1
|
Si L, An Y, Zhou J, Lai Y. Neuroprotective effects of baicalin and baicalein on the central nervous system and the underlying mechanisms. Heliyon 2025; 11:e41002. [PMID: 39758400 PMCID: PMC11699331 DOI: 10.1016/j.heliyon.2024.e41002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Baicalin and baicalein are the primary flavonoids derived from the desiccated root of Scutellaria baicalensis, which is a member of the Lamiaceae family; these flavonoids have diverse pharmacological properties and show significant potential for the management of central nervous system disorders. Multiple studies have indicated that these substances effectively reduce the severity of illnesses such as depression, stroke, and degenerative disorders of the central nervous system by exerting antioxidant and anti-inflammatory effects, regulating programmed cell death, and reducing mitochondrial malfunction. Recent studies have highlighted the connection between the accumulation of iron and the ability of baicalein to protect the nervous system. Given the diverse therapeutic effects of baicalein, this review aims to thoroughly investigate the regulatory pharmacological mechanisms through which baicalein influences the development of central nervous system disorders. By elucidating these mechanisms, this review contributes to the development of therapeutic approaches that target disorders of the central nervous system.
Collapse
Affiliation(s)
- Lujia Si
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yupu An
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiahang Zhou
- College of Humanities and Social Sciences, North University of China, Taiyuan, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Asante I, Louie S, Yassine HN. Uncovering mechanisms of brain inflammation in Alzheimer's disease with APOE4: Application of single cell-type lipidomics. Ann N Y Acad Sci 2022; 1518:84-105. [PMID: 36200578 PMCID: PMC10092192 DOI: 10.1111/nyas.14907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A chronic state of unresolved inflammation in Alzheimer's disease (AD) is intrinsically involved with the remodeling of brain lipids. This review highlights the effect of carrying the apolipoprotein E ε4 allele (APOE4) on various brain cell types in promoting an unresolved inflammatory state. Among its pleotropic effects on brain lipids, we focus on APOE4's activation of Ca2+ -dependent phospholipase A2 (cPLA2) and its effects on arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid signaling cascades in the brain. During the process of neurodegeneration, various brain cell types, such as astrocytes, microglia, and neurons, together with the neurovascular unit, develop distinct inflammatory phenotypes that impact their functions and have characteristic lipidomic fingerprints. We propose that lipidomic phenotyping of single cell-types harvested from brains differing by age, sex, disease severity stage, and dietary and genetic backgrounds can be employed to probe mechanisms of neurodegeneration. A better understanding of the brain cellular inflammatory/lipidomic response promises to guide the development of nutritional and drug interventions for AD dementia.
Collapse
Affiliation(s)
- Isaac Asante
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stan Louie
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Needham H, Torpey G, Flores CC, Davis CJ, Vanderheyden WM, Gerstner JR. A Dichotomous Role for FABP7 in Sleep and Alzheimer's Disease Pathogenesis: A Hypothesis. Front Neurosci 2022; 16:798994. [PMID: 35844236 PMCID: PMC9280343 DOI: 10.3389/fnins.2022.798994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins known to play critical roles in the regulation of fatty acid uptake and transport as well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in astrocytes and has been implicated in sleep/wake regulation and neurodegenerative diseases; however, the precise mechanisms underlying the role of FABP7 in these biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and docosahexaenoic acid (DHA), resulting in discrete physiological responses. Here, we propose a dichotomous role for FABP7 in which ligand type determines the subcellular translocation of fatty acids, either promoting wakefulness aligned with Alzheimer's pathogenesis or promoting sleep with concomitant activation of anti-inflammatory pathways and neuroprotection. We hypothesize that FABP7-mediated translocation of AA to the endoplasmic reticulum of astrocytes increases astrogliosis, impedes glutamatergic uptake, and enhances wakefulness and inflammatory pathways via COX-2 dependent generation of pro-inflammatory prostaglandins. Conversely, we propose that FABP7-mediated translocation of DHA to the nucleus stabilizes astrocyte-neuron lactate shuttle dynamics, preserves glutamatergic uptake, and promotes sleep by activating anti-inflammatory pathways through the peroxisome proliferator-activated receptor-γ transcriptional cascade. Importantly, this model generates several testable hypotheses applicable to other neurodegenerative diseases, including amyotrophic lateral sclerosis and Parkinson's disease.
Collapse
Affiliation(s)
- Hope Needham
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Grace Torpey
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - William M. Vanderheyden
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
4
|
Zhu WM, Neuhaus A, Beard DJ, Sutherland BA, DeLuca GC. Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease. Brain 2022; 145:2276-2292. [PMID: 35551356 PMCID: PMC9337814 DOI: 10.1093/brain/awac174] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signalling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries, respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signalling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer’s disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer’s disease.
Collapse
Affiliation(s)
- Winston M Zhu
- Oxford Medical School, University of Oxford, Oxford, UK
| | - Ain Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Chen B, Zhang M, Ji M, Gong W, Chen B, Zorec R, Stenovec M, Verkhratsky A, Li B. The Association Between Antidepressant Effect of SSRIs and Astrocytes: Conceptual Overview and Meta-analysis of the Literature. Neurochem Res 2021; 46:2731-2745. [PMID: 33527219 DOI: 10.1007/s11064-020-03225-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
Major depressive disorders (MDD) a worldwide psychiatric disease, is yet to be adequately controlled by therapies; while the mechanisms of action of antidepressants are yet to be fully characterised. In the last two decades, an increasing number of studies have demonstrated the role of astrocytes in the pathophysiology and therapy of MDD. Selective serotonin reuptake inhibitors (SSRIs) are the most widely used antidepressants. It is generally acknowledged that SSRIs increase serotonin levels in the central nervous system by inhibiting serotonin transporters, although the SSRIs action is not ideal. The SSRIs antidepressant effect develops with considerable delay; their efficacy is low and frequent relapses are common. Neither cellular nor molecular pharmacological mechanisms of SSRIs are fully characterised; in particular their action on astrocytes remain underappreciated. In this paper we overview potential therapeutic mechanisms of SSRIs associated with astroglia and report the results of meta-analysis of studies dedicated to MDD, SSRIs and astrocytes. In particular, we argue that fluoxetine, the representative SSRI, improves depressive-like behaviours in animals treated with chronic mild stress and reverses depression-associated decrease in astrocytic glial fibrillary acidic protein (GFAP) expression. In addition, fluoxetine upregulates astrocytic mRNA expression of 5-hydroxytriptamin/serotonin2B receptors (5-HT2BR). In summary, we infer that SSRIs exert their anti-depressant effect by regulating several molecular and signalling pathways in astrocytes.
Collapse
Affiliation(s)
- Beina Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Manman Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Ming Ji
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Wenliang Gong
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Binjie Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Matjaž Stenovec
- Celica BIOMEDICAL, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Santerre-Anderson JL, Werner DF. Ethanol Stimulation of Microglia Release Increases ERK1/2-Dependent Neuronal cPLA 2 Activity in Immature Cultured Cortical Preparations. Neurochem Res 2020; 45:1592-1601. [PMID: 32274627 DOI: 10.1007/s11064-020-03024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Ethanol consumption typically begins during adolescence and is associated with age-dependent responses and maladaptive neuronal consequences. Our previous work established the role of a putative signaling cascade involving cytoplasmic phospholipase A2 (cPLA2), arachidonic acid (AA) and novel protein kinase C isoforms in adolescent hypnotic sensitivity. The current study aimed to further delineate this pathway by ascertaining the cellular specificity as well as the upstream activators of cPLA2 using an immature cultured cortical preparation. A threefold increase in cPLA2 was detected within 2 min of 100 mM ethanol exposure as measured by phosphorylation of serine 505 (Ser505). Increases in cPLA2 activity were further observed to be primarily confined to neuronal cells. Increases in the number of neurons co-expressing cPLA2 Ser505 phosphorylation were prevented by preincubation with an ERK1/2 inhibitor, but not P38 MAPK inhibition. Finally, conditioned media studies were used to determine whether glial cells were involved in the ethanol-induced neuronal cPLA2 activity. Rapid increases in neuronal cPLA2 activity appears to be initiated through ethanol stimulated microglial, but not astrocytic releasable factors. Taken together, these data extend the proposed signaling cascade involved in developmental ethanol responding.
Collapse
Affiliation(s)
- J L Santerre-Anderson
- Department of Psychology, Binghamton University, Binghamton, NY, USA. .,Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, USA. .,Department of Psychology, King's College, Wilkes-Barre, PA, USA. .,Program in Neuroscience, King's College, Wilkes-Barre, PA, USA.
| | - D F Werner
- Department of Psychology, Binghamton University, Binghamton, NY, USA.,Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
7
|
The cellular and molecular basis of major depressive disorder: towards a unified model for understanding clinical depression. Mol Biol Rep 2019; 47:753-770. [PMID: 31612411 DOI: 10.1007/s11033-019-05129-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Major depressive disorder (MDD) is considered a serious public health issue that adversely impacts an individual's quality of life and contributes significantly to the global burden of disease. The clinical heterogeneity that exists among patients limits the ability of MDD to be accurately diagnosed and currently, a symptom-based approach is utilized in many cases. Due to the complex nature of this disorder, and lack of precise knowledge regarding the pathophysiology, effective management is challenging. The aetiology and pathophysiology of MDD remain largely unknown given the complex genetic and environmental interactions that are involved. Nonetheless, the aetiology and pathophysiology of MDD have been the subject of extensive research, and there is a vast body of literature that exists. Here we overview the key hypotheses that have been proposed for the neurobiology of MDD and highlight the need for a unified model, as many of these pathways are integrated. Key pathways discussed include neurotransmission, neuroinflammation, clock gene machinery pathways, oxidative stress, role of neurotrophins, stress response pathways, the endocannabinoid and endovanilloid systems, and the endogenous opioid system. We also describe the current management of MDD, and emerging novel therapies, with particular focus on patients with treatment-resistant depression (TRD).
