteracted the oxidative vulnerability of trisomic neurons in culture.
Collapse
Affiliation(s)
- Jordi Sebastià
- Departament de Farmacologia i Toxicologia. Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC-IDIBAPS, Rosselló 161, E-08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Magrané J, Smith RC, Walsh K, Querfurth HW. Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 2004; 24:1700-6. [PMID: 14973234 PMCID: PMC6730449 DOI: 10.1523/jneurosci.4330-03.2004] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intracellular beta-amyloid 42 (Abeta42) accumulation is increasingly recognized as an early event in the pathogenesis of Alzheimer's disease (AD). We have developed a doxycycline-inducible adenoviral-based system that directs intracellular Abeta42 expression and accumulation into the endoplasmic reticulum of primary neuronal cultures in a regulated manner. Abeta42 exhibited a perinuclear distribution in cell bodies and an association with vesicular compartments. Virally expressed intracellular Abeta42 was toxic to neuronal cultures 24 hr after induction in a dose-dependent manner. Abeta42 expression prompted the rapid induction of stress-inducible Hsp70 protein in neurons, and virally mediated Hsp70 overexpression rescued neurons from the toxic effects of intracellular Abeta accumulation. Together, these results implicate the cellular stress response as a possible modulator of Abeta-induced toxicity in neuronal cultures.
Collapse
Affiliation(s)
- Jordi Magrané
- Division of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | |
Collapse
|
19
|
Choi HB, Hong SH, Ryu JK, Kim SU, McLarnon JG. Differential activation of subtype purinergic receptors modulates Ca(2+) mobilization and COX-2 in human microglia. Glia 2003; 43:95-103. [PMID: 12838502 DOI: 10.1002/glia.10239] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have studied modulation of purinergic receptors (P(2Y) and P(2X) subtypes) on changes in intracellular Ca(2+) [Ca(2+)](i) and expression and production of COX-2 in human microglia. Measurements using Ca(2+)-sensitive spectrofluorometry showed adenosine triphosphate (ATP) to cause rapid transient increases in [Ca(2+)](i). Application of ATP plus the P(2X) antagonist, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), or treatment with adenosine diphosphate-beta-S (ADP-beta-S), a selective P(2Y) agonist, led to a considerable prolongation in [Ca(2+)](i) responses compared with ATP. The prolonged time courses were consistent with sustained activation of store-operated channels (SOC) since SKF96365, an inhibitor of SOC, blocked this component of the response. RT-PCR data showed that microglia expressed no COX-2 either constitutively or following treatment of cells with ATP (100 microM for 8 h). However, treatment using ATP plus PPADS or with ADP-beta-S led to marked expression of COX-2. The enhanced COX-2 with ATP plus PPADS treatment was absent in the presence of SKF96365 or using Ca(2+)-free solution. Immunocytochemistry, using a specific anti-COX-2 antibody, also revealed a pattern of purinergic modulation whereby lack of P(2X) activation enhanced the production of COX-2 protein. These results suggest that modulation of subtypes of purinergic receptors regulates COX-2 in human microglia with a link involving SOC-mediated influx of Ca(2+).
Collapse
Affiliation(s)
- Hyun B Choi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
20
|
Pavlik A, Aneja IS, Lexa J, Al-Zoabi BA. Identification of cerebral neurons and glial cell types inducing heat shock protein Hsp70 following heat stress in the rat. Brain Res 2003; 973:179-89. [PMID: 12738061 DOI: 10.1016/s0006-8993(03)02476-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heat shock proteins were recently recognized as molecular chaperones that besides their chaperoning function were also involved in processes of cell death and survival. Many types of neural cells were reportedly capable of expressing heat shock protein Hsp70 following heat stress in vitro. However, identification of cell types inducing Hsp70 protein in the hyperthermic brain is not clear. In this study, cerebral Hsp70 distribution was evaluated in anesthetized adult rats (urethane, 1.5 g/kg, i.p.) subjected to short-term hyperthermia (41.5 degrees C for 30 min). Detection of Hsp70 was achieved by an ABC technique in vibratome or paraffin sections combined with specific markers of glial cell types. Hsp70 appeared by 90 min, mainly in glial and vascular cells, with enhanced immunostaining by 4 h following hyperthermia. Higher numbers of Hsp70-positive cells were detected in the white matter and diencephalic region than in the cerebral cortex, especially over the shorter interval. Hsp70 was localized in many oligodendrocytes, double-labeled with lectin GSII, and some vessels. Microglia showed apparently less Hsp70/OX-42 double-labeled cells than the previous two cell types. In contrast, only a few Hsp70-stained cells were positive for astrocyte marker GFAP. In addition to glial/vascular Hsp70 staining, neuronal Hsp70 induction was observed only in discrete regions including the paraventricular, supraoptic, suprachiasmatic and other hypothalamic nuclei, and in amygdala. Prevailing heat-stress expression of Hsp70 in oligodendrocytes and vascular cells might render them less susceptible to the consequences of other types of cell stress and could be exploited to increase selectively their survival in pathological situations.
Collapse
Affiliation(s)
- Alfred Pavlik
- Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 131 10 Safat, Kuwait.
| | | | | | | |
Collapse
|
21
|
Choi HB, Khoo C, Ryu JK, van Breemen E, Kim SU, McLarnon JG. Inhibition of lipopolysaccharide-induced cyclooxygenase-2, tumor necrosis factor-alpha and [Ca2+]i responses in human microglia by the peripheral benzodiazepine receptor ligand PK11195. J Neurochem 2002; 83:546-55. [PMID: 12390516 DOI: 10.1046/j.1471-4159.2002.01122.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anti-inflammatory actions of the mitochondrial peripheral benzodiazepine receptor (PBR) agonist PK11195 [1-(2-chloro- phenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carboxamide] were investigated in human microglia. Application of the microglial inflammatory stimulus lipopolysaccharide (LPS, at 100 ng/mL for 3 h), induced enhancement of the expressions of the inducible enzyme, cyclooxygenase-2 (COX-2) and the pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha). PK11195 (at 50 microm) significantly inhibited the LPS-induced up-regulation of both inflammatory factors; at a lower concentration of PK11195 (2 microm) expression of TNF-alpha, but not COX-2, was reduced. Production of both factors, using immunocytochemistry for COX-2 and ELISA for TNF-alpha, was markedly reduced with 50 microm of PK11195 added to LPS solution. Acute application of LPS induced a transient increase in intracellular Ca2+[Ca2+]i exhibiting both a slow development and recovery in kinetic behavior. This increase in [Ca2+]i consisted primarily of a Ca2+ influx component accompanied by a smaller mobilization from intracellular Ca2+ stores. In the presence of PK11195, the amplitude of the [Ca2+]i response induced by LPS was reduced by 54%. Another mitochondrial agent cyclosporin A (CsA), which also acts at the permeability transition pore (PTP) of mitochondrial membrane but at a site different from the PBR, was ineffective in reducing either the LPS-induced expression of COX-2 and TNF-alpha or the endotoxin increase in [Ca2+]i. These results indicate that the mitochondrial effector PK11195 is a specific and effective agent for inhibiting LPS-induced microglial expressions of COX-2 and TNF-alpha and that modulation of Ca2+-mediated signaling pathways could be involved in the anti-inflammatory actions.
