1
|
Singh S, Sarroza D, English A, Whittington D, Dong A, Malamas M, Makriyannis A, van der Stelt M, Li Y, Zweifel L, Bruchas MR, Land BB, Stella N. P2X 7 receptor-dependent increase in endocannabinoid 2-arachidonoyl glycerol production by neuronal cells in culture: Dynamics and mechanism. Br J Pharmacol 2024; 181:2459-2477. [PMID: 38581262 PMCID: PMC11936313 DOI: 10.1111/bph.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRABeCB2.0, can address this shortfall. EXPERIMENTAL APPROACH 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRABeCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader. KEY RESULTS 2-AG and AEA increased GRABeCB2.0 fluorescence in N2a cells with EC50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB1R) antagonist SR141617 and absent in cells expressing the mutant-GRABeCB2.0. ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRABeCB2.0 signal within minutes primarily via activation of P2X7 receptors (P2X7R). This response was dependent on diacylglycerol lipase β activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/β-hydrolase domain containing 6 (ABHD6). CONCLUSIONS AND IMPLICATIONS Considering that P2X7R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.
Collapse
Affiliation(s)
- Simar Singh
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Dennis Sarroza
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Anthony English
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Michael Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Larry Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Michael R. Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Benjamin B. Land
- Department of Pharmacology, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| |
Collapse
|
2
|
Lee HC, Oliveira NMM, Hastings C, Baillie-Benson P, Moverley AA, Lu HC, Zheng Y, Wilby EL, Weil TT, Page KM, Fu J, Moris N, Stern CD. Regulation of long-range BMP gradients and embryonic polarity by propagation of local calcium-firing activity. Nat Commun 2024; 15:1463. [PMID: 38368410 PMCID: PMC10874436 DOI: 10.1038/s41467-024-45772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024] Open
Abstract
Many amniote vertebrate species including humans can form identical twins from a single embryo, but this only occurs rarely. It has been suggested that the primitive-streak-forming embryonic region emits signals that inhibit streak formation elsewhere but the signals involved, how they are transmitted and how they act has not been elucidated. Here we show that short tracks of calcium firing activity propagate through extraembryonic tissue via gap junctions and prevent ectopic primitive streak formation in chick embryos. Cross-regulation of calcium activity and an inhibitor of primitive streak formation (Bone Morphogenetic Protein, BMP) via NF-κB and NFAT establishes a long-range BMP gradient spanning the embryo. This mechanism explains how embryos of widely different sizes can maintain positional information that determines embryo polarity. We provide evidence for similar mechanisms in two different human embryo models and in Drosophila, suggesting an ancient evolutionary origin.
Collapse
Affiliation(s)
- Hyung Chul Lee
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
- School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Korea.
| | - Nidia M M Oliveira
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- College of Professional Services, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Cato Hastings
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Adam A Moverley
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui-Chun Lu
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Tower, London, SE1 9RT, UK
| | - Yi Zheng
- Departments of Mechanical Engineering, Biomedical Engineering, and Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Elise L Wilby
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Karen M Page
- Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jianping Fu
- Departments of Mechanical Engineering, Biomedical Engineering, and Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Feldthouse MG, Vyleta NP, Smith SM. PLC regulates spontaneous glutamate release triggered by extracellular calcium and readily releasable pool size in neocortical neurons. Front Cell Neurosci 2023; 17:1193485. [PMID: 37260580 PMCID: PMC10228687 DOI: 10.3389/fncel.2023.1193485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Dynamic physiological changes in brain extracellular calcium ([Ca2+]o) occur when high levels of neuronal activity lead to substantial Ca2+ entry via ion channels reducing local [Ca2+]o. Perturbations of the extracellular microenvironment that increase [Ca2+]o are commonly used to study how [Ca2+] regulates neuronal activity. At excitatory synapses, the Ca2+-sensing receptor (CaSR) and other G-protein coupled receptors link [Ca2+]o and spontaneous glutamate release. Phospholipase C (PLC) is activated by G-proteins and is hypothesized to mediate this process. Methods Patch-clamping cultured neocortical neurons, we tested how spontaneous glutamate release was affected by [Ca2+]o and inhibition of PLC activity. We used hypertonic sucrose (HS) to evaluate the readily releasable pool (RRP) and test if it was affected by inhibition of PLC activity. Results Spontaneous glutamate release substantially increased with [Ca2+]o, and inhibition of PLC activity, with U73122, abolished this effect. PLC-β1 is an abundant isoform in the neocortex, however, [Ca2+]o-dependent spontaneous release was unchanged in PLC-β1 null mutants (PLC-β1-/-). U73122 completely suppressed this response in PLC-β1-/- neurons, indicating that this residual [Ca2+]o-sensitivity may be mediated by other PLC isoforms. The RRP size was substantially reduced after incubation in U73122, but not U73343. Phorbol esters increased RRP size after PLC inhibition. Discussion Together these data point to a strong role for PLC in mediating changes in spontaneous release elicited by [Ca2+]o and other extracellular cues, possibly by modifying the size of the RRP.
Collapse
Affiliation(s)
- Maya G. Feldthouse
- Section of Pulmonary and Critical Care Medicine and Research and Development, VA Portland Health Care System, Portland, OR, United States
| | - Nicholas P. Vyleta
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Stephen M. Smith
- Section of Pulmonary and Critical Care Medicine and Research and Development, VA Portland Health Care System, Portland, OR, United States
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
4
|
Chen Z, Chung HY. Pseudo-Taste Cells Derived from Rat Taste and Non-Taste Tissues: Implications for Cultured Taste Cell-Based Biosensors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10826-10835. [PMID: 35998688 DOI: 10.1021/acs.jafc.2c04934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although the technique for taste cell culture has been reported, cultured taste cells have remained poorly validated. This study systematically compared the cultured cells derived from both taste and non-taste tissues. Fourteen cell lines established from rat circumvallate papillae (RCVs* or RCVs), non-taste lingual epithelia (RVEs), and tail skins (RTLs) were analyzed by PCR, immunocytochemistry, proteomics, and calcium imaging. The cell lines were morphologically indistinguishable, and all expressed some taste-related molecules. Of the tested RCVs*, RCVs, RVEs, and RTLs (%), 84.7 ± 7.8, 63.9 ± 22.8, 46.8 ± 0.3, and 40.8 ± 15.1 of them were responsive to at least one tastant or ATP, respectively. However, the calcium signaling pathways in the responding cells differed from the canonical taste transduction pathways in the taste cells in vivo, suggesting that they were not genuine taste cells. In addition, the growth medium intended for taste cell culture did not prevent the proliferation of non-gustatory epithelial cells regardless of supplementation of Y-27632 and EGF. In conclusion, the current method for taste cell culture is susceptible to pseudo-taste cells that may lead to overinterpretation. Thus, biosensors that rely on calcium responses of cultured taste cells should be applied with extreme caution.
Collapse
Affiliation(s)
- Zixing Chen
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hau Yin Chung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
5
|
Sánchez-Zavaleta R, Ávalos-Fuentes JA, González-Hernández AV, Recillas-Morales S, Paz-Bermúdez FJ, Leyva-Gómez G, Cortés H, Florán B. Presynaptic nigral GPR55 receptors stimulate [ 3 H]-GABA release through [ 3 H]-cAMP production and PKA activation and promote motor behavior. Synapse 2022; 76:e22246. [PMID: 35831708 DOI: 10.1002/syn.22246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/16/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Striatal medium-sized spiny neurons express mRNA and protein of GPR55 receptors that stimulate neurotransmitter release; thus, GPR55 could be sent to nigral striatal projections, where it might modulate GABA release and motor behavior. Here we study the presence of GPR55 receptors at striato-nigral terminals, their modulation of GABA release, their signaling pathway, and their effect on motor activity. By double immunohistochemistry, we found the colocation of GPR55 protein and substance P in the dorsal striatum. In slices of the rat substantia nigra, the GPR55 agonists LPI and O-1602 stimulated [3 H]-GABA release induced by high K+ depolarization in a dose-dependent manner. The antagonists CID16020046 and cannabidiol prevented agonist stimulation in a dose-dependent way. The effect of GPR55 on nigral [3 H]-GABA release was prevented by lesion of the striatum with kainic acid, which was accompanied by a decrement of GPR55 protein in nigral synaptosomes, indicating the presynaptic location of receptors. The depletion of internal Ca2+ stores with thapsigargin did not prevent the effect of LPI on [3 H]-GABA release, but the remotion or chelation of external calcium did. Blockade of Gi, Gs, PLC, PKC, or dopamine D1 receptor signaling proteins did not prevent the effect of GPR55 on release. However, the activation of GPR55 stimulated [3 H]-cAMP accumulation and PKA activity. Intranigral unilateral injection of LPI induces contralateral turning. This turning was prevented by CID16020046, cannabidiol, and bicuculline but not by SCH 23390. Our data indicate that presynaptic GPR55 receptors stimulate [3 H]-GABA release at striato-nigral terminals through [3 H]-cAMP production and stimulate motor behavior. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rodolfo Sánchez-Zavaleta
- Departamento de Fisiología, Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | - José Arturo Ávalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | - Antonio Valentín González-Hernández
- Departamento de Fisiología, Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | | | - Francisco Javier Paz-Bermúdez
- Departamento de Fisiología, Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| |
Collapse
|
6
|
Park J, Hee Kim S, Kim YJ, Kim H, Oh Y, Yeong Choi K, Kim BC, Ho Lee K, Keun Song W. Elevation of phospholipase C-β1 expression by amyloid-β facilitates calcium overload in neuronal cells. Brain Res 2022; 1788:147924. [DOI: 10.1016/j.brainres.2022.147924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/26/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022]
|
7
|
Dissecting the Mechanism of Action of Spiperone-A Candidate for Drug Repurposing for Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14030776. [PMID: 35159043 PMCID: PMC8834219 DOI: 10.3390/cancers14030776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite advances in primary and adjuvant treatments, approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease. Thus, alternative and more effective therapeutic approaches are expected to be developed. Drug repurposing is increasing interest in cancer therapy, as it represents a cheaper and faster alternative strategy to de novo drug synthesis. Psychiatric medications are promising as a new generation of antitumor drugs. Here, we demonstrate that spiperone—a licensed drug for the treatment of schizophrenia—induces apoptosis in CRC cells. Our data reveal that spiperone’s cytotoxicity in CRC cells is mediated by phospholipase C activation, intracellular calcium homeostasis dysregulation, and irreversible endoplasmic reticulum stress induction, resulting in lipid metabolism alteration and Golgi apparatus damage. By identifying new targetable pathways in CRC cells, our findings represent a promising starting point for the design of novel therapeutic strategies for CRC. Abstract Approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease, highlighting the need for novel therapeutic strategies. Drug repurposing is attracting increasing attention because, compared to traditional de novo drug discovery processes, it may reduce drug development periods and costs. Epidemiological and preclinical evidence support the antitumor activity of antipsychotic drugs. Herein, we dissect the mechanism of action of the typical antipsychotic spiperone in CRC. Spiperone can reduce the clonogenic potential of stem-like CRC cells (CRC-SCs) and induce cell cycle arrest and apoptosis, in both differentiated and CRC-SCs, at clinically relevant concentrations whose toxicity is negligible for non-neoplastic cells. Analysis of intracellular Ca2+ kinetics upon spiperone treatment revealed a massive phospholipase C (PLC)-dependent endoplasmic reticulum (ER) Ca2+ release, resulting in ER Ca2+ homeostasis disruption. RNA sequencing revealed unfolded protein response (UPR) activation, ER stress, and induction of apoptosis, along with IRE1-dependent decay of mRNA (RIDD) activation. Lipidomic analysis showed a significant alteration of lipid profile and, in particular, of sphingolipids. Damage to the Golgi apparatus was also observed. Our data suggest that spiperone can represent an effective drug in the treatment of CRC, and that ER stress induction, along with lipid metabolism alteration, represents effective druggable pathways in CRC.