Collapse
|
8
|
Winkler EA, Lu AY, Raygor KP, Linzey JR, Jonzzon S, Lien BV, Rutledge WC, Abla AA. Defective vascular signaling & prospective therapeutic targets in brain arteriovenous malformations. Neurochem Int 2019; 126:126-138. [PMID: 30858016 DOI: 10.1016/j.neuint.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is composed of endothelial cells, vascular smooth muscle cells, pericytes, astrocytes and neurons. Through tightly regulated multi-directional cell signaling, the neurovascular unit is responsible for the numerous functionalities of the cerebrovasculature - including the regulation of molecular and cellular transport across the blood-brain barrier, angiogenesis, blood flow responses to brain activation and neuroinflammation. Historically, the study of the brain vasculature focused on endothelial cells; however, recent work has demonstrated that pericytes and vascular smooth muscle cells - collectively known as mural cells - play critical roles in many of these functions. Given this emerging data, a more complete mechanistic understanding of the cellular basis of brain vascular malformations is needed. In this review, we examine the integrated functions and signaling within the neurovascular unit necessary for normal cerebrovascular structure and function. We then describe the role of aberrant cell signaling within the neurovascular unit in brain arteriovenous malformations and identify how these pathways may be targeted therapeutically to eradicate or stabilize these lesions.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Alex Y Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kunal P Raygor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph R Linzey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Soren Jonzzon
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Brian V Lien
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - W Caleb Rutledge
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Activation of bradykinin B2 receptor induced the inflammatory responses of cytosolic phospholipase A 2 after the early traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2957-2971. [PMID: 29894755 DOI: 10.1016/j.bbadis.2018.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Phospholipase A2 is a known aggravator of inflammation and deteriorates neurological outcomes after traumatic brain injury (TBI), however the exact inflammatory mechanisms remain unknown. This study investigated the role of bradykinin and its receptor, which are known initial mediators within inflammation activation, as well as the mechanisms of the cytosolic phospholipase A2 (cPLA2)-related inflammatory responses after TBI. We found that cPLA2 and bradykinin B2 receptor were upregulated after a TBI. Rats treated with the bradykinin B2 receptor inhibitor LF 16-0687 exhibited significantly less cPLA2 expression and related inflammatory responses in the brain cortex after sustaining a controlled cortical impact (CCI) injury. Both the cPLA2 inhibitor and the LF16-0687 improved CCI rat outcomes by decreasing neuron death and reducing brain edema. The following TBI model utilized both primary astrocytes and primary neurons in order to gain further understanding of the inflammation mechanisms of the B2 bradykinin receptor and the cPLA2 in the central nervous system. There was a stronger reaction from the astrocytes as well as a protective effect of LF16-0687 after the stretch injury and bradykinin treatment. The protein kinase C pathway was thought to be involved in the B2 bradykinin receptor as well as the cPLA2-related inflammatory responses. Rottlerin, a Protein Kinase C (PKC) δ inhibitor, decreased the activity of the cPLA2 activity post-injury, and LF16-0687 suppressed both the PKC pathway and the cPLA2 activity within the astrocytes. These results indicated that the bradykinin B2 receptor-mediated pathway is involved in the cPLA2-related inflammatory response from the PKC pathway.
Collapse
|
10
|
Zanderigo F, Kang Y, Kumar D, Nikolopoulou A, Mozley PD, Kothari PJ, He B, Schlyer D, Rapoport SI, Oquendo MA, Vallabhajosula S, Mann JJ, Sublette ME. [ 11 C]arachidonic acid incorporation measurement in human brain: Optimization for clinical use. Synapse 2017; 72. [PMID: 29144569 DOI: 10.1002/syn.22018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 01/06/2023]
Abstract
Arachidonic acid (AA) is involved in signal transduction, neuroinflammation, and production of eicosanoid metabolites. The AA brain incorporation coefficient (K*) is quantifiable in vivo using [11 C]AA positron emission tomography, although repeatability remains undetermined. We evaluated K* estimates obtained with population-based metabolite correction (PBMC) and image-derived input function (IDIF) in comparison to arterial blood-based estimates, and compared repeatability. Eleven healthy volunteers underwent a [11 C]AA scan; five repeated the scan 6 weeks later, simulating a pre- and post-treatment study design. For all scans, arterial blood was sampled to measure [11 C]AA plasma radioactivity. Plasma [11 C]AA parent fraction was measured in 5 scans. K* was quantified using both blood data and IDIF, corrected for [11 C]AA parent fraction using both PBMC (from published values) and individually measured values (when available). K* repeatability was calculated in the test-retest subset. K* estimates based on blood and individual metabolites were highly correlated with estimates using PBMC with arterial input function (r = 0.943) or IDIF (r = 0.918) in the subset with measured metabolites. In the total dataset, using PBMC, IDIF-based estimates were moderately correlated with arterial input function-based estimates (r = 0.712). PBMC and IDIF-based K* estimates were ∼6.4% to ∼11.9% higher, on average, than blood-based estimates. Average K* test-retest absolute percent difference values obtained using blood data or IDIF, assuming PBMC for both, were between 6.7% and 13.9%, comparable to other radiotracers. Our results support the possibility of simplified [11 C]AA data acquisition through eliminating arterial blood sampling and metabolite analysis, while retaining comparable repeatability and validity.
Collapse
Affiliation(s)
- Francesca Zanderigo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University, New York, New York
| | - Yeona Kang
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | | | - P David Mozley
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Paresh J Kothari
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Bin He
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - David Schlyer
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | | | - Maria A Oquendo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University, New York, New York
| | | | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University, New York, New York.,Department of Radiology, Columbia University, New York, New York
| | - M Elizabeth Sublette
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University, New York, New York
| |
Collapse
|
11
|
Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci 2016; 19:1619-1627. [PMID: 27775719 PMCID: PMC5131849 DOI: 10.1038/nn.4428] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022]
Abstract
Active neurons increase their energy supply by dilating nearby arterioles and capillaries. This neurovascular coupling underlies blood oxygen level-dependent functional imaging signals, but its mechanism is controversial. Canonically, neurons release glutamate to activate metabotropic glutamate receptor 5 (mGluR5) on astrocytes, evoking Ca2+ release from internal stores, activating phospholipase A2 and generating vasodilatory arachidonic acid derivatives. However, adult astrocytes lack mGluR5, and knockout of the inositol 1,4,5-trisphosphate receptors that release Ca2+ from stores does not affect neurovascular coupling. We now show that buffering astrocyte Ca2+ inhibits neuronally evoked capillary dilation, that astrocyte [Ca2+]i is raised not by release from stores but by entry through ATP-gated channels, and that Ca2+ generates arachidonic acid via phospholipase D2 and diacylglycerol lipase rather than phospholipase A2. In contrast, dilation of arterioles depends on NMDA receptor activation and Ca2+-dependent NO generation by interneurons. These results reveal that different signaling cascades regulate cerebral blood flow at the capillary and arteriole levels.
Collapse
Affiliation(s)
- Anusha Mishra
- Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| | | | - Yang Chen
- Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| | - Alexander V Gourine
- Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| | | | - David Attwell
- Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| |
Collapse
|
12
|
Farooqui AA, Ong WY, Horrocks LA, Farooqui T. Brain Cytosolic Phospholipase A2: Localization, Role, and Involvement in Neurological Diseases. Neuroscientist 2016. [DOI: 10.1177/107385840000600308] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2) hydrolyzes the arachidonoyl group from the sn-2 position of glycerophospholipids generating arachidonic acid and lysophospholipids. The products of the cPLA2-catalyzed reaction act as second messengers themselves or further metabolize to eicosanoids, platelet activating factor, and lysophosphatidic acid. cPLA2 has not been purified from brain tissue. Immunocytochemical studies have indicated that cPLA2 is expressed in neurons and astrocytes. The hindbrain and spinal cord contain dense immunoreactivity for cPLA2. Activity and immunoreactivity of cPLA2 are markedly increased in ischemia, Alzheimer’s disease, and kainic acid neurotoxicity. This increase in cPLA2 activity and immunoreactivity is accompanied by marked alterations in neural membrane phospholipid composition and the accumulation of lipid peroxides and eicosanoids. At present, it is not known whether the increased activity and immunoreactivity of cPLA2 in neural trauma (e.g., in ischemia) and neurodegenerative disease (Alzheimer’s disease) is the cause or effect of neurodegeneration. Recent studies on the role of this enzyme in brain tissue suggest that cPLA2 may be involved in synaptic plasticity, generation of second messengers, axon regeneration, and neurodegeneration.