Collapse
Affiliation(s)
- Hyan B Choi
- Department of Pharmacology and Therapeutics, Division of Neurology, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | | | |
Collapse
|
22
|
Bodega G, Hernández C, Suárez I, Martín M, Fernández B. HSP70 constitutive expression in rat central nervous system from postnatal development to maturity. J Histochem Cytochem 2002; 50:1161-8. [PMID: 12185193 DOI: 10.1177/002215540205000902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We studied the level of the basal (constitutive) HSP70 expression (inducible and constitutive forms) in the central nervous system (CNS) of male and female rats from the postnatal period to maturity. HSP70 levels were analyzed by immunoblotting in five different areas (cortex, hippocampus, hypothalamus, cerebellum, and spinal cord). The highest levels of HSP70 were found in juvenile rats and decreased progressively until reaching baseline levels between 2 and 4 months. A slight and nonsignificant increase in aged (2-year-old) rats compared with adult subjects was observed in some cerebral areas (cerebral cortex, hippocampus, and cerebellum). In the first weeks of postnatal development, HSP70 immunoreactivity was distributed throughout CNS sections and no specific immunopositive cells could be clearly determined. In adult animals, strong immunostaining was observed in some large neurons (Purkinje neurons and mesencephalic and spinal cord motor neurons), some perivascular and subpial astrocytes, and ependymocytes. Immunoelectron microscopy revealed that HSP70 in these cells is located in the perinuclear area and in mitochondria, rough endoplasmic reticulum, and microtubules. In neurons, strong immunolabeling was also observed in synaptic membranes. The postnatal time course of HSP70 levels and the location and size of HSP70-immunopositive cells suggest that HSP70 constitutively expressed in the rat CNS may be mainly determined by the degree of development and metabolic activity of the neural cells.
Collapse
Affiliation(s)
- Guillermo Bodega
- Departamento de Biología Celular y Genética, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| | | | | | | | | |
Collapse
|
23
|
Khabazian I, Bains JS, Williams DE, Cheung J, Wilson JMB, Pasqualotto BA, Pelech SL, Andersen RJ, Wang YT, Liu L, Nagai A, Kim SU, Craig UK, Shaw CA. Isolation of various forms of sterol beta-D-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS-parkinsonism dementia complex. J Neurochem 2002; 82:516-28. [PMID: 12153476 DOI: 10.1046/j.1471-4159.2002.00976.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The factors responsible for ALS-parkinsonism dementia complex (ALS-PDC), the unique neurological disorder of Guam, remain unresolved, but identification of causal factors could lead to clues for related neurodegenerative disorders elsewhere. Earlier studies focused on the consumption and toxicity of the seed of Cycas circinalis, a traditional staple of the indigenous diet, but found no convincing evidence for toxin-linked neurodegeneration. We have reassessed the issue in a series of in vitro bioassays designed to isolate non-water soluble compounds from washed cycad flour and have identified three sterol beta-d-glucosides as potential neurotoxins. These compounds give depolarizing field potentials in cortical slices, induce alterations in the activity of specific protein kinases, and cause release of glutamate. They are also highly toxic, leading to release of lactate dehydrogenase (LDH). Theaglycone form, however, is non-toxic. NMDA receptor antagonists block the actions of the sterol glucosides, but do not compete for binding to the NMDA receptor. The most probable mechanism leading to cell death may involve glutamate neuro/excitotoxicity. Mice fed cycad seed flour containing the isolated sterol glucosides show behavioral and neuropathological outcomes, including increased TdT-mediated biotin-dUTP nick-end labelling (TUNEL) positivity in various CNS regions. Astrocytes in culture showed increased caspase-3 labeling after exposure to sterol glucosides. The present results support the hypothesis that cycad consumption may be an important factor in the etiology of ALS-PDC and further suggest that some sterol glucosides may be involved in other neurodegenerative disorders.
Collapse
Affiliation(s)
- I Khabazian
- Department of Ophthalmology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Helfert RH, Glatz FR, Wilson TS, Ramkumar V, Hughes LF. Hsp70 in the inferior colliculus of Fischer-344 rats: effects of age and acoustic stress. Hear Res 2002; 170:155-65. [PMID: 12208549 DOI: 10.1016/s0378-5955(02)00487-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heat shock proteins 72 and 73 (hsp72 and hsp73) were studied in the inferior colliculus (IC) of Fischer-344 rats to determine if their levels are altered during normal aging and following exposure to intense acoustic noise. Three age groups of rats (3, 18, and 25 months) were exposed to ambient sound (control) or broad-band noise at 108 dB sound pressure level (0.0004 dyn/cm2) for 30 min. Western blotting procedures were used to measure hsp72 and hsp73 in ICs and cerebella (positive control). Immunohistochemistry was performed using 3-month olds to study the localization patterns of hsp72 and hsp73 in both structures. The IC and cerebellum exhibited immunolabeling over neuronal somata and proximal dendrites. Ambient levels of hsp72 in supernatants from aged rats were reduced 56.5%+/-7.8% in the IC relative to 3-month olds. This decrease may render the IC more susceptible to stress-related damage. An increase in constitutive hsp73 (350.7%+/-70.4%) was observed in IC pellet fractions from animals exposed to the 108-dB noise when compared to the ambient-noise controls, suggestive of a lipoprotective role for hsp73. This elevation was consistent across age groups. No noise-induced changes in hsp72 were detectable in the IC, indicating that loud sounds may not be an appropriate stimulus for hsp72 induction in this structure.