Collapse
|
8
|
Isomer-selective analysis of inositol phosphates with differential isotope labelling by phosphate methylation using liquid chromatography with tandem mass spectrometry. Anal Chim Acta 2022; 1191:339286. [PMID: 35033253 DOI: 10.1016/j.aca.2021.339286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022]
Abstract
Inositol phosphates belong to a family of structurally diverse signaling molecules playing crucial role in Ca2+ release from intracellular storage vesicles. There are many possibilities of phosphorylation, including their degree and position. Inositol (1,4,5) trisphosphate has been well recognized as the most important second messenger among this family. It remains a challenge to analyse the entire inositol phosphate metabolite family due to its structural complexity, high polarity, and high phosphate density. In this study, we have established an improved UHPLC-ESI-MS/MS method based on a differential isotope labelling methylation strategy. An SPE extraction kit composed of TiO2 and PTFE filter was employed for sample preparation which provided good extraction performance. Samples were methylated (light label) to neutralize the phosphate groups and give better performance in liquid chromatography. Regioisomers and inositol phosphates differing in their number of phosphate residues were successfully separated after optimization on a core-shell cholesterylether-bonded RP-type column (Cosmocore 2.6Cholester) using methanol as organic modifier. Triple quadrupole MS detection was based on selected reaction monitoring (SRM) acquisition with characteristic fragments. Stable isotope labeling methylation was performed to generate internal standards (heavy label). Limits of quantification from 0.32 to 0.89 pmol on column was achieved. This method was validated to be suitable for inositol phosphate profiling in biological samples. After application in cultured HeLa cells, NIST SRM1950 plasma, and human platelets, distinct inositol profiles were obtained. This newly established method exhibited improved analytical performance, holding the potential to advance the understanding of inositol phosphate signaling.
Collapse
|
9
|
Zhen H, Zheng M, Song Q, Liu H, Yuan Z, Cao Z, Zhao B. U73122 and m-3M3FBS Regulate the GABAergic Neuron Regeneration via PLCβ in Planarian Dugesia japonica. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Mohan S, Tiwari MN, Stanojević M, Biala Y, Yaari Y. Muscarinic regulation of the neuronal Na + /K + -ATPase in rat hippocampus. J Physiol 2021; 599:3735-3754. [PMID: 34148230 DOI: 10.1113/jp281460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Stimulation of postsynaptic muscarinic receptors was shown to excite principal hippocampal neurons by modulating several membrane ion conductances. We show here that activation of postsynaptic muscarinic receptors also causes neuronal excitation by inhibiting Na+ /K+ -ATPase activity. Muscarinic Na+ /K+ -ATPase inhibition is mediated by two separate signalling pathways that lead downstream to enhanced Na+ /K+ -ATPase phosphorylation by activating protein kinase C and protein kinase G. Muscarinic excitation through Na+ /K+ -ATPase inhibition is probably involved in cholinergic modulation of hippocampal activity and may turn out to be a widespread mechanism of neuronal excitation in the brain. ABSTRACT Stimulation of muscarinic cholinergic receptors on principal hippocampal neurons enhances intrinsic neuronal excitability by modulating several membrane ion conductances. The electrogenic Na+ /K+ -ATPase (NKA; the 'Na+ pump') is a ubiquitous regulator of intrinsic neuronal excitability, generating a hyperpolarizing current to thwart excessive neuronal firing. Using electrophysiological and pharmacological methodologies in rat hippocampal slices, we show that neuronal NKA pumping activity is also subjected to cholinergic regulation. Stimulation of postsynaptic muscarinic, but not nicotinic, cholinergic receptors activates membrane-bound phospholipase C and hydrolysis of membrane-integral phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3 ). Along one signalling pathway, DAG activates protein kinase C (PKC). Along a second signalling pathway, IP3 causes Ca2+ release from the endoplasmic reticulum, facilitating nitric oxide (NO) production. The rise in NO levels stimulates cGMP synthesis by guanylate-cyclase, activating protein kinase G (PKG). The two pathways converge to cause partial NKA inhibition through enzyme phosphorylation by PKC and PKG, leading to a marked increase in intrinsic neuronal excitability. This novel mechanism of neuronal NKA regulation probably contributes to the cholinergic modulation of hippocampal activity in spatial navigation, learning and memory.
Collapse
Affiliation(s)
- Sandesh Mohan
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Manindra Nath Tiwari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Marija Stanojević
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Yoav Biala
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Yoel Yaari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| |
Collapse
|
11
|
Su Y, Yang LM, Ornitz DM. FGF20-FGFR1 signaling through MAPK and PI3K controls sensory progenitor differentiation in the organ of Corti. Dev Dyn 2021; 250:134-144. [PMID: 32735383 PMCID: PMC8415122 DOI: 10.1002/dvdy.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Fibroblast Growth Factor 20 (FGF20)-FGF receptor 1 (FGFR1) signaling is essential for cochlear hair cell (HC) and supporting cell (SC) differentiation. In other organ systems, FGFR1 signals through several intracellular pathways including MAPK (ERK), PI3K, phospholipase C ɣ (PLCɣ), and p38. Previous studies implicated MAPK and PI3K pathways in HC and SC development. We hypothesized that one or both would be important downstream mediators of FGF20-FGFR1 signaling for HC differentiation. RESULTS By inhibiting pathways downstream of FGFR1 in cochlea explant cultures, we established that both MAPK and PI3K pathways are required for HC differentiation while PLCɣ and p38 pathways are not. Examining the canonical PI3K pathway, we found that while AKT is necessary for HC differentiation, it is not sufficient to rescue the Fgf20-/- phenotype. To determine whether PI3K functions downstream of FGF20, we inhibited Phosphatase and Tensin Homolog (PTEN) in Fgf20-/- explants. Overactivation of PI3K resulted in a partial rescue of the Fgf20-/- phenotype, demonstrating a requirement for PI3K downstream of FGF20. Consistent with a requirement for the MAPK pathway for FGF20-regulated HC differentiation, we show that treating Fgf20-/- explants with FGF9 increased levels of dpERK. CONCLUSIONS Together, these data provide evidence that both MAPK and PI3K are important downstream mediators of FGF20-FGFR1 signaling during HC and SC differentiation.
Collapse
Affiliation(s)
- Yutao Su
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Si H, Wang J, Meininger CJ, Peng X, Zawieja DC, Zhang SL. Ca 2+ release-activated Ca 2+ channels are responsible for histamine-induced Ca 2+ entry, permeability increase, and interleukin synthesis in lymphatic endothelial cells. Am J Physiol Heart Circ Physiol 2020; 318:H1283-H1295. [PMID: 32275470 DOI: 10.1152/ajpheart.00544.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lymphatic functions in maintaining lymph transport, and immune surveillance can be impaired by infections and inflammation, thereby causing debilitating disorders, such as lymphedema and inflammatory bowel disease. Histamine is a key inflammatory mediator known to trigger vasodilation and vessel hyperpermeability upon binding to its receptors and evoking intracellular Ca2+ ([Ca2+]i) dynamics for downstream signal transductions. However, the exact molecular mechanisms beneath the [Ca2+]i dynamics and the downstream cellular effects have not been elucidated in the lymphatic system. Here, we show that Ca2+ release-activated Ca2+ (CRAC) channels, formed by Orai1 and stromal interaction molecule 1 (STIM1) proteins, are required for the histamine-elicited Ca2+ signaling in human dermal lymphatic endothelial cells (HDLECs). Blockers or antagonists against CRAC channels, phospholipase C, and H1R receptors can all significantly diminish the histamine-evoked [Ca2+]i dynamics in lymphatic endothelial cells (LECs), while short interfering RNA-mediated knockdown of endogenous Orai1 or STIM1 also abolished the Ca2+ entry upon histamine stimulation in LECs. Furthermore, we find that histamine compromises the lymphatic endothelial barrier function by increasing the intercellular permeability and disrupting vascular endothelial-cadherin integrity, which is remarkably attenuated by CRAC channel blockers. Additionally, the upregulated expression of inflammatory cytokines, IL-6 and IL-8, after histamine stimulation was abolished by silencing Orai1 or STIM1 with RNAi in LECs. Taken together, our data demonstrated the essential role of CRAC channels in mediating the [Ca2+]i signaling and downstream endothelial barrier and inflammatory functions induced by histamine in the LECs, suggesting a promising potential to relieve histamine-triggered vascular leakage and inflammatory disorders in the lymphatics by targeting CRAC channel functions.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Jian Wang
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - David C Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
13
|
Chottekalapanda RU, Kalik S, Gresack J, Ayala A, Gao M, Wang W, Meller S, Aly A, Schaefer A, Greengard P. AP-1 controls the p11-dependent antidepressant response. Mol Psychiatry 2020; 25:1364-1381. [PMID: 32439846 PMCID: PMC7303013 DOI: 10.1038/s41380-020-0767-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 01/10/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed drugs for mood disorders. While the mechanism of SSRI action is still unknown, SSRIs are thought to exert therapeutic effects by elevating extracellular serotonin levels in the brain, and remodel the structural and functional alterations dysregulated during depression. To determine their precise mode of action, we tested whether such neuroadaptive processes are modulated by regulation of specific gene expression programs. Here we identify a transcriptional program regulated by activator protein-1 (AP-1) complex, formed by c-Fos and c-Jun that is selectively activated prior to the onset of the chronic SSRI response. The AP-1 transcriptional program modulates the expression of key neuronal remodeling genes, including S100a10 (p11), linking neuronal plasticity to the antidepressant response. We find that AP-1 function is required for the antidepressant effect in vivo. Furthermore, we demonstrate how neurochemical pathways of BDNF and FGF2, through the MAPK, PI3K, and JNK cascades, regulate AP-1 function to mediate the beneficial effects of the antidepressant response. Here we put forth a sequential molecular network to track the antidepressant response and provide a new avenue that could be used to accelerate or potentiate antidepressant responses by triggering neuroplasticity.