Collapse
Affiliation(s)
- Akhlaq A. Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio
| | - Wei Yi Ong
- Department of Anatomy, National University of Singapore, Singapore
| | - Lloyd A. Horrocks
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio,
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
13
|
Zhang I, Cui Y, Amiri A, Ding Y, Campbell RE, Maysinger D. Pharmacological inhibition of lipid droplet formation enhances the effectiveness of curcumin in glioblastoma. Eur J Pharm Biopharm 2016; 100:66-76. [PMID: 26763536 DOI: 10.1016/j.ejpb.2015.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023]
Abstract
Increased lipid droplet number and fatty acid synthesis allow glioblastoma multiforme, the most common and aggressive type of brain cancer, to withstand accelerated metabolic rates and resist therapeutic treatments. Lipid droplets are postulated to sequester hydrophobic therapeutic agents, thereby reducing drug effectiveness. We hypothesized that the inhibition of lipid droplet accumulation in glioblastoma cells using pyrrolidine-2, a cytoplasmic phospholipase A2 alpha inhibitor, can sensitize cancer cells to the killing effect of curcumin, a promising anticancer agent isolated from the turmeric spice. We observed that curcumin localized in the lipid droplets of human U251N glioblastoma cells. Reduction of lipid droplet number using pyrrolidine-2 drastically enhanced the therapeutic effect of curcumin in both 2D and 3D glioblastoma cell models. The mode of cell death involved was found to be mediated by caspase-3. Comparatively, the current clinical chemotherapeutic standard, temozolomide, was significantly less effective in inducing glioblastoma cell death. Together, our results suggest that the inhibition of lipid droplet accumulation is an effective way to enhance the chemotherapeutic effect of curcumin against glioblastoma multiforme.
Collapse
Affiliation(s)
- Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Yiming Cui
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Abdolali Amiri
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Yidan Ding
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
Lin CC, Hsieh HL, Liu SW, Tseng HC, Hsiao LD, Yang CM. BK Induces cPLA2 Expression via an Autocrine Loop Involving COX-2-Derived PGE2 in Rat Brain Astrocytes. Mol Neurobiol 2014; 51:1103-15. [DOI: 10.1007/s12035-014-8777-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/01/2014] [Indexed: 01/26/2023]
|
15
|
Modeling secondary messenger pathways in neurovascular coupling. Bull Math Biol 2013; 75:428-43. [PMID: 23358799 DOI: 10.1007/s11538-013-9813-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
Neurovascular coupling is the well-documented link between neural stimulation and constriction or dilation of the surrounding vasculature. Glial cells mediate this response via their unique anatomy, which connects neurons to arterioles. It is believed that calcium transients and the release of secondary messengers by these cells influence the vascular response. We present a model of intracellular calcium dynamics in an astrocyte (glial cell) and show that stable oscillatory behaviour is possible under certain conditions. We then couple this to a novel model for the relationship between calcium concentration and the production of vasoactive secondary messengers through a fatty-acid intermediate. The two secondary messengers modelled are epoxyeicosatrienoic and 20-hydroxyeicosatetraenoic acids (EET and 20-HETE, respectively). These secondary messengers are produced on different time scales, and we show how this supports the observation that the vasculature dilates rapidly in response to neural stimulation, before returning to baseline levels on a slower time scale.
Collapse
|
16
|
Rink C, Khanna S. Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid Redox Signal 2011; 14:1889-903. [PMID: 20673202 PMCID: PMC3078506 DOI: 10.1089/ars.2010.3474] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The significance of the hypoxia component of stroke injury is highlighted by hypermetabolic brain tissue enriched with arachidonic acid (AA), a 22:6n-3 polyunsaturated fatty acid. In an ischemic stroke environment in which cerebral blood flow is arrested, oxygen-starved brain tissue initiates the rapid cleavage of AA from the membrane phospholipid bilayer. Once free, AA undergoes both enzyme-independent and enzyme-mediated oxidative metabolism, resulting in the formation of number of biologically active metabolites which themselves contribute to pathological stroke outcomes. This review is intended to examine two divergent roles of molecular dioxygen in brain tissue as (1) a substrate for life-sustaining homeostatic metabolism of glucose and (2) a substrate for pathogenic metabolism of AA under conditions of stroke. Recent developments in research concerning supplemental oxygen therapy as an intervention to correct the hypoxic component of stroke injury are discussed.
Collapse
Affiliation(s)
- Cameron Rink
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | |
Collapse
|
17
|
Abstract
A growing body of research supports that members of the vitamin E family are not redundant with respect to their biological function. Palm oil derived from Elaeis guineensis represents the richest source of the lesser characterized vitamin E, alpha-tocotrienol. One of 8 naturally occurring and chemically distinct vitamin E analogs, alpha-tocotrienol possesses unique biological activity that is independent of its potent antioxidant capacity. Current developments in alpha-tocotrienol research demonstrate neuroprotective properties for the lipid-soluble vitamin in brain tissue rich in polyunsaturated fatty acids (PUFAs). Arachidonic acid (AA), one of the most abundant PUFAs of the central nervous system, is highly susceptible to oxidative metabolism under pathologic conditions. Cleaved from the membrane phospholipid bilayer by cytosolic phospholipase A(2), AA is metabolized by both enzymatic and nonenzymatic pathways. A number of neurodegenerative conditions in the human brain are associated with disturbed PUFA metabolism of AA, including acute ischemic stroke. Palm oil-derived alpha-tocotrienol at nanomolar concentrations has been shown to attenuate both enzymatic and nonenzymatic mediators of AA metabolism and neurodegeneration. On a concentration basis, this represents the most potent of all biological functions exhibited by any natural vitamin E molecule. Despite such therapeutic potential, the scientific literature on tocotrienols accounts for roughly 1% of the total literature on vitamin E, thus warranting further investment and investigation.
Collapse
Affiliation(s)
- Chandan K Sen
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.
| | | | | |
Collapse
|
18
|
Rancillac A, Rossier J, Guille M, Tong XK, Geoffroy H, Amatore C, Arbault S, Hamel E, Cauli B. Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum. J Neurosci 2006; 26:6997-7006. [PMID: 16807329 PMCID: PMC6673912 DOI: 10.1523/jneurosci.5515-05.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tight coupling between increased neuronal activity and local cerebral blood flow, known as functional hyperemia, is essential for normal brain function. However, its cellular and molecular mechanisms remain poorly understood. In the cerebellum, functional hyperemia depends almost exclusively on nitric oxide (NO). Here, we investigated the role of different neuronal populations in the control of microvascular tone by in situ amperometric detection of NO and infrared videomicroscopy of microvessel movements in rat cerebellar slices. Bath application of an NO donor induced both NO flux and vasodilation. Surprisingly, endogenous release of NO elicited by glutamate was accompanied by vasoconstriction that was abolished by inhibition of Ca2+-phopholipase A2 and impaired by cyclooxygenase and thromboxane synthase inhibition and endothelin A receptor blockade, indicating a role for prostanoids and endothelin 1 in this response. Interestingly, direct stimulation of single endothelin 1-immunopositive Purkinje cells elicited constriction of neighboring microvessels. In contrast to glutamate, NMDA induced both NO flux and vasodilation that were abolished by treatment with a NO synthase inhibitor or with tetrodotoxin. These findings indicate that NO derived from neuronal origin is necessary for vasodilation induced by NMDA and, furthermore, that NO-producing interneurons mediate this vasomotor response. Correspondingly, electrophysiological stimulation of single nitrergic stellate cells by patch clamp was sufficient to release NO and dilate both intraparenchymal and upstream pial microvessels. These findings demonstrate that cerebellar stellate and Purkinje cells dilate and constrict, respectively, neighboring microvessels and highlight distinct roles for different neurons in neurovascular coupling.
Collapse
|
19
|
Hsieh HL, Wu CY, Hwang TL, Yen MH, Parker P, Yang CM. BK-induced cytosolic phospholipase A2 expression via sequential PKC-delta, p42/p44 MAPK, and NF-kappaB activation in rat brain astrocytes. J Cell Physiol 2006; 206:246-54. [PMID: 15991247 DOI: 10.1002/jcp.20457] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bradykinin (BK), an inflammatory mediator, has been shown to induce cytosolic phospholipase A2 (cPLA2) expression implicating in inflammatory responses in various cell types. However, the detailed mechanisms underlying BK-induced cPLA2 expression in astrocytes remain unclear. RT-PCR and Western blotting analysis showed that BK induced the expression of cPLA2 mRNA and protein, which was inhibited by Hoe140, suggesting the involvement of B2 BK receptors, confirmed by immunofluorescence staining using anti-B2 BK receptor antibody. BK-induced cPLA2 expression and phosphorylation of p42/p44 MAPK was attenuated by PD98059, indicating the involvement of MEK1/2-p42/p44 MAPK in these responses. BK-induced cPLA2 expression might be due to the translocation of NF-kappaB into nucleus which was inhibited by Hoe140, helenalin, and PD98059, implying the involvement of NF-kappaB. Moreover, BK-induced cPLA2 expression was attenuated by rottlerin, suggesting that PKC-delta might be involved in these responses. This hypothesis was supported by the transfection with a dominant negative plasmid of PKC-delta significantly attenuated BK-induced response. In addition, BK-stimulated translocation of PKC-delta from cytosol to membrane fraction was inhibited by rottlerin but not by PD98059, indicating that PKC-delta might be an upstream component of p42/p44 MAPK. Accordingly, BK-induced phosphorylation of p42/p44 MAPK was attenuated by rottlerin but not by helenalin. These results suggest that in RBA-1 cells, BK-induced cPLA2 expression was sequentially mediated through activation of PKC-delta, p42/p44 MAPK, and NF-kappaB. Understanding the regulation of cPLA2 expression induced by BK in astrocytes might provide a new therapeutic strategy of brain injury and inflammatory diseases.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Muralikrishna Adibhatla R, Hatcher JF. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med 2006; 40:376-87. [PMID: 16443152 DOI: 10.1016/j.freeradbiomed.2005.08.044] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 08/02/2005] [Accepted: 08/30/2005] [Indexed: 12/21/2022]
Abstract
Ischemic stroke is caused by obstruction of blood flow to the brain, resulting in energy failure that initiates a complex series of metabolic events, ultimately causing neuronal death. One such critical metabolic event is the activation of phospholipase A2 (PLA2), resulting in hydrolysis of membrane phospholipids and release of free fatty acids including arachidonic acid, a metabolic precursor for important cell-signaling eicosanoids. PLA2 enzymes have been classified as calcium-dependent cytosolic (cPLA2) and secretory (sPLA2) and calcium-independent (iPLA2) forms. Cardiolipin hydrolysis by mitochondrial sPLA2 disrupts the mitochondrial respiratory chain and increases production of reactive oxygen species (ROS). Oxidative metabolism of arachidonic acid also generates ROS. These two processes contribute to formation of lipid peroxides, which degrade to reactive aldehyde products (malondialdehyde, 4-hydroxynonenal, and acrolein) that covalently bind to proteins/nucleic acids, altering their function and causing cellular damage. Activation of PLA2 in cerebral ischemia has been shown while other studies have separately demonstrated increased lipid peroxidation. To the best of our knowledge no study has directly shown the role of PLA2 in lipid peroxidation in cerebral ischemia. To date, there are very limited data on PLA2 protein by Western blotting after cerebral ischemia, though some immunohistochemical studies (for cPLA2 and sPLA2) have been reported. Dissecting the contribution of PLA2 to lipid peroxidation in cerebral ischemia is challenging due to multiple forms of PLA2, cardiolipin hydrolysis, diverse sources of ROS arising from arachidonic acid metabolism, catecholamine autoxidation, xanthine oxidase activity, mitochondrial dysfunction, activated neutrophils coupled with NADPH oxidase activity, and lack of specific inhibitors. Although increased activity and expression of various PLA2 isoforms have been demonstrated in stroke, more studies are needed to clarify the cellular origin and localization of these isoforms in the brain, their responses in cerebral ischemic injury, and their role in oxidative stress.