Collapse
Affiliation(s)
- Robert H Helfert
- Department of Surgery, Southern Illinois University School of Medicine, P.O. Box 19638, Springfield, IL 62794-9638, USA.
| | | | | | | | | |
Collapse
|
25
|
Hatori K, Nagai A, Heisel R, Ryu JK, Kim SU. Fractalkine and fractalkine receptors in human neurons and glial cells. J Neurosci Res 2002; 69:418-26. [PMID: 12125082 DOI: 10.1002/jnr.10304] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fractalkine has been identified as a novel chemokine that exhibits cell adhesion and chemoattractive properties in the central nervous system (CNS), and the fractalkine receptors, CX3CR1, are also expressed in the CNS. In the present study, the expression of fractalkine and fractalkine receptors was investigated in enriched populations of human CNS neurons, astrocytes, and microglia. In addition, the regulatory role played by protein kinase C (PKC) in fractalkine secretion in neurons was determined in A1 human hybrid neuronal cell line produced between a human cerebral neuron and a human neuroblastoma cell. Human neurons and astrocytes expressed fractalkine mRNA as determined by the revserse transcriptase-polymerase chain reaction (RT-PCR) analysis, while human microglia preparation did not express the fractalkine message. Human neurons and microglia expressed CX3CR1 mRNA, but astrocytes did not. These results suggest that fractalkine secreted by CNS neurons and astrocytes produce biological effects in neurons and microglia. Although phorbol ester did not change the expression of fractalkine mRNA level in A1 hybrid neurons, it did upregulate fractalkine secretion over unstimulated controls. This upregulation of fractalkine production was suppressed by the treatment with Ro32-0432, a PKC inhibitor. These results indicate that intracellular signals transduced by PKC play an important role in the regulation of soluble fractalkine at the post-transcriptional level in human neurons. As for the biological function of fractalkine, extracellularly applied fractalkine increased the number of bromodeoxyuridine-labeled microglia 3-fold over the untreated controls, indicating fractalkine induces proliferation of human microglia. These observations suggest that fractalkine released by injured neurons could induce proliferation, activation and/or migration of microglia at the injured brain sites.
Collapse
Affiliation(s)
- Kozo Hatori
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
26
|
Lee YB, Nagai A, Kim SU. Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res 2002; 69:94-103. [PMID: 12111820 DOI: 10.1002/jnr.10253] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Enriched populations of human microglial cells were isolated from mixed cell cultures prepared from embryonic human telencephalon tissues. Human microglial cells exhibited cell type-specific antigens for macrophage-microglia lineage cells including CD11b (Mac-1), CD68, B7-2 (CD86), HLA-ABC, HLA-DR and ricinus communis aggulutinin lectin-1 (RCA-1), and actively phagocytosed latex beads. Gene expression and protein production of cytokines, chemokines and cytokine/chemokine receptors were investigated in the purified populations of human microglia. Normal unstimulated human microglia expressed constitutively mRNA transcripts for interleukin- 1beta (IL-1beta) -6, -8, -10, -12, -15, tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, and monocyte chemoattractant protein-1 (MCP-1), while treatment with lipopolysaccharide (LPS) or amyloid beta peptides (Abeta) led to increased expression of mRNA levels of IL-8, IL-10, IL-12, TNF-alpha, MIP-1alpha, MIP-1beta, and MCP-1. Human microglia, in addition, expressed mRNA transcripts for IL-1RI, IL-1RII, IL-5R, IL-6R, IL-8R, IL-9R, IL-10R, IL-12R, IL-13R, and IL-15R. Enzyme-linked immunosorbent assays (ELISA) showed increased protein levels in culture media of IL-1beta, IL-8, TNF-alpha, and MIP-1alpha in human microglia following treatment with LPS or Abeta. Increased TNF-alpha release from human microglia following LPS treatment was completely inhibited with IL-10 pretreatment, but not with IL-6, IL-9, IL-12, IL-13, or transforming growth factor-beta (TGF-beta). Present results should help in understanding the basic microglial biology, but also the pathophysiology of activated microglia in neurological diseases such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, stroke, and neurotrauma.
Collapse
Affiliation(s)
- Yong B Lee
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
27
|
Nagai A, Nakagawa E, Hatori K, Choi HB, McLarnon JG, Lee MA, Kim SU. Generation and characterization of immortalized human microglial cell lines: expression of cytokines and chemokines. Neurobiol Dis 2001; 8:1057-68. [PMID: 11741401 DOI: 10.1006/nbdi.2001.0437] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microglia are a major glial component of the central nervous system (CNS), play a critical role as resident immunocompetent and phagocytic cells in the CNS, and serve as scavenger cells in the event of infection, inflammation, trauma, ischemia, and neurodegeneration in the CNS. Studies of human microglia have been hampered by the difficulty of obtaining sufficient numbers of human microglia. One way to circumvent this difficulty is to establish permanent cell lines of human microglia. In the present study we report the generation of immortalized human microglial cell line, HMO6, from human embryonic telencephalon tissue using a retroviral vector encoding myc oncogene. The HMO6 cells exhibited cell type-specific antigens for microglia-macrophage lineage cells including CD11b (Mac-1), CD68, CD86 (B7-2), HLA-ABC, HLA-DR, and ricinus communis agglutinin lectin-1 (RCA), and actively phagocytosed latex beads. In addition, HMO6 cells showed ATP-induced responses similar to human primary microglia in Ca2+ influx spectroscopy. Both human primary microglia and HMO6 cells showed the similar cytokine gene expression in IL-1beta, IL-6, IL-8, IL-10, IL-12, IL-15, and TNF-alpha. Using HMO6 cells, we investigated whether activation was induced by Amyloid-beta fragments or lipopolysaccharide (LPS). Treatment of HMO6 cells with Amyloid-beta 25-35 fragment (Abeta(25-35)) or Amyloid-beta 1-42 fragment (Abeta(1-42)) led to increased expression of mRNA levels of cytokine/chemokine IL-8, IL-10, IL-12, MIP-1beta MIP-1, and MCP-1, and treatment with LPS produced same results. Expression of TNF-alpha and MIP1-alpha was not detected in unstimulated HMO6 cells, but their expression was later induced by long-term exposure to Abeta(25-35) or Abeta(1-42.) ELISA assays of spent culture media showed increased protein levels of TNF-alpha and IL-8 in HMO6 cells following treatment with Abeta(25-35) or LPS. Taken together, our results demonstrate that treatment of human primary microglia and HMO6 immortalized human microglia cell line with Abeta(25-35), Abeta(1-42) and LPS upregulate gene expression and protein production of proinflammatory cytokines and chemokines in these cells. The human microglial cell line HMO6 exhibits similar properties to those documented in human microglia and should have considerable utility as an in vitro model for the studies of human microglia in health and disease.