Collapse
Affiliation(s)
- Revathy U. Chottekalapanda
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Salina Kalik
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Jodi Gresack
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Alyssa Ayala
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Melanie Gao
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Wei Wang
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Sarah Meller
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Ammar Aly
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Anne Schaefer
- 0000 0001 0670 2351grid.59734.3cFriedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Paul Greengard
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
14
|
Simonowski A, Wilhelm T, Habib P, Zorn CN, Huber M. Differential use of BTK and PLC in FcεRI- and KIT-mediated mast cell activation: A marginal role of BTK upon KIT activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118622. [PMID: 31837347 DOI: 10.1016/j.bbamcr.2019.118622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 11/16/2019] [Accepted: 12/08/2019] [Indexed: 02/04/2023]
Abstract
In mast cells (MCs), the TEC family kinase (TFK) BTK constitutes a central regulator of antigen (Ag)-triggered, FcεRI-mediated PLCγ phosphorylation, Ca2+ mobilization, degranulation, and pro-inflammatory cytokine production. Less is known about the function of BTK in the context of stem cell factor (SCF)-induced KIT signaling. In bone marrow-derived MCs (BMMCs), Ag stimulation caused intense phosphorylation of BTK at Y551 in its active center and at Y223 in its SH3-domain, whereas in response to SCF only Y223 was significantly phosphorylated. Further data using the TFK inhibitor Ibrutinib indicated that BTK Y223 is phosphorylated by a non-BTK TFK upon SCF stimulation. In line, SCF-induced PLCγ1 phosphorylation was stronger attenuated by Ibrutinib than by BTK deficiency. Subsequent pharmacological analysis of PLCγ function revealed a total block of SCF-induced Ca2+ mobilization by PLC inhibition, whereas only the sustained phase of Ca2+ flux was curtailed in Ag-stimulated BMMCs. Despite this severe stimulus-dependent difference in inducing Ca2+ mobilization, PLCγ inhibition suppressed Ag- and SCF-induced degranulation and pro-inflammatory cytokine production to comparable extents, suggesting involvement of additional TFK(s) or PLCγ-dependent signaling components. In addition to PLCγ, the MAPKs p38 and JNK were activated by Ag in a BTK-dependent manner; this was not observed upon SCF stimulation. Hence, FcεRI and KIT employ different mechanisms for activating PLCγ, p38, and JNK, which might strengthen their cooperation regarding pro-inflammatory MC effector functions. Importantly, our data clearly demonstrate that analyzing BTK Y223 phosphorylation is not sufficient to prove BTK activation.
Collapse
Affiliation(s)
- Anne Simonowski
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Carolin N Zorn
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
15
|
The phospholipase C inhibitor U73122 is a potent agonist of the polymodal transient receptor potential ankyrin type 1 (TRPA1) receptor channel. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:177-189. [DOI: 10.1007/s00210-019-01722-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023]
|
16
|
Abstract
The study of taste has been guided throughout much of its history by the conceptual framework of psychophysics, where the focus was on quantification of the subjective experience of the taste sensations. By the mid-20th century, data from physiologic studies had accumulated sufficiently to assemble a model for the function of receptors that must mediate the initial stimulus of tastant molecules in contact with the tongue. But the study of taste as a receptor-mediated event did not gain momentum until decades later when the actual receptor proteins and attendant signaling mechanisms were identified and localized to the highly specialized taste-responsive cells of the tongue. With those discoveries a new opportunity to examine taste as a function of receptor activity has come into focus. Pharmacology is the science designed specifically for the experimental interrogation and quantitative characterization of receptor function at all levels of inquiry from molecules to behavior. This review covers the history of some of the major concepts that have shaped thinking and experimental approaches to taste, the seminal discoveries that have led to elucidation of receptors for taste, and how applying principles of receptor pharmacology can enhance understanding of the mechanisms of taste physiology and perception.
Collapse
Affiliation(s)
- R Kyle Palmer
- Opertech Bio, Inc., Pennovation Center, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Wan YQ, Feng JG, Li M, Wang MZ, Liu L, Liu X, Duan XX, Zhang CX, Wang XB. Prefrontal cortex miR-29b-3p plays a key role in the antidepressant-like effect of ketamine in rats. Exp Mol Med 2018; 50:1-14. [PMID: 30369596 PMCID: PMC6204429 DOI: 10.1038/s12276-018-0164-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 01/07/2023] Open
Abstract
Ketamine has a rapid, obvious, and persistent antidepressant effect, but its underlying molecular mechanisms remain unknown. Recently, microRNAs (miRNAs) have emerged as important modulators of ketamine's antidepressant effect. We investigated the alteration in miR-29b-3p in the brain of rats subjected to ketamine administration and chronic unpredictable mild stress (CUMS), and a sucrose preference test and forced swimming test were used to evaluate the rats' depressive-like state. We used recombination adeno-associated virus (rAAV) or lentivirus-expressing miR-29b-3p to observe the change in metabotropic glutamate receptor 4 (GRM4). Cell culture and electrophysiological recordings were used to evaluate the function of miR-29b-3p. Ketamine dramatically increased miR-29b-3p expression in the prefrontal cortex of the normal rats. The dual luciferase reporter test confirmed that GRM4 was the target of miR-29b-3p. The miR-29b-3p levels were downregulated, while the GRM4 levels were upregulated in the prefrontal cortex of the depressive-like rats. The ketamine treatment increased miR-29b-3p expression and decreased GRM4 expression in the prefrontal cortex of the depressive-like rats and primary neurons. By overexpressing and silencing miR-29b-3p, we further validated that miR-29b-3p could negatively regulate GRM4. The silencing of miR-29b-3p suppressed the Ca2+ influx in the prefrontal cortex neurons. The miR-29b-3p overexpression contributed to cell survival, cytodendrite growth, increases in extracellular glutamate concentration, and cell apoptosis inhibition. The overexpression of miR-29b-3p by rAAV resulted in a noticeable relief of the depressive behaviors of the CUMS rats and a lower expression of GRM4. The miR-29b-3p/GRM4 pathway acts as a critical mediator of ketamine's antidepressant effect in depressive-like rats and could be considered a potential therapeutic target for treating major depression disorder.
Collapse
Affiliation(s)
- Yun-Qiang Wan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Jian-Guo Feng
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Mao Li
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Mao-Zhou Wang
- Department of Intensive Care Unit, The Affiliated Chaoyang Hospital of Capital Medical University, Beijing, People's Republic of China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Xueru Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Xiao-Xia Duan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Chun-Xiang Zhang
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiao-Bin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China.
| |
Collapse
|
18
|
Wozniak KL, Tembo M, Phelps WA, Lee MT, Carlson AE. PLC and IP 3-evoked Ca 2+ release initiate the fast block to polyspermy in Xenopus laevis eggs. J Gen Physiol 2018; 150:1239-1248. [PMID: 30012841 PMCID: PMC6122927 DOI: 10.1085/jgp.201812069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
The fast block to polyspermy is achieved in Xenopus laevis eggs by fertilization-induced depolarization. Wozniak et al. show that fertilization activates a signaling cascade involving phospholipase C, IP3, and intracellular Ca2+ release, which induces depolarization via Ca2+-activated Cl− efflux. The prevention of polyspermy is essential for the successful progression of normal embryonic development in most sexually reproducing species. In external fertilizers, the process of fertilization induces a depolarization of the egg’s membrane within seconds, which inhibits supernumerary sperm from entering an already-fertilized egg. This fast block requires an increase of intracellular Ca2+ in the African clawed frog, Xenopus laevis, which in turn activates an efflux of Cl− that depolarizes the cell. Here we seek to identify the source of this intracellular Ca2+. Using electrophysiology, pharmacology, bioinformatics, and developmental biology, we explore the requirement for both Ca2+ entry into the egg from the extracellular milieu and Ca2+ release from an internal store, to mediate fertilization-induced depolarization. We report that although eggs express Ca2+-permeant ion channels, blockade of these channels does not alter the fast block. In contrast, insemination of eggs in the presence of Xestospongin C—a potent inhibitor of inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release from the endoplasmic reticulum (ER)—completely inhibits fertilization-evoked depolarization and increases the incidence of polyspermy. Inhibition of the IP3-generating enzyme phospholipase C (PLC) with U73122 similarly prevents fertilization-induced depolarization and increases polyspermy. Together, these results demonstrate that fast polyspermy block after fertilization in X. laevis eggs is mediated by activation of PLC, which increases IP3 and evokes Ca2+ release from the ER. This ER-derived Ca2+ then activates a Cl− channel to induce the fast polyspermy block. The PLC-induced cascade of events represents one of the earliest known signaling pathways initiated by fertilization.