Collapse
|
21
|
Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2005; 9:260-7. [PMID: 16388306 DOI: 10.1038/nn1623] [Citation(s) in RCA: 844] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 12/02/2005] [Indexed: 12/12/2022]
Abstract
Local increase in blood flow during neural activity forms the basis for functional brain imaging, but its mechanism remains poorly defined. Here we show that cortical astrocytes in vivo possess a powerful mechanism for rapid vasodilation. We imaged the activity of astrocytes labeled with the calcium (Ca(2+))-sensitive indicator rhod-2 in somatosensory cortex of adult mice. Photolysis of caged Ca(2+) in astrocytic endfeet ensheathing the vessel wall was associated with an 18% increase in arterial cross-section area that corresponded to a 37% increase in blood flow. Vasodilation occurred with a latency of only 1-2 s, and both indomethacin and the cyclooxygenase-1 inhibitor SC-560 blocked the photolysis-induced hyperemia. These observations implicate astrocytes in the control of local microcirculation and suggest that one of their physiological roles is to mediate vasodilation in response to increased neural activity.
Collapse
Affiliation(s)
- Takahiro Takano
- Center for Aging and Developmental Biology, Department of Neurosurgery, University of Rochester Medical School, 601 Elmwood Avenue, Rochester, New York 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Forlenza OV, Wacker P, Nunes PV, Yacubian J, Castro CC, Otaduy MCG, Gattaz WF. Reduced phospholipid breakdown in Alzheimer's brains: a 31P spectroscopy study. Psychopharmacology (Berl) 2005; 180:359-65. [PMID: 15700180 DOI: 10.1007/s00213-005-2168-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 12/20/2004] [Indexed: 12/13/2022]
Abstract
BACKGROUND Abnormalities of membrane phospholipid metabolism have been described in Alzheimer's disease (AD). We investigated, with the aid of (31)P magnetic resonance spectroscopy, the in vivo intracerebral availability of phosphomonoesters (PME) and phosphodiesters (PDE) in patients with AD. METHODS Eighteen outpatients with mild or moderate probable AD and 16 nondemented elderly volunteers were assessed with the Cambridge Examination for Mental Disorders of the Elderly (CAMDEX) and its cognitive subscale of the CAMDEX schedule (CAMCOG). Scans were performed on a 1.5 T magnetic resonance imager addressing a 40-cm(3) voxel in the left prefrontal cortex. Main outcome measures were mean relative peak areas of PME and PDE, which provide an estimate of membrane phospholipid metabolism. RESULTS PME resonance and the PME/PDE ratio were increased in AD patients as compared to controls (p<0.05). PME was negatively correlated with global cognitive performance as shown by the Mini-Mental State Examination (r(s)=-0.36, p=0.05) and CAMCOG scores (r(s)=-0.49, p=0.007), as well as with discrete neuropsychological functions, namely, memory (r(s)=-0.53, p=0.004), visual perception (r(s)=-0.54, p=0.003), orientation (r(s)=-0.36, p=0.05), and abstract thinking (r(s)=-0.48, p=0.01). CONCLUSIONS We provide evidence of reduced membrane phospholipid breakdown in the prefrontal cortex of mild and moderately demented AD patients. These abnormalities correlate with neuropsychological deficits that are characteristic of AD.
Collapse
Affiliation(s)
- Orestes V Forlenza
- Laboratory of Neuroscience (LIM-27) Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Rua Doutor Ovídio Pires de Campos 785, 05403-010, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Mendes CT, Gattaz WF, Schaeffer EL, Forlenza OV. Modulation of phospholipase A2 activity in primary cultures of rat cortical neurons. J Neural Transm (Vienna) 2005; 112:1297-308. [PMID: 15682269 DOI: 10.1007/s00702-004-0271-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 12/11/2004] [Indexed: 11/25/2022]
Abstract
In neurons, phospholipase A2 (PLA2) plays a central role in the regulation of membrane phospholipid metabolism. We have addressed the pharmacological modulation of PLA2 in primary cultures of rat cortical neurons. Inhibition curves were obtained in 4 day-in-culture neurons treated for 30 minutes with either the dual PLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP), or the iPLA2 inhibitor bromoenol lactone (BEL). Full inhibition was achieved with 100 and 250 microM of MAFP, or 10 and 20 microM of BEL. Conversely, a dose-dependent activation of PLA2 was obtained with 10-20 microg/ml of melitin. PLA2 inhibition with MAFP or BEL was not acutely toxic for cultured neurons. However, sustained inhibition of the enzyme precluded the development of neurites, and resulted in long-term loss of neuronal viability. We present a model of pharmacological challenge of PLA2 in vitro, which can be further used to address the involvement of the enzyme in neurodevelopment and neurodegeneration models.
Collapse
Affiliation(s)
- C T Mendes
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil
| | | | | | | |
Collapse
|
24
|
Park HJ, Lee SH, Son DJ, Oh KW, Kim KH, Song HS, Kim GJ, Oh GT, Yoon DY, Hong JT. Antiarthritic effect of bee venom: Inhibition of inflammation mediator generation by suppression of NF-?B through interaction with the p50 subunit. ACTA ACUST UNITED AC 2004; 50:3504-15. [PMID: 15529353 DOI: 10.1002/art.20626] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To investigate the molecular mechanisms of the antiarthritic effects of bee venom (BV) and melittin (a major component of BV) in a murine macrophage cell line (Raw 264.7) and in synoviocytes obtained from patients with rheumatoid arthritis. METHODS We evaluated the antiarthritic effects of BV in a rat model of carrageenan-induced acute edema in the paw and in a rat model of chronic adjuvant-induced arthritis. The inhibitory effects of BV and melittin on inflammatory gene expression were measured by Western blotting, and the generation of prostaglandin E(2) (PGE(2)) and nitric oxide (NO) and the intracellular calcium level were assayed. NF-kappaB DNA binding and transcriptional activity were determined by gel mobility shift assay or by luciferase assay. Direct binding of BV and melittin to the p50 subunit of NF-kappaB was determined with a surface plasmon resonance analyzer. RESULTS BV (0.8 and 1.6 mug/kg) reduced the effects of carrageenan- and adjuvant-induced arthritis. This reducing effect was consistent with the inhibitory effects of BV (0.5, 1, and 5 mug/ml) and melittin (5 and 10 mug/ml) on lipopolysaccharide (LPS; 1 mug/ml)-induced expression of cyclooxygenase 2, cytosolic phospholipase A(2), inducible NO synthase, generation of PGE(2) and NO, and the intracellular calcium level. BV and melittin prevented LPS-induced transcriptional and DNA binding activity of NF-kappaB via the inhibition of IkappaB release and p50 translocation. BV (affinity [K(d)] = 4.6 x 10(-6)M) and melittin (K(d) = 1.2 x 10(-8)M) bound directly to p50. CONCLUSION Target inactivation of NF-kappaB by directly binding to the p50 subunit is an important mechanism of the antiarthritic effects of BV.