Collapse
Affiliation(s)
- A Nagai
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Khoo C, Helm J, Choi HB, Kim SU, McLarnon JG. Inhibition of store-operated Ca(2+) influx by acidic extracellular pH in cultured human microglia. Glia 2001; 36:22-30. [PMID: 11571781 DOI: 10.1002/glia.1092] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of extracellular acidification on Ca(2+)-dependent signaling pathways in human microglia were investigated using Ca(2+)-sensitive fluorescence microscopy. Adenosine triphosphate (ATP) was used to elicit Ca(2+) responses primarily dependent on the depletion of intracellular endoplasmic reticulum (ER) stores, while platelet-activating factor (PAF) was used to elicit responses primarily dependent on store-operated channel (SOC) influx of Ca(2+). The duration of transient responses induced by ATP was not significantly different in standard physiological pH 7.4 (mean duration 30.2 +/- 2.5 s) or acidified pH 6.2 (mean duration 31.7 +/- 2.8 s) extracellular solutions. However, the time course of the PAF response at pH 7.4 was significantly reduced by 87% with external pH at 6.2. These results suggest that acidification of extracellular solutions inhibits SOC entry of Ca(2+) with little or no effect on depletion of ER stores. Changes of extracellular pH over the range from 8.6 to 6.2 during the development of a sustained SOC influx induced by PAF resulted in instantaneous modulation of SOC amplitude indicating a rapidly reversible effect of pH on this Ca(2+) pathway. Whole-cell patch clamp recordings showed external acidification blocked depolarization-activated outward K(+) current indicating cellular depolarization may be involved in the acid pH inhibition. Since SOC mediated influx of Ca(2+) is strongly modulated by membrane potential, the electrophysiological data suggest that acidification may act to inhibit SOC by cellular depolarization. These results suggest that acidification observed during cerebral ischemia may alter microglial responses and functions.
Collapse
Affiliation(s)
- C Khoo
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
29
|
Sharp FR, Bernaudin M, Bartels M, Wagner KR. Glial expression of heat shock proteins (HSPs) and oxygen-regulated proteins (ORPs). PROGRESS IN BRAIN RESEARCH 2001; 132:427-40. [PMID: 11545009 DOI: 10.1016/s0079-6123(01)32093-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- F R Sharp
- Department of Neurology, University of Cincinnati, Vontz Center for Molecular Studies, Room 2327, 3125 Eden Avenue, Cincinnati, OH 45267-0536, USA.
| | | | | | | |
Collapse
|
30
|
McLarnon JG, Franciosi S, Wang X, Bae JH, Choi HB, Kim SU. Acute actions of tumor necrosis factor-alpha on intracellular Ca(2+) and K(+) currents in human microglia. Neuroscience 2001; 104:1175-84. [PMID: 11457600 DOI: 10.1016/s0306-4522(01)00119-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of acute application of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFalpha) on levels of intracellular Ca(2+) ([Ca(2+)]i) and on whole-cell outward and inward K(+) currents were studied in cultured human microglia. TNFalpha elicited a linear increase in [Ca(2+)]i to a plateau level in microglia bathed in either standard physiological saline solution or Ca(2+)-free physiological saline solution. The rate of increase of [Ca(2+)]i or the level of [Ca(2+)]i attained was not significantly altered in the absence of external Ca(2+) indicating that Ca(2+) influx did not contribute appreciably to the cytokine-induced rise in [Ca(2+)]i. This point was directly confirmed using Mn(2+) quenching where no change in signal fluorescence was observed with TNFalpha treatment of microglia in Ca(2+)-free physiological saline solution. The rate of increase of [Ca(2+)]i induced by TNFalpha in Ca(2+)-free physiological saline solution was not altered by prior application of ATP to deplete inositol triphosphate stores indicating that these stores did not contribute to the cytokine response. In whole-cell patch clamp recordings, the acute treatment of human microglia with TNFalpha led to the expression of an outward K(+) current in one-third (14 of 41) of cells. This current was activated at potentials positive to -30 mV, showed rapid kinetics of activation with no evident inactivation and had an I-V relation exhibiting outward rectification. Analysis of tail currents showed reversal of the outward K(+) current near -70 mV and tetraethylammonium (10 mM) inhibited the outward K(+) current to 24% of control level. Acute application of TNFalpha had no effect to alter inward rectifier currents generated from voltage ramps. The signaling pathways involving TNFalpha modulation of [Ca(2+)]i and K(+) channels in human microglia may contribute to functional and pathological actions of the cytokine in the brain.
Collapse
Affiliation(s)
- J G McLarnon
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
| | | | | | | | | | | |
Collapse
|
31
|
Sanfeliu C, Sebastià J, Ki SU. Methylmercury neurotoxicity in cultures of human neurons, astrocytes, neuroblastoma cells. Neurotoxicology 2001; 22:317-27. [PMID: 11456333 DOI: 10.1016/s0161-813x(01)00015-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neurotoxic effects of methylmercury, were investigated in vitro in primary cultures of human neurons and astrocytes isolatedfrom human fetal brain and in the human neuroblastoma cell line SH-SY5Y. The protection provided by agents with antioxidant properties was tested in these cultures to examine the oxidative stress mechanism of methylmercury poisoning. After 24 h of exposure to methylmercury, LC50 values were 6.5, 8.1 and 6.9 microM for human neurons, astrocytes and neuroblastoma cells, respectively, and the degree of cell damage increased at longer exposure times. Depletion of the cellular pool of reduced glutathione (GSH) by treatment with buthionine sulfoximine potentiated methylmercury cytotoxicity in all three cell types; neuroblastoma cells were the most sensitive. Addition of GSH extracellularly blocked methylmercury neurotoxicity in all cell types. The major beneficial effect of GSH could be attributed to its capacity to form conjugates with methylmercury, which reduces the availability of these organometallic molecules to the cells and facilitates their efflux. Cysteine protected astrocytes and neuroblastoma cells from methylmercury neurotoxicity, while selenite, Vitamin E and catalase produced some minor protective effects in three cell types, particularly in neurons. The present study showed that the human neural cells tested had differential responses to methylmercury: astrocytes were resistant to methylmercury neurotoxicity and neurons were more most responsive to protection afforded by antioxidants among the three cell types.
Collapse
Affiliation(s)
- C Sanfeliu
- Department of Neurology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
32
|
Nagai A, Nakagawa E, Choi HB, Hatori K, Kobayashi S, Kim SU. Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol 2001; 60:386-92. [PMID: 11305874 DOI: 10.1093/jnen/60.4.386] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Erythropoietin (EPO) is a hematopoietic growth factor that stimulates proliferation and differentiation of erythroid precursor cells and is also known to exert neurotrophic activity in the central nervous system (CNS). However, little is known about expression of EPO and EPO receptor (EPOR) in human CNS tissues. In the present study, we investigated the effects of proinflammatory cytokines on EPO and EPOR expression in highly purified cultures of human neurons, astrocytes, microglia, and oligodendrocytes using reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). EPO mRNA was demonstrated only in human astrocytes, while EPOR expression was found in human neurons, astrocytes, and microglia. Neither EPO nor EPOR expression was found in oligodendrocytes. In human astrocytes, EPO mRNA and secreted EPO protein levels were downregulated after exposure to proinflammatory cytokines (IL-1beta, IL-6, or TNF-alpha). In human neurons, TNF-alpha treatment markedly increased EPOR expression. These results suggest that proinflammatory cytokines regulate expression of EPO and EPOR in human neurons, astrocytes, and microglia and further facilitate interactions among different cell types in the human CNS.