Collapse
Affiliation(s)
| | - Maiwase Tembo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Wesley A Phelps
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Miler T Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
19
|
Jijón-Lorenzo R, Caballero-Florán IH, Recillas-Morales S, Cortés H, Avalos-Fuentes JA, Paz-Bermúdez FJ, Erlij D, Florán B. Presynaptic Dopamine D2 Receptors Modulate [ 3H]GABA Release at StriatoPallidal Terminals via Activation of PLC → IP3 → Calcineurin and Inhibition of AC → cAMP → PKA Signaling Cascades. Neuroscience 2017; 372:74-86. [PMID: 29292080 DOI: 10.1016/j.neuroscience.2017.12.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/14/2017] [Accepted: 12/23/2017] [Indexed: 01/11/2023]
Abstract
Striatal dopamine D2 receptors activate the PLC → IP3 → Calcineurin-signaling pathway to modulate the neural excitability of En+ Medium-sized Spiny GABAergic neurons (MSN) through the regulation of L-type Ca2+ channels. Presynaptic dopaminergic D2 receptors modulate GABA release at striatopallidal terminals through L-type Ca2+ channels as well, but their signaling pathway is still undetermined. Since D2 receptors are Gi/o-coupled and negatively modulate adenylyl cyclase (AC), we investigated whether presynaptic D2 receptors modulate GABA release through the same signaling cascade that controls excitability in the striatum or by the inhibition of AC and decreased PKA activity. Activation of D2 receptors stimulated formation of [3H]IP1 and decreased Forskolin-stimulated [3H]cAMP accumulation in synaptosomes from rat Globus Pallidus. D2 receptor activation with Quinpirole in the presence of L 745,870 decreased, in a dose-dependent manner, K+-induced [3H]GABA release in pallidal slices. The effect was prevented by the pharmacological blockade of Gi/o βγ subunit effects with Gallein, PLC with U 73122, IP3 receptor activation with 4-APB, Calcineurin with FK506. In addition, when release was stimulated with Forskolin to activate AC, D2 receptors also decreased K+-induced [3H]GABA release, an effect occluded with the effect of the blockade of PKA with H89 or stimulation of release with the cAMP analog 8-Br-cAMP. These data indicate that D2 receptors modulate [3H]GABA release at striatopallidal terminals by activating the PLC → IP3 → Calcineurin-signaling cascade, the same one that modulates excitability in soma. Additionally, D2 receptors inhibit release when AC is active. Both mechanisms appear to converge to regulate the activity of presynaptic L-type Ca2+ channels.
Collapse
Affiliation(s)
- Rafael Jijón-Lorenzo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Isaac Hiram Caballero-Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Francisco Javier Paz-Bermúdez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - David Erlij
- Department of Physiology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico.
| |
Collapse
|
20
|
Pituitary adenylate cyclase activating polypeptide induces long-term, transcription-dependent plasticity and remodeling at autonomic synapses. Mol Cell Neurosci 2017; 85:170-182. [DOI: 10.1016/j.mcn.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 12/28/2022] Open
|
21
|
Guerrero-Alba R, Valdez-Morales EE, Jimenez-Vargas NN, Lopez-Lopez C, Jaramillo-Polanco J, Okamoto T, Nasser Y, Bunnett NW, Lomax AE, Vanner SJ. Stress activates pronociceptive endogenous opioid signalling in DRG neurons during chronic colitis. Gut 2017; 66:2121-2131. [PMID: 27590998 DOI: 10.1136/gutjnl-2016-311456] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/18/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022]
Abstract
AIMS AND BACKGROUND Psychological stress accompanies chronic inflammatory diseases such as IBD, and stress hormones can exacerbate pain signalling. In contrast, the endogenous opioid system has an important analgesic action during chronic inflammation. This study examined the interaction of these pathways. METHODS Mouse nociceptive dorsal root ganglia (DRG) neurons were incubated with supernatants from segments of inflamed colon collected from patients with chronic UC and mice with dextran sodium sulfate (cDSS)-induced chronic colitis. Stress effects were studied by adding stress hormones (epinephrine and corticosterone) to dissociated neurons or by exposing cDSS mice to water avoidance stress. Changes in excitability of colonic DRG nociceptors were measured using patch clamp and Ca2+ imaging techniques. RESULTS Supernatants from patients with chronic UC and from colons of mice with chronic colitis caused a naloxone-sensitive inhibition of neuronal excitability and capsaicin-evoked Ca2+ responses. Stress hormones decreased signalling induced by human and mouse supernatants. This effect resulted from stress hormones signalling directly to DRG neurons and indirectly through signalling to the immune system, leading to decreased opioid levels and increased acute inflammation. The net effect of stress was a change endogenous opioid signalling in DRG neurons from an inhibitory to an excitatory effect. This switch was associated with a change in G protein-coupled receptor excitatory signalling to a pathway sensitive to inhibitors of protein kinase A-protein, phospholipase C-protein and G protein βϒ subunits. CONCLUSIONS Stress hormones block the inhibitory actions of endogenous opioids and can change the effect of opioid signalling in DRG neurons to excitation. Targeting these pathways may prevent heavy opioid use in IBD.
Collapse
Affiliation(s)
- Raquel Guerrero-Alba
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada.,Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, México
| | - Eduardo E Valdez-Morales
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada.,Departamento de Cirugía, Centro de Ciencias Biomédicas, Universidad Autónoma de Aguascalientes, Cátedras CONACYT, Aguascalientes México
| | - Nestor N Jimenez-Vargas
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Cintya Lopez-Lopez
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Josue Jaramillo-Polanco
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Takanobu Okamoto
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Yasmin Nasser
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Alan E Lomax
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Stephen J Vanner
- GI Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
22
|
Paillamanque J, Sanchez-Tusie A, Carmona EM, Treviño CL, Sandoval C, Nualart F, Osses N, Reyes JG. Arachidonic acid triggers [Ca2+]i increases in rat round spermatids by a likely GPR activation, ERK signalling and ER/acidic compartments Ca2+ release. PLoS One 2017; 12:e0172128. [PMID: 28192519 PMCID: PMC5305069 DOI: 10.1371/journal.pone.0172128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/31/2017] [Indexed: 12/27/2022] Open
Abstract
Arachidonic acid (AA), a compound secreted by Sertoli cells (SC) in a FSH-dependent manner, is able to induce the release of Ca2+ from internal stores in round spermatids and pachytene spermatocytes. In this study, the possible site(s) of action of AA in round spermatids, the signalling pathways associated and the intracellular Ca2+ stores targeted by AA-induced signalling were pharmacologically characterized by measuring intracellular Ca2+ using fluorescent Ca2+ probes. Our results suggest that AA acts by interacting with a fatty acid G protein coupled receptor, initiating a G protein signalling cascade that may involve PLA2 and ERK activation, which in turn opens intracellular ryanodine-sensitive channels as well as NAADP-sensitive channels in acidic intracellular Ca2+ stores. The results presented here also suggest that AMPK and PKA modulate this AA-induced Ca2+ release from intracellular Ca2+ stores in round spermatids. We propose that unsaturated free fatty acid lipid signalling in the seminiferous tubule is a novel regulatory component of rat spermatogenesis.
Collapse
Affiliation(s)
- Joaquin Paillamanque
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Sanchez-Tusie
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, México
| | - Emerson M. Carmona
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, México
| | - Carolina Sandoval
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan G. Reyes
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- * E-mail:
| |
Collapse
|
23
|
Han JM, Tanimura A, Kirk V, Sneyd J. A mathematical model of calcium dynamics in HSY cells. PLoS Comput Biol 2017; 13:e1005275. [PMID: 28199326 PMCID: PMC5310762 DOI: 10.1371/journal.pcbi.1005275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/30/2016] [Indexed: 12/03/2022] Open
Abstract
Saliva is an essential part of activities such as speaking, masticating and swallowing. Enzymes in salivary fluid protect teeth and gums from infectious diseases, and also initiate the digestion process. Intracellular calcium (Ca2+) plays a critical role in saliva secretion and regulation. Experimental measurements of Ca2+ and inositol trisphosphate (IP3) concentrations in HSY cells, a human salivary duct cell line, show that when the cells are stimulated with adenosine triphosphate (ATP) or carbachol (CCh), they exhibit coupled oscillations with Ca2+ spike peaks preceding IP3 spike peaks. Based on these data, we construct a mathematical model of coupled Ca2+ and IP3 oscillations in HSY cells and perform model simulations of three different experimental settings to forecast Ca2+ responses. The model predicts that when Ca2+ influx from the extracellular space is removed, oscillations gradually slow down until they stop. The model simulation of applying a pulse of IP3 predicts that photolysis of caged IP3 causes a transient increase in the frequency of the Ca2+ oscillations. Lastly, when Ca2+-dependent activation of PLC is inhibited, we see an increase in the oscillation frequency and a decrease in the amplitude. These model predictions are confirmed by experimental data. We conclude that, although concentrations of Ca2+ and IP3 oscillate, Ca2+ oscillations in HSY cells are the result of modulation of the IP3 receptor by intracellular Ca2+, and that the period is modulated by the accompanying IP3 oscillations.
Collapse
Affiliation(s)
- Jung Min Han
- Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Akihiko Tanimura
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Vivien Kirk
- Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James Sneyd
- Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
24
|
Zhu Z, Tang J, Zhou X, Xiang S, Zhu X, Li N, Shi R, Zhong Y, Zhang L, Sun M, Xu Z. Roles of ion channels in regulation of acetylcholine-mediated vasoconstrictions in umbilical cords of rabbit/rats. Reprod Toxicol 2016; 65:95-103. [PMID: 27421582 DOI: 10.1016/j.reprotox.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022]
Abstract
We recently demonstrated that acetylcholine (ACh) produced reliable vasoconstrictions in the umbilical cords. This study investigated the possible mechanisms with different antagonists. ACh-mediated vasoconstrictions were decreased by voltage-operated calcium (Ca2+) channels antagonist nifedipine or inositol-1,4,5-trisphosphate-mediated Ca2+ release antagonist 2-aminoethyl diphenylborinate, indicating that both extracellular and intracellular calcium modulated the ACh-stimulated umbilical contraction. Intracellular Ca2+ concentrations were increased simultaneously with vasoconstrictions by ACh in the umbilical vessels. Inhibiting large-conductance calcium-dependent potassium (BK) channels enhanced ACh-mediated contraction, whereas inhibiting voltage dependent potassium (K+), inward rectifier K+ and ATP-sensitive K+ channels had no effects. Incubation with specific K+ channel inhibitors showed that ACh suppressed BK currents rather than 4-aminopyridine-sensitive K+ channels currents. The results suggested that blood vessels in umbilical cords had special characteristics in response to cholinergic signals. ACh-stimulated umbilical vasoconstrictions were mediated via muscarinic receptor subtype 1/3-protein kinase C/cyclooxygenase-BK channel pathways.