Collapse
Affiliation(s)
- Hye Ji Park
- College of Pharmacy, Chungbuk National University, 48 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Farooqui AA, Horrocks LA. Brain phospholipases A2: a perspective on the history. Prostaglandins Leukot Essent Fatty Acids 2004; 71:161-9. [PMID: 15253885 DOI: 10.1016/j.plefa.2004.03.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Indexed: 10/26/2022]
Abstract
The phospholipases A2 (PLA2) belong to a large family of enzymes involved in the generation of several second messengers that play an important role in signal transduction processes associated with normal brain function. The phospholipase A2 family includes secretory phospholipase A2, cytosolic phospholipase A2, calcium-independent phospholipase A2, plasmalogen-selective phospholipase A2 and many other enzymes with phospholipase A2 activity that have not been classified. Few attempts have been made purify and characterize the multiple forms of PLA2 and none have been fully characterized and cloned from brain tissue. A tight regulation of phospholipase A2 isozymes is necessary for maintaining physiological levels of free fatty acids including arachidonic acid and its metabolites in the various types of neural cells. Under normal conditions, phospholipase A2 isozymes may be involved in neurotransmitter release, long-term potentiation, growth and differentiation, and membrane repair. Under pathological conditions, high levels of lipid metabolites generated by phospholipase A2 are involved in neuroinflammation, oxidative stress, and neural cell injury.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Avenue, 465 Hamilton Hall, Columbus, OH 43210-1218, USA
| | | |
Collapse
|
26
|
Rosenberger TA, Villacreses NE, Hovda JT, Bosetti F, Weerasinghe G, Wine RN, Harry GJ, Rapoport SI. Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem 2004; 88:1168-78. [PMID: 15009672 DOI: 10.1046/j.1471-4159.2003.02246.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a rat model of acute neuroinflammation, produced by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide (LPS), we measured brain activities and protein levels of three phospholipases A2 (PLA2) and of cyclo-oxygenase-1 and -2, and quantified other aspects of brain phospholipid and fatty acid metabolism. The 6-day intracerebral ventricular infusion increased lectin-reactive microglia in the cerebral ventricles, pia mater, and the glial membrane of the cortex and resulted in morphological changes of glial fibrillary acidic protein (GFAP)-positive astrocytes in the cortical mantel and areas surrounding the cerebral ventricles. LPS infusion increased brain cytosolic and secretory PLA2 activities by 71% and 47%, respectively, as well as the brain concentrations of non-esterified linoleic and arachidonic acids, and of prostaglandins E2 and D2. LPS infusion also increased rates of incorporation and turnover of arachidonic acid in phosphatidylethanolamine, plasmenylethanolamine, phosphatidylcholine, and plasmenylcholine by 1.5- to 2.8-fold, without changing these rates in phosphatidylserine or phosphatidylinositol. These observations suggest that selective alterations in brain arachidonic acid metabolism involving cytosolic and secretory PLA2 contribute to early pathology in neuroinflammation.
Collapse
Affiliation(s)
- Thad A Rosenberger
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892-1582, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nathoo N, Barnett GH, Golubic M. The eicosanoid cascade: possible role in gliomas and meningiomas. J Clin Pathol 2004; 57:6-13. [PMID: 14693827 PMCID: PMC1770171 DOI: 10.1136/jcp.57.1.6] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Eicosanoids constitute a large family of biologically active lipid mediators that are produced by two enzyme classes, cyclooxygenases (COX-1 and COX-2) and lipoxygenases (5-LO, 12-LO, and 15-LO). Increasing evidence suggests that in addition to a variety of epithelial malignancies, the two most common types of human brain tumour, gliomas and meningiomas, aberrantly overexpress eicosanoid producing enzymes and release a spectrum of eicosanoids that may promote tumorigenesis and the development of peritumorous brain oedema. Glioma and meningioma cells are killed in vitro and in animal models when exposed to COX-2 and 5-LO inhibitors, and their effectiveness is under investigation in clinical trials for treatment of patients with malignant brain tumours. However, despite research into the role of the eicosanoid cascade in the tumorigenesis of human brain tumours, many important questions remain unanswered. Current and newer agents that specifically target key players of the eicosanoid cascade could change the approach to treating brain tumours, because their benefits may lie in their synergism with conventional cytotoxic treatments and/or with other novel agents targeted against other procarcinogenic pathways.
Collapse
Affiliation(s)
- N Nathoo
- Brain Tumour Institute and Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, 44195 Ohio, USA.
| | | | | |
Collapse
|
28
|
Phillis JW, O'Regan MH. A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. ACTA ACUST UNITED AC 2004; 44:13-47. [PMID: 14739001 DOI: 10.1016/j.brainresrev.2003.10.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phospholipases are a diverse group of enzymes whose activation may be responsible for the development of injury following insult to the brain. Amongst the numerous isoforms of phospholipase proteins expressed in mammals are 19 different phospholipase A2's (PLA2s), classified functionally as either secretory, calcium dependent, or calcium independent, 11 isozymes belonging to three structural groups of PLC, and 3 PLD gene products. Many of these phospholipases have been identified in selected brain regions. Under normal conditions, these enzymes regulate the turnover of free fatty acids (FFAs) in membrane phospholipids affecting membrane stability, fluidity, and transport processes. The measurement of free fatty acids thus provides a convenient method to follow phospholipase activity and their regulation. Phospholipase activity is also responsible for the generation of an extensive list of intracellular messengers including arachidonic acid metabolites. Phospholipases are regulated by many factors including selective phosphorylation, intracellular calcium and pH. However, under abnormal conditions, excessive phospholipase activation, along with a decreased ability to resynthesize membrane phospholipids, can lead to the generation of free radicals, excitotoxicity, mitochondrial dysfunction, and apoptosis/necrosis. This review evaluates the critical contribution of the various phospholipases to brain injury following ischemia and trauma and in neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, Wayne State University School of Medicine, 5374 Scott Hall, 540 E. Canfield, Detroit, MI 48201-1928, USA.
| | | |
Collapse
|
29
|
Kramer BC, Yabut JA, Cheong J, JnoBaptiste R, Robakis T, Olanow CW, Mytilineou C. Lipopolysaccharide prevents cell death caused by glutathione depletion: possible mechanisms of protection. Neuroscience 2002; 114:361-72. [PMID: 12204205 DOI: 10.1016/s0306-4522(02)00310-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glutathione is an important cellular antioxidant present at high concentrations in the brain. We have previously demonstrated that depletion of glutathione in mesencephalic cultures results in cell death and that the presence of glia is necessary for the expression of toxicity. Cell death following glutathione depletion can be prevented by inhibition of lipoxygenase activity, implicating arachidonic acid metabolism in the toxic events. In this study we examined the effect of glial activation, known to cause secretion of cytokines and release of arachidonic acid, on the toxicity induced by glutathione depletion. Our data show that treatment with the endotoxin lipopolysaccharide activated glial cells in mesencephalic cultures, increased interleukin-1beta in microglia and caused depletion of glutathione. The overall effect of lipopolysaccharide treatment, however, was protection from damage caused by glutathione depletion. Addition of cytokines or growth factors, normally secreted by activated glia, did not modify L-buthionine sulfoximine toxicity, although basic fibroblast growth factor provided some protection. A large increase in the protein content and the activity of Mn-superoxide dismutase, observed after lipopolysaccharide treatment, may indicate a role for this mitochondrial antioxidant enzyme in the protective effect of lipopolysaccharide. This was supported by the suppression of toxicity by exogenous superoxide dismutase. Our data suggest that superoxide contributes to the damage caused by glutathione depletion and that up-regulation of superoxide dismutase may offer protection in neurodegenerative diseases associated with glutathione depletion and oxidative stress.
Collapse
Affiliation(s)
- B C Kramer
- Department of Neurology, Box 1137, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Balboa MA, Varela-Nieto I, Killermann Lucas K, Dennis EA. Expression and function of phospholipase A(2) in brain. FEBS Lett 2002; 531:12-7. [PMID: 12401195 DOI: 10.1016/s0014-5793(02)03481-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase A(2) (PLA(2)) appears to play a fundamental role in cell injury in the central nervous system. We have investigated PLA(2) expression in the astrocytoma cell line 1231N1, and found that GIVA, GIVB, GIVC and GVI PLA(2) messages are expressed. PLA(2) activity is increased by inflammatory/injury stimuli such as interleukin-1beta and lipopolysaccharide in these cells but with very different time courses. The arachidonic acid liberated is converted to prostaglandin E(2), possibly by cyclooxygenase-2, which is induced by inflammatory stimuli. This cell system emerges as a model to study injury/inflammation-related activation of the new PLA(2) forms GIVB and GIVC.