Collapse
Affiliation(s)
- A Nagai
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Almazan G, Liu HN, Khorchid A, Sundararajan S, Martinez-Bermudez AK, Chemtob S. Exposure of developing oligodendrocytes to cadmium causes HSP72 induction, free radical generation, reduction in glutathione levels, and cell death. Free Radic Biol Med 2000; 29:858-69. [PMID: 11063911 DOI: 10.1016/s0891-5849(00)00384-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Primary cultures of oligodendrocytes were used to study the toxic effects of cadmium chloride. Cell viability was evaluated by the mitochondrial dehydrogenase activity and confirmed by propidium iodide (PI) fluorescence staining. The expression of the 72 kDa stress protein, HSP72, was assayed by Western blot analysis. The results showed that Cd(2+)-induced toxicity was dependent on the time and dose of exposure, as well as on the developmental stage of the cultures. Oligodendrocyte progenitors were more vulnerable to Cd(2+) toxicity than were mature oligodendrocytes. Mature oligodendrocytes accumulated relatively higher levels of Cd(2+) than did progenitors, as determined by (109)CdCl(2) uptake; treatment with the metal ion caused a more pronounced reduction in intracellular glutathione levels and significantly higher free radical accumulation in progenitors. The latter could explain the observed differences in Cd(2+) susceptibility. HSP72 protein expression was increased both in progenitors and in mature cells exposed to Cd(2+). Pretreatment with N-acetylcysteine, a thiocompound with antioxidant activity and a precursor of glutathione, prevented Cd(2+)-induced (i) reduction in glutathione levels and (ii) induction of HSP72 and diminished (i) Cd(2+) uptake and (ii) Cd(2+)-evoked cell death. In contrast, buthionine sulfoximine, an inhibitor of gamma-glutamyl-cysteine synthetase, depleted glutathione, and potentiated the toxic effect of Cd(2+). These results strongly suggest that Cd(2+)-induced cytotoxicity in oligodendrocytes is mediated by reactive oxygen species and is modulated by glutathione levels.
Collapse
Affiliation(s)
- G Almazan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
34
|
McLarnon JG, Helm J, Goghari V, Franciosi S, Choi HB, Nagai A, Kim SU. Anion channels modulate store-operated calcium influx in human microglia. Cell Calcium 2000; 28:261-8. [PMID: 11032781 DOI: 10.1054/ceca.2000.0150] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent work from this laboratory has demonstrated that purinergic-mediated depolarization of human microglia inhibited a store-operated pathway for entry of Ca2+. We have used Fura-2 spectrofluorometry to investigate the effects on store-operated Ca2+ influx induced by replacement of NaCl with Na-gluconate in extracellular solutions. Three separate procedures were used to activate store-operated channels. Platelet activating factor (PAF) was used to generate a sustained influx of Ca2+ in standard physiological saline solution (PSS). The magnitude of this response was depressed by 70% after replacement of PSS with low Cl- PSS. A second procedure used ATP, initially applied in Ca2+-free PSS solution to deplete intracellular stores. The subsequent perfusion of PSS solution containing Ca2+ resulted in a large and sustained entry of Ca2+, which was inhibited by 75% with low Cl- PSS. The SERCA inhibitor cyclopiazonic acid (CPA) was used to directly deplete stores in zero-Ca2+ PSS. Following the introduction of PSS containing Ca2+, a maintained stores-operated influx of Ca2+ was evident which was inhibited by 77% in the presence of the low Cl- PSS. Ca2+ influx was linearly reduced with cell depolarization in elevated K+ (7.5 to 35 mM) suggesting that changes in external Cl- were manifest as altered electrical driving force for Ca2+ entry. However, 50 mM external KCl effectively eliminated divalent entry which may indicate inactivation of this pathway with high magnitudes of depolarization. Patch clamp studies showed low Cl-PSS to cause depolarizing shifts in both holding currents and reversal potentials of currents activated with voltage ramps. The results demonstrate that Cl- channels play an important role in regulating store-operated entry of Ca2+ in human microglia.
Collapse
Affiliation(s)
- J G McLarnon
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
35
|
Gosslau A, Rensing L. Induction of Hsp68 by oxidative stress involves the lipoxygenase pathway in C6 rat glioma cells. Brain Res 2000; 864:114-23. [PMID: 10793193 DOI: 10.1016/s0006-8993(00)02195-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The induction of Hsp68 by heat shock (HS) and oxidative stress (OS) involves different pathways in C6 rat glioma cells. The pathways were analyzed by specific inhibitors of signal transduction cascades. Quercetin (inhibitor of PLA(2) and lipoxygenase) inhibited only the OS-induced but not the HS-induced expression of Hsp68. Preincubation with quinacrine (inhibitor of PLA(2)) before stress also suppressed the expression of Hsp68 only after oxidative stress. Moreover, another inhibitor of lipoxygenase (alpha-tocopherol) exclusively suppressed OS-induced Hsp68 expression. This different regulation was confirmed by exposing the cells to arachidonic acid (AA) during stress which strongly increased the induction of Hsp68 only after OS. PGE(2) (metabolite of cyclooxygenase) and indomethacin (inhibitor of cyclooxygenase) had no influence on Hsp68 expression in response to both stressors. The results suggest that the induction of Hsp68 by oxidative stress is mainly transmitted by the lipoxygenase pathway in C6 rat glioma cells.