Collapse
Affiliation(s)
- Zhoufeng Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqi Tang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiuwen Zhou
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Sharon Xiang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Xiaolin Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Na Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ruixiu Shi
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuan Zhong
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lubo Zhang
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Zhice Xu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
25
|
Kim CS, Mitchell IP, Desotell AW, Kreeger PK, Masters KS. Immobilized epidermal growth factor stimulates persistent, directed keratinocyte migration via activation of PLCγ1. FASEB J 2016; 30:2580-90. [PMID: 27025961 DOI: 10.1096/fj.201600252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/21/2016] [Indexed: 01/19/2023]
Abstract
Epidermal growth factor (EGF) is a critical element in dermal repair, but EGF-containing wound dressings have not been successful clinically. However, these dressings have delivered only soluble EGF, and the native environment provides both soluble and matrix-bound EGF. To address our hypothesis that tethered EGF can stimulate cell behaviors not achievable with soluble EGF, we examined single-cell movement and signaling in human immortalized HaCaT keratinocytes treated with soluble or immobilized EGF. Although both EGF treatments increased collective sheet displacement and individual cell speed, only cells treated with immobilized EGF exhibited directed migration, as well as 2-fold greater persistence compared with soluble EGF. Immunofluorescence showed altered EGF receptor (EGFR) trafficking, where EGFR remained membrane-localized in the immobilized EGF condition. Cells treated with soluble EGF demonstrated higher phosphorylated ERK1/2, and cells on immobilized EGF exhibited higher pPLCγ1, which was localized at the leading edge. Treatment with U0126 inhibited migration in both conditions, demonstrating that ERK1/2 activity was necessary but not responsible for the observed differences. In contrast, PLCγ1 inhibition with U73122 significantly decreased persistence on immobilized EGF. Combined, these results suggest that immobilized EGF increases collective keratinocyte displacement via an increase in single-cell migration persistence resulting from altered EGFR trafficking and PLCγ1 activation.-Kim, C. S., Mitchell, I. P., Desotell, A. W., Kreeger, P. K., Masters, K. S. Immobilized epidermal growth factor stimulates persistent, directed keratinocyte migration via activation of PLCγ1.
Collapse
Affiliation(s)
- Chloe S Kim
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Isaiah P Mitchell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anthony W Desotell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
26
|
Phosphoinositide dynamics in the postsynaptic membrane compartment: Mechanisms and experimental approach. Eur J Cell Biol 2015; 94:401-14. [DOI: 10.1016/j.ejcb.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
27
|
Mauban JRH, Zacharia J, Fairfax S, Wier WG. PC-PLC/sphingomyelin synthase activity plays a central role in the development of myogenic tone in murine resistance arteries. Am J Physiol Heart Circ Physiol 2015; 308:H1517-24. [PMID: 25888510 DOI: 10.1152/ajpheart.00594.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/03/2015] [Indexed: 11/22/2022]
Abstract
Myogenic tone is an intrinsic property of the vasculature that contributes to blood pressure control and tissue perfusion. Earlier investigations assigned a key role in myogenic tone to phospholipase C (PLC) and its products, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Here, we used the PLC inhibitor, U-73122, and two other, specific inhibitors of PLC subtypes (PI-PLC and PC-PLC) to delineate the role of PLC in myogenic tone of pressurized murine mesenteric arteries. U-73122 inhibited depolarization-induced contractions (high external K(+) concentration), thus confirming reports of nonspecific actions of U-73122 and its limited utility for studies of myogenic tone. Edelfosine, a specific inhibitor of PI-PLC, did not affect depolarization-induced contractions but modulated myogenic tone. Because PI-PLC produces IP3, we investigated the effect of blocking IP3 receptor-mediated Ca(2+) release on myogenic tone. Incubation of arteries with xestospongin C did not affect tone, consistent with the virtual absence of Ca(2+) waves in arteries with myogenic tone. D-609, an inhibitor of PC-PLC and sphingomyelin synthase, strongly inhibited myogenic tone and had no effect on depolarization-induced contraction. D-609 appeared to act by lowering cytoplasmic Ca(2+) concentration to levels below those that activate contraction. Importantly, incubation of pressurized arteries with a membrane-permeable analog of DAG induced vasoconstriction. The results therefore mandate a reexamination of the signaling pathways activated by the Bayliss mechanism. Our results suggest that PI-PLC and IP3 are not required in maintaining myogenic tone, but DAG, produced by PC-PLC and/or SM synthase, is likely through multiple mechanisms to increase Ca(2+) entry and promote vasoconstriction.
Collapse
Affiliation(s)
- Joseph R H Mauban
- Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Joseph Zacharia
- Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Seth Fairfax
- Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Withrow Gil Wier
- Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| |
Collapse
|
28
|
Leon-Pinzon C, Cercós MG, Noguez P, Trueta C, De-Miguel FF. Exocytosis of serotonin from the neuronal soma is sustained by a serotonin and calcium-dependent feedback loop. Front Cell Neurosci 2014; 8:169. [PMID: 25018697 PMCID: PMC4072984 DOI: 10.3389/fncel.2014.00169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/02/2014] [Indexed: 11/25/2022] Open
Abstract
The soma of many neurons releases large amounts of transmitter molecules through an exocytosis process that continues for hundreds of seconds after the end of the triggering stimulus. Transmitters released in this way modulate the activity of neurons, glia and blood vessels over vast volumes of the nervous system. Here we studied how somatic exocytosis is maintained for such long periods in the absence of electrical stimulation and transmembrane Ca(2+) entry. Somatic exocytosis of serotonin from dense core vesicles could be triggered by a train of 10 action potentials at 20 Hz in Retzius neurons of the leech. However, the same number of action potentials produced at 1 Hz failed to evoke any exocytosis. The 20-Hz train evoked exocytosis through a sequence of intracellular Ca(2+) transients, with each transient having a different origin, timing and intracellular distribution. Upon electrical stimulation, transmembrane Ca(2+) entry through L-type channels activated Ca(2+)-induced Ca(2+) release. A resulting fast Ca(2+) transient evoked an early exocytosis of serotonin from sparse vesicles resting close to the plasma membrane. This Ca(2+) transient also triggered the transport of distant clusters of vesicles toward the plasma membrane. Upon exocytosis, the released serotonin activated autoreceptors coupled to phospholipase C, which in turn produced an intracellular Ca(2+) increase in the submembrane shell. This localized Ca(2+) increase evoked new exocytosis as the vesicles in the clusters arrived gradually at the plasma membrane. In this way, the extracellular serotonin elevated the intracellular Ca(2+) and this Ca(2+) evoked more exocytosis. The resulting positive feedback loop maintained exocytosis for the following hundreds of seconds until the last vesicles in the clusters fused. Since somatic exocytosis displays similar kinetics in neurons releasing different types of transmitters, the data presented here contributes to understand the cellular basis of paracrine neurotransmission.
Collapse
Affiliation(s)
- Carolina Leon-Pinzon
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico D.F., México
| | - Montserrat G. Cercós
- Departamento de Neurofisiología, Instituto Nacional de Psiquiatriìa Ramoìn de la Fuente MunñizMéxico D.F., México
| | - Paula Noguez
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico D.F., México
| | - Citlali Trueta
- Departamento de Neurofisiología, Instituto Nacional de Psiquiatriìa Ramoìn de la Fuente MunñizMéxico D.F., México
| | - Francisco F. De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico D.F., México
| |
Collapse
|
29
|
Hexane Fractions of Bupleurum falcatum L. Stimulates Glucagon-Like Peptide-1 Secretion through G β γ -Mediated Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:982165. [PMID: 24688594 PMCID: PMC3943199 DOI: 10.1155/2014/982165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 12/09/2013] [Accepted: 12/24/2013] [Indexed: 12/25/2022]
Abstract
Bupleurum falcatum L. has been used traditionally as a medicinal herb in Korean medicine. The hexane fraction of BF (HFBF), which was profiled with Direct Analysis in Real Time-Mass Spectrometry (DART-MS), activates the secretion of glucagon-like peptide-1 (GLP-1) in NCI-H716 cells significantly. We performed a microarray analysis and GLP-1 ELISA assay, as well as calcium imaging experiments with inhibitors, to investigate the mechanism of action of the HFBF. Through the microarray analysis, it was found that the ITPR2 gene that encodes the inositol 1,4,5-trisphosphate (IP3) receptor is up-regulated and the HFBF induces cell depolarization by inhibiting the voltage-gated channel expression in NCI-H716 cells. In addition, we found that the intracellular calcium in NCI-H716 cells, with Gallein, U73122, and 2APB as inhibitors, was decreased. These results suggest that the HFBF activates the GLP-1 secretion through the Gβγ pathways in the enteroendocrine L cells after treatment with the HFBF.
Collapse
|
30
|
Harisseh R, Chatelier A, Magaud C, Déliot N, Constantin B. Involvement of TRPV2 and SOCE in calcium influx disorder in DMD primary human myotubes with a specific contribution of α1-syntrophin and PLC/PKC in SOCE regulation. Am J Physiol Cell Physiol 2013; 304:C881-94. [DOI: 10.1152/ajpcell.00182.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Calcium homeostasis is critical for several vital functions in excitable and nonexcitable cells and has been shown to be impaired in many pathologies including Duchenne muscular dystrophy (DMD). Various studies using murine models showed the implication of calcium entry in the dystrophic phenotype. However, alteration of store-operated calcium entry (SOCE) and transient receptor potential vanilloid 2 (TRPV2)-dependant cation entry has not been investigated yet in human skeletal muscle cells. We pharmacologically characterized basal and store-operated cation entries in primary cultures of myotubes prepared from muscle of normal and DMD patients and found, for the first time, an increased SOCE in DMD myotubes. Moreover, this increase cannot be explained by an over expression of the well-known SOCE actors: TRPC1/4, Orai1, and stromal interaction molecule 1 (STIM1) mRNA and proteins. Thus we investigated the modes of regulation of this cation entry. We firstly demonstrated the important role of the scaffolding protein α1-syntrophin, which regulates SOCE in primary human myotubes through its PDZ domain. We also studied the implication of phospholipase C (PLC) and protein kinase C (PKC) in SOCE and showed that their inhibition restores normal levels of SOCE in DMD human myotubes. In addition, the involvement of TRPV2 in calcium deregulation in DMD human myotubes was explored. We showed an abnormal elevation of TRPV2-dependant cation entry in dystrophic primary human myotubes compared with normal ones. These findings show that calcium homeostasis mishandling in DMD myotubes depends on SOCE under the influence of Ca2+/PLC/PKC pathway and α1-syntrophin regulation as well as on TRPV2-dependant cation influx.