Collapse
Affiliation(s)
- María A Balboa
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | | | | | | |
Collapse
|
31
|
Shanker G, Mutkus LA, Walker SJ, Aschner M. Methylmercury enhances arachidonic acid release and cytosolic phospholipase A2 expression in primary cultures of neonatal astrocytes. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 106:1-11. [PMID: 12393259 DOI: 10.1016/s0169-328x(02)00403-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytosolic phospholipase A(2) (cPLA(2)) stimulates the hydrolysis of sn-2 ester bond in membrane phospholipids releasing arachidonic acid (AA) and lysophospholipids. The present study examined the effect of methylmercury (MeHg) on cPLA(2) activation and AA release in primary cultures of neonatal rat cerebral astrocytes. Astrocytes were preloaded overnight at 37 degrees C with 3H-AA to metabolically label phospholipids. The effect of MeHg on the activation of cPLA(2) was measured by the release of 3H-AA from astrocytes over 120 min. MeHg (5 microM) caused a significant increase in AA release at 10, 30, 60, and 120 min, whereas 2.5 microM MeHg significantly increased AA release only at 120 min. MeHg-induced increase in 3H-AA release was due to cPLA(2) activation, since arachidonyl trifluoromethyl ketone (AACOCF(3)), a selective inhibitor of cPLA(2), completely abolished MeHg's effect. Consistent with these observations, MeHg (5.0 and 10.0 microM) increased cPLA(2) mRNA (6 h) and cPLA(2) protein expression (5.0 and 10.0 microM; 24 h). The time-course of these effects suggests an immediate direct or indirect effect of MeHg on cPLA(2) activation and 3H-AA release as well as a long-term effect involving the induction of cPLA(2). Thin layer chromatographic analysis of 3H-AA-labeled phospholipids showed that MeHg-stimulated astrocyte 3H-AA release was not due to increased incorporation of 3H-AA into the putative substrates of cPLA(2). These results invoke cPLA(2) as a putative target for MeHg toxicity, and support the notion that cPLA(2)-stimulated hydrolysis and release of AA play a critical role in MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Gouri Shanker
- Department of Physiology and Pharmacology, and Interdisciplinary Program in Neuroscience, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1083, USA
| | | | | | | |
Collapse
|
32
|
Xu J, Weng YI, Simonyi A, Krugh BW, Liao Z, Weisman GA, Sun GY, Simoni A. Role of PKC and MAPK in cytosolic PLA2 phosphorylation and arachadonic acid release in primary murine astrocytes. J Neurochem 2002; 83:259-70. [PMID: 12423237 DOI: 10.1046/j.1471-4159.2002.01145.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although Group IV cytosolic phospholipase A2 (cPLA2) in astrocytes has been implicated in a number of neurodegenerative diseases, mechanisms leading to its activation and release of arachidonic acid (AA) have not been clearly elucidated. In primary murine astrocytes, phorbol myristate acetate (PMA) and ATP stimulated phosphorylation of ERK1/2 and cPLA2 as well as evoked AA release. However, complete inhibition of phospho-ERK by U0126, an inhibitor of mitogen-activated protein kinase kinase (MEK), did not completely inhibit PMA-stimulated cPLA2 and AA release. Epidermal growth factor (EGF) also stimulated phosphorylation of ERK1/2 and cPLA2[largely through a protein kinase C (PKC)-independent pathway], but EGF did not evoke AA release. These results suggest that phosphorylation of cPLA2 due to phospho-ERK is not sufficient to evoke AA release. However, complete inhibition of ATP-induced cPLA2 phosphorylation and AA release was observed when astrocytes were treated with GF109203x, a general PKC inhibitor, together with U0126, indicating the important role for both PKC and ERK in mediating the ATP-induced AA response. There is evidence that PMA and ATP stimulated AA release through different PKC isoforms in astrocytes. In agreement with the sensitivity of PMA-induced responses to PKC down-regulation, prolonged treatment with PMA resulted in down-regulation of PKCalpha and epsilon in these cells. Furthermore, PMA but not ATP stimulated rapid translocation of PKCalpha from cytosol to membranes. Together, our results provided evidence for an important role of PKC in mediating cPLA2 phosphorylation and AA release in astrocytes through both ERK1/2-dependent and ERK1/2-independent pathways.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Teather LA, Lee RKK, Wurtman RJ. Platelet-activating factor increases prostaglandin E(2) release from astrocyte-enriched cortical cell cultures. Brain Res 2002; 946:87-95. [PMID: 12133598 DOI: 10.1016/s0006-8993(02)02866-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The phospholipid mediator platelet-activating factor (PAF) increased the release of prostaglandin E(2) (PGE(2)) from astrocyte-enriched cortical cell cultures in a concentration- and time-dependent manner. The nonhydrolyzable PAF analog methylcarbamyl-PAF (mc-PAF), the PAF intermediate lyso-PAF, and arachidonic acid (AA) also produced this effect. In contrast, phosphatidlycholine (PC) and lyso-PC, lipids that are structurally similar to PAF and lyso-PAF, had no effect on PGE(2) production, suggesting that PAF-induced PGE(2) release is not the consequence of nonspecific phospholipid-induced membrane perturbation. Antagonism of intracellular PAF binding sites completely abolished the ability of mc-PAF and lyso-PAF to mobilize PGE(2,) and attenuated the AA effect. Antagonism of the G-protein-coupled PAF receptor in plasma membranes had no significant effect on mc-PAF, lyso-PAF or AA-induced PGE(2) release. Based on the present findings, we hypothesize that intracellular PAF is a physiologic stimulus of PGE(2) production in astrocytes.
Collapse
Affiliation(s)
- Lisa A Teather
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 45 Carleton Street, E25-604 Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
34
|
Grassi S, Pettorossi VE. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices. Prog Neurobiol 2001; 64:527-53. [PMID: 11311461 DOI: 10.1016/s0301-0082(00)00070-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular potentiation. Finally the fifth part suggests the possible functional significance of different action times of the two retrograde messengers and metabotropic glutamate receptors, which are involved in mediating the presynaptic mechanism sustaining vestibular long-term potentiation.
Collapse
Affiliation(s)
- S Grassi
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, I-06100, Perugia, Italy.
| | | |
Collapse
|
35
|
Hirabayashi T, Shimizu T. Localization and regulation of cytosolic phospholipase A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:124-38. [PMID: 11080682 DOI: 10.1016/s1388-1981(00)00115-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Liberation of arachidonic acid by cytosolic phospholipase A(2) (cPLA(2)) upon cell activation is often the initial and rate-limiting step in leukotriene and prostaglandin biosynthesis. This review discusses the essential features of cPLA(2) isoforms and addresses intriguing insights into the catalytic and regulatory mechanisms. Gene expression, posttranslational modification and subcellular localization can regulate these isoforms. Translocation of cPLA(2)alpha from the cytosol to the perinuclear region in response to calcium transients is critical for the immediate arachidonic acid release. Therefore, particular emphasis is placed on the mechanism of the translocation and the role of the proteins and lipids implicated in this process. The regional distribution and cellular localization of cPLA(2) may help to better understand its function as an arachidonic acid supplier to downstream enzymes and as a regulator of specific cellular processes.
Collapse
Affiliation(s)
- T Hirabayashi
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Japan.
| | | |
Collapse
|
36
|
Talbot K, Young RA, Jolly-Tornetta C, Lee VM, Trojanowski JQ, Wolf BA. A frontal variant of Alzheimer's disease exhibits decreased calcium-independent phospholipase A2 activity in the prefrontal cortex. Neurochem Int 2000; 37:17-31. [PMID: 10781842 DOI: 10.1016/s0197-0186(00)00006-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A frontal variant of Alzheimer's disease (AD) has recently been identified on neuropathological and neuropsychological grounds (Johnson, J.K., Head, E., Kim, R., Starr, A., Cotman, C.W., 1999. Clinical and pathological evidence for a frontal variant of Alzheimer Disease. Arch. Neurol. 56, 1233-1239). Frontal AD differs strikingly from typical AD by the occurrence of neurofibrillary tangle densities in the frontal cortex as high or higher than in the entorhinal cortex. Since cerebrocortical membranes are commonly abnormal in Alzheimer's disease (AD), we assayed frontal AD cases for enzymes regulating membrane phospholipid composition. We specifically measured activity of phospholipase A2s (PLA2s) in dorsolateral prefrontal and lateral temporal cortices of frontal AD cases (n=12), which have respectively high and low densities of neurofibrillary tangles. In neither cortical area was Ca(2+)-dependent PLA2 activity abnormal compared to controls (n=12). In contrast, a significant 42% decrease in Ca(2+)-independent PLA2 activity was found in the dorsolateral prefrontal, but not the lateral temporal, cortex of the frontal AD cases. Similarly, the dorsolateral prefrontal cortex, but not the lateral temporal cortex of the frontal AD cases suffered a 42% decrease in total free fatty acid content, though neither that decrease nor those in any one species of free fatty acid was significant. The observed biochemical changes probably occurred in neurons given (a) our finding that PLA2 activity of cultured human NT2 neurons is virtually all Ca(2+)-independent and (b) the finding of others that nearly all Ca(2+)-independent PLA2 in brain gray matter is neuronal. The decrease in Ca(2+)-independent PLA2 activity is not readily attributable to Group VI or VIII iPLA2s since neither NT2N neurons nor our brain homogenates were greatly inhibited by drugs potently suppressing those iPLA2s. Decreased Ca(2+)-independent PLA2 activity in frontal AD may reflect a compensatory response to pathologically accelerated phospholipid metabolism early in the disorder. That could cause an early elevation of prefrontal free fatty acids, which can stimulate polymerization of tau and thus promote the prefrontal neurofibrillary tangle formation characteristic of frontal AD.
Collapse
Affiliation(s)
- K Talbot
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hernández M, Nieto ML, Sánchez Crespo M. Cytosolic phospholipase A2 and the distinct transcriptional programs of astrocytoma cells. Trends Neurosci 2000; 23:259-64. [PMID: 10838595 DOI: 10.1016/s0166-2236(00)01563-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Astrocytes constitute the most abundant cell type in the nervous system. Under physiological conditions, they respond to the stimuli to which neurons are also responsive. The use of astrocytoma cell lines with well-defined morphological and functional markers has been helpful for addressing the mechanisms of signal transduction that operate in the nervous system. On the basis of the effects produced by agonists of different types of receptor (muscarinic ACh receptors, thrombin receptors, phospholipases A2 receptors and tumor necrosis factor alpha receptors), several different transcriptional programs that involve the MAP kinase-cytosolic phospholipase A2 system and the transcription factor NF-kappaB have been described.
Collapse
Affiliation(s)
- M Hernández
- Instituto de Biolog a y Genética Molecular, CSIC-Universidad de Valladolid, 47005 Valladolid, Spain
| | | | | |
Collapse
|
38
|
Abstract
Phospholipases A2 (PLA2s) regulate hydrolysis of fatty acids, including arachidonic acid, from the sn-2 position of phospholipid membranes. PLA2 activity has been implicated in neurotoxicity and neurodegenerative processes secondary to ischemia and reperfusion and other oxidative stresses. The PLA2s constitute a superfamily whose members have diverse functions and patterns of expression. A large number of PLA2s have been identified within the central nervous systems of rodents and humans. We postulated that group IV large molecular weight, cytosolic phospholipase A2 (cPLA2) has a unique role in neurotoxicity associated with ischemic or toxin stress. We created mice deficient in cPLA2 and tested this hypothesis in two injury models, ischemia/reperfusion and MPTP neurotoxicity. In each model cPLA2 deficient mice are protected against neuronal injury when compared to their wild type littermate controls. These experiments support the hypothesis that cPLA2 is an important mediator of ischemic and oxidative injuries in the brain.