Collapse
Affiliation(s)
- A Gosslau
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, P.O. Box 330440, D-28334, Bremen, Germany
| | | |
Collapse
|
36
|
Wang X, Kim SU, van Breemen C, McLarnon JG. Activation of purinergic P2X receptors inhibits P2Y-mediated Ca2+ influx in human microglia. Cell Calcium 2000; 27:205-12. [PMID: 10858666 DOI: 10.1054/ceca.2000.0110] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purinoceptor (P2X and P2Y) mediated Ca2+ signaling in cultured human microglia was studied using Ca2+ sensitive fluorescence microscopy. ATP (at 100 microM) induced a transient increase in [Ca2+]i in both normal and Ca(2+)-free solution suggesting a primary contribution by release from intracellular stores. This conclusion was further supported by the failure of ATP to cause a divalent cationic influx in Mn2+ quenching experiments. However, when fluorescence quenching was repeated after removal of extracellular Na+, ATP induced a large influx of Mn2+, indicating that inward Na+ current through a non-selective P2X-coupled channel may normally suppress divalent cation influx. Inhibition of Mn2+ entry was also found when microglia were depolarized using elevated external K+ in Na(+)-free solutions. The possibility of P2X inhibition of Ca2+ influx was then investigated by minimizing P2X contributions of purinergic responses using either the specific P2Y agonist, ADP-beta-S in the absence of ATP or using ATP combined with PPADS, a specific inhibitor of P2X receptors. In quenching studies both procedures resulted in large increases in Mn2+ influx in contrast to the lack of effect observed with ATP. In addition, perfusion of either ATP plus PPADS or ADP-beta-S alone caused a significantly enhanced duration (about 200%) of the [Ca2+]i response relative to that induced by ATP. These results show that depolarization induced by P2X-mediated Na+ influx inhibits store-operated Ca2+ entry resulting from P2Y activation, thereby modulating purinergic signaling in human microglia.
Collapse
Affiliation(s)
- X Wang
- Department of Pharmacology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
37
|
Nogami M, Takatsu A, Endo N, Ishiyama I. Immunohistochemical localization of heat shock protein 70 in the human medulla oblongata in forensic autopsies. Leg Med (Tokyo) 1999; 1:198-203. [PMID: 12935469 DOI: 10.1016/s1344-6223(99)80038-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Heat shock protein 70 (hsp70) can be induced under various stresses in experimental animals. We investigated hsp70 immunoreactivity in the human medulla oblongata in forensic autopsies. Hsp70 immunoreactivity was observed in the cytoplasm of some neurons in the hypoglossal nucleus (XII), the dorsal motor nucleus of the vagal nerve (X), the lateral cuneate nucleus (Cun), and the inferior olive (Oli). Neurons with positive hsp70 immunoreactivity were statistically significantly fewer in the Oli than in the XII, X, and Cun. There was no statistically significant correlation between the AMI (the antemortem interval between the onset of injury and death) or PMI (the postmortem interval between death and autopsy), and the percentage of positive cytoplasmic hsp70 immunoreactivity in any of the nuclei studied. Age had a statistically significant negative correlation with the percentage of positive hsp70 immunoreactivity in the Oli. The percentages of positive hsp70 immunoreactivity in the XII and Cun were statistically significantly lower in burn cases than in other cases. Therefore, the induction of hsp70 immunoreactivity in the medulla oblongata may not reflect the duration of stress in the AMI, but may reflect the regional (nuclei) and conditional (burns) differences in autopsy specimens.
Collapse
Affiliation(s)
- M Nogami
- Department of Legal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | | | | | | |
Collapse
|
38
|
Wang X, Bae JH, Kim SU, McLarnon JG. Platelet-activating factor induced Ca(2+) signaling in human microglia. Brain Res 1999; 842:159-65. [PMID: 10526106 DOI: 10.1016/s0006-8993(99)01849-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Increases in intracellular Ca(2+) concentration in human microglial cells in response to platelet-activating factor (PAF) were studied using Ca(2+)-sensitive fluorescence microscopy. In normal physiological solution (PSS), PAF-induced transient increases in [Ca2+](i) which recovered to baseline values within 200 s. Application of PAF in zero-Ca(2+) solution caused the peak response to be decreased to a value near 20% of that recorded in PSS suggesting a primary contribution of Ca(2+) influx for the [Ca2+](i) increase in PSS. To investigate PAF-induced Ca(2+) influx, the contents of intracellular stores were modulated using the SERCA blocker cyclopiazonic acid (CPA). The Ca(2+) signal induced by CPA (10 microM) in zero-Ca(2+) solution showed a peak response about 20% of the amplitude in the presence of external Ca(2+), suggesting the latter response included significant contributions from store-operated Ca(2+) entry. The influx of divalent cations with PAF or CPA was directly measured using Mn(2+) quenching of the fluorescence signal. Although both PAF and CPA induced a similar degree of Mn(2+) influx over time, the PAF effect was very rapid, whereas the CPA action was delayed and only evident about 200 s after application. Overall, the results show that the primary source of the PAF-induced increase of [Ca2+](i) in human microglia was the influx of Ca(2+) from the extracellular space and intracellular Ca(2+)-release contributed only a small part of the total Ca(2+) signal. Nevertheless, Ca(2+)-release induced by PAF (or CPA) serves as an important factor in controlling Ca(2+) entry presumably mediated by activation of store-operated-Ca(2+) channels.
Collapse
Affiliation(s)
- X Wang
- Department of Pharmacology and Therapeutics, Department of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
39
|
Sanfeliu C, Cristòfol R, Torán N, Rodrı́guez-Farré E, Kim S. Use of Human Central Nervous System Cell Cultures in Neurotoxicity Testing. Toxicol In Vitro 1999; 13:753-9. [DOI: 10.1016/s0887-2333(99)00065-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
McLarnon JG, Zhang L, Goghari V, Lee YB, Walz W, Krieger C, Kim SU. Effects of ATP and elevated K+ on K+ currents and intracellular Ca2+ in human microglia. Neuroscience 1999; 91:343-52. [PMID: 10336083 DOI: 10.1016/s0306-4522(98)00491-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have used whole-cell patch-clamp recordings and calcium microfluorescence measurements to study the effects of ATP and elevated external K+ on properties of human microglia. The application of ATP (at 0.1 mM) led to the activation of a transient inward non-selective cationic current at a cell holding potential of -60 mV and a delayed, transient expression of an outward K+ current activated with depolarizing steps applied from holding level. The ATP response included an increase in inward K+ conductance and a depolarizing shift in reversal potential as determined using a voltage ramp waveform applied from -120 to -50 mV. Fura-2 microspectrofluorescence measurements showed intracellular calcium to be increased following the application of ATP. This response was characterized by an initial transient phase, which persisted in Ca2+-free media and was due to release of Ca2+ from intracellular storage sites. The response had a later plateau phase, consistent with Ca2+ influx. In addition, ATP-induced changes in intracellular Ca2+ exhibited prominent desensitization. Elevated external K+ (at 40 mM) increased inward K+ conductance and shifted the reversal potential in the depolarizing direction, with no effect on outward K+ current or the level of internal Ca2+. The results of these experiments show the differential responses of human microglia to ATP and elevated K+, two putative factors associated with neuronal damage in the central nervous system.