Collapse
Affiliation(s)
- Rania Harisseh
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers/Centre National de la Recherche Scientifique FRE-3511 Poitiers, France
| | - Aurélien Chatelier
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers/Centre National de la Recherche Scientifique FRE-3511 Poitiers, France
| | - Christophe Magaud
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers/Centre National de la Recherche Scientifique FRE-3511 Poitiers, France
| | - Nadine Déliot
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers/Centre National de la Recherche Scientifique FRE-3511 Poitiers, France
| | - Bruno Constantin
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers/Centre National de la Recherche Scientifique FRE-3511 Poitiers, France
| |
Collapse
|
31
|
Dystrophin/α1-syntrophin scaffold regulated PLC/PKC-dependent store-operated calcium entry in myotubes. Cell Calcium 2012; 52:445-56. [DOI: 10.1016/j.ceca.2012.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/16/2012] [Accepted: 08/06/2012] [Indexed: 11/17/2022]
|
32
|
Zhang XF, Hyland C, Van Goor D, Forscher P. Calcineurin-dependent cofilin activation and increased retrograde actin flow drive 5-HT-dependent neurite outgrowth in Aplysia bag cell neurons. Mol Biol Cell 2012; 23:4833-48. [PMID: 23097492 PMCID: PMC3521690 DOI: 10.1091/mbc.e12-10-0715] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neurite outgrowth in response to soluble growth factors often involves changes in intracellular Ca(2+); however, mechanistic roles for Ca(2+) in controlling the underlying dynamic cytoskeletal processes have remained enigmatic. Bag cell neurons exposed to serotonin (5-hydroxytryptamine [5-HT]) respond with a threefold increase in neurite outgrowth rates. Outgrowth depends on phospholipase C (PLC) → inositol trisphosphate → Ca(2+) → calcineurin signaling and is accompanied by increased rates of retrograde actin network flow in the growth cone P domain. Calcineurin inhibitors had no effect on Ca(2+) release or basal levels of retrograde actin flow; however, they completely suppressed 5-HT-dependent outgrowth and F-actin flow acceleration. 5-HT treatments were accompanied by calcineurin-dependent increases in cofilin activity in the growth cone P domain. 5-HT effects were mimicked by direct activation of PLC, suggesting that increased actin network treadmilling may be a widespread mechanism for promoting neurite outgrowth in response to neurotrophic factors.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
33
|
Kubo A, Katanosaka K, Mizumura K. Extracellular matrix proteoglycan plays a pivotal role in sensitization by low pH of mechanosensitive currents in nociceptive sensory neurones. J Physiol 2012; 590:2995-3007. [PMID: 22570376 DOI: 10.1113/jphysiol.2012.229153] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ischaemia, inflammation, and exercise lead to tissue acidosis, which induces pain and mechanical hyperalgesia. Corresponding to this, enhanced thin-fibre afferent responses to mechanical stimulation have been recorded in vitro at low pH. However, knowledge about how this sensitization by low pH occurs is lacking. In this study, we found that all three types (rapidly adapting (RA), intermediately adapting and slowly adapting) of mechanically activated currents recorded with the whole cell patch-clamp method were sensitized by low pH in rat cultured dorsal root ganglion neurones. This sensitization was mainly observed in neurones positively labelled with isolectin B4 (IB4), which binds to versican, a chondroitin sulfate proteoglycan. Inhibitors of acid-sensitive channels (amiloride and capsazepine) did not block sensitization by low pH except in RA neurones, and extracellular calcium was not involved even in the sensitization of this type of neurone. A broad spectrum kinase inhibitor and a phospholipase C inhibitor (staurosporine and U73122) failed to block pH-induced sensitization in IB4-positive neurones, suggesting that these intracellular signalling pathways are not involved. Notably, both excess chondroitin sulfate in the extracellular solution and pretreatment of the neurone culture with chondroitinase ABC attenuated this low pH-induced sensitization in IB4-positive neurones. These findings suggest that a change in interaction between mechanosensitive channels and/or their auxiliary molecules and the side chain of versican on the cell surface causes this sensitization, at least in IB4-positive neurones. This report proposes a novel mechanism for sensitization that involves extracellular proteoglycans (versican).
Collapse
Affiliation(s)
- Asako Kubo
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | | | | |
Collapse
|
34
|
Usmani SM, von Einem J, Frick M, Miklavc P, Mayenburg M, Husmann M, Dietl P, Wittekindt OH. Molecular basis of early epithelial response to streptococcal exotoxin: role of STIM1 and Orai1 proteins. Cell Microbiol 2011; 14:299-315. [PMID: 22073982 DOI: 10.1111/j.1462-5822.2011.01724.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Streptolysin O (SLO) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pyogenes. SLO induces diverse types of Ca(2+) signalling in host cells which play a key role in membrane repair and cell fate determination. The mechanisms behind SLO-induced Ca(2+) signalling remain poorly understood. Here, we show that in NCI-H441 cells, wild-type SLO as well as non-pore-forming mutant induces long-lasting intracellular Ca(2+) oscillations via IP(3) -mediated depletion of intracellular stores and activation of store-operated Ca(2+) (SOC) entry. SLO-induced activation of SOC entry was confirmed by Ca(2+) add-back experiments, pharmacologically and by overexpression as well as silencing of STIM1 and Orai1 expression. SLO also activated SOC entry in primary cultivated alveolar type II (ATII) cells but Ca(2+) oscillations were comparatively short-lived in nature. Comparison of STIM1 and Orai1 revealed a differential expression pattern in H441 and ATII cells. Overexpression of STIM1 and Orai1 proteins in ATII cells changed the short-lived oscillatory response into a long-lived one. Thus, we conclude that SLO-mediated Ca(2+) signalling involves Ca(2+) release from intracellular stores and STIM1/Orai1-dependent SOC entry. The phenotype of Ca(2+) signalling depends on STIM1 and Orai1 expression levels. Our findings suggest a new role for SOC entry-associated proteins in S. pyogenes-induced lung infection and pneumonia.
Collapse
Affiliation(s)
- Shariq M Usmani
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Laframboise AJ, Zielinski BS. Responses of round goby (Neogobius melanostomus) olfactory epithelium to steroids released by reproductive males. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:999-1008. [PMID: 21735225 DOI: 10.1007/s00359-011-0662-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 11/29/2022]
Abstract
The wild perciform teleost Neogobius melanostomus (the round goby) originated from the Ponto-Caspian region and is now a highly successful invasive species in the Laurentian Great Lakes. Males may attract females into their nests for spawning by releasing reproductive pheromones, and it has been previously shown that reproductive males synthesize and release the 5β-reduced and 3α-hydroxyl steroids 3α-hydroxy-5β-androstane-11,17-dione (11-oxo-etiocholanolone; 11-O-ETIO) and 3α-hydroxy-5β-androstane-11,17-dione 3-sulfate (11-oxo-etiocholanolone-3-sulfate; 11-O-ETIO-3-s) and 3α,17β-dihydroxy-5β-androstan-11-one 17-sulfate. In this study, we investigated properties of these released steroids by recording field potential responses from the olfactory epithelium (electro-olfactogram, EOG). The steroid 3α,17β-dihydroxy-5β-androstan-11-one 17-sulfate did not elicit olfactory responses while both 11-O-ETIO and 11-O-ETIO-3-s stimulated olfactory field potentials in the round goby, but not in the goldfish. Cross-adaptation analysis demonstrated that round gobies discriminated between11-O-ETIO and 11-O-ETIO-3-s (as well as etiocholanolone, ETIO) at the sensory level. Second messenger cascades depending on both cAMP and IP(3) were inferred for steroids from pharmacological inhibition studies, while the canonical teleost odors taurocholic acid (a bile acid) and L: -alanine (an amino acid) used only cAMP and IP(3), respectively. The round goby presents itself as an excellent species for the study of olfactory function of fish in the wild, given its possible use of these released steroids as pheromones.
Collapse
|
36
|
Zhao H, Kinch DC, Simasko SM. Pharmacological investigations of the cellular transduction pathways used by cholecystokinin to activate nodose neurons. Auton Neurosci 2011; 164:20-6. [PMID: 21664195 DOI: 10.1016/j.autneu.2011.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/25/2022]
Abstract
Cholecystokinin (CCK) directly activates vagal afferent neurons resulting in coordinated gastrointestinal functions and satiation. In vitro, the effects of CCK on dissociated vagal afferent neurons are mediated via activation of the vanilloid family of transient receptor potential (TRPV) cation channels leading to membrane depolarization and an increase in cytosolic calcium. However, the cellular transduction pathway(s) involved in this process between CCK receptors and channel opening have not been identified. To address this question, we monitored CCK-induced cytosolic calcium responses in dissociated nodose neurons from rat in the presence or absence of reagents that interact with various intracellular signaling pathways. We found that the phospholipase C (PLC) inhibitor U-73122 significantly attenuated CCK-induced responses, whereas the inactive analog U-73433 had no effect. Responses to CCK were also cross-desensitized by a brief pretreatment with m-3M3FBS, a PLC stimulator. Together these observations strongly support the participation of PLC in the effects of CCK on vagal afferent neurons. In contrast, pharmacological antagonism of phospholipase A(2), protein kinase A, and phosphatidylinositol 3-kinase revealed that they are not critical in the CCK-induced calcium response in nodose neurons. Further investigations of the cellular pathways downstream of PLC showed that neither protein kinase C (PKC) nor generation of diacylglycerol (DAG) or release of calcium from intracellular stores participates in the response to CCK. These results suggest that alteration of membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) content by PLC activity mediates CCK-induced calcium response and that this pathway may underlie the vagally-mediated actions of CCK to induce satiation and alter gastrointestinal functions.