Collapse
Affiliation(s)
- A Sapirstein
- Anesthesia and Critical Care, Massachusetts General Hospital, Charlestown 02129, USA.
| | | |
Collapse
|
39
|
Gattaz WF. Neuroquímica da esquizofrenia: papel dos fosfolípides. REVISTA BRASILEIRA DE PSIQUIATRIA 2000. [DOI: 10.1590/s1516-44462000000500003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Rapoport SI. In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem Res 1999; 24:1403-15. [PMID: 10555781 DOI: 10.1023/a:1022584707352] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A method and model are described to quantify in vivo turnover rates and half-lives of fatty acids within brain phospholipids. These "kinetic" parameters can be calculated by operational equations from measured rates of incorporation of intravenously injected fatty acid radiotracers into brain phospholipids. To do this, it is necessary to determine a "dilution factor" lambda, which estimates the contribution to the brain precursor acyl-CoA pool of fatty acids released from phospholipids through the action of PLA1 or PLA2. Some calculated fatty acid half-lives are minutes to hours, consistent with active participation of phospholipids in brain function and structure. The fatty acid method can be used to identify enzyme targets of drugs acting on phospholipid metabolism. For example, a reduced brain turnover of arachidonate by chronic lithium, demonstrated in rats by the fatty acid method, suggests that this agent, which is used to treat bipolar disorder, has for its target an arachidonate-specific PLA2. In another context, when combined with in vivo imaging by quantitative autoradiography in rodents or positron emission tomography in macaques or humans, the fatty acid method can localize and quantify normal and modified PLA2-mediated signal transduction in brain.
Collapse
Affiliation(s)
- S I Rapoport
- Laboratory of Neurosciences National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
41
|
Hernández M, Bayón Y, Sánchez Crespo M, Nieto ML. Signaling mechanisms involved in the activation of arachidonic acid metabolism in human astrocytoma cells by tumor necrosis factor-alpha: phosphorylation of cytosolic phospholipase A2 and transactivation of cyclooxygenase-2. J Neurochem 1999; 73:1641-9. [PMID: 10501211 DOI: 10.1046/j.1471-4159.1999.0731641.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a cytokine that elicits cell responses by activating the mitogen-activated protein kinase (MAP kinase) cascade and transcription factors such as nuclear factor-kappaB (NF-kappaB). As these elements play a central role in the mechanisms of signaling involved in the activation of cytosolic phospholipase A2 (cPLA2) and cyclooxygenase-2 (COX-2), the effect of TNF-alpha on arachidonate (AA) metabolism in 1321N1 astrocytoma cells was assayed. TNF-alpha produced a phosphorylation of cPLA2, which was preceded by an activation of both c-Jun N-terminal kinase (JNK) and p38-MAP kinase, and this was associated with the release of [3H]AA. In contrast, TNF-alpha did not activate the extracellular signal-regulated kinase (MAP kinase) p42, nor did it elicit a mitogenic response. Analysis of [3H]AA metabolites by reverse-phase HPLC showed that all of the [3H]AA released during the first hour after TNF-alpha addition eluted as authentic AA, whereas in samples obtained at 24 h after addition of TNF-alpha, 25% of the [3H]AA had been converted into COX products as compared with only 9% in control cells. In keeping with these findings, TNF-alpha produced an increase of COX-2 expression, as judged from both RT-PCR studies and immunoblot of COX-2 protein, and a long-lasting activation of NF-kappaB. These data show that TNF-alpha produces in astrocytoma cells an early activation of both p38-MAP kinase and JNK, which is followed by the phosphorylation of cPLA2 and the release of AA. On the other hand, the activation of NF-kappaB may explain the induction of the expression of COX-2 and the delayed generation of prostanoids.
Collapse
Affiliation(s)
- M Hernández
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, Valladolid, Spain
| | | | | | | |
Collapse
|
42
|
Xue D, Xu J, McGuire SO, Devitre D, Sun GY. Studies on the cytosolic phospholipase A2 in immortalized astrocytes (DITNC) revealed new properties of the calcium ionophore, A23187. Neurochem Res 1999; 24:1285-91. [PMID: 10492524 DOI: 10.1023/a:1020981224876] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Besides playing an important role in the maintenance of cell membrane phospholipids, phospholipases A2 (PLA2) are responsible for the release of arachidonic acid (AA) which is a precursor for prostaglandin biosynthesis. The cytosolic PLA2 has been the focus of recent studies, probably due to its ability to respond to protein kinases and changes in intracellular calcium levels. In this study, we examined agents for stimulation of the cytosolic phospholipase A2 in immortalized astrocytes (DITNC). Incubation of DITNC cells with [14C]arachidonic acid (AA) resulted in a time-dependent uptake of the label into phospholipids (PL) and neutral glycerides. In prelabeled cells, release of labeled AA could be stimulated by calcium mobilizing agents such as calcium ionophore A23187 (4-20 microM) and thimerosal (100 microM), and by phorbol myristate acetate (PMA, 100 nM), an agent for activation of protein kinase C. The release of AA could also be stimulated by ATP (200 microM), probably through activation of the purinergic receptor but not by glutamate (1 mM). The stimulated release of AA was dependent on extracellular Ca2+ and was inhibited by mepacrine (50 microM), a non-specific PLA2 inhibitor. Western blot analysis further confirmed the presence of an 85 kDa cPLA2 in both membrane and cytosol fractions of these cells and stimulation by A23187 resulted in translocation of this protein to the membrane fraction. Besides labeled fatty acids, A23187 also stimulated the concomitant release of labeled PL into the culture medium and this event was accompanied by the increased release in lactate dehydrogenase (LDH). Results thus revealed that besides activation of cPLA2, the calcium ionophore A23187 is capable of perturbating cell membrane integrity.
Collapse
Affiliation(s)
- D Xue
- Biochemistry Department and Nutritional Sciences Program, University of Missouri, Columbia 65212, USA
| | | | | | | | | |
Collapse
|
43
|
Pitcher GM, Henry JL. Mediation and modulation by eicosanoids of responses of spinal dorsal horn neurons to glutamate and substance P receptor agonists: results with indomethacin in the rat in vivo. Neuroscience 1999; 93:1109-21. [PMID: 10473275 DOI: 10.1016/s0306-4522(99)00192-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In view of the widespread use of non-steroidal anti-inflammatory drugs for treatment of inflammatory pain, we determined the effects of the non-steroidal anti-inflammatory drug, indomethacin, on dorsal horn neurons in the rat spinal cord in vivo. At 2.0-12.0 mg/kg (i.v.), indomethacin depressed the responses of spinal dorsal horn neurons to the effects of iontophoretic application of substance P, N-methyl-D-aspartate, quisqualate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate. As indomethacin inhibits cyclo-oxygenase, these are the first data linking prostanoids and possibly arachidonic acid and other eicosanoids to the effects of substance P and glutamate in the spinal dorsal horn. As responses to iontophoretic application can be assumed to have been postsynaptic and as indomethacin had an effect generalized to all excitatory responses, we suggest a postsynaptic site for cyclo-oxygenase. We also suggest that elements in the cyclo-oxygenase signal transduction pathway may thus mediate at least some of the effects of substance P and glutamate receptor activation. Activation of the cyclo-oxygenase pathway in CNS neurons is Ca2- dependent, and activation of both N-methyl-D-aspartate and substance P receptors increases intracellular Ca2+. This led to the expectation that indomethacin would have a greater effect on responses to N-methyl-D-aspartate than to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, but the reverse was observed. Thus, in addition to a mediator role, we hypothesize that an element(s) of the cyclo-oxygenase pathway may regulate the efficacy of excitation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors and perhaps other membrane-bound receptors. The cyclo-oxygenase signal transduction pathway thus appears to play at least two major roles in regulation of sensory processing in the spinal cord. Therefore, non-steroidal anti-inflammatory drugs, via cyclo-oxygenase inhibition, may have multiple actions in control of spinal sensory mechanisms.
Collapse
Affiliation(s)
- G M Pitcher
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
44
|
Stephenson D, Rash K, Smalstig B, Roberts E, Johnstone E, Sharp J, Panetta J, Little S, Kramer R, Clemens J. Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 1999; 27:110-28. [PMID: 10417811 DOI: 10.1002/(sici)1098-1136(199908)27:2<110::aid-glia2>3.0.co;2-c] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many recent studies have emphasized the deleterious role of inflammation in CNS injury. Increases in free fatty acids, eicosanoids, and products of lipid peroxidation are known to occur in various conditions of acute and chronic CNS injury, including cerebral ischemia, traumatic brain injury, and Alzheimer's disease. Although an inflammatory response can be induced by many different means, phospholipases, such as cytosolic phospholipase A(2) (cPLA(2)), may play an important role in the production of inflammatory mediators and in the production of other potential second messengers. cPLA(2) hydrolyzes membrane phospholipids and its activity liberates free fatty acids leading directly to the production of eicosanoids. We investigated the cellular localization of cytosolic phospholipase A(2) in the CNS following: (1) focal and global cerebral ischemia, (2) facial nerve axotomy, (3) human cases of Alzheimer's disease, (4) transgenic mice overexpressing mutant superoxide dismutase, a mouse model of amyotrophic lateral sclerosis, and (5) transgenic mice overexpressing mutant amyloid precursor protein, which exhibits age-related amyloid deposition characteristic of Alzheimer's disease. We show that in every condition evaluated, cytosolic phospholipase A(2) is present in reactive glial cells within the precise region of neuron loss. In conditions where neurons did not degenerate or are protected from death, cytosolic phospholipase A(2) is not observed. Both astrocytes and microglial cells are immunoreactive for cytosolic phospholipase A(2) following injury, with astrocytes being the most consistent cell type expressing cytosolic phospholipase A(2). The presence of cytosolic phospholipase A(2) does not merely overlap with reactive astroglia, as reactive astrocytes were observed that did not exhibit cytosolic phospholipase A(2) immunoreactivity. In most conditions evaluated, inflammatory processes have been postulated to play a pivotal role and may even participate in neuronal cell death. These results suggest that cytosolic phospholipase A(2) may prove an attractive therapeutic target for neurodegeneration.