Collapse
Affiliation(s)
- J G McLarnon
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
McLarnon JG, Wang X, Bae JH, Kim SU. Endothelin-induced changes in intracellular calcium in human microglia. Neurosci Lett 1999; 263:9-12. [PMID: 10218898 DOI: 10.1016/s0304-3940(99)00082-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium-sensitive spectrofluorometry was used to study the effects of endothelin on levels of intracellular calcium [Ca2+]i in cultured human microglia. Both ET-1 and ET-3 induced transient, non-desensitizing, increases in [Ca2+]i in over 80% of the cells studied. The responses to either ET-1 or ET-3 were significantly diminished in amplitude and duration in Ca2+-free solution suggesting a prominent contribution of Ca2+ influx to the response. ET-1 induced changes in [Ca2+]i were not altered in the presence of the selective ET(A) antagonist BQ610 but were significantly reduced with the selective ET(B) antagonist BQ780. These results confirm the expression of ET(B) receptors on human microglia, these receptors may serve a role in a signaling pathway between microglia and endothelial cells.
Collapse
Affiliation(s)
- J G McLarnon
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
42
|
Abstract
Macrophage inflammatory protein-1alpha (MIP-1alpha) is a member of a superfamily of inflammatory cytokines termed chemokines, and it has been implicated in the pathogenesis of several human diseases with inflammatory components. It has been known that MIP-1alpha plays a role in recruiting and activating mononuclear phagocytes in the central nervous system (CNS), and that astrocytes and microglia are sources of this chemokine. However, details of the regulation of MIP-1alpha production by these glial cells are not known. In the present study, expression of MIP-1alpha was determined in purified cultures of human astrocyte. MIP-1alpha mRNA levels in human astrocyte cell preparations were determined by reverse transcription polymerase chain reaction (RT-PCR) and amount of MIP-1alpha protein secreted into culture supernatants by human astrocytes was assayed by enzyme-linked immunosorbent assay (ELISA). Under the unstimulated conditions, human astrocytes did not express MIP-1alpha message or protein, indicating that human astrocytes do not constitutively carry MIP-1alpha message. Following treatment with interleukin-1beta (IL-1beta), human astrocytes demonstrated increased message and protein expression for MIP-1alpha, while other immune modulators such as interferon-gamma (IFN)-gamma, tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), lipopolysaccharide, or phorbol ester (a protein kinase C activator) did not induce MIP-1alpha expression in human astrocytes.
Collapse
Affiliation(s)
- Y Miyamoto
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
43
|
de Gannes FMP, Merle M, Canioni P, Voisin PJ. Metabolic and cellular characterization of immortalized human microglial cells under heat stress. Neurochem Int 1998. [DOI: 10.1016/s0197-0186(05)80010-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Martín M, Hernández C, Bodega G, Suárez I, Boyano MC, Fernández B. Heat-shock proteins expression in fish central nervous system and its possible relation with water acidosis resistance. Neurosci Res 1998; 31:97-106. [PMID: 9700715 DOI: 10.1016/s0168-0102(98)00028-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The expression of 70 and 60-kDa heat-shock proteins (HSP70 and HSP60) and glial fibrillary acidic protein (GFAP), determined by immunoblotting and immunohistochemical methods, was studied in fish neural tissue; moreover the possible correlation between the expression of these proteins in neural tissue and fish acidosis resistance was also examined. The HSP GFAP content was analyzed in four different teleostean fish species (gourami, carp, goldfish and trout) under control conditions and in carp under experimental conditions to induce HSPs expression. Under control conditions, HSP70 and HSP60 expression was similar in gourami, carp and goldfish, but gourami had the highest acidosis resistance; trout had the lowest HSP70 and 60 expression and lowest acidosis resistance. The HSP expression pattern was mainly neuronal under control conditions. HSP expression was induced in carp and the effect of this induction on acidosis resistance was studied. Two methods were used for HSP induction in carp: acid shock (2 h at 4.5 pH) and heat shock (2 h at 33 degrees C). A high acidosis resistance, although non-significant, was observed after heat pretreatment. An important HSP expression was detected in glial cells after induction. GFAP expression showed no association with acidosis resistance under either control or experimental conditions.
Collapse
Affiliation(s)
- M Martín
- Departamento de Biología Celular y Genética, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Satoh J, Yukitake M, Kurohara K, Nishida N, Katamine S, Miyamoto T, Kuroda Y. Cultured skin fibroblasts isolated from mice devoid of the prion protein gene express major heat shock proteins in response to heat stress. Exp Neurol 1998; 151:105-15. [PMID: 9582258 DOI: 10.1006/exnr.1998.6796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence has suggested that molecular chaperones participate in the conformational change between the normal cellular prion protein (PrPC) and its scrapie isoform (PrPSc). To study a role of PrPC in the regulation of expression of heat shock proteins (HSPs), a group of molecular chaperones, heat-induced expression of major HSPs (HSP105, HSP90alpha, HSP72, HSC70, HSP60, and HSP25) was investigated in cultured skin fibroblasts isolated from the mice homogeneous for a disrupted PrP gene (PrP-/- mice) by Western blot analysis and immunocytochemistry. Two lines of fibroblasts were established and designated SFK derived from the PrP-/- mice and SFH derived from the PrP+/+ mice, respectively. In both SFK and SFH cells, HSP105, HSP72, and HSP25 were expressed at low levels under unstressed conditions but they were induced markedly following exposure to heat stress (43 degreesC/20 min) at 3-72 h postrecovery. In both cell types, HSC70 and HSP60 were expressed at high levels under unstressed conditions and their levels remained unchanged after heat shock treatment. HSP90alpha was undetectable in both cell types under any conditions examined. The pattern of expression, induction, and subcellular location of HSP105, HSP72, HSC70, HSP60, and HSP25 was not significantly different between SFK and SFH cells under unstressed and heat-stressed conditions. Furthermore, the levels of constitutive expression of HSP105, HSC70, HSP60, and HSP25 were similar between the brain tissues isolated from the PrP-/- and PrP+/+ mice. These results indicate that HSP induction is not affected by either the existence or the absence of PrPC in the cells.
Collapse
Affiliation(s)
- J Satoh
- Division of Neurology, Department of Internal Medicine, Saga Medical School, Saga, 849, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Longo LD, Packianathan S. Hypoxia-ischaemia and the developing brain: hypotheses regarding the pathophysiology of fetal-neonatal brain damage. BRITISH JOURNAL OF OBSTETRICS AND GYNAECOLOGY 1997; 104:652-62. [PMID: 9197867 DOI: 10.1111/j.1471-0528.1997.tb11974.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L D Longo
- Department of Physiology, Loma Linda University, School of Medicine, California, USA
| | | |
Collapse
|
47
|
Abstract
Macroscopic and microscopic currents have been recorded using human microglia isolated from fetal human brains (12-20 weeks gestation). Within a period of two days following plating of cells, inward K+ currents were small (mean amplitude of 0.3 nA at -100 mV) and outward K+ currents were not observed. For periods in excess of five days after adherence to substrate, an inactivating outward K+ current, sensitive to 4-aminopyridine, was expressed. A slowly rising current, blocked by tetraethylammonium, was also evident in a small population of human microglia. This current was activated with cell depolarization positive to +10 mV and had properties similar to those recently described for a proton current in mouse cells. In early adherent cells (days 1 or 2 after plating), treatment of microglia with interferon-gamma led to the expression of outward K+ current which was lacking in the absence of the treatment. In excised, inside-out patches, two high conductance channels were identified. A calcium-dependent K+ channel (unitary conductance of 106 pS with physiological levels of K+ across the patch) had an open probability of 0.5 with internal Ca2+ at 7 microM and the patch potential at 0 mV. In addition, an anion channel (unitary conductance of 280 pS) was transiently activated with depolarizing or hyperpolarizing steps applied from 0 mV. Characterization of the macroscopic and unitary properties of currents in microglia will have relevance to a description of putative cell functions in the human CNS. In particular, modification of cell electrophysiological properties by various activating stimuli may contribute to signalling processes in CNS pathology.
Collapse
Affiliation(s)
- J G McLarnon
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
48
|
Foster JA, Brown IR. Differential induction of heat shock mRNA in oligodendrocytes, microglia, and astrocytes following hyperthermia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 45:207-18. [PMID: 9149095 DOI: 10.1016/s0169-328x(96)00138-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A time course analysis of hsp70 mRNA induction in response to a physiologically relevant increase in body temperature of 2.6 degrees C was performed in the rabbit forebrain. A protocol that combined in situ hybridization and cytochemistry on the same tissue section was employed to identify reactive glial cell types. Cytochemical markers for astrocytes, microglia, and oligodendrocytes were utilized in combination with a DIG-labelled hsp70 riboprobe, which permitted mRNA localization at high resolution. Four glial cell body-enriched regions of the rabbit forebrain were examined, namely, cortical layer 1, hippocampal fissure, corpus callosum, and fimbria. Maximal hsp70 mRNA induction was observed in 2 and 3 h hyperthermic animals. The colocalization analysis demonstrated that hsp70 mRNA was induced in oligodendrocytes and microglia, but not in forebrain GFAP positive astrocytes. In addition, cell counts were performed which showed that almost all oligodendrocytes induced hsp70 mRNA while a subpopulation of microglial cells responded. These data are consistent with the notion that oligodendrocytes, microglia, and astrocytes exhibit distinct thresholds for activation of the heat shock response following a physiologically relevant increase in body temperature.
Collapse
Affiliation(s)
- J A Foster
- Department of Zoology, University of Toronto, Scarborough Campus, Ont., Canada
| | | |
Collapse
|
49
|
Voisin PJ, Pardue S, Macouillard F, Yehia G, Labouesse J, Morrison-Bogorad M. Differential expression of heat shock 70 proteins in primary cultures from rat cerebellum. Brain Res 1996; 739:215-34. [PMID: 8955942 DOI: 10.1016/s0006-8993(96)00825-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While a number of studies have described the heat shock response in established cell lines and in primary cultures of cells derived from the nervous system, there has been no systematic analysis comparing expression and localization of the inducible heat shock 70 (hsp70) proteins and the constitutively synthesized members of the family (hsc70) in neurons and glia. In the present communication, we utilized specific probes to compare the expression of hsp70 and hsc70 mRNAs and proteins in two types of primary cultures, astroglial and neuro-astroglial, from postnatal rat cerebellum. Conditions were adjusted to maintain physiological numbers of microglia in both types of culture, and cultures were analyzed at a number of different time points following a precisely defined heat shock. The northern, in situ hybridization and immunohistochemical analyses resulted in a number of novel observations concerning the nature of the heat shock response in these neuronal and glial cells. In postnatal day 4-5 cultures, hsp70 mRNA levels were elevated for at least 10 h in both types of culture, but in situ hybridization analysis showed no evidence for hsp70 mRNAs in neurons. Microglia were the only cell type in which hsp70 was detected in non-stressed cultures and this cell type contained the highest concentrations of hsp70 proteins in stressed cultures. Hsc70 mRNA levels were also increased after heat shock, but the increase was more transient. Hsc70 mRNAs and proteins were present in all cell types, again with the highest concentrations being present in microglia. Hsc70 mRNAs and proteins were localized in the cytoplasm at all time points examined, with hsc70 protein also being localized in nucleoli. Hsp70 mRNAs and proteins were diffusely localized over nuclei of astrocytes, as well as of most microglia. Hsp70, but not hsc70, was localized on chromosomes in glia once they had resumed cell division after heat shock, suggesting a role for hsp70 either in targeting damaged chromosomal proteins or in cell division. Some cytoplasmic hsp70 was observed in astrocytes of the mixed neuro-astroglial cultures and a delayed hsp70 immunoreactivity was observed in granule neurons in these cultures, suggesting either that translation of low levels of hsp70 mRNAs was more efficient in neurons, or that glial-neuronal translocation of hsp70 proteins had taken place. These results suggest that metabolism and functions of different heat shock protein family members may not always be identical and that care must be taken in extrapolation of results from one cell type to another.
Collapse
Affiliation(s)
- P J Voisin
- UMR5536, CNRS, Université de Bordeaux II, France
| | | | | | | | | | | |
Collapse
|
50
|
Yoo AS, McLarnon JG, Xu RL, Lee YB, Krieger C, Kim SU. Effects of phorbol ester on intracellular Ca2+ and membrane currents in cultured human microglia. Neurosci Lett 1996; 218:37-40. [PMID: 8939475 DOI: 10.1016/0304-3940(96)13120-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of protein kinase C (PKC) activation by phorbol ester on intracellular Ca2+ concentration ([Ca2+]i) and membrane currents in human microglia grown in culture were investigated. Treatment of microglia with phorbol myristate acetate (PMA) resulted in a large increase in [Ca2+]i in cells loaded with fura-2. The increased levels of [Ca2+]i were not altered following removal of the phorbol ester. In Ca(2+)-free medium, application of PMA did not increase [Ca2+]i. In addition, PMA application in standard Ca(2+)-solution containing lanthanum (1.8 mM) had no effect on the microglial response to PMA, suggesting that the phorbol ester actions were due to transmembrane influx of Ca2+ but not through voltage-gated Ca2+ channels. Whole-cell patch clamp measurements demonstrated that PMA potentiated an outward K+ current and inhibited an inward rectifier K+ current. This study is the first demonstration that PKC activation by phorbol ester leads to increased intracellular [Ca2+] and changes in membrane currents in human microglia.
Collapse
Affiliation(s)
- A S Yoo
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|