Collapse
Affiliation(s)
- Huan Zhao
- Program in Neuroscience, Dept of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
37
|
Yousuf A, Klinger F, Schicker K, Boehm S. Nucleotides control the excitability of sensory neurons via two P2Y receptors and a bifurcated signaling cascade. Pain 2011; 152:1899-1908. [PMID: 21600693 PMCID: PMC3144389 DOI: 10.1016/j.pain.2011.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/03/2011] [Accepted: 04/11/2011] [Indexed: 01/04/2023]
Abstract
Nucleotides contribute to the sensation of acute and chronic pain, but it remained enigmatic which G protein-coupled nucleotide (P2Y) receptors and associated signaling cascades are involved. To resolve this issue, nucleotides were applied to dorsal root ganglion neurons under current- and voltage-clamp. Adenosine triphosphate (ATP), adenosine diphosphate (ADP), and uridine triphosphate (UTP), but not uridine diphosphate (UDP), depolarized the neurons and enhanced action potential firing in response to current injections. The P2Y2 receptor preferring agonist 2-thio-UTP was equipotent to UTP in eliciting these effects. The selective P2Y1 receptor antagonist MRS2179 largely attenuated the excitatory effects of ADP, but left those of 2-thio-UTP unaltered. Thus, the excitatory effects of the nucleotides were mediated by 2 different P2Y receptors, P2Y1 and P2Y2. Activation of each of these 2 receptors by either ADP or 2-thio-UTP inhibited currents through KV7 channels, on one hand, and facilitated currents through TRPV1 channels, on the other hand. Both effects were abolished by inhibitors of phospholipase C or Ca2+-ATPase and by chelation of intracellular Ca2+. The facilitation of TRPV1, but not the inhibition KV7 channels, was prevented by a protein kinase C inhibitor. Simultaneous blockage of KV7 channels and of TRPV1 channels prevented nucleotide-induced membrane depolarization and action potential firing. Thus, P2Y1 and P2Y2 receptors mediate an excitation of dorsal root ganglion neurons by nucleotides through the inhibition of KV7 channels and the facilitation of TRPV1 channels via a common bifurcated signaling pathway relying on an increase in intracellular Ca2+ and an activation of protein kinase C, respectively.
Collapse
Affiliation(s)
- Arsalan Yousuf
- Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
38
|
Lo Vasco VR, Fabrizi C, Panetta B, Fumagalli L, Cocco L. Expression pattern and sub-cellular distribution of phosphoinositide specific phospholipase C enzymes after treatment with U-73122 in rat astrocytoma cells. J Cell Biochem 2010; 110:1005-12. [PMID: 20564200 DOI: 10.1002/jcb.22614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phosphoinositide specific phospholipase C (PI-PLC) enzymes interfere with the metabolism of inositol phospholipids (PI), molecules involved in signal transduction, a complex process depending on various components. Many evidences support the hypothesis that, in the glia, isoforms of PI-PLC family display different expression and/or sub cellular distribution under non-physiological conditions such as the rat astrocytes activation during neurodegeneration, the tumoural progression of some neoplasms and the inflammatory cascade activation after lipopolysaccharide administration, even if their role remains not completely elucidated. Treatment of a cultured established glioma cell line (C6 rat astrocytoma cell line) induces a modification in the pattern of expression and of sub cellular distribution of PI-PLCs compared to untreated cells. Special attention require PI-PLC beta3 and PI-PLC gamma2 isoforms, whose expression and sub cellular localization significantly differ after U-73122 treatment. The meaning of these modifications is unclear, also because the use of this N-aminosteroid compound remains controversial, inasmuch it has further actions which might contribute to the global effect recorded on the treated cells.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Department of Otorinolaringoiatria, Audiologia and Foniatria "G. Ferreri", Policlinico Umberto I, Rome, Italy.
| | | | | | | | | |
Collapse
|
39
|
The opening of maitotoxin-sensitive calcium channels induces the acrosome reaction in human spermatozoa: differences from the zona pellucida. Asian J Androl 2010; 13:159-65. [PMID: 20835262 DOI: 10.1038/aja.2010.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The acrosome reaction (AR), an absolute requirement for spermatozoa and egg fusion, requires the influx of Ca²(+) into the spermatozoa through voltage-dependent Ca²(+) channels and store-operated channels. Maitotoxin (MTx), a Ca²(+)-mobilizing agent, has been shown to be a potent inducer of the mouse sperm AR, with a pharmacology similar to that of the zona pellucida (ZP), possibly suggesting a common pathway for both inducers. Using recombinant human ZP3 (rhZP3), mouse ZP and two MTx channel blockers (U73122 and U73343), we investigated and compared the MTx- and ZP-induced ARs in human and mouse spermatozoa. Herein, we report that MTx induced AR and elevated intracellular Ca²(+) ([Ca²(+)](i)) in human spermatozoa, both of which were blocked by U73122 and U73343. These two compounds also inhibited the MTx-induced AR in mouse spermatozoa. In disagreement with our previous proposal, the AR triggered by rhZP3 or mouse ZP was not blocked by U73343, indicating that in human and mouse spermatozoa, the AR induction by the physiological ligands or by MTx occurred through distinct pathways. U73122, but not U73343 (inactive analogue), can block phospholipase C (PLC). Another PLC inhibitor, edelfosine, also blocked the rhZP3- and ZP-induced ARs. These findings confirmed the participation of a PLC-dependent signalling pathway in human and mouse zona protein-induced AR. Notably, edelfosine also inhibited the MTx-induced mouse sperm AR but not that of the human, suggesting that toxin-induced AR is PLC-dependent in mice and PLC-independent in humans.
Collapse
|
40
|
Regulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation. Proc Natl Acad Sci U S A 2010; 107:11417-22. [PMID: 20534534 DOI: 10.1073/pnas.1003042107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We show that receptor induced G protein betagamma subunit translocation from the plasma membrane to the Golgi allows a receptor to initiate fragmentation and regulate secretion. A lung epithelial cell line, A549, was shown to contain an endogenous translocating G protein gamma subunit and exhibit receptor-induced Golgi fragmentation. Receptor-induced Golgi fragmentation was inhibited by a shRNA specific to the endogenous translocating gamma subunit. A kinase defective protein kinase D and a phospholipase C beta inhibitor blocked receptor-induced Golgi fragmentation, suggesting a role for this process in secretion. Consistent with betagamma translocation dependence, fragmentation induced by receptor activation was inhibited by a dominant negative nontranslocating gamma3. Insulin secretion was shown to be induced by muscarinic receptor activation in a pancreatic beta cell line, NIT-1. Induction of insulin secretion was also inhibited by the dominant negative gamma3 subunit consistent with the Golgi fragmentation induced by betagamma complex translocation playing a role in secretion.
Collapse
|
41
|
Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation. Trends Mol Med 2010; 16:160-70. [PMID: 20207196 DOI: 10.1016/j.molmed.2010.02.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 12/14/2022]
Abstract
Axonal degeneration causes morbidity in many neurological conditions including stroke, neurotrauma and multiple sclerosis. The limited ability of central nervous system (CNS) neurons to regenerate, combined with the observation that axonal damage causes clinical disability, has spurred efforts to investigate the mechanisms of axonal degeneration. Ca influx from outside the axon is a key mediator of injury. More recently, substantial pools of intra-axonal Ca sequestered in the 'axoplasmic reticulum' have been reported. These Ca stores are under the control of multimolecular 'nanocomplexes' located along the internodes under the myelin. The overactivation of these complexes during disease can lead to a lethal release of Ca from intra-axonal stores. Rich receptor pharmacology offers tantalizing therapeutic options targeting these nanocomplexes in the many diseases where axonal degeneration is prominent.
Collapse
|
42
|
Zheng H, Zeng Y, Zhang X, Chu J, Loh HH, Law PY. mu-Opioid receptor agonists differentially regulate the expression of miR-190 and NeuroD. Mol Pharmacol 2010; 77:102-9. [PMID: 19854889 PMCID: PMC2802427 DOI: 10.1124/mol.109.060848] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/23/2009] [Indexed: 12/17/2022] Open
Abstract
The agonists of mu-opioid receptor (OPRM1) induce extracellular signal-regulated kinase (ERK) phosphorylation through different pathways: morphine uses the protein kinase C (PKC)-pathway, whereas fentanyl functions in a beta-arrestin2-dependent manner. In addition, the two pathways result in the different cellular location of phosphorylated ERK and the activation of different sets of transcriptional factors. In the current study, the influence of the two pathways on the expression of microRNAs (miRNAs) was investigated. After treating the primary culture of rat hippocampal neurons and the mouse hippocampi with morphine or fentanyl for 3 days, seven miRNAs regulated by one or two of the agonists were identified. One of the identified miRNAs, miR-190, was down-regulated by fentanyl but not by morphine. This down-regulation was attenuated by 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126), which blocks the phosphorylation of ERK. When fentanyl-induced but not morphine-induced ERK phosphorylation was blocked in the primary cultures from beta-arrestin2(-/-) mouse, fentanyl did not decrease the expression of miR-190. However, a PKC inhibitor that blocked morphine-induced ERK phosphorylation specifically had no effect on the miR-190 down-regulation. Therefore the decrease in miR-190 expression resulted from the agonist-selective ERK phosphorylation. In addition, the expressional changes in one of the miR-190 targets, neurogenic differentiation 1 (NeuroD), correlated with those in miR-190 expression, suggesting the OPRM1 could regulate the NeuroD pathways via the control of miR-190 expression.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455-0217, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Dwyer L, Kim HJ, Koh BH, Koh SD. Phospholipase C-independent effects of 3M3FBS in murine colon. Eur J Pharmacol 2009; 628:187-94. [PMID: 19931239 DOI: 10.1016/j.ejphar.2009.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/22/2009] [Accepted: 11/05/2009] [Indexed: 11/30/2022]
Abstract
The muscarinic receptor subtype M(3) is coupled to Gq/11 proteins. Muscarinic receptor agonists such as carbachol stimulate these receptors that result in activation of phospholipase C (PLC) which hydrolyzes phosphatidylinositol 4,5-bisphosphate into diacylglycerol and Ins(1,4,5)P(3). This pathway leads to excitation and smooth muscle contraction. In this study the PLC agonist, 2, 4, 6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benezenesulfonamide (m-3M3FBS), was used to investigate whether direct PLC activation mimics carbachol-induced excitation. We examined the effects of m-3M3FBS and 2, 4, 6-trimethyl-N-(ortho-3-trifluoromethyl-phenyl)-benzenesulfonamide (o-3M3FBS), on murine colonic smooth muscle tissue and cells by performing conventional microelectrode recordings, isometric force measurements and patch clamp experiments. Application of m-3M3FBS decreased spontaneous contractility in murine colonic smooth muscle without affecting the resting membrane potential. Patch clamp studies revealed that delayed rectifier K(+) channels were reversibly inhibited by m-3M3FBS and o-3M3FBS. The PLC inhibitor, 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), did not prevent this inhibition by m-3M3FBS. Both m-3M3FBS and o-3M3FBS decreased two components of delayed rectifier K(+) currents in the presence of tetraethylammonium chloride or 4-aminopyridine. Ca(2+) currents were significantly suppressed by m-3M3FBS and o-3M3FBS with a simultaneous increase in intracellular Ca(2+). Pretreatment with U73122 did not prevent the decrease in Ca(2+) currents upon m-3M3FBS application. In conclusion, both m-3M3FBS and o-3M3FBS inhibit inward and outward currents via mechanisms independent of PLC acting in an antagonistic manner. In contrast, both compounds also caused an increase in [Ca(2+)](i) in an agonistic manner. Therefore caution must be employed when interpreting their effects at the tissue and cellular level.
Collapse
Affiliation(s)
- Laura Dwyer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | |
Collapse
|
44
|
Leung CF, Miller AL, Korzh V, Chong SW, Sleptsova-Freidrich I, Webb SE. Visualization of stochastic Ca2+ signals in the formed somites during the early segmentation period in intact, normally developing zebrafish embryos. Dev Growth Differ 2009; 51:617-37. [DOI: 10.1111/j.1440-169x.2009.01123.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Yin X, Eckberg WR. Characterization of phospholipases C beta and gamma and their possible roles in Chaetopterus egg activation. Mol Reprod Dev 2009; 76:460-70. [PMID: 18951372 DOI: 10.1002/mrd.20961] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intracellular calcium release from the endoplasmic reticulum is a hallmark at egg activation of both vertebrates and invertebrates. This fertilization-associated calcium release results from generation of the second messenger inositol 1,4,5-trisphosphate (IP(3)) by one or more phospholipases C (PLC). We characterized Chaetopterus PLCbeta and gamma by reverse transcription/degenerate oligonucleotide primed PCR and rapid amplification of cDNA end PCR. Phylogenetic analyses suggested that the deduced PLCbeta protein shared the greatest homology with mammalian PLCbeta4; the deduced PLCgamma protein shared the greatest homology with starfish PLCgamma and diverged from mammalian PLCgamma before mammalian the PLCgamma1 and gamma2 isoforms diverged. Western blot analyses with specific anti-PLCbeta and gamma antibodies, respectively, revealed that 135 and 150 kDa proteins were expressed in eggs. The general PLC antagonist U-73122 blocked fertilization-induced egg activation; however, the inactive analog, U-73343, had no effect on egg activation. We further tested whether egg activation was G protein-PLCbeta and/or protein tyrosine kinase-PLCgamma dependent. Cholera and pertussis toxins, well-known effectors of G proteins, had no effect on egg activation; while two antagonists of PTK, genistein and tyrphostin B42, inhibited both fertilization-induced and artificial egg activation. Taken together, our studies suggested that PLC activity from eggs contributes to Chaetopterus egg activation and PLCgamma might play an important role during this biological process.
Collapse
Affiliation(s)
- Xunqin Yin
- Department of Biology, Howard University, Washington, District of Columbia, USA
| | | |
Collapse
|
46
|
Zhang XF, Forscher P. Rac1 modulates stimulus-evoked Ca(2+) release in neuronal growth cones via parallel effects on microtubule/endoplasmic reticulum dynamics and reactive oxygen species production. Mol Biol Cell 2009; 20:3700-12. [PMID: 19570918 DOI: 10.1091/mbc.e08-07-0730] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The small G protein Rac regulates cytoskeletal protein dynamics in neuronal growth cones and has been implicated in axon growth, guidance, and branching. Intracellular Ca(2+) is another well known regulator of growth cone function; however, effects of Rac activity on intracellular Ca(2+) metabolism have not been well characterized. Here, we investigate how Rac1 activity affects release of Ca(2+) from intracellular endoplasmic reticulum (ER) stores stimulated by application of serotonin (5-hydroxytriptamine). We also address how Rac1 effects on microtubule assembly dynamics affect distribution of Ca(2+) release sites. Multimode fluorescent microscopy was used to correlate microtubule and ER behavior, and ratiometric imaging was used to assess intracellular Ca(2+) dynamics. We report that Rac1 activity both promotes Ca(2+) release and affects its spatial distribution in neuronal growth cones. The underlying mechanism involves synergistic Rac1 effects on microtubule assembly and reactive oxygen species (ROS) production. Rac1 activity modulates Ca(2+) by 1) enhancing microtubule assembly which in turn promotes spread of the ER-based Ca(2+) release machinery into the growth cone periphery, and 2) by increasing ROS production which facilitated inositol 1,4,5-trisphosphate-dependent Ca(2+) release. These results cast Rac1 as a key modulator of intracellular Ca(2+) function in the neuronal growth cone.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven CT 06520, USA
| | | |
Collapse
|
47
|
Ouyang Q, Sato H, Murata Y, Nakamura A, Ozaki M, Nakamura T. Contribution of the inositol 1,4,5-trisphosphate transduction cascade to the detection of "bitter" compounds in blowflies. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:309-16. [PMID: 19275942 DOI: 10.1016/j.cbpa.2009.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
Bitter taste detection is very important for many species including flies, because it prevents the ingestion of toxic food. Although it has been known that flies have specific bitter-sensitive taste cells in their contact chemosensilla, the mechanism by which those cells transduce the chemical signal into electrical activity has remained elusive. In this study, we first confirmed that type D4 and D5 tarsal chemosensilla of the blowfly Phormia regina responded well to bitter substances. Then, recording impulses from type D4 chemosensilla, we examined the possibility that a G-protein-coupled inositol 1,4,5-trisphosphate (IP(3))-dependent transduction cascade is of importance in the bitter-sensitive taste cells. We found that the response to bitter substances was depressed by specific inhibitors of G-protein, phospholipase C, or IP(3) receptor in the tarsal taste receptor cells. These results suggest that G-proteins mediate the IP(3) pathway in the transduction cascade in bitter-sensitive receptor cells.
Collapse
Affiliation(s)
- Qin Ouyang
- Department of Information Network Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Manaboon M, Iga M, Iwami M, Sakurai S. Intracellular mobilization of Ca2+ by the insect steroid hormone 20-hydroxyecdysone during programmed cell death in silkworm anterior silk glands. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:122-8. [PMID: 19041319 DOI: 10.1016/j.jinsphys.2008.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 05/02/2023]
Abstract
20-Hydroxyecdysone (20E) triggers programmed cell death (PCD) and regulates de novo gene expression in the anterior silk glands (ASGs) of the silkworm Bombyx mori. PCD is mediated via a nongenomic pathway that includes Ca2+ as a second messenger and the activation of protein kinase C/caspase-3-like protease; however, the steps leading to a concomitant buildup of intracellular Ca2+ are unknown. We employed pharmacological tools to identify the components of this pathway. ASGs were cultured in the presence of 1 microM 20E and one of the following inhibitors: a G-protein-coupled receptor (GPCR) inhibitor, a phospholipase C (PLC) inhibitor, an inositol 1,4,5-trisphosphate receptor (IP3R) antagonist, and an L- or T-type Ca2+ channel blocker. The T-type Ca2+ channel blocker inhibited 20E-induced nuclear and DNA fragmentation; in contrast, PCD was induced by 20E in Ca2+-free medium, indicating that the source of Ca2+ is an intracellular reservoir. The IP3R antagonist inhibited nuclear and DNA fragmentation, suggesting that the endoplasmic reticulum may be the Ca2+ source. Finally, the GPCR and PLC inhibitors effectively blocked nuclear and DNA fragmentation. Our results indicate that 20E increases the intracellular level of Ca2+ by activating IP3R, and that this effect may be brought about by the serial activation of GPCR, PLC, and IP3.
Collapse
Affiliation(s)
- Manaporn Manaboon
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| | | | | | | |
Collapse
|
50
|
Klose A, Huth T, Alzheimer C. 1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) selectively inhibits Kir3 and BK channels in a phospholipase C-independent fashion. Mol Pharmacol 2008; 74:1203-14. [PMID: 18682550 DOI: 10.1124/mol.108.047837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) is widely used to inhibit phospholipase C (PLC)-mediated signaling, but we and others have also reported a PLC-independent block of Kir3 channels in native cells. To elaborate on this major side effect, we examined the action of U73122 and 1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-2,5-pyrollidinedione (U73343), a structurally related but not PLC-inhibiting analog, on Kir1.1, Kir2.1, or Kir3.1/3.2 channels expressed in HEK293 cells. Both compounds (10 microM) displayed an unusual degree of selectivity for Kir3, superior even to that of tertiapin, which discriminates between Kir3 and Kir2 but also inhibits Kir1.1. Recordings from mutant Kir2 and Kir3 channels showed that U73122 is unlikely to block Kir3 by interfering with binding of phosphatidylinositol 4,5-bisphosphate, and U73122 did not seem to act like a pore blocker. U73122 and U73343 also unexpectedly suppressed Ca(2+)-activated K(+) channels of the large-conductance type (MaxiK, BK) in a PLC-independent fashion. In single-channel recordings, both compounds significantly decreased open probability of BK channels and slowed their ultrafast gating ("flickering") at very depolarized potentials. Alignment of the amino acid sequences of Kir3 and BK channels suggested that the highly selective effect of U73122/U73343 is mediated by a homologous domain within the long C-terminal ends. In fact, mutations in the C-terminal region of Kir2 and Kir3 channels significantly altered their sensitivity to the two compounds. Our data strongly caution against the use of U73122 when exploring signaling pathways involving Kir3 and BK channels. However, the apparent binding of U73122/U73343 to a common structural motif might be exploited to develop drugs selectively targeting Kir3 and BK channels.
Collapse
Affiliation(s)
- Angelika Klose
- Department of Physiology, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | | | | |
Collapse
|