Collapse
Affiliation(s)
- D Stephenson
- Graduate Program in Medical Neurobiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stephenson D, Rash K, Smalstig B, Roberts E, Johnstone E, Sharp J, Panetta J, Little S, Kramer R, Clemens J. Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 1999. [DOI: 10.1002/(sici)1098-1136(199908)27:2%3c110::aid-glia2%3e3.0.co;2-c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Kishimoto K, Matsumura K, Kataoka Y, Morii H, Watanabe Y. Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 1999; 92:1061-77. [PMID: 10426546 DOI: 10.1016/s0306-4522(99)00051-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ca2(+)-sensitive 85,000 mol. wt cytosolic phospholipase A2 plays an essential role in the selective and stimulus-dependent release of arachidonic acid from membrane phospholipids. Cytosolic phospholipase A2-catalysed lipid mediators including arachidonic acid and its metabolites have been suggested to be involved in a variety of neuronal functions in the CNS. Since the cellular localization of cytosolic phospholipase A2 is still controversial and obscure, we tried an improved method of rapid processing of each specimens and succeeded in obtaining intense signals of cytosolic phospholipase A2 messenger RNA in the normal rat brain by northern blot analysis and in situ hybridization. Northern blot analysis showed the abundant distribution of cytosolic phospholipase A2 messenger RNA in most regions of the brain, with intense signals observed in the pineal gland and pons. Macroautoradiographs prepared after in situ hybridization with three different antisense riboprobes gave essentially similar patterns of localization; significant signals were widely detected in the gray matter of various regions, i.e. the olfactory bulb, cerebral cortex, hippocampus, amygdala, several thalamic and hypothalamic nuclei and cerebellum. Microautoradiographs showed that most of the intense signals were predominant in neurons, and that faint signals were from glial cells and other non-neuronal cells in the choroid plexus, inner surface cells of veins and the leptomeninges. In addition, the cycloheximide treatment increased the cytosolic phospholipase A2 messenger RNA level in the same cell populations originally possessing messenger RNA signals. Predominant expression of cytosolic phospholipase A2 messenger RNA in neurons may provide the basis for the contribution of cytosolic phospholipase A2-catalysed lipid mediators to a variety of neurotransmission and synaptic functions in the CNS.
Collapse
Affiliation(s)
- K Kishimoto
- Department of Neuroscience, Osaka Bioscience Institute, Suita-shi, Japan
| | | | | | | | | |
Collapse
|
47
|
Farooqui AA, Litsky ML, Farooqui T, Horrocks LA. Inhibitors of intracellular phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological disorders. Brain Res Bull 1999; 49:139-53. [PMID: 10435777 DOI: 10.1016/s0361-9230(99)00027-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intracellular phospholipases A2 (PLA2) are a diverse group of enzymes with a growing number of members. These enzymes hydrolyze membrane phospholipids into fatty acid and lysophospholipids. These lipid products may serve as intracellular second messengers or can be further metabolized to potent inflammatory mediators, such as eicosanoids and platelet-activating factors. Several inhibitors of nonneural intracellular PLA2 have been recently discovered. However, nothing is known about their neurochemical effects, mechanism of action or toxicity in human or animal models of neurological disorders. Elevated intracellular PLA2 activities, found in neurological disorders strongly associated with inflammation and oxidative stress (ischemia, spinal cord injury, and Alzheimer's disease), can be treated with specific, potent and nontoxic inhibitors of PLA2 that can cross blood-brain barrier without harm. Currently, potent intracellular PLA2 inhibitors are not available for clinical use in human or animal models of neurological disorders, but studies on this interesting topic are beginning to emerge. The use of nonspecific intracellular PLA2 inhibitors (quinacrine, heparin, gangliosides, vitamin E) in animal model studies of neurological disorders in vivo has provided some useful information on tolerance, toxicity, and effectiveness of these compounds.
Collapse
Affiliation(s)
- A A Farooqui
- Department of Medical Biochemistry, The Ohio State University, Columbus 43210, USA.
| | | | | | | |
Collapse
|
48
|
Ong WY, Horrocks LA, Farooqui AA. Immunocytochemical localization of cPLA2 in rat and monkey spinal cord. J Mol Neurosci 1999; 12:123-30. [PMID: 10527456 DOI: 10.1007/bf02736926] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Rat spinal cord contains a high level of calcium-dependent cytosolic phospholipase A2 (PLA2) activity. A dense immunoreactivity is present in motor neurons from cervical, thoracic, lumbar, and sacral regions of rat spinal cord. Under normal conditions, this enzyme liberates arachidonic acid, a polyunsaturated fatty acid that is a second messenger itself, and a precursor for eicosanoids. However, under pathological conditions during spinal cord injury, intracellular calcium increases so the cytosolic PLA2 may also be involved in the release and accumulation of arachidonic acid, eicosanoids, and lipid peroxides.
Collapse
Affiliation(s)
- W Y Ong
- Department of Anatomy, National University of Singapore, Singapore
| | | | | |
Collapse
|
49
|
Lautens LL, Chiou XG, Sharp JD, Young WS, Sprague DL, Ross LS, Felder CC. Cytosolic phospholipase A2 (cPLA2) distribution in murine brain and functional studies indicate that cPLA2 does not participate in muscarinic receptor-mediated signaling in neurons. Brain Res 1998; 809:18-30. [PMID: 9795110 DOI: 10.1016/s0006-8993(98)00806-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2) catalyzes the selective release of arachidonic acid from the sn-2 position of membrane phospholipids and has been suggested as an effector in the receptor-mediated release of arachidonic acid in signal transduction. The potential role of cPLA2 as an effector in muscarinic acetylcholine receptor signaling was investigated through ectopic expression of either the m1 or m5 receptor in combination with cPLA2 in COS-1, CHO and U-373 MG cell lines. U-373 MG and COS-1 cells express undetectable or very low levels of cPLA2. CHO cell extracts are characterized by a significant endogenous PLA2 activity that was increased over 20-fold following transient expression with cPLA2 cDNA. However, in none of the cells lines did the co-expression of muscarinic receptor and cPLA2 result in a significant increase in muscarinic receptor-mediated arachidonic acid release over cells expressing muscarinic receptor alone. The distribution of cPLA2 mRNA and cPLA2 immunoreactivity in murine brain were determined in order to investigate a potential role for cPLA2 in neurotransmission. cPLA2 mRNA was expressed in white matter, including cells contained within linear arrays characteristic of interfascicular oligodendrocytes. cPLA2 immunoreactivity in white matter was evident throughout the processes of fibrous astrocytes. cPLA2 expression in gray matter was confined to astrocytes at the pial surface of the brain. cPLA2 mRNA was detected in pia mater, both at the brain surface and inner core of the choroid plexus. cPLA2 may not be directly linked to neurotransmission since enzyme expression, mRNA, and cPLA2 immunoreactivity were undetectable in neurons of murine brain. Support or regulation of neurotransmission may be provided through the activity of cPLA2 in glial cells.
Collapse
Affiliation(s)
- L L Lautens
- Department of Biological Sciences, Neurobiology Program, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Grange E, Rabin O, Bell J, Chang MC. Manoalide, a phospholipase A2 inhibitor, inhibits arachidonate incorporation and turnover in brain phospholipids of the awake rat. Neurochem Res 1998; 23:1251-7. [PMID: 9804280 DOI: 10.1023/a:1020788031720] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Fatty Acid method was used to determine whether incorporation of plasma radiolabeled arachidonic acid into brain phospholipids is controlled by phospholipase A2. Awake rats received an i.v. injection of a phospholipase A2 inhibitor, manoalide (10 mg/kg), and then were infused i.v. with [1-(14)C]arachidonate or [3H]arachidonate. Animals were killed after infusion by microwave irradiation, and tracer distribution was analyzed in brain phospholipid, neutral lipid and acyl-CoA pools. Calcium-independent phospholipase A2 activity in brain homogenate was reduced by manoalide, whereas phospholipase C activity was unaffected. At 60 min but not at 20 or 40 min after its injection, manoalide had significantly decreased by 50% incorporation of unesterified arachidonate into and turnover within brain phospholipids, taking into account dilution of the brain arachidonoyl-CoA pool by recycled arachidonate. Manoalide also increased by 100% the net rate of unesterified arachidonate incorporation into brain triacylglycerol. This study indicates that manoalide can be used to inhibit brain phospholipase A2 in vivo, and that phospholipase A2 plays a critical role in arachidonate turnover in brain phospholipids and neutral lipids.
Collapse
Affiliation(s)
- E Grange
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health Bethesda, Maryland 20892-1582, USA
| | | | | | | |
Collapse
|