1
|
Sasabe J, Aiso S. Aberrant Control of Motoneuronal Excitability in Amyotrophic Lateral Sclerosis: Excitatory Glutamate / D-Serine vs. Inhibitory Glycine/γ-Aminobutanoic Acid (GABA). Chem Biodivers 2010; 7:1479-90. [DOI: 10.1002/cbdv.200900306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Tovar-y-Romo LB, Santa-Cruz LD, Tapia R. Experimental models for the study of neurodegeneration in amyotrophic lateral sclerosis. Mol Neurodegener 2009; 4:31. [PMID: 19619317 PMCID: PMC2720968 DOI: 10.1186/1750-1326-4-31] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/20/2009] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause, characterized by the selective and progressive death of both upper and lower motoneurons, leading to a progressive paralysis. Experimental animal models of the disease may provide knowledge of the pathophysiological mechanisms and allow the design and testing of therapeutic strategies, provided that they mimic as close as possible the symptoms and temporal progression of the human disease. The principal hypotheses proposed to explain the mechanisms of motoneuron degeneration have been studied mostly in models in vitro, such as primary cultures of fetal motoneurons, organotypic cultures of spinal cord sections from postnatal rodents and the motoneuron-like hybridoma cell line NSC-34. However, these models are flawed in the sense that they do not allow a direct correlation between motoneuron death and its physical consequences like paralysis. In vivo, the most widely used model is the transgenic mouse that bears a human mutant superoxide dismutase 1, the only known cause of ALS. The major disadvantage of this model is that it represents about 2%-3% of human ALS. In addition, there is a growing concern on the accuracy of these transgenic models and the extrapolations of the findings made in these animals to the clinics. Models of spontaneous motoneuron disease, like the wobbler and pmn mice, have been used aiming to understand the basic cellular mechanisms of motoneuron diseases, but these abnormalities are probably different from those occurring in ALS. Therefore, the design and testing of in vivo models of sporadic ALS, which accounts for >90% of the disease, is necessary. The main models of this type are based on the excitotoxic death of spinal motoneurons and might be useful even when there is no definitive demonstration that excitotoxicity is a cause of human ALS. Despite their difficulties, these models offer the best possibility to establish valid correlations between cellular alterations and motor behavior, although improvements are still necessary in order to produce a reliable and integrative model that accurately reproduces the cellular mechanisms of motoneuron degeneration in ALS.
Collapse
Affiliation(s)
- Luis B Tovar-y-Romo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, D.F., México
| | - Luz Diana Santa-Cruz
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, D.F., México
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, D.F., México
| |
Collapse
|
3
|
|
4
|
Heath PR, Shaw PJ. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26:438-58. [PMID: 12362409 DOI: 10.1002/mus.10186] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Excitotoxicity may play a role in certain disorders of the motor system thought to be caused by environmentally acquired toxins, including lathyrism and domoic acid poisoning. Motor neurons appear to be particularly susceptible to toxicity mediated via alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-kainate receptors. There is a body of evidence implicating glutamatergic toxicity as a contributory factor in the selective neuronal injury occurring in amyotrophic lateral sclerosis (ALS). Interference with glutamate-mediated toxicity is so far the only neuroprotective therapeutic strategy that has shown benefit in terms of slowing disease progression in ALS patients. Biochemical studies have shown decreased glutamate levels in central nervous system (CNS) tissue and increased levels in the cerebrospinal fluid (CSF) of ALS patients. CSF from ALS patients is toxic to neurons in culture, apparently via a mechanism involving AMPA receptor activation. There is evidence for altered expression and function of glial glutamate transporters in ALS, particularly excitatory amino acid transporter 2 (EAAT2). Abnormal splice variants of EAAT2 have been detected in human CNS. Mitochondrial dysfunction may contribute to excitotoxicity in ALS. Induction of neuronal nitric oxide synthase and cyclooxygenase 2 in ALS may also lead to significant interactions with regulation of the glutamate transmitter system. Certain features of motor neurons may predispose them to the neurodegenerative process in ALS, such as the cell size, mitochondrial activity, neurofilament content, and relative lack of certain calcium-binding proteins and molecular chaperones. Motor neurons appear vulnerable to toxicity mediated by calcium-permeable AMPA receptors. The relatively low expression of the glutamate receptor 2 (GluR2) AMPA receptor subunit and the high current density caused by the large number and density of cell surface AMPA receptors are potentially important factors that may predispose to such toxicity.
Collapse
Affiliation(s)
- Paul R Heath
- Academic Neurology Unit, E Floor, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | | |
Collapse
|
5
|
Van Westerlaak MG, Joosten EA, Gribnau AA, Cools AR, Bär PR. Differential cortico-motoneuron vulnerability after chronic mitochondrial inhibition in vitro and the role of glutamate receptors. Brain Res 2001; 922:243-9. [PMID: 11743956 DOI: 10.1016/s0006-8993(01)03178-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic treatment of rat cortical slices with a relative low concentration of mitochondrial inhibitor malonate leads to cortical motoneuron (CMN) death. In the neurodegenerative disease amyotrophic lateral sclerosis (ALS) corticospinal neurons, CMNs projecting to the spinal cord, degenerate. In the present study we compared the effect of chronic mitochondrial inhibition on the survival of CMNs located in the dorsal cortical areas (including corticospinal neurons) with that on ventrally located CMNs (non-corticospinal neurons) in vitro. In the explant culture model used, the dorsally located CMNs were less vulnerable to a 2-week period of mitochondrial inhibition with malonate as compared to ventrally located CMNs. Treatment with 5 mM malonate resulted in 50% surviving CMNs in the dorsal part and only 16% in the ventral part. Neuroprotection of the CMNs could be achieved with co-administration of the non-NMDA antagonist CNQX, the NMDA antagonist MK-801, or the glutamate release inhibitor riluzole, suggesting that chronic energy shortage leads to excitotoxicity. In the dorsal cortical areas CNQX, MK-801, and riluzole had a neuroprotective effect on the CMNs, whereas in the ventral cortical areas only MK-801 was neuroprotective. The sensitivity to energy depletion and consequently excitotoxicity may be related to glutamate receptor density and subunit composition in various cortical areas, but also to the projection length and input of CMNs in vivo. The present investigation gives insight in mechanisms leading to excitotoxic cell death of CMNs and may therefore be important for the development of treatment strategies in protection and survival of cortical motoneurons in ALS.
Collapse
Affiliation(s)
- M G Van Westerlaak
- Department of Experimental Neurology, Room G02.320, RMI for Neurosciences, UMC Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
7
|
Shaw PJ, Eggett CJ. Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. J Neurol 2000; 247 Suppl 1:I17-27. [PMID: 10795883 DOI: 10.1007/bf03161151] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current research evidence suggests that genetic factors, oxidative stress and glutamatergic toxicity, with damage to critical target proteins and organelles, may be important contributory factors to motor neuron injury in amyotrophic lateral sclerosis (ALS). Various molecular and neurochemical features of human motor neurons may render this cell group differentially vulnerable to such insults. Motor neurons are large cells with long axonal processes which lead to requirements for a high level of mitochondrial activity and a high neurofilament content compared to other neuronal groups. The lack of calcium buffering proteins parvalbumin and calbindin D28k and the low expression of the GluR2 AMPA receptor subunit may render human motor neurons particularly vulnerable to calcium toxicity following glutamate receptor activation. Motor neurons also have a high perisomatic expression of the glutamate transporter protein EAAT2 and a very high expression of the cytosolic free radical scavenging enzyme Cu/Zn superoxide dismutase (SOD1) which may render this cell group vulnerable in the face of genetic or post-translational alterations interfering with the function of these proteins. More detailed characterisation of the molecular features of human motor neurons in the future may allow the strategic development of better neuroprotective therapies for the benefit of patients afflicted by ALS.
Collapse
Affiliation(s)
- P J Shaw
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK.
| | | |
Collapse
|
8
|
Milton ID, Banner SJ, Ince PG, Piggott NH, Fray AE, Thatcher N, Horne CH, Shaw PJ. Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 52:17-31. [PMID: 9450673 DOI: 10.1016/s0169-328x(97)00233-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glutamate transporters play an essential role in terminating the excitatory glutamatergic signal at post-synaptic receptors and in protecting neurones from excitotoxic effects, as well as replenishing the neurotransmitter supply at glutamatergic synapses. The distribution and density of glutamate transporters may be important determinants of vulnerability to glutamate-mediated injury. There is emerging evidence that glutamate transporter dysfunction may be present in motor neurone disease (MND). In this study, a monoclonal antibody, suitable for immunohistochemistry (IHC) in human post-mortem tissue, was produced to the human astrocytic glutamate transporter EAAT2 (excitatory amino acid transporter 2). Western blotting of homogenates of human cortical tissue with the EAAT2 antibody produced a discrete band at 66 kDa. Detailed IHC analysis of the expression of the EAAT2 protein in the human CNS was undertaken. EAAT2 was exclusively localised to astrocytes, with preferential expression in the caudate nucleus, nucleus basalis of Meynert, spinal ventral horn, cerebral cortex and hippocampus, but with lower levels of expression throughout many other CNS regions. Motor neurone groups vulnerable to neurodegeneration in MND appeared distinctive in being surrounded by extensive, coarse, strongly immunoreactive perisomatic glial profiles. Motor neurone groups which tend to be spared in MND, such as those present in the oculomotor nucleus, showed a lower expression of EAAT2, with fewer perisomatic profiles. The EAAT2 antibody will provide a useful tool for increasing our understanding of the role of EAAT2 in excitatory neurotransmission in health and disease states.
Collapse
Affiliation(s)
- I D Milton
- Novocastra Laboratories, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nakajima M, Eisen A, Stewart H. Diverse abnormalities of corticomotoneuronal projections in individual patients with amyotrophic lateral sclerosis. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 105:451-7. [PMID: 9448646 DOI: 10.1016/s0924-980x(97)00051-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using peristimulus time histograms (PSTHs), abnormalities of composite excitatory postsynaptic potentials (EPSPs) induced by transcranial magnetic stimulation were studied in multiple motor units from individuals with amyotrophic lateral sclerosis (ALS) and normal subjects. We studied 97 motor units in the extensor digitorum communis muscle of 22 patients with sporadic ALS and 47 motor units of 10 healthy control subjects. Four or five motor units were studied in each patient and normal subject. For each unit, macro motor unit potentials (Macro-MUPs) were simultaneously recorded from a surface electrode after spike-triggered averaging. The composite EPSPs in ALS showed a generally bi-directional deviation from the normal curve, with small EPSPs at one end, and larger amplitude EPSPs with a prolonged rise time at the other end. The variability of EPSPs from adjacent motor units in the same individual was significantly larger in ALS than in controls. In normal subjects there is a significant negative correlation between the amplitude of composite EPSPs and the Macro-MUPs. In ALS, the trend is reversed (positive) suggesting that the abnormalities of composite EPSPs are supraspinal in origin. A combination of partial attrition of the corticomotoneuronal core and hyper-excitability of surviving corticomotoneurons projecting to a given spinal motoneuron pool best explains the diversity of the composite EPSP in individuals with ALS.
Collapse
Affiliation(s)
- M Nakajima
- Neuromuscular Diseases Unit, Vancouver Hospital, BC, Canada
| | | | | |
Collapse
|
10
|
Williams TL, Day NC, Ince PG, Kamboj RK, Shaw PJ. Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1997; 42:200-7. [PMID: 9266730 DOI: 10.1002/ana.410420211] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cause of the selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) remains unexplained. One potential pathogenetic mechanism is chronic toxicity due to disturbances of the glutamatergic neurotransmitter system, mediated via alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive glutamate receptors. Functional AMPA receptors consist of various combinations of four subunits (designated GluR1-4). The GluR2 subunit is functionally dominant and renders AMPA receptors impermeable to calcium. Most native AMPA receptors in the mammalian central nervous system (CNS) contain the GluR2 subunit and are calcium impermeable. We have investigated the composition of AMPA receptors expressed on normal human spinal motor neurons by in situ hybridization to determine their likely subunit stoichiometry. Highly significant levels of mRNA were detected for the GluR1, GluR3, and GluR4 subunits. However, GluR2 subunit mRNA was not detectable in this cell group. The absence of detectable GluR2 mRNA in normal human spinal motor neurons predicts that they express calcium-permeable AMPA receptors unlike most neuronal groups in the human CNS. Expression of atypical calcium-permeable AMPA receptors by human motor neurons provides a possible mechanism whereby disturbances of glutamate neurotransmission in ALS may selectively injure this cell group.
Collapse
Affiliation(s)
- T L Williams
- Department of Neurology, School of Neurosciences & Psychiatry, University of Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
11
|
Coggeshall RE, Carlton SM. Receptor localization in the mammalian dorsal horn and primary afferent neurons. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:28-66. [PMID: 9233541 DOI: 10.1016/s0165-0173(97)00010-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dorsal horn of the spinal cord is a primary receiving area for somatosensory input and contains high concentrations of a large variety of receptors. These receptors tend to congregate in lamina II, which is a major receiving center for fine, presumably nociceptive, somatosensory input. There are rapid reorganizations of many of these receptors in response to various stimuli or pathological situations. These receptor localizations in the normal and their changes after various pertubations modify present concepts about the wiring diagram of the nervous system. Accordingly, the present work reviews the receptor localizations and relates them to classic organizational patterns in the mammalian dorsal horn.
Collapse
Affiliation(s)
- R E Coggeshall
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston 77555-1069, USA
| | | |
Collapse
|
12
|
Abstract
The "glutamate hypothesis" is one of three major pathophysiological mechanisms of motor neurone injury towards which current research effort into amyotrophic lateral sclerosis (ALS) is directed. There is great structural and functional diversity in the glutamate receptor family which results from combinations of 14 known gene products and their splice variants, with or without additional RNA editing. It is possible that motor neurones express a unique molecular profile of glutamate receptors. Abnormal activation of glutamate receptors is one of five main candidates as a final common pathway to neuronal death. In classical acute excitotoxicity, there is influx of Na+ and CI-, and destabilisation of intracellular Ca2+ homeostasis, which activates a cascade of harmful biochemical events. The concept of secondary excitotoxicity, where cellular injury by glutamate is triggered by disturbances in neuronal energy status, may be particularly relevant to a chronic neurodegenerative disease such as ALS. Data are now beginning to emerge on the fine molecular structure of the glutamate receptors present on human motor neurones, which have a distinct profile of AMPA receptors. Two important molecular features of motor neurones have been identified that may contribute to their vulnerability to neurodegeneration. The low expression of calcium binding proteins and the low expression of the GluR2 AMPA receptor subunit by vulnerable motor neurone groups may render them unduly susceptible to calcium-mediated toxic events following glutamate receptor activation. Eight lines of evidence that indicate a disturbance of glutamatergic neurotransmission in ALS patients are reviewed. The links between abnormal activation of glutamate receptors and other potential mechanisms of neuronal injury, including activation of calcium-mediated second messenger systems and free radical mechanisms, are emphasised. Riluzole, which modulates the glutamate neurotransmitter system, has been shown to prolong survival in patients with ALS. Further research may allow the development of subunit-specific therapeutic targeting of glutamate receptors and modulation of "downstream" events within motor neurones, aimed at protecting vulnerable molecular targets in specific populations of ALS patients.
Collapse
Affiliation(s)
- P J Shaw
- University Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | |
Collapse
|
13
|
Gredal O, Pakkenberg B, Nielsen M. Muscarinic, N-methyl-D-aspartate (NMDA) and benzodiazepine receptor binding sites in cortical membranes from amyotrophic lateral sclerosis patients. J Neurol Sci 1996; 143:121-5. [PMID: 8981309 DOI: 10.1016/s0022-510x(96)00196-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder causing marked pathology in the motoneuron system. The pathophysiology of the selective degeneration of motor neurons in the disease is as yet unknown, but evidence suggests that excitotoxic mechanisms might be involved. The present study was undertaken to determine whether defects in neurotransmitter receptors are involved in the disease, analyzing uniformly sampled specimens from neocortex and motorcortex. The binding to benzodiazepine, muscarinic cholinergic, and NMDA receptors in ALS brains was compared to that in control brains, using a single radioligand concentration of [3H]Ro 15-1788, [3H]QNB and [3H]MK-801. The benzodiazepine and the muscarinic cholinergic receptor binding was unaffected in any cortical region from the ALS subjects compared to controls. NMDA receptor binding labeled by [3H]MK-801 was significantly increased in several neocortical regions in the ALS group compared to the control group. Scatchard analysis of [3H]MK-801 binding in frontal cortex revealed a single binding site with an unaltered maximal binding capacity but an increased binding affinity of the site in the ALS group compared to the controls. The generalized alteration in the affinity of the binding site for [3H]MK-801 in the ALS cortex may indicate a modification of the NMDA receptor due to different sensitivity for endogenous modulators or to a different subunit composition of the NMDA receptor in ALS with altered functional properties. These findings may reflect a pathophysiological phenomenon in ALS.
Collapse
Affiliation(s)
- O Gredal
- Department of Biochemistry, Research Institute of Biological Psychiatry, St. Hans Hospital, Roskilde, Denmark
| | | | | |
Collapse
|
14
|
Forrest V, Ince P, Leitch M, Marshall EF, Shaw PJ. Serotonergic neurotransmission in the spinal cord and motor cortex of patients with motor neuron disease and controls: quantitative autoradiography for 5-HT1a and 5-HT2 receptors. J Neurol Sci 1996; 139 Suppl:83-90. [PMID: 8899664 DOI: 10.1016/0022-510x(96)00109-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Serotonin 5-HT is a potent modulator of motor neuron excitability in the spinal cord. Serotonergic neurotransmission, because of its effects on glutamatergic excitation, may be relevant to the pathogenesis and therapy of motor neuron disease (MND). The human motor system was studied at two levels, spinal cord and motor cortex, by autoradiography for the 5-HT1A and 5-HT2 receptor subclasses. In addition, biochemical estimations of indole metabolites were performed in the spinal cord. Post mortem tissue from control cases and MND patients showed a reduction in 5-HT1A receptor binding in the cervical (p < 0.01) but not lumbar ventral horn in MND. 5-HT2 receptors were preserved in the ventral horn at both levels and were focally abundant around motor neuron somata. Tissue levels of 5-HT were unchanged in the spinal cord in MND. The metabolite 5-HIAA was increased in the cervical spinal cord in MND as was the molar ratio of 5HIAA:5-HT, implying that there may be an increased turnover of 5HT. In the motor cortex and premotor cortex the 5-HT1A receptor remained unchanged in MND. There was a 20% reduction in 5-HT2 receptor binding sites (p < 0.05) across all the cortical laminae with preservation of the normal pattern of laminar binding. These changes in two levels of the motor system in MND most likely represent physiological adaptations in the spinal cord and motor cortex rather than primary involvement of the serotonergic system in the pathogenesis of the disease.
Collapse
Affiliation(s)
- V Forrest
- Department of Neurology, Royal Victoria Infirmary, University of Newcostle upon Tyne, UK
| | | | | | | | | |
Collapse
|
15
|
Samarasinghe S, Virgo L, de Belleroche J. Distribution of the N-methyl-D-aspartate glutamate receptor subunit NR2A in control and amyotrophic lateral sclerosis spinal cord. Brain Res 1996; 727:233-7. [PMID: 8842405 DOI: 10.1016/0006-8993(96)00506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The distribution of the different glutamate receptor subunits in human spinal cord has yet to be fully elucidated. The aim of this study was to examine the distribution of the N-methyl-D-aspartate (NMDA) glutamate receptor modulatory subunit NR2A, in control human spinal cord and to examine in parallel the expression of the mRNA in amyotrophic lateral sclerosis (ALS). The aetiology of ALS is poorly understood, although abnormalities in glutamate and glycine transport have been reported as well as alterations in NMDA receptors including the NR1 subunit; suggesting a role for glutamate in the disease process. We have used the technique of in situ hybridisation to localise this receptor subunit to the laminae of human spinal cord and have found that it shows a widespread distribution similar to that previously reported for the universal NMDA receptor subunit NR1. Quantitation of mRNA expression in control and ALS cases showed a significant widespread loss of NR2A from both dorsal and ventral horns with losses of 55% and 78%, respectively, in ALS as compared to control. These results were substantiated by analysis of spinal cord homogenates, which showed a significant total decrease of 50% in ALS spinal cord as compared to control.
Collapse
Affiliation(s)
- S Samarasinghe
- Department of Biochemistry, Charing Cross and Westminster Medical School, London, UK
| | | | | |
Collapse
|
16
|
Brambilla A, Prudentino A, Grippa N, Borsini F. Pharmacological characterization of AMPA-induced biting behaviour in mice. Eur J Pharmacol 1996; 305:115-7. [PMID: 8813540 DOI: 10.1016/0014-2999(96)00145-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The spinal cord dorsal horn contains neural mechanisms which can greatly facilitate pain. It is well established that excitatory amino acids, aspartate and glutamate, are involved in the spinal transmission of nociceptive information and in the development of hyperalgesia. In the present study, intrathecal (i.t.) administration of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), a structural analog of L-glutamate, produced a dose-dependent behavioural syndrome characterized by caudally directed biting in mice. We demonstrated that peripheral pre-administration of the AMPA receptor antagonists 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline (NBQX, 10-100 mg/kg s.c.) and 1-(4-aminophenyl)-3-methylcarbamoyl-4-methyl-3,4-dihydro-7, 8-methylene-dioxy-5H-2,3-benzo-diazepine-HCl (GYKI 53655, 3-10 mg/kg s.c.), and also of the NMDA receptor antagonist 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine maleate (MK 801, 0.3-1 mg/kg s.c.) reversed this effect. These findings suggest that the hyperalgesia induced by the i.t. injection of AMPA in mice involves the activation of both NMDA and non-NMDA excitatory amino acid receptor sites.
Collapse
Affiliation(s)
- A Brambilla
- Department of Biology, Boehringer Ingelheim Italia, Milano, Italy
| | | | | | | |
Collapse
|
17
|
Krieger C, Lanius RA, Pelech SL, Shaw CA. Amyotrophic lateral sclerosis: the involvement of intracellular Ca2+ and protein kinase C. Trends Pharmacol Sci 1996; 17:114-20. [PMID: 8936348 DOI: 10.1016/0165-6147(96)10004-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The neurodegenerative disease, amyotrophic lateral sclerosis (ALS), is characterized by the selective death of motoneurones and corticospinal tract neurones. Abnormalities in excitatory amino acids and their receptors, as well as disordered function of voltage-dependent Ca2+ channels and superoxide dismutase have been reported in ALS patients. Furthermore, the activity of protein kinase C (PKC), a Ca2+, phospholipid-dependent enzyme, is also substantially increased in tissue from ALS patients, suggesting that alterations in intracellular free Ca2+ may be central to many of the diverse pathogenic mechanisms potentially responsible for ALS as discussed here by Charles Krieger and colleagues. Increased PKC activity, in turn, may have direct or indirect effects on neuronal viability and influence the pathogenic process in ALS by modifying the phosphorylation of voltage-dependent Ca2+ channels, neurotransmitter receptors and structural proteins.
Collapse
Affiliation(s)
- C Krieger
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
18
|
Kus L, Saxon D, Beitz AJ. NMDA R1 mRNA distribution in motor and thalamic-projecting sensory neurons in the rat spinal cord and brain stem. Neurosci Lett 1995; 196:201-4. [PMID: 7501283 DOI: 10.1016/0304-3940(95)11878-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The N-methyl-D-aspartate (NMDA) receptor is important in both sensory and motor neurotransmission. In this study we examine NMDA R1 mRNA hybridization signal over individual sensory and motor neurons in the spinal cord and brain stem. A significantly greater quantity of NMDA R1 mRNA was present in motor neurons of the lumbar spinal cord and hypoglossal nucleus compared to thalamic projecting sensory neurons in the spinal cord dorsal horn, the spinal trigeminal nucleus pars caudalis and the cuneate and gracile nuclei. No significant difference in the quantity of NMDA R1 mRNA was observed between sensory neurons known to relay predominantly nociceptive information (trigeminothalamic and spinothalamic tract neurons) and that relay predominantly touch and proprioceptive information (dorsal column neurons).
Collapse
Affiliation(s)
- L Kus
- Department of Veterinary PathoBiology, University of Minnesota, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
19
|
Hama AT, Unnerstall JR, Siegan JB, Sagen J. Modulation of NMDA receptor expression in the rat spinal cord by peripheral nerve injury and adrenal medullary grafting. Brain Res 1995; 687:103-13. [PMID: 7583294 DOI: 10.1016/0006-8993(95)00476-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Excessive activation of N-methyl-D-aspartate (NMDA) receptors in the spinal cord consequent to peripheral injury has been implicated in the initiation of neuropathologic events leading to a state of chronic hyperexcitability and persistence of exaggerated sensory processing. In other CNS disease or injury states, NMDA-mediated neurotoxic damage is associated with a loss of NMDA receptors, and outcome may be improved by agents reducing NMDA activation. Previous findings in our laboratory have demonstrated that the transplantation of adrenal medullary tissue into the spinal subarachnoid space can alleviate sensory abnormalities and reduce the induction of a putative nitric oxide synthase consequent to peripheral nerve injury. In order to determine changes in NMDA receptor expression in the spinal cord following peripheral nerve injury and adrenal medullary grafting, NMDA receptor binding using a high-affinity competitive NMDA receptor antagonist, CGP-39653, and NMDAR1 subunit distribution using immunocytochemistry were investigated. Two weeks following peripheral nerve injury by loose ligation of the right sciatic nerve, either adrenal medullary or striated muscle (control) tissue pieces were implanted in the spinal subarachnoid space. Binding studies revealed a marked reduction in [3H]CGP-39653 binding at L4-L5 levels ipsilateral to peripheral nerve injury in control transplanted animals. In contrast, NMDA binding was normalized in adrenal medullary grafted animals. In addition, NMDAR1 immunoreactivity was reduced in both the dorsal horn neuropil and motor neurons of the ventral horn in animals with peripheral nerve injury, while levels in adrenal medullary grafted animals appeared similar to intact controls. These results suggest that adrenal medullary transplants reduce abnormal sensory processing resulting from peripheral injury by intervening in the spinal NMDA-excitotoxicity cascade.
Collapse
Affiliation(s)
- A T Hama
- Department of Anatomy and Cell Biology, University of Illinois at Chicago 60612, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Amyotrophic lateral sclerosis (ALS) is probably biphasic. An initial trigger(s) is followed by a terminal cascade coinciding with the onset of neurological deficits. The terminal cascade involves interactive multifactorial pathogenic mechanisms. Aging must play a crucial role leading to multiple defective or degraded gene products accumulating with progressing years. This in turn leads to failure of receptor integrity and resulting excitotoxicity, free radical accumulation, failure of neurotrophism, and possibly immunological disturbances. These events are predated by months or years by a trigger which is also likely to be multifactorial and cumulative. Evidence suggests that environmental factors may be important triggers. Failure of specific glutamate transporters and calcium binding proteins may account for selective vulnerability of the corticomotoneuronal system. It is postulated that in ALS the primary target cell is the corticomotoneuron or the local circuit interneurons which modulate its activity. Glia cells may play an important role in the demise of the corticomotoneuronal cell. The disordered corticomotoneuron induces excessive excitatory transmitter (glutamate?) release at the corticomotoneuronal-spinal-motoneuronal synapse resulting in the subsequent demise of this neuron.
Collapse
Affiliation(s)
- A Eisen
- Neuromuscular Diseases Unit, Vancouver General Hospital, British Columbia, Canada
| |
Collapse
|
21
|
Virgo L, de Belleroche J. Induction of the immediate early gene c-jun in human spinal cord in amyotrophic lateral sclerosis with concomitant loss of NMDA receptor NR-1 and glycine transporter mRNA. Brain Res 1995; 676:196-204. [PMID: 7796170 DOI: 10.1016/0006-8993(95)00052-r] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aetiology of the sporadic form of amyotrophic lateral sclerosis (ALS) is poorly understood although abnormalities in glutamate and glycine transport have been implicated which both could contribute to a neurodegenerative process mediated through the N-methyl-D-aspartate (NMDA) receptor. In this study we have used in situ hybridization to investigate whether any changes in the expression of NMDA receptors, the glycine transporter or glutamate-mediated injury responses are detectable in ALS. Two immediate early genes were investigated as markers of neuronal injury responses, c-jun and zif-268, both constitutively expressed in the spinal cord. Levels of c-jun mRNA were most abundant in intermediate grey and layer IX of the ventral horn containing motor neurones. This pattern was markedly changed in ALS with large increases (2-3 fold) in c-jun mRNA occurring in dorsal and ventral horn. The marked increase in c-jun mRNA was also substantiated by slot blot analysis of tissue homogenates of spinal cord and a parallel induction of zif-268 mRNA was also seen. NMDA receptor NR-1 mRNA was widely distributed in control spinal cord with the highest concentrations occurring in layers IX, X, intermediate grey and dorsal horn. The ALS cases showed a selective decrease in the level of NR-1 mRNA in the ventral region (50%) whilst no significant decrease was detected in the dorsal region. Quantitation of tissue homogenates with dorsal and ventral regions combined also yielded a significant decrease of 40% which supports the analysis from in situ hybridization densitometry.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Virgo
- Department of Biochemistry, Charing Cross and Westminster Medical School, London, UK
| | | |
Collapse
|
22
|
Shaw PJ, Chinnery RM, Ince PG. Non-NMDA receptors in motor neuron disease (MND): a quantitative autoradiographic study in spinal cord and motor cortex using [3H]CNQX and [3H]kainate. Brain Res 1994; 655:186-94. [PMID: 7812772 DOI: 10.1016/0006-8993(94)91613-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution and density of non-NMDA receptors in spinal cord and motor cortex was compared in 10 cases of motor neuron disease (MND) and 8 neurologically normal controls by quantitative autoradiography using [3H]CNQX and [3H]kainate. In the motor cortex of MND cases, an increased density of [3H]kainate binding sites was observed which was most marked in the deep layers. No significant differences were observed in [3H]CNQX binding in the motor cortex between MND and control cases. In the spinal cord significantly increased densities of both [3H]CNQX and [3]kainate binding sites were found in the substantia gelatinosa and the intermediate grey matter in the MND group. The changes in [3H]kainate binding were observed only in the amyotrophic lateral sclerosis (ALS) subgroup of MND, while the changes in [3H]CNQX binding in the spinal cord were more marked in ALS compared to progressive muscular atrophy (PMA) cases. These findings provide evidence in support of a disturbance of glutamatergic neurotransmission in MND and suggest that there may be an increased excitatory drive to motor neurons via non-NMDA receptors. It is unclear at present whether the changes observed represent a compensatory response to loss of motor neurons in MND or a pathophysiological phenomenon contributing to motor neuron degeneration. Modulation of non-NMDA receptor activity may represent a possible target for therapeutic intervention in this disease.
Collapse
Affiliation(s)
- P J Shaw
- Department of Clinical Neurosciences, University of Newcastle upon Tyne, UK
| | | | | |
Collapse
|
23
|
Shaw PJ, Chinnery RM, Ince PG. [3H]D-aspartate binding sites in the normal human spinal cord and changes in motor neuron disease: a quantitative autoradiographic study. Brain Res 1994; 655:195-201. [PMID: 7812773 DOI: 10.1016/0006-8993(94)91614-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution and density of glutamate transporter sites was determined in human cervical and lumbar spinal cord, by quantitative autoradiography using [3H]D-aspartate. In the normal human spinal cord (n = 8) there was specific binding of [3H]D-aspartate throughout the spinal grey matter, with the highest levels observed in the substantia gelatinosa and central grey matter. In the ventral horns, particularly at the L5 level, focal hot spots of binding were observed in a distribution corresponding to that of lower motor neuron somata. Comparison of motor neuron disease (MND) cases (n = 12) with normal controls showed a reduction in the density of [3H]D-aspartate binding in the intermediate grey matter and the substantia gelatinosa of the lumbar cord. These changes were more marked in the amyotrophic lateral sclerosis (ALS) compared to the progressive muscular atrophy (PMA) subgroup, and may be due to loss of glutamatergic terminals of the corticospinal tract. The changes observed in the cervical cord were milder and did not reach statistical significance. No differences were found between [3H]D-aspartate binding in the spinal cords of the normal controls and a neurological disease control group (n = 6), suggesting that the changes observed in MND are disease specific. These findings provide further evidence in support of a disturbance of glutamatergic neurotransmission in MND.
Collapse
Affiliation(s)
- P J Shaw
- Department of Clinical Neuroscience, Royal Victoria Infirmary, Newcastle-upon-Tyne UK
| | | | | |
Collapse
|
24
|
Abstract
Excitotoxic mechanisms have a well established role in the pathogenesis of neuronal injury following acute CNS insults such as ischaemia and trauma. Their role in the selective cell death which occurs in chronic neurodegenerative disorders such as motor neurone disease (MND) is more speculative. The traditional classification of glutamate receptor subtypes which mediate excitotoxicity requires modification in the light of new molecular data. There is much greater structural and functional diversity in this receptor family than previously envisaged and it is quite possible that specific populations of neurones will be characterised by a unique profile of glutamate receptor subtypes which may be a factor determining their selective vulnerability. The molecular mechanisms underlying excitotoxic neuronal injury are still being elucidated but it is clear that the cascade of events resulting from elevation of intracellular free calcium is likely to play a major role. As well as being a primary mechanism of neuronal injury, excitotoxicity can secondarily damage neurones whose energy metabolism is impaired from some primary pathological process. The 8 lines of evidence that primary or secondary excitotoxic mechanisms may be involved in the selective neuronal injury of MND are discussed. The evidence, while still circumstantial, is sufficient to warrant further research effort in this field, not least because the emergence of pharmacological agents which modify specific aspects of excitatory amino acid neurotransmission offer the possibility of therapeutic intervention in MND.
Collapse
Affiliation(s)
- P J Shaw
- Department of Neurology, Royal Victoria Infirmary, University of Newcastle upon Tyne, UK
| |
Collapse
|