1
|
Takasaki I, Nagashima R, Ueda T, Ashihara Y, Nakamachi T, Okada T, Toyooka N, Miyata A, Kurihara T. Spinal pituitary adenylate cyclase-activating polypeptide and PAC1 receptor signaling system is involved in the oxaliplatin-induced acute cold allodynia in mice. THE JOURNAL OF PAIN 2025; 27:104751. [PMID: 39615811 DOI: 10.1016/j.jpain.2024.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 02/10/2025]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a type of peripheral neuropathy that develops in patients treated with certain anticancer drugs. Oxaliplatin (OXA) causes CIPN in approximately 80-90 % of patients; thus, it is necessary to elucidate its underlying mechanism and develop effective treatments and prevention methods. The purpose of this study was to determine whether the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system in the spinal dorsal horn is involved in OXA-induced acute cold allodynia and examine the effect of a PAC1 receptor antagonist. Administration of OXA induced acute cold allodynia in wild-type mice, but not in PACAP-/- mice. In the dorsal root ganglia, OXA upregulated PACAP expression, particularly in small-sized neurons. OXA-induced cold allodynia was ameliorated by intrathecal (i.t.) injection of PACAP6-38 (peptide antagonist for PACAP receptor) and PA-8 (small-molecule antagonist specific for PAC1 receptor). I.t. PACAP, but not vasoactive intestinal polypeptide, resulted in cold allodynia, which was blocked by PA-8. OXA induced the activation of spinal astrocytes in a PAC1 receptor-dependent manner. The results suggest that spinal PACAP/PAC1 receptor systems are involved in OXA-induced acute cold allodynia through astrocyte activation. Furthermore, we demonstrated that the systemic administration of PA-8 resulted in therapeutic and preventative effects on OXA-induced acute cold allodynia. Because PA-8 did not affect the anticancer effects of OXA, we propose PAC1 receptor inhibition as a new strategy for the treatment and prevention of CIPN. PERSPECTIVE: Cold allodynia is a hallmark of OXA-induced peripheral neuropathy. This study demonstrated the involvement of spinal PACAP/PAC1 receptors in OXA-induced acute cold allodynia. We propose PAC1 receptor inhibition as a new strategy for the treatment and prevention of OXA-induced acute cold allodynia.
Collapse
Affiliation(s)
- Ichiro Takasaki
- Laboratory of Pharmacology, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan.
| | - Ryota Nagashima
- Laboratory of Pharmacology, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Takahiro Ueda
- Laboratory of Pharmacology, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Yuya Ashihara
- Laboratory of Pharmacology, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama 930-8555, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Faculty of Science, University of Toyama, Toyama 930-8555, Japan
| | - Takuya Okada
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan; Laboratory of Bio-functional Molecular Engineering, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Naoki Toyooka
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan; Laboratory of Bio-functional Molecular Engineering, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
2
|
Mishra G, Townsend KL. Sensory nerve and neuropeptide diversity in adipose tissues. Mol Cells 2024; 47:100030. [PMID: 38364960 PMCID: PMC10960112 DOI: 10.1016/j.mocell.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Both brown and white adipose tissues (BAT/WAT) are innervated by the peripheral nervous system, including efferent sympathetic nerves that communicate from the brain/central nervous system out to the tissue, and afferent sensory nerves that communicate from the tissue back to the brain and locally release neuropeptides to the tissue upon stimulation. This bidirectional neural communication is important for energy balance and metabolic control, as well as maintaining adipose tissue health through processes like browning (development of metabolically healthy brown adipocytes in WAT), thermogenesis, lipolysis, and adipogenesis. Decades of sensory nerve denervation studies have demonstrated the particular importance of adipose sensory nerves for brown adipose tissue and WAT functions, but far less is known about the tissue's sensory innervation compared to the better-studied sympathetic nerves and their neurotransmitter norepinephrine. In this review, we cover what is known and not yet known about sensory nerve activities in adipose, focusing on their effector neuropeptide actions in the tissue.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Mazur U, Lepiarczyk E, Janikiewicz P, Łopieńska-Biernat E, Majewski MK, Bossowska A. Distribution and Chemistry of Phoenixin-14, a Newly Discovered Sensory Transmission Molecule in Porcine Afferent Neurons. Int J Mol Sci 2023; 24:16647. [PMID: 38068975 PMCID: PMC10706208 DOI: 10.3390/ijms242316647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Phoenixin-14 (PNX), initially discovered in the rat hypothalamus, was also detected in dorsal root ganglion (DRG) cells, where its involvement in the regulation of pain and/or itch sensation was suggested. However, there is a lack of data not only on its distribution in DRGs along individual segments of the spinal cord, but also on the pattern(s) of its co-occurrence with other sensory neurotransmitters. To fill the above-mentioned gap and expand our knowledge about the occurrence of PNX in mammalian species other than rodents, this study examined (i) the pattern(s) of PNX occurrence in DRG neurons of subsequent neuromeres along the porcine spinal cord, (ii) their intraganglionic distribution and (iii) the pattern(s) of PNX co-occurrence with other biologically active agents. PNX was found in approximately 20% of all nerve cells of each DRG examined; the largest subpopulation of PNX-positive (PNX+) cells were small-diameter neurons, accounting for 74% of all PNX-positive neurons found. PNX+ neurons also co-contained calcitonin gene-related peptide (CGRP; 96.1%), substance P (SP; 88.5%), nitric oxide synthase (nNOS; 52.1%), galanin (GAL; 20.7%), calretinin (CRT; 10%), pituitary adenylate cyclase-activating polypeptide (PACAP; 7.4%), cocaine and amphetamine related transcript (CART; 5.1%) or somatostatin (SOM; 4.7%). Although the exact function of PNX in DRGs is not yet known, the high degree of co-localization of this peptide with the main nociceptive transmitters SP and CGRP may suggests its function in modulation of pain transmission.
Collapse
Affiliation(s)
- Urszula Mazur
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Paweł Janikiewicz
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| |
Collapse
|
4
|
Kambe Y, Youkai M, Hashiguchi K, Sameshima Y, Takasaki I, Miyata A, Kurihara T. Spinal Astrocyte-Neuron Lactate Shuttle Contributes to the Pituitary Adenylate Cyclase-Activating Polypeptide/PAC1 Receptor-Induced Nociceptive Behaviors in Mice. Biomolecules 2022; 12:biom12121859. [PMID: 36551287 PMCID: PMC9775268 DOI: 10.3390/biom12121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
We have previously shown that spinal pituitary adenylate cyclase-activating polypeptide (PACAP)/PACAP type 1 (PAC1) receptor signaling triggered long-lasting nociceptive behaviors through astroglial activation in mice. Since astrocyte-neuron lactate shuttle (ANLS) could be essential for long-term synaptic facilitation, we aimed to elucidate a possible involvement of spinal ANLS in the development of the PACAP/PAC1 receptor-induced nociceptive behaviors. A single intrathecal administration of PACAP induced short-term spontaneous aversive behaviors, followed by long-lasting mechanical allodynia in mice. These nociceptive behaviors were inhibited by 1,4-dideoxy-1,4-imino-d-arabinitol (DAB), an inhibitor of glycogenolysis, and this inhibition was reversed by simultaneous L-lactate application. In the cultured spinal astrocytes, the PACAP-evoked glycogenolysis and L-lactate secretion were inhibited by DAB. In addition, a protein kinase C (PKC) inhibitor attenuated the PACAP-induced nociceptive behaviors as well as the PACAP-evoked glycogenolysis and L-lactate secretion. Finally, an inhibitor for the monocarboxylate transporters blocked the L-lactate secretion from the spinal astrocytes and inhibited the PACAP- and spinal nerve ligation-induced nociceptive behaviors. These results suggested that spinal PAC1 receptor-PKC-ANLS signaling contributed to the PACAP-induced nociceptive behaviors. This signaling system could be involved in the peripheral nerve injury-induced pain-like behaviors.
Collapse
Affiliation(s)
- Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masafumi Youkai
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Kohei Hashiguchi
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yoshimune Sameshima
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
- Correspondence: ; Tel.: +81-99-275-5256
| |
Collapse
|
5
|
Baskozos G, Sandy-Hindmarch O, Clark AJ, Windsor K, Karlsson P, Weir GA, McDermott LA, Burchall J, Wiberg A, Furniss D, Bennett DLH, Schmid AB. Molecular and cellular correlates of human nerve regeneration: ADCYAP1/PACAP enhance nerve outgrowth. Brain 2020; 143:2009-2026. [PMID: 32651949 PMCID: PMC7462094 DOI: 10.1093/brain/awaa163] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
We only have a rudimentary understanding of the molecular and cellular determinants of nerve regeneration and neuropathic pain in humans. This cohort study uses the most common entrapment neuropathy (carpal tunnel syndrome) as a human model system to prospectively evaluate the cellular and molecular correlates of neural regeneration and its relationship with clinical recovery. In 60 patients undergoing carpal tunnel surgery [36 female, mean age 62.5 (standard deviation 12.2) years], we used quantitative sensory testing and nerve conduction studies to evaluate the function of large and small fibres before and 6 months after surgery. Clinical recovery was assessed with the global rating of change scale and Boston Carpal Tunnel Questionnaire. Twenty healthy participants provided normative data [14 female, mean age 58.0 (standard deviation 12.9) years]. At 6 months post-surgery, we noted significant recovery of median nerve neurophysiological parameters (P < 0.0001) and improvements in quantitative sensory testing measures of both small and large nerve fibre function (P < 0.002). Serial biopsies revealed a partial recovery of intraepidermal nerve fibre density [fibres/mm epidermis pre: 4.20 (2.83), post: 5.35 (3.34), P = 0.001], whose extent correlated with symptom improvement (r = 0.389, P = 0.001). In myelinated afferents, nodal length increased postoperatively [pre: 2.03 (0.82), post: 3.03 (1.23), P < 0.0001] suggesting that this is an adaptive phenomenon. Transcriptional profiling of the skin revealed 31 differentially expressed genes following decompression, with ADCYAP1 (encoding pituitary adenylate cyclase activating peptide, PACAP) being the most strongly upregulated (log2 fold-change 1.87, P = 0.0001) and its expression was associated with recovery of intraepidermal nerve fibres. We found that human induced pluripotent stem cell-derived sensory neurons expressed the receptor for PACAP and that this peptide could significantly enhance axon outgrowth in a dose-dependent manner in vitro [neurite length PACAP 1065.0 µm (285.5), vehicle 570.9 μm (181.8), P = 0.003]. In conclusion, carpal tunnel release is associated with significant cutaneous reinnervation, which correlates with the degree of functional improvement and is associated with a transcriptional programme relating to morphogenesis and inflammatory processes. The most highly dysregulated gene ADCYAP1 (encoding PACAP) was associated with reinnervation and, given that this peptide signals through G-protein coupled receptors, this signalling pathway provides an interesting therapeutic target for human sensory nerve regeneration.
Collapse
Affiliation(s)
- Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | | | - Alex J Clark
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Katherine Windsor
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Pall Karlsson
- Department of Clinical Medicine, The Danish Pain Research Center, Aarhus, Denmark
| | - Greg A Weir
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK.,Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lucy A McDermott
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Joanna Burchall
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Barloese M, Chitgar M, Hannibal J, Møller S. Pituitary adenylate cyclase-activating peptide: Potential roles in the pathophysiology and complications of cirrhosis. Liver Int 2020; 40:2578-2589. [PMID: 32654367 DOI: 10.1111/liv.14602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 12/20/2022]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a ubiquitous neuropeptide with diverse functions throughout the organism. Most abundantly investigated for its role in several neurological disorders as well as in circadian rhythms, other fields of medicine, including cardiology, have recently shown interest in the role of PACAP and its potential as a biomarker. Timely diagnosis and treatment of cirrhosis and its complications is a considerable challenge for health services world-wide and development of new areas of research is warranted. Direct and indirect evidence exists of PACAP involvement in the cascade of pathological events and processes ultimately leading to cirrhosis and its complications, but its exact role remains to be determined. Studies have documented PACAP involvement in immune function, metabolism, local vasoconstriction and dilatation and systemic vascular decompensation and there is ongoing research of a possible role in liver reperfusion injury. Considering these reports, PACAP could theoretically exude influence on the disease course of cirrhosis through the hypothalamus-pituitary-adrenal axis, chronic inflammation, fibrogenesis, vasodilation and reduced vascular resistance. The paucity of literature on the specific topic of PACAP and cirrhosis reflects complex mechanisms and difficulty in accurate measurements and sample taking. This does not detract from the need to further characterize and elucidate the role PACAP plays in the underdiagnosed and undertreated condition of cirrhosis.
Collapse
Affiliation(s)
- Mads Barloese
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Mohammadnavid Chitgar
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| |
Collapse
|
7
|
Donnelly CR, Chen O, Ji RR. How Do Sensory Neurons Sense Danger Signals? Trends Neurosci 2020; 43:822-838. [PMID: 32839001 DOI: 10.1016/j.tins.2020.07.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022]
Abstract
Sensory neurons are activated by physical and chemical stimuli, eliciting sensations such as temperature, touch, pain, and itch. From an evolutionary perspective, sensing danger is essential for organismal survival. Upon infection and injury, immune cells respond to pathogen/damage-associated molecular patterns (PAMPs/DAMPs) through pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs), and produce inflammatory mediators that activate sensory neurons through neuro-immune interactions. Sensory neurons also express TLRs and other PRRs that directly sense danger signals after injury or during infection, leading to pain, itch, or analgesia. In addition to slow-acting canonical TLR signaling, TLRs function uniquely in sensory neurons through non-canonical coupling to ion channels, enabling rapid modulation of neuronal activity. We discuss how sensory neurons utilize TLRs and other PRR pathways to detect danger signals in their environment.
Collapse
Affiliation(s)
- Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Intrabladder PAC1 Receptor Antagonist, PACAP(6-38), Reduces Urinary Bladder Frequency and Pelvic Sensitivity in Mice Exposed to Repeated Variate Stress (RVS). J Mol Neurosci 2020; 71:1575-1588. [PMID: 32613552 DOI: 10.1007/s12031-020-01649-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022]
Abstract
Stress causes symptom exacerbation in functional disorders of the urinary bladder. However, the potential mediators and underlying mechanisms of stress effects on micturition reflex function are unknown. We have characterized PACAP (Adcyap1) and PAC1 receptor (Adcyap1r1) signaling in stress-induced urinary bladder dysfunction in mice. We determined PACAP and PAC1 transcripts and protein expressions in the urinary bladder and lumbosacral dorsal root ganglia (DRG) and spinal cord in repeated variate stress (RVS) or control mouse (handling only) groups. RVS in mice significantly (p ≤ 0.01) increased serum corticosterone and urinary bladder NGF content and decreased weight gain. PACAP and PAC1 mRNA and protein were differentially regulated in lower urinary tract tissues with changes observed in lumbosacral DRG and spinal cord but not in urinary bladder. RVS exposure in mice significantly (p ≤ 0.01) increased (2.5-fold) voiding frequency as determined using conscious cystometry. Intrabladder administration of the PAC1 receptor antagonist, PACAP(6-38) (300 nM), significantly (p ≤ 0.01) increased infused volume (1.5-2.7-fold) to elicit a micturition event and increased the intercontraction interval (i.e., decreased voiding frequency) in mice exposed to RVS and in control mice, but changes were smaller in magnitude in control mice. We also evaluated the effect of PAC1 blockade at the level of the urinary bladder on pelvic sensitivity in RVS or control mouse groups using von Frey filament testing. Intrabladder administration of PACAP(6-38) (300 nM) significantly (p ≤ 0.01) reduced pelvic sensitivity following RVS. PACAP/receptor signaling in the CNS and PNS contributes to increased voiding frequency and pelvic sensitivity following RVS and may represent a potential target for therapeutic intervention.
Collapse
|
9
|
Ueda H. LPA receptor signaling as a therapeutic target for radical treatment of neuropathic pain and fibromyalgia. Pain Manag 2019; 10:43-53. [PMID: 31852400 DOI: 10.2217/pmt-2019-0036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the first discovery that the bioactive lipid, lysophosphatidic acid (LPA) and LPA1 receptor signaling play a role in the initiation of neuropathic pain (NeuP), accumulated reports have supported the original findings and extended the study toward possible therapeutic applications. The present review describes beneficial roles of LPA receptor signaling in a variety of chronic pain, such as peripheral NeuP induced by nerve injury, chemotherapy and diabetes, central NeuP induced by cerebral ischemia with hemorrhage and spinal cord injury, and fibromyalgia-like wide spread pain induced by repeated cold, psychological and muscular acidic stress. Emerging mechanistic findings are the feed-forward amplification of LPA production through LPA1, LPA3 and microglia and the evidence for maintenance of chronic pain by LPA receptor signaling.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
VGF: a biomarker and potential target for the treatment of neuropathic pain? Pain Rep 2019; 4:e786. [PMID: 31875189 PMCID: PMC6882576 DOI: 10.1097/pr9.0000000000000786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/12/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Neuropathic pain (NP) remains an area of considerable unmet medical need. A persistent challenge in the management of NP is to target the specific mechanisms leading to a change from normal to abnormal sensory perception while ensuring that the defensive pain perception remains intact. Targeting VGF-derived neuropeptides may offer this opportunity. VGF was first identified in 1985 and is highly expressed after nerve injury and inflammation in neurons of both the peripheral and central nervous system. Subsequent studies implicate the vgf gene and its products in pain pathways. This narrative review was supported by a systematic search to identify, select, and critically appraise all relevant research investigating the role of VGF-derived neuropeptides in pain pathways. It predominantly focuses on in vivo investigations of the role of VGF in the initiation and maintenance of NP. VGF expression levels are very low under normal physiological conditions and nerve injury results in rapid and robust upregulation, increasing mechanical and thermal hypersensitivity. The identification of the 2 complement receptors with which VGF neuropeptides interact suggests a novel interplay of neuronal and immune signalling mediators. The understanding of the molecular mechanisms and signalling events by which VGF-derived active neuropeptides exert their physiological actions is in its infancy. Future work should aim to improve understanding of the downstream consequences of VGF neuropeptides thereby providing novel insights into pain mechanisms potentially leading to the identification of novel therapeutic targets.
Collapse
|
11
|
Ojala J, Tooke K, Hsiang H, Girard BM, May V, Vizzard MA. PACAP/PAC1 Expression and Function in Micturition Pathways. J Mol Neurosci 2018; 68:357-367. [PMID: 30259317 DOI: 10.1007/s12031-018-1170-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022]
Abstract
Neural injury, inflammation, or diseases commonly and adversely affect micturition reflex function that is organized by neural circuits in the CNS and PNS. One neuropeptide receptor system, pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1), and its cognate receptor, PAC1 (Adcyap1r1), have tissue-specific distributions in the lower urinary tract. PACAP and associated receptors are expressed in the LUT and exhibit changes in expression, distribution, and function in preclinical animal models of bladder pain syndrome (BPS)/interstitial cystitis (IC), a chronic, visceral pain syndrome characterized by pain, and LUT dysfunction. Blockade of the PACAP/PAC1 receptor system reduces voiding frequency and somatic (e.g., hindpaw, pelvic) sensitivity in preclinical animal models and a transgenic mouse model that mirrors some clinical symptoms of BPS/IC. The PACAP/receptor system in micturition pathways may represent a potential target for therapeutic intervention to reduce LUT dysfunction following urinary bladder inflammation.
Collapse
Affiliation(s)
- Jacqueline Ojala
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine at The University of Vermont, Given Building, D405A, Burlington, VT, 05405, USA
| | - Katharine Tooke
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine at The University of Vermont, Given Building, D405A, Burlington, VT, 05405, USA
| | - Harrison Hsiang
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine at The University of Vermont, Given Building, D405A, Burlington, VT, 05405, USA
| | - Beatrice M Girard
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine at The University of Vermont, Given Building, D405A, Burlington, VT, 05405, USA
| | - Victor May
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine at The University of Vermont, Given Building, D405A, Burlington, VT, 05405, USA
| | - Margaret A Vizzard
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine at The University of Vermont, Given Building, D405A, Burlington, VT, 05405, USA.
| |
Collapse
|
12
|
PACAP38-Mediated Bladder Afferent Nerve Activity Hyperexcitability and Ca 2+ Activity in Urothelial Cells from Mice. J Mol Neurosci 2018; 68:348-356. [PMID: 30022438 DOI: 10.1007/s12031-018-1119-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate PAC1 receptor (Adcyap1r1) have tissue-specific distributions in the lower urinary tract (LUT). The afferent limb of the micturition reflex is often compromised following bladder injury, disease, and inflammatory conditions. We have previously demonstrated that PACAP signaling contributes to increased voiding frequency and decreased bladder capacity with cystitis. Thus, the present studies investigated the sensory components (e.g., urothelial cells, bladder afferent nerves) of the urinary bladder that may underlie the pathophysiology of aberrant PACAP activation. We utilized bladder-pelvic nerve preparations and urothelial sheet preparations to characterize PACAP-induced bladder afferent nerve discharge with distention and PACAP-induced Ca2+ activity, respectively. We determined that PACAP38 (100 nM) significantly (p ≤ 0.01) increased bladder afferent nerve activity with distention that was blocked with a PAC1/VPAC2 receptor antagonist PACAP6-38 (300 nM). PACAP38 (100 nM) also increased Ca2+ activity in urothelial cells over that observed in control preparations. Taken together, these results establish a role for PACAP signaling in bladder sensory components (e.g., urothelial cells, bladder afferent nerves) that may ultimately facilitate increased voiding frequency.
Collapse
|
13
|
Takasaki I, Watanabe A, Yokai M, Watanabe Y, Hayakawa D, Nagashima R, Fukuchi M, Okada T, Toyooka N, Miyata A, Gouda H, Kurihara T. In Silico Screening Identified Novel Small-molecule Antagonists of PAC1 Receptor. J Pharmacol Exp Ther 2018; 365:1-8. [PMID: 29363578 DOI: 10.1124/jpet.117.245415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors are present in the spinal dorsal horn and dorsal root ganglia, suggesting an important role of PACAP signaling systems in the modulation of spinal nociceptive transmission. Previously, we found that intrathecal injection of PACAP or maxadilan, a selective PACAP type I (PAC1) receptor agonist, induced transient aversive responses followed by a long-lasting mechanical allodynia in mice, suggesting that PACAP-PAC1 receptor systems are involved in chronic pain and that selective PAC1 antagonists may become a new class of analgesics. Although several PAC1 antagonists, such as PACAP 6-38, have been reported, all of them are peptide compounds. In the present study, we identified new small-molecule antagonists of the PAC1 receptor using in silico screening and in vitro/vivo pharmacological assays. The identified small-molecule compounds, named PA-8 and PA-9, dose dependently inhibited the phosphorylation of CREB induced by PACAP in PAC1-, but not VPAC1- or VPAC2-receptor-expressing CHO cells. PA-8 and PA-9 also dose dependently inhibited PACAP-induced cAMP elevation with an IC50 of 2.0 and 5.6 nM, respectively. In vivo pharmacological assays showed that intrathecal injection of these compounds blocked the induction of PACAP-induced aversive responses and mechanical allodynia in mice. In contrast, the compounds when administered alone exerted neither agonistic nor algesic actions in the in vitro/vivo assays. The compounds identified in the present study are new and the first small-molecule antagonists of the PAC1 receptor; they may become seed compounds for developing novel analgesics.
Collapse
Affiliation(s)
- Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Ai Watanabe
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Masafumi Yokai
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Yurie Watanabe
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Daichi Hayakawa
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Ryota Nagashima
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Mamoru Fukuchi
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Takuya Okada
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Naoki Toyooka
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Hiroaki Gouda
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| |
Collapse
|
14
|
Kambe Y, Kurihara T, Miyata A. [Astrocyte-neuron lactate shuttle, the major effector of astrocytic PACAP signaling for CNS functions]. Nihon Yakurigaku Zasshi 2018; 151:239-243. [PMID: 29887572 DOI: 10.1254/fpj.151.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transfer of lactate from astrocytes to neurons is activated when synaptic activity is increased, and this mechanism is now known as the astrocyte-neuron lactate shuttle (ANLS), that could account for the coupling between synaptic activity and energy delivery. Many lines of evidence suggested that ANLS contributes to neuronal activation or synaptic plasticity at the cellular level as well as learning/memory and cocaine addiction at the behavioral level. However, the candidate neurotransmitters which evoke ANLS activation are still under discussion. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neurotransmitter which distributed widely in central nervous system. Since PACAP might activate ANLS from very low concentration in cultured forebrain astrocytes, PACAP might be one of the candidates for the endogenous ANLS activator. In the present study, we investigated the potential relevance of PACAP/ANLS signaling in the learning/memory and spinal nociceptive transmission. In this study, we made the following findings: 1) PACAP could be an endogenous inducer for ANLS activation in central nervous system; 2) ANLS activation by PACAP/PAC1 receptor signaling contributed to learning/memory and induced long-lasting nociceptive behaviors; 3) PKC activation played an important role in the PACAP/PAC1 receptor-evoked ANLS.
Collapse
Affiliation(s)
- Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University
| |
Collapse
|
15
|
Reglodi D, Illes A, Opper B, Schafer E, Tamas A, Horvath G. Presence and Effects of Pituitary Adenylate Cyclase Activating Polypeptide Under Physiological and Pathological Conditions in the Stomach. Front Endocrinol (Lausanne) 2018; 9:90. [PMID: 29615974 PMCID: PMC5868562 DOI: 10.3389/fendo.2018.00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/29/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide with widespread occurrence throughout the body including the gastrointestinal system. In the small and large intestine, effects of PACAP on cell proliferation, secretion, motility, gut immunology and blood flow, as well as its importance in bowel inflammatory reactions and cancer development have been shown and reviewed earlier. However, no current review is available on the actions of PACAP in the stomach in spite of numerous data published on the gastric presence and actions of the peptide. Therefore, the aim of the present review is to summarize currently available data on the distribution and effects of PACAP in the stomach. We review data on the localization of PACAP and its receptors in the stomach wall of various mammalian and non-mammalian species, we then give an overview on PACAP's effects on secretion of gastric acid and various hormones. Effects on cell proliferation, differentiation, blood flow and gastric motility are also reviewed. Finally, we outline PACAP's involvement and changes in various human pathological conditions.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
- *Correspondence: Dora Reglodi,
| | - Anita Illes
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
- 1st Department of Internal Medicine, University of Pecs Medical School, Pecs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Eszter Schafer
- Department of Gastroenterology, Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| |
Collapse
|
16
|
Girard BM, Tooke K, Vizzard MA. PACAP/Receptor System in Urinary Bladder Dysfunction and Pelvic Pain Following Urinary Bladder Inflammation or Stress. Front Syst Neurosci 2017; 11:90. [PMID: 29255407 PMCID: PMC5722809 DOI: 10.3389/fnsys.2017.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Complex organization of CNS and PNS pathways is necessary for the coordinated and reciprocal functions of the urinary bladder, urethra and urethral sphincters. Injury, inflammation, psychogenic stress or diseases that affect these nerve pathways and target organs can produce lower urinary tract (LUT) dysfunction. Numerous neuropeptide/receptor systems are expressed in the neural pathways of the LUT and non-neural components of the LUT (e.g., urothelium) also express peptides. One such neuropeptide receptor system, pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate receptor, PAC1 (Adcyap1r1), have tissue-specific distributions in the LUT. Mice with a genetic deletion of PACAP exhibit bladder dysfunction and altered somatic sensation. PACAP and associated receptors are expressed in the LUT and exhibit neuroplastic changes with neural injury, inflammation, and diseases of the LUT as well as psychogenic stress. Blockade of the PACAP/PAC1 receptor system reduces voiding frequency in preclinical animal models and transgenic mouse models that mirror some clinical symptoms of bladder dysfunction. A change in the balance of the expression and resulting function of the PACAP/receptor system in CNS and PNS bladder reflex pathways may underlie LUT dysfunction including symptoms of urinary urgency, increased voiding frequency, and visceral pain. The PACAP/receptor system in micturition pathways may represent a potential target for therapeutic intervention to reduce LUT dysfunction.
Collapse
Affiliation(s)
| | | | - Margaret A. Vizzard
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
17
|
Yokai M, Kurihara T, Miyata A. Spinal astrocytic activation contributes to both induction and maintenance of pituitary adenylate cyclase-activating polypeptide type 1 receptor-induced long-lasting mechanical allodynia in mice. Mol Pain 2016; 12:12/0/1744806916646383. [PMID: 27175011 PMCID: PMC4956379 DOI: 10.1177/1744806916646383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/29/2016] [Indexed: 12/05/2022] Open
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors are present in the spinal dorsal horn and dorsal root ganglia, suggesting an important role of PACAP–PACAP receptors signaling system in the modulation of spinal nociceptive transmission. We have previously reported that a single intrathecal injection of PACAP or a PACAP specific (PAC1) receptor selective agonist, maxadilan, in mice induced dose-dependent aversive behaviors, which lasted more than 30 min, and suggested that the maintenance of the nociceptive behaviors was associated with the spinal astrocytic activation. Results We found that a single intrathecal administration of PACAP or maxadilan also produced long-lasting hind paw mechanical allodynia, which persisted at least 84 days without affecting thermal nociceptive threshold. In contrast, intrathecal application of vasoactive intestinal polypeptide did not change mechanical threshold, and substance P, calcitonin gene-related peptide, or N-methyl-D-aspartate induced only transient mechanical allodynia, which disappeared within 21 days. Western blot and immunohistochemical analyses with an astrocytic marker, glial fibrillary acidic protein, revealed that the spinal PAC1 receptor stimulation caused sustained astrocytic activation, which also lasted more than 84 days. Intrathecal co-administration of L-α-aminoadipate, an astroglial toxin, with PACAP or maxadilan almost completely prevented the induction of the mechanical allodynia. Furthermore, intrathecal treatment of L-α-aminoadipate at 84 days after the PAC1 stimulation transiently reversed the mechanical allodynia accompanied by the reduction of glial fibrillary acidic protein expression level. Conclusion Our data suggest that spinal astrocytic activation triggered by the PAC1 receptor stimulation contributes to both induction and maintenance of the long-term mechanical allodynia.
Collapse
Affiliation(s)
- Masafumi Yokai
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| |
Collapse
|
18
|
Ohnou T, Yokai M, Kurihara T, Hasegawa-Moriyama M, Shimizu T, Inoue K, Kambe Y, Kanmura Y, Miyata A. Pituitary adenylate cyclase-activating polypeptide type 1 receptor signaling evokes long-lasting nociceptive behaviors through the activation of spinal astrocytes in mice. J Pharmacol Sci 2016; 130:194-203. [PMID: 26948958 DOI: 10.1016/j.jphs.2016.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
Intrathecal (i.t.) administration of pituitary adenylate cyclase-activating polypeptide (PACAP) induces long-lasting nociceptive behaviors for more than 60 min in mice, while the involvement of PACAP type1 receptor (PAC1-R) has not been clarified yet. The present study investigated signaling mechanisms of the PACAP-induced prolonged nociceptive behaviors. Single i.t. injection of a selective PAC1-R agonist, maxadilan (Max), mimicked nociceptive behaviors in a dose-dependent manner similar to PACAP. Pre- or post-treatment of a selective PAC1-R antagonist, max.d.4, significantly inhibited the nociceptive behaviors by PACAP or Max. Coadministration of a protein kinase A inhibitor, Rp-8-Br-cAMPS, a mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase inhibitor, PD98059 or a c-Jun N-terminal kinase (JNK) inhibitor, SP600125, significantly inhibited the nociceptive behaviors by Max. Immunohistochemistry and immunoblotting analysis revealed that spinal administration of Max-induced ERK phosphorylation and JNK phosphorylation, and also augmented an astrocyte marker, glial fibrillary acidic protein in mouse spinal cord. Furthermore, an astroglial toxin, l-α-aminoadipate, significantly attenuated the development of the nociceptive behaviors and ERK phosphorylation by Max. These results suggest that the activation of spinal PAC1-R induces long-lasting nociception through the interaction of neurons and astrocytes.
Collapse
Affiliation(s)
- Tetsuya Ohnou
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan; Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Masafumi Yokai
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Maiko Hasegawa-Moriyama
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Takao Shimizu
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Kazuhiko Inoue
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Yuichi Kanmura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan.
| |
Collapse
|
19
|
Galluzzo M, Talamonti M, Di Stefani A, Chimenti S. Linear psoriasis following the typical distribution of the sciatic nerve. J Dermatol Case Rep 2015; 9:6-11. [PMID: 25932056 DOI: 10.3315/jdcr.2015.1189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/04/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Some studies suggest that the nervous system plays a role in the onset of psoriasis and psoriasis flares including the symmetry of lesions, sparing of denervated skin and the role of stress in inducing lesions. MAIN OBSERVATIONS We describe an unusual case of psoriasis occurring in the same distribution as sciatic pain from a prolapsed intervertebral disc. The patient, a 45-year-old man with plaque psoriasis was treated with ustekinumab for 104 weeks, at a standard dose. During the eight month of therapy he developed an asymptomatic linear eruption on the left lower extremity along the distribution of the sciatic nerve. On examination, erythematous scaly plaques were noted. Histopathology confirmed the diagnosis of psoriasis. The treatment was continued and clobetasol proprionate 0.05% cream was added. At week 12 after the eruption, the patient reported a pain radiating through the buttock and posterior left leg during jogging. Magnetic resonance imaging showed lumbar disc herniation with compression of the L5-S1 spinal nerve roots. The patient stopped running and the psoriasis spontaneously receded, in a slow but complete fashion, without any local treatment. CONCLUSION There is substantial evidence that nerves play a key role in the pathogenesis of psoriasis. We hypothesized that local TNF-alpha, neuropeptides and nerve growth factor, which are produced by nerve root compression, played a critical role in this case of psoriasis onset in an area of pain from a bulging lumbar intervertebral disc. To our knowledge, a correlation of psoriasis and nerve root compression has not been described previously.
Collapse
Affiliation(s)
- Marco Galluzzo
- Department of Dermatology, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Marina Talamonti
- Department of Dermatology, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Alessandro Di Stefani
- Department of Dermatology, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Sergio Chimenti
- Department of Dermatology, University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| |
Collapse
|
20
|
Waschek JA. VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair. Br J Pharmacol 2014; 169:512-23. [PMID: 23517078 DOI: 10.1111/bph.12181] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/26/2013] [Accepted: 03/08/2013] [Indexed: 01/14/2023] Open
Abstract
Inflammatory processes play both regenerative and destructive roles in multiple sclerosis, stroke, CNS trauma, amyotrophic lateral sclerosis and aging-related neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's. Endogenous defence mechanisms against these pathologies include those that are directly neuroprotective, and those that modulate the expression of inflammatory mediators in microglia, astrocytes, and invading inflammatory cells. While a number of mechanisms and molecules have been identified that can directly promote neuronal survival, less is known about how the brain protects itself from harmful inflammation, and further, how it co-opts the healing function of the immune system to promote CNS repair. The two closely related neuroprotective peptides, vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating peptide (PACAP), which are up-regulated in neurons and immune cells after injury and/or inflammation, are known to protect neurons, but also exert powerful in vivo immunomodulatory actions, which are primarily anti-inflammatory. These peptide actions are mediated by high-affinity receptors expressed not only on neurons, but also astrocytes, microglia and peripheral inflammatory cells. Well-established immunomodulatory actions of these peptides are to inhibit macrophage and microglia production and release of inflammatory mediators such as TNF-α and IFN-γ, and polarization of T-cell responses away from Th1 and Th17, and towards a Th2 phenotype. More recent studies have revealed that these peptides can also promote the production of both natural and inducible subsets of regulatory T-cells. The neuroprotective and immunomodulatory actions of VIP and PACAP suggest that receptors for these peptides may be therapeutic targets for neurodegenerative and neuroinflammatory diseases and other forms of CNS injury.
Collapse
Affiliation(s)
- J A Waschek
- Department of Psychiatry and Semel Institute, University of California at Los Angeles, Los Angeles, CA 90095-7332, USA.
| |
Collapse
|
21
|
Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 2014; 86:38-48. [PMID: 24998751 DOI: 10.1016/j.neuropharm.2014.06.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/22/2022]
Abstract
The intricate relationships that associate pain, stress responses and emotional behavior have been well established. Acute stressful situations can decrease nociceptive sensations and conversely, chronic pain can enhance other pain experiences and heighten the emotional and behavioral consequences of stress. Accordingly, chronic pain is comorbid with a number of behavioral disorders including depression, anxiety abnormalities and associated stress-related disorders including post traumatic stress disorder (PTSD). The central nucleus of the amygdala (CeA) represents a convergence of pathways for pain, stress and emotion, and we have identified pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in fiber elements in the lateral capsular division of the CeA (CeLC). The PACAP staining patterns colocalized in part with those for calcitonin gene related peptide (CGRP); anterograde fiber tracing and excitotoxic lesion studies demonstrated that the CeLC PACAP/CGRP immunoreactivities represented sensory fiber projections from the lateral parabrachial nucleus (LPBn) along the spino-parabrachioamygdaloid tract. The same PBn PACAP/CGRP fiber system also projected to the BNST. As in the BNST, CeA PACAP signaling increased anxiety-like behaviors accompanied by weight loss and decreased feeding. But in addition to heightened anxiety-like responses, CeA PACAP signaling also altered nociception as reflected by decreased latency and threshold responses in thermal and mechanical sensitivity tests, respectively. From PACAP expression in major pain pathways, the current observations are novel and suggest that CeA PACAP nociceptive signaling and resulting neuroplasticity via the spino-parabrachioamygdaloid tract may represent mechanisms that associate chronic pain with sensory hypersensitivity, fear memory consolidation and severe behavioral disorders.
Collapse
|
22
|
Pettersson LME, Geremia NM, Ying Z, Verge VMK. Injury-associated PACAP expression in rat sensory and motor neurons is induced by endogenous BDNF. PLoS One 2014; 9:e100730. [PMID: 24968020 PMCID: PMC4072603 DOI: 10.1371/journal.pone.0100730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
Peripheral nerve injury results in dramatic upregulation in pituitary adenylate cyclase activating polypeptide (PACAP) expression in adult rat dorsal root ganglia and spinal motor neurons mirroring that described for the neurotrophin brain derived neurotrophic factor (BDNF). Thus, we posited that injury-associated alterations in BDNF expression regulate the changes in PACAP expression observed in the injured neurons. The role of endogenous BDNF in induction and/or maintenance of PACAP mRNA expression in injured adult rat motor and sensory neurons was examined by intrathecally infusing or intraperitoneally injecting BDNF-specific antibodies or control IgGs immediately at the time of L4-L6 spinal nerve injury, or in a delayed fashion one week later for 3 days followed by analysis of impact on PACAP expression. PACAP mRNA in injured lumbar sensory and motor neurons was detected using in situ hybridization, allowing quantification of relative changes between experimental groups, with ATF-3 immunofluorescence serving to identify the injured subpopulation of motor neurons. Both the incidence and level of PACAP mRNA expression were dramatically reduced in injured sensory and motor neurons in response to immediate intrathecal anti-BDNF treatment. In contrast, neither intraperitoneal injections nor delayed intrathecal infusions of anti-BDNF had any discernible impact on PACAP expression. This impact on PACAP expression in response to BDNF immunoneutralization in DRG was confirmed using qRT-PCR or by using BDNF selective siRNAs to reduce neuronal BDNF expression. Collectively, our findings support that endogenous injury-associated BDNF expression is critically involved in induction, but not maintenance, of injury-associated PACAP expression in sensory and motor neurons.
Collapse
Affiliation(s)
- Lina M. E. Pettersson
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail:
| | - Nicole M. Geremia
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zhengxin Ying
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Valerie M. K. Verge
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
23
|
Rytel L, Palus K, Całka J. Co-expression of PACAP with VIP, SP and CGRP in the porcine nodose ganglion sensory neurons. Anat Histol Embryol 2014; 44:86-91. [PMID: 24713103 DOI: 10.1111/ahe.12111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/16/2014] [Indexed: 11/28/2022]
Abstract
Our previous study revealed the expression of substance P (SP) and calcitonin gene-related peptide (CGRP) in sensory distal ganglion of the vagus (nodose ganglion) neurons in the pig. As these neuropeptides may be involved in nociception, the goal of these investigations was to determine possible expression of vasoactive intestinal polypeptide (VIP), SP and CGRP in the pituitary adenylate cyclase-activating polypeptide-immunoreactive (PACAP-IR) porcine nodose perikarya. Co-expression of these substances was examined using a double-labelling immunofluorescence technique. To reveal the ganglionic cell bodies, the pan-neuronal marker protein gene product 9.5 (PGP 9.5) was used. Quantitative analysis of the neurons revealed that 67.25% of the PGP 9.5+ somata in the right-side ganglion and 66.5% in the left side, respectively, co-expressed PACAP-IR. Moreover, 60.6% of the PACAP-IR cells in the right-side ganglion and 62.1% in the left, respectively, co-expressed VIP. SP-IR was observed in 52.2 and 39.9% of the right and left ganglia, respectively. CGRP was found in 27.7 and 34.1% of the right and left distal ganglion of the vagus, respectively. High level of co-expression of PACAP with VIP, SP and CGRP in the distal ganglia of the vagus sensory perikarya directly implicates studied peptides in their functional interaction during nociceptive vagal transduction.
Collapse
Affiliation(s)
- L Rytel
- Division of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | | |
Collapse
|
24
|
Nerve-derived transmitters including peptides influence cutaneous immunology. Brain Behav Immun 2013; 34:1-10. [PMID: 23517710 PMCID: PMC3750093 DOI: 10.1016/j.bbi.2013.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/27/2013] [Accepted: 03/10/2013] [Indexed: 01/01/2023] Open
Abstract
Clinical observations suggest that the nervous and immune systems are closely related. For example, inflammatory skin disorders; such as psoriasis, atopic dermatitis, rosacea and acne; are widely believed to be exacerbated by stress. A growing body of research now suggests that neuropeptides and neurotransmitters serve as a link between these two systems. Neuropeptides and neurotransmitters are released by nerves innervating the skin to influence important actors of the immune system, such as Langerhans cells and mast cells, which are located within close anatomic proximity. Catecholamines and other sympathetic transmitters that are released in response to activation of the sympathetic nervous system are also able to reach the skin and affect immune cells. Neuropeptides appear to direct the outcome of Langerhans cell antigen presentation with regard to the subtypes of Th cells generated and neuropeptides induce the degranulation of mast cells, among other effects. Additionally, endothelial cells, which release many inflammatory mediators and express cell surface molecules that allow leukocytes to exit the bloodstream, appear to be regulated by certain neuropeptides and transmitters. This review focuses on the evidence that products of nerves have important regulatory activities on antigen presentation, mast cell function and endothelial cell biology. These activities are highly likely to have clinical and therapeutic relevance.
Collapse
|
25
|
Tamas A, Reglodi D, Farkas O, Kovesdi E, Pal J, Povlishock JT, Schwarcz A, Czeiter E, Szanto Z, Doczi T, Buki A, Bukovics P. Effect of PACAP in central and peripheral nerve injuries. Int J Mol Sci 2012; 13:8430-8448. [PMID: 22942712 PMCID: PMC3430243 DOI: 10.3390/ijms13078430] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 01/07/2023] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important role in the endogenous response following both cerebral ischemia and traumatic brain injury and to be effective when given exogenously. A number of studies have shown the neuroprotective effect of PACAP in different models of ischemia, neurodegenerative diseases and retinal degeneration. The aim of this review is to summarize the findings on the neuroprotective potential of PACAP in models of different traumatic nerve injuries. Expression of endogenous PACAP and its specific PAC1 receptor is elevated in different parts of the central and peripheral nervous system after traumatic injuries. Some experiments demonstrate the protective effect of exogenous PACAP treatment in different traumatic brain injury models, in facial nerve and optic nerve trauma. The upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central and peripheral nerve injuries show the important function of PACAP in neuronal regeneration indicating that PACAP may also be a promising therapeutic agent in injuries of the nervous system.
Collapse
Affiliation(s)
- Andrea Tamas
- PTE-MTA “Lendulet” PACAP Research Team, Department of Anatomy, University of Pecs, Szigeti. u. 12, H-7624 Pecs, Hungary; E-Mails: (D.R.); (E.C.)
| | - Dora Reglodi
- PTE-MTA “Lendulet” PACAP Research Team, Department of Anatomy, University of Pecs, Szigeti. u. 12, H-7624 Pecs, Hungary; E-Mails: (D.R.); (E.C.)
| | - Orsolya Farkas
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Erzsebet Kovesdi
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Jozsef Pal
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - John T. Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street Richmond, Richmond, VA 23219, USA; E-Mail:
| | - Attila Schwarcz
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Endre Czeiter
- PTE-MTA “Lendulet” PACAP Research Team, Department of Anatomy, University of Pecs, Szigeti. u. 12, H-7624 Pecs, Hungary; E-Mails: (D.R.); (E.C.)
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Zalan Szanto
- Department of Surgery, Medical School, University of Pecs, Ret u. 2., H-7623 Pecs, Hungary; E-Mail:
| | - Tamas Doczi
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Andras Buki
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Peter Bukovics
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| |
Collapse
|
26
|
Neuroprotective effect of endogenous pituitary adenylate cyclase-activating polypeptide on spinal cord injury. J Mol Neurosci 2012; 48:508-17. [PMID: 22674051 DOI: 10.1007/s12031-012-9817-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 05/17/2012] [Indexed: 02/06/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuroprotective peptide expressed in the central nervous system. To date, changes in the expression and effect of endogenous PACAP have not been clarified with respect to spinal cord injury (SCI). The aim of this study was to elucidate the expression pattern and function of endogenous PACAP on the contusion model of SCI using heterozygous PACAP knockout (PACAP(+/-)) and wild-type mice. Real-time polymerase chain reaction methods revealed that the level of PACAP mRNA increased gradually for 14 days after SCI and that PAC1R mRNA levels also increased for 7 days compared with intact control mice. PACAP and PAC1R immunoreactivities colabeled with a neuronal marker in the intact spinal cord. Seven days after SCI, PAC1R immunoreactivity was additionally co-expressed with an astrocyte marker. Wild-type mice gradually recovered motor function after 14 days, but PACAP(+/-) mice showed significantly impaired recovery from 3 days compared with wild-type mice. The injury volume at day 7 in PACAP(+/-) mice, and the number of single-stranded DNA-immunopositive cells as a marker of neuronal cell death at day 3 were significantly higher than values measured in wild-type mice. These data suggest that endogenous PACAP is upregulated by SCI and has a neuroprotective effect on the damaged spinal cord.
Collapse
|
27
|
Zigmond RE. gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury. Front Mol Neurosci 2012; 4:62. [PMID: 22319466 PMCID: PMC3262188 DOI: 10.3389/fnmol.2011.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/28/2011] [Indexed: 01/24/2023] Open
Abstract
Adult peripheral neurons, in contrast to adult central neurons, are capable of regeneration after axonal damage. Much attention has focused on the changes that accompany this regeneration in two places, the distal nerve segment (where phagocytosis of axonal debris, changes in the surface properties of Schwann cells, and induction of growth factors and cytokines occur) and the neuronal cell body (where dramatic changes in cell morphology and gene expression occur). The changes in the axotomized cell body are often referred to as the "cell body response." The focus of the current review is a family of cytokines, the glycoprotein 130 (gp130) cytokines, which produce their actions through a common gp130 signaling receptor and which function as injury signals for axotomized peripheral neurons, triggering changes in gene expression and in neurite outgrowth. These cytokines play important roles in the responses of sympathetic, sensory, and motor neurons to injury. The best studied of these cytokines in this context are leukemia inhibitory factor (LIF) and interleukin (IL)-6, but experiments with conditional gp130 knockout animals suggest that other members of this family, not yet determined, are also involved. The primary gp130 signaling pathway shown to be involved is the activation of Janus kinase (JAK) and the transcription factors Signal Transducers and Activators of Transcription (STAT), though other downstream pathways such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) may also play a role. gp130 signaling may involve paracrine, retrograde, and autocrine actions of these cytokines. Recent studies suggest that manipulation of this cytokine system can also stimulate regeneration by injured central neurons.
Collapse
Affiliation(s)
- Richard E. Zigmond
- Department of Neurosciences, Case Western Reserve University, ClevelandOH, USA
| |
Collapse
|
28
|
Electrical stimulation and testosterone differentially enhance expression of regeneration-associated genes. Exp Neurol 2010; 223:183-91. [DOI: 10.1016/j.expneurol.2009.04.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/26/2009] [Accepted: 04/28/2009] [Indexed: 02/04/2023]
|
29
|
Vallejo R, Tilley DM, Vogel L, Benyamin R. The Role of Glia and the Immune System in the Development and Maintenance of Neuropathic Pain. Pain Pract 2010; 10:167-84. [DOI: 10.1111/j.1533-2500.2010.00367.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Proteomic analysis uncovers novel actions of the neurosecretory protein VGF in nociceptive processing. J Neurosci 2009; 29:13377-88. [PMID: 19846725 DOI: 10.1523/jneurosci.1127-09.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Peripheral tissue injury is associated with changes in protein expression in sensory neurons that may contribute to abnormal nociceptive processing. We used cultured dorsal root ganglion (DRG) neurons as a model of axotomized neurons to investigate early changes in protein expression after nerve injury. Comparing protein levels immediately after DRG dissociation and 24 h later by proteomic differential expression analysis, we found a substantial increase in the levels of the neurotrophin-inducible protein VGF (nonacronymic), a putative neuropeptide precursor. In a rodent model of nerve injury, VGF levels were increased within 24 h in both injured and uninjured DRG neurons, and the increase persisted for at least 7 d. VGF was also upregulated 24 h after hindpaw inflammation. To determine whether peptides derived from proteolytic processing of VGF participate in nociceptive signaling, we examined the spinal effects of AQEE-30 and LQEQ-19, potential proteolytic products shown previously to be bioactive. Each peptide evoked dose-dependent thermal hyperalgesia that required activation of the mitogen-activated protein kinase p38. In addition, LQEQ-19 induced p38 phosphorylation in spinal microglia when injected intrathecally and in the BV-2 microglial cell line when applied in vitro. In summary, our results demonstrate rapid upregulation of VGF in sensory neurons after nerve injury and inflammation and activation of microglial p38 by VGF peptides. Therefore, VGF peptides released from sensory neurons may participate in activation of spinal microglia after peripheral tissue injury.
Collapse
|
31
|
Girard BM, Wolf-Johnston A, Braas KM, Birder LA, May V, Vizzard MA. PACAP-mediated ATP release from rat urothelium and regulation of PACAP/VIP and receptor mRNA in micturition pathways after cyclophosphamide (CYP)-induced cystitis. J Mol Neurosci 2008; 36:310-20. [PMID: 18563302 PMCID: PMC2737258 DOI: 10.1007/s12031-008-9104-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/09/2008] [Indexed: 12/29/2022]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) peptides are expressed in micturition pathways, and PACAP expression is regulated by urinary bladder inflammation. Previous physiological studies have demonstrated roles for PACAP27 and PACAP38 in detrusor smooth muscle (DSM) contraction and a PAC1 receptor antagonist reduced cyclophosphamide (CYP)-induced bladder hyperreflexia. To gain insight into PACAP signaling in micturition and regulation with cystitis, receptor characterization by real-time quantitative polymerase chain reaction and physiological assays were performed. PACAP receptors were identified in tissues of rat micturition pathway, including DSM, urothelium (U), and dorsal root ganglia (DRG) after acute (4 h), intermediate (48 h) or chronic (8 days) CYP-induced cystitis. PAC1 messenger RNA expression significantly (p < or = 0.05) increased in U and DSM after 48 h and chronic CYP-induced cystitis after an initial decrease at 4 h. VPAC1 and VPAC2 transcripts increased in U and DSM after acute and intermediate CYP-induced cystitis followed by a decrease in VPAC2 expression with chronic cystitis. Application of PACAP27 (100 nM) to cultured urothelial cells evoked adenosine triphosphate (ATP) release that was blocked by the PAC1 specific antagonist, M65 (1 microM). PACAP38 (100 nM) also evoked ATP release from cultured urothelial cells, but ATP release was less than that observed with PACAP27. PACAP transcripts were increased in the U with intermediate and chronic cystitis, whereas vasoactive intestinal polypeptide (VIP) expression in both tissues was very low and showed no regulation with cystitis. Regulation of PACAP, galanin, and substance P transcripts expression was observed in lumbosacral DRG, but no regulation for VIP was observed. The current data demonstrate PACAP and PAC1 regulation in micturition pathways with inflammation and PACAP-mediated ATP release from urothelium.
Collapse
Affiliation(s)
- Beatrice M. Girard
- University of Vermont, Department of Anatomy and Neurobiology, Burlington, VT, 05405
| | - Amanda Wolf-Johnston
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA, 15261 (U.S.A.)
| | - Karen M. Braas
- University of Vermont, Department of Anatomy and Neurobiology, Burlington, VT, 05405
| | - Lori A. Birder
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA, 15261 (U.S.A.)
| | - Victor May
- University of Vermont, Department of Anatomy and Neurobiology, Burlington, VT, 05405
| | - Margaret A. Vizzard
- University of Vermont, Department of Anatomy and Neurobiology, Burlington, VT, 05405
- University of Vermont, Department of Neurology, Burlington, VT, 05405
| |
Collapse
|
32
|
Tomimatsu N, Arakawa Y. Survival-promoting activity of pituitary adenylate cyclase-activating polypeptide in the presence of phosphodiesterase inhibitors on rat motoneurons in culture: cAMP-protein kinase A-mediated survival. J Neurochem 2008; 107:628-35. [PMID: 18717811 DOI: 10.1111/j.1471-4159.2008.05638.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to be neurotrophic or neuroprotective in various neurons in culture. It is expressed in spinal motoneurons in vivo and its expression is increased markedly after axotomy, suggesting a neuroprotective role via an autocrine mechanism. However, neurotrophic activity of PACAP has not been reported for motoneurons. In the present study, we investigated the effects of PACAP on rat motoneurons in culture. In the presence of a phosphodiesterase inhibitor, PACAP showed significant neurotrophic activity at concentrations as low as 0.01 nM. Previously, we found that glutamate was excitotoxic to motoneurons even in the presence of brain-derived neurotrophic factor, which is neurotrophic for motoneurons. PACAP with a phosphodiesterase inhibitor protected motoneurons against this excitotoxicity. The activity of PACAP was inhibited by the protein kinase A inhibitor N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide dihydrochloride, as was the case with the activity of forskolin, suggesting downstream involvement of a cAMP-protein kinase A signaling pathway. The present results may suggest a physiological role of PACAP in vivo, and implicate the PACAP-cAMP signaling pathway for the possible therapeutic target of amyotrophic lateral sclerosis as glutamate excitotoxicity was suggested in sporadic amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Naoko Tomimatsu
- Clinical Research Center, The University of Tokyo Hospital, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
33
|
Varhalmi E, Somogyi I, Kiszler G, Nemeth J, Reglodi D, Lubics A, Kiss P, Tamas A, Pollak E, Molnar L. Expression of PACAP-like compounds during the caudal regeneration of the earthworm Eisenia fetida. J Mol Neurosci 2008; 36:166-74. [PMID: 18622585 DOI: 10.1007/s12031-008-9125-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 06/11/2008] [Indexed: 11/28/2022]
Abstract
The regeneration of the ventral nerve cord ganglion and peripheral tissues was investigated by radioimmunoassay and immunohistochemistry in the model animal, Eisenia fetida (Annelida, Oligochaeta). It is now well-established that pituitary adenylate cyclase-activating polypeptide (PACAP) is a neurotrophic factor, playing important roles in the development of the nervous system in vertebrate animals. Based on the apparent evolutionary conservation of PACAP and on the several common mechanisms of vertebrate and invertebrate nervous regeneration, the question was raised whether PACAP has any role in the regeneration of the earthworm nervous system. As a first step, we studied the distribution, concentration, and time-course of PACAP-like immunoreactivity during caudal regeneration of both lost segments and the ventral nerve cord ganglia in E. fetida. A strong upregulation of PACAP-like immunoreactivity was observed in most tissues following injury as determined by radioimmunoassay and immunohistochemistry. Significant increases in the concentration of PACAP-like compounds were found in the body wall, alimentary canal, and in coelomocytes. The most characteristic morphological feature was the accumulation of immunolabeled neoblasts in the injured tissues, especially in the ventral nerve cord ganglion that initiates and mediates regeneration processes. Our present results show that PACAP/PACAP-like peptides accumulate in the regenerating tissues of the earthworm, suggesting trophic functions of these compounds in earthworm tissues similarly to vertebrate species.
Collapse
Affiliation(s)
- Eszter Varhalmi
- Department of General Zoology, University of Pécs, 7624, Ifjúság u. 6., Pécs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Neurotrophic Actions of PACAP-38 and LIF on Human Neuroblastoma SH-SY5Y Cells. J Mol Neurosci 2008; 36:45-56. [DOI: 10.1007/s12031-008-9082-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
|
35
|
Ueda H. Peripheral mechanisms of neuropathic pain - involvement of lysophosphatidic acid receptor-mediated demyelination. Mol Pain 2008; 4:11. [PMID: 18377664 PMCID: PMC2365930 DOI: 10.1186/1744-8069-4-11] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 04/01/2008] [Indexed: 01/23/2023] Open
Abstract
Recent advances in pain research provide a clear picture for the molecular mechanisms of acute pain; substantial information concerning plasticity that occurs during neuropathic pain has also become available. The peripheral mechanisms responsible for neuropathic pain are found in the altered gene/protein expression of primary sensory neurons. With damage to peripheral sensory fibers, a variety of changes in pain-related gene expression take place in dorsal root ganglion neurons. These changes, or plasticity, might underlie unique neuropathic pain-specific phenotype modifications - decreased unmyelinated-fiber functions, but increased myelinated A-fiber functions. Another characteristic change is observed in allodynia, the functional change of tactile to nociceptive perception. Throughout a series of studies, using novel nociceptive tests to characterize sensory-fiber or pain modality-specific nociceptive behaviors, it was demonstrated that communication between innocuous and noxious sensory fibers might play a role in allodynia mechanisms. Because neuropathic pain in peripheral and central demyelinating diseases develops as a result of aberrant myelination in experimental animals, demyelination seems to be a key mechanism of plasticity in neuropathic pain. More recently, we discovered that lysophosphatidic acid receptor activation initiates neuropathic pain, as well as possible peripheral mechanism of demyelination after nerve injury. These results lead to further hypotheses of physical communication between innocuous Abeta- and noxious C- or Adelta-fibers to influence the molecular mechanisms of allodynia.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
36
|
Michalski CW, Selvaggi F, Bartel M, Mitkus T, Gorbachevski A, Giese T, Sebastiano PD, Giese NA, Friess H. Altered anti-inflammatory response of mononuclear cells to neuropeptide PACAP is associated with deregulation of NF-{kappa}B in chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2008; 294:G50-7. [PMID: 17962362 DOI: 10.1152/ajpgi.00058.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although it is recognized that neurogenic influences contribute to progression of chronic inflammatory diseases, the molecular basis of neuroimmune interactions in the pathogenesis of chronic pancreatitis (CP) is not well defined. Here we report that responsiveness of peripheral blood mononuclear cells (PBMC) to the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is altered in CP. Expression of PACAP and its receptors in human CP was analyzed with quantitative RT-PCR, laser-capture microdissection, and immunohistochemistry. Regulation of PACAP expression was studied in coculture systems using macrophages and acinar cells. Responsiveness of donor and CP PBMC to PACAP was determined based on cytokine profiles and NF-kappaB activation of LPS- or LPS+PACAP-exposed cells. Although donor and CP PBMC responded equally to LPS, PACAP-mediated counteraction of LPS-induced cytokine response was switched from inhibiting TNF-alpha to decreasing IL-1beta and increasing IL-10 secretion. The change of PACAP-mediated anti-inflammatory pattern was associated with altered activation of NF-kappaB: compared with LPS alone, a combination of LPS and PACAP had no effect on NF-kappaB p65 nuclear translocation in CP PBMC, whereas NF-kappaB was significantly decreased in donor PBMC. According to laser-capture microdissection and coculture experiments, PBMC also contributed to generation of a PACAP-rich intrapancreatic environment by upregulating PACAP expression in macrophages encountering apoptotic pancreatic acini. The nociceptive status of CP patients correlated with pancreatic PACAP levels and with IL-10 bias of PACAP-exposed CP PBMC. Thus the ability of PBMC to produce and to respond to PACAP might influence neuroimmune interactions that regulate pain and inflammation in CP.
Collapse
Affiliation(s)
- Christoph W Michalski
- Dept. of General Surgery, Technische Universität München, Ismaningerstrasse 22, D-86175 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Monaghan TK, Mackenzie CJ, Plevin R, Lutz EM. PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. J Neurochem 2007; 104:74-88. [PMID: 17995938 PMCID: PMC2230095 DOI: 10.1111/j.1471-4159.2007.05018.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The intracellular signaling pathways mediating the neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in human neuroblastoma SH-SY5Y cells. Previously, we showed that SH-SY5Y cells express the PAC1 and VIP/PACAP receptor type 2 (VPAC2) receptors, and that the robust cAMP production in response to PACAP and vasoactive intestinal peptide (VIP) was mediated by PAC1 receptors (Lutz et al. 2006). Here, we investigated the ability of PACAP-38 to differentiate SH-SY5Y cells by measuring morphological changes and the expression of neuronal markers. PACAP-38 caused a concentration-dependent increase in the number of neurite-bearing cells and an up-regulation in the expression of the neuronal proteins Bcl-2, growth-associated protein-43 (GAP-43) and choline acetyltransferase: VIP was less effective than PACAP-38 and the VPAC2 receptor-specific agonist, Ro 25-1553, had no effect. The effects of PACAP-38 and VIP were blocked by the PAC1 receptor antagonist, PACAP6-38. As observed with PACAP-38, the adenylyl cyclase activator, forskolin, also induced an increase in the number of neurite-bearing cells and an up-regulation in the expression of Bcl-2 and GAP-43. PACAP-induced differentiation was prevented by the adenylyl cyclase inhibitor, 2′,5′-dideoxyadenosine (DDA), but not the protein kinase A (PKA) inhibitor, H89, or by siRNA-mediated knock-down of the PKA catalytic subunit. PACAP-38 and forskolin stimulated the activation of extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAP; p38 MAP kinase) and c-Jun N-terminal kinase (JNK). PACAP-induced neuritogenesis was blocked by the MEK1 inhibitor PD98059 and partially by the p38 MAP kinase inhibitor SB203580. Activation of exchange protein directly activated by cAMP (Epac) partially mimicked the effects of PACAP-38, and led to the phosphorylation of ERK but not p38 MAP kinase. These results provide evidence that the neurotrophic effects of PACAP-38 on human SH-SY5Y neuroblastoma cells are mediated by the PAC1 receptor through a cAMP-dependent but PKA-independent mechanism, and furthermore suggest that this involves Epac-dependent activation of ERK as well as activation of the p38 MAP kinase signaling pathway.
Collapse
Affiliation(s)
- T K Monaghan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Royal College, Glasgow, UK
| | | | | | | |
Collapse
|
38
|
FRISTAD INGE, BLETSA ATHANASIA, BYERS MARGARET. Inflammatory nerve responses in the dental pulp. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1601-1546.2010.00247.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Braas KM, Schutz KC, Bond JP, Vizzard MA, Girard BM, May V. Microarray analyses of pituitary adenylate cyclase activating polypeptide (PACAP)-regulated gene targets in sympathetic neurons. Peptides 2007; 28:1856-70. [PMID: 17512639 PMCID: PMC2744890 DOI: 10.1016/j.peptides.2007.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/29/2007] [Accepted: 04/10/2007] [Indexed: 11/23/2022]
Abstract
The high and preferential expression of the PAC(1)(short)HOP1 receptor in postganglionic sympathetic neurons facilitates microarray studies for mechanisms underlying PACAP-mediate neurotrophic signaling in a physiological context. Replicate primary sympathetic neuronal cultures were treated with 100 nM PACAP27 either acutely (9 h) or chronically (96 h) before RNA extraction and preparation for Affymetrix microarray analysis. Compared to untreated control cultures, acute PACAP treatment modulated significantly the expression of 147 transcripts of diverse functional groups, including peptides, growth factors/cytokines, transcriptional factors, receptors/signaling effectors and cell cycle regulators, that collectively appeared to facilitate neuronal plasticity, differentiation and/or regeneration processes. Some regulated transcripts, for example, were related to BDNF/TrkB, IL-6/Jak2/Socs2 and TGF/follistatin signaling; many transcripts affected bioactive peptide and polyamine biosynthesis. Although chronic PACAP treatments altered the expression of 109 sympathetic transcripts, only 43 transcripts were shared between the acute and chronic treatment data sets. The PACAP-mediated changes in transcript expression were corroborated independently by quantitative PCR measurement. The PACAP-regulated transcripts in sympathetic neurons did not bear strong resemblance to those in PACAP-treated pheochromocytoma cells. However, many PACAP-targeted sympathetic transcripts, especially those related to peptide plasticity and nerve regeneration processes, coincided significantly with genes altered after peripheral nerve injury. The ability for sympathetic PAC(1)(short)HOP1 receptors to engage multiple downstream signaling cascades appeared to be reflected in the number and diversity of genes targeted in a multifaceted strategy for comprehensive neurotrophic responses.
Collapse
Affiliation(s)
- Karen M. Braas
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Kristin C. Schutz
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Jeffrey P. Bond
- Department of Bioinformatics Core Facility, The University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Margaret A. Vizzard
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, Vermont 05405
- Department of Neurology, The University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Beatrice M. Girard
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, Vermont 05405
- Department of Neurology, The University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Victor May
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
40
|
Girard BM, Young BA, Buttolph TR, White SL, Parsons RL. Regulation of neuronal pituitary adenylate cyclase-activating polypeptide expression during culture of guinea-pig cardiac ganglia. Neuroscience 2007; 146:584-93. [PMID: 17367946 PMCID: PMC2048657 DOI: 10.1016/j.neuroscience.2007.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 01/17/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
The trophic neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) increases in many different neuron types following injury; a response postulated to support cell survival and regeneration. In acutely isolated cardiac ganglia, approximately 1% of the cardiac neurons exhibited PACAP immunoreactivity whereas after 72 h in culture, approximately 25% of the neurons were PACAP immunoreactive. In contrast, there was no increase in vasoactive intestinal polypeptide (VIP)-immunoreactive (IR) cells. Using a combination of immunocytochemical and molecular techniques, we have quantified PACAP expression, during explant culture of guinea-pig cardiac ganglia. Using real time polymerase chain reaction, PACAP transcript levels increased progressively up to 48 h in culture with no further increase after 72 h. PACAP transcript levels were reduced by neurturin at 48 h in culture but not after 24 or 72 h in culture. In addition, neurturin partially suppressed the percentage of PACAP-IR neurons after 72 h in culture, an effect mediated by activation of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase signaling pathways. The addition of different known regulatory molecules, including ciliary neurotrophic factor (CNTF), interleukin-1 beta (Il-1beta), tumor necrosis factor-alpha (TNFalpha), fibroblast growth factor basic (bFGF), transforming growth factor-beta (TGF-beta) and nerve growth factor (NGF) did not increase the percentage of PACAP-IR neurons after 24 h in culture; a result indicating that the generation and secretion of these factors did not stimulate PACAP expression. The presence of 20 nM PACAP or 10 muM forskolin increased the percentage of PACAP-IR cardiac neurons in 24 h cultures, but not in 72 h cultures. Neither treatment enhanced the number of VIP-IR neurons. The addition of the PACAP selective receptor (PAC(1)) receptor antagonist, M65 (100 nM) suppressed the 20 nM PACAP-induced increase in percentage of PACAP-IR cells in 24 h cultures indicating the effect of PACAP was mediated through the PAC(1) receptor. However, 100 nM M65 had no effect on the percentage of PACAP-IR cells in either 24 or 48 h cultures not treated with exogenous PACAP, suggesting that endogenous release of PACAP likely did not contribute to the enhanced peptide expression. We postulate that the enhanced PACAP expression, which occurs in response to injury is facilitated in the explant cultured cardiac ganglia by the loss of a target-derived inhibitory factor, very likely neurturin. In intact tissues the presence of neurturin would normally suppress PACAP expression. Lastly, our results indicate that many common trophic factors do not enhance PACAP expression in the cultured cardiac neurons. However, the stimulatory role of an, as yet, unidentified factor cannot be excluded.
Collapse
Affiliation(s)
- B M Girard
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
41
|
Suarez V, Guntinas-Lichius O, Streppel M, Ingorokva S, Grosheva M, Neiss WF, Angelov DN, Klimaschewski L. The axotomy-induced neuropeptides galanin and pituitary adenylate cyclase-activating peptide promote axonal sprouting of primary afferent and cranial motor neurones. Eur J Neurosci 2007; 24:1555-64. [PMID: 17004919 DOI: 10.1111/j.1460-9568.2006.05029.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neuropeptides galanin and pituitary adenylate cyclase-activating peptide (PACAP) are markedly up-regulated in response to peripheral nerve lesion. Both peptides are involved in neuronal differentiation and neurite outgrowth during development. In this study, we investigated the effects of galanin and PACAP on axonal elongation and sprouting by adult rat sensory neurones in vitro and facial motor neurones in vivo. Dissociated rat dorsal root ganglion neurones were plated on laminin substrate and analysed morphometrically. Both the mean axonal length and the number of branch points significantly increased in the presence of galanin or PACAP (2-5 microm). Effects on axonal collateralization were investigated in the rat facial nerve lesion model by direct application of the peptides to collagen-filled conduits entubulating the transected facial nerve stumps. Triple retrograde labelling of brainstem neurones confirmed that the peptides potently induce axonal sprouting of cranial motor neurones. The number of neurones regenerating into identified rami of the facial nerve increased up to fivefold. Biometrical analysis of whisking behaviour revealed that galanin and PACAP impaired the functional outcome when compared with vehicle-treated animals 8 weeks after surgery. In conclusion, although galanin and PACAP have been established as neurotrophic molecules with respect to axonal development and regeneration, their potential as treatments for peripheral nerve lesions appears limited because of the extensive stimulation of collateral axon branching. These branches are misrouted towards incorrect muscles and cause impairment in their coordinated activity.
Collapse
Affiliation(s)
- Victor Suarez
- Institut für Anatomie, Universität zu Köln, Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schuelert N, McDougall JJ. Electrophysiological evidence that the vasoactive intestinal peptide receptor antagonist VIP6-28 reduces nociception in an animal model of osteoarthritis. Osteoarthritis Cartilage 2006; 14:1155-62. [PMID: 16740398 DOI: 10.1016/j.joca.2006.04.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 04/18/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The present study examined whether local administration of the neuropeptide vasoactive intestinal polypeptide (VIP) could modulate joint nociception in normal rat knee joints and if the VIP antagonist VIP(6-28) could ameliorate joint mechanosensitivity in an animal model of osteoarthritis (OA). METHODS OA was induced in male Wistar rats by intra-articular injection of 3mg sodium monoiodo-acetate with a recovery period of 14 days. Electrophysiological recordings were made from knee joint primary afferents in response to normal rotation and noxious hyper-rotation of the joint both before and following close intra-arterial injection of different doses of VIP and VIP(6-28). RESULTS Local application of VIP to normal knees caused afferent firing rate to be significantly enhanced during normal rotation (up to 180% P<0.01; n=17) and during hyper-rotation (up to 37% P<0.01; n=17) of the knee. VIP-induced sensitization was blocked by pre-administration of the VIP receptor antagonist VIP(6-28). In the OA group, application of VIP(6-28) caused afferent firing rate to be significantly reduced during normal rotation (up to 45% P<0.05; n=17) and during hyper-rotation (up to 34% P<0.01; n=15) of the knee joint. CONCLUSION These findings indicate that VIP is involved in peripheral sensitization of knee joint afferents especially in response to normal joint movements. OA-induced sensitization of knee joint afferents was inhibited by local administration of VIP(6-28), indicating that VIP is released into OA knee joints, potentially contributing to joint pain. As such, VIP(6-28) may prove to be a beneficial agent for the treatment of arthritis pain.
Collapse
Affiliation(s)
- N Schuelert
- Department of Physiology & Biophysics, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
43
|
Wilson-Gerwing TD, Verge VMK. Neurotrophin-3 attenuates galanin expression in the chronic constriction injury model of neuropathic pain. Neuroscience 2006; 141:2075-85. [PMID: 16843605 DOI: 10.1016/j.neuroscience.2006.05.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 05/11/2006] [Accepted: 05/12/2006] [Indexed: 11/28/2022]
Abstract
We have recently shown that exogenous neurotrophin-3 (NT-3) acts antagonistically to nerve growth factor (NGF) in regulation of nociceptor phenotype in intact neurons and suppresses thermal hyperalgesia and expression of molecules complicit in this behavioral response induced by chronic constriction injury (CCI) of the sciatic nerve. The present study examines whether there is a global influence of NT-3 in mitigating alterations in peptide and NGF receptor expression; molecules believed to also contribute to CCI-associated pain. Thus, the influence of NT-3 on phenotypic changes in dorsal root ganglion (DRG) neurons in rats coincident with CCI was examined using in situ hybridization. Seven days following injury, the incidence of expression of the neuropeptides galanin and pituitary adenylate cyclase-activating polypeptide (PACAP) was increased in L5 sensory neurons ipsilateral to the injury from 12% to 60% and 16% to 37% respectively, in addition to an increased level of expression. In contrast, there was no consistent significant change in tropomyosin-related kinase A (trkA) expression following CCI. Intrathecal infusion of NT-3 globally mitigated both the increased incidence and elevated levels of galanin messenger RNA (mRNA) expression observed following CCI, reducing the former from 60% to 39%. NT-3 infusion resulted in a limited reduction in the incidence and level of neuronal PACAP in medium to large size, but not small size, DRG neurons. NT-3 had no significant net effect on CCI-induced alterations in trkA mRNA expression.
Collapse
Affiliation(s)
- T D Wilson-Gerwing
- Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center, University of Saskatchewan, 701 Queen Street, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | |
Collapse
|
44
|
Braas KM, May V, Zvara P, Nausch B, Kliment J, Dunleavy JD, Nelson MT, Vizzard MA. Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. Am J Physiol Regul Integr Comp Physiol 2006; 290:R951-62. [PMID: 16322346 PMCID: PMC1402357 DOI: 10.1152/ajpregu.00734.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) peptides are expressed and regulated in sensory afferents of the micturition pathway. Although these studies have implicated PACAP in bladder control, the physiological significance of these observations has not been firmly established. To clarify these issues, the roles of PACAP and PACAP signaling in micturition and cystitis were examined in receptor characterization and physiological assays. PACAP receptors were identified in various tissues of the micturition pathway, including bladder detrusor smooth muscle and urothelium. Bladder smooth muscle expressed heterogeneously PAC(1)null, PAC(1)HOP1, and VPAC(2) receptors; the urothelium was more restricted in expressing preferentially the PAC(1) receptor subtype only. Immunocytochemical studies for PAC(1) receptors were consistent with these tissue distributions. Furthermore, the addition of 50-100 nM PACAP27 or PACAP38 to isolated bladder strips elicited transient contractions and sustained increases in the amplitude of spontaneous phasic contractions. Treatment of the bladder strips with tetrodotoxin (1 muM) did not alter the spontaneous phasic contractions suggesting direct PACAP effects on bladder smooth muscle. PACAP also increased the amplitude of nerve-evoked contractions. By contrast, vasoactive intestinal polypeptide had no direct effects on bladder smooth muscle. In a rat cyclophosphamide (CYP)-induced cystitis paradigm, intrathecal or intravesical administration of PAC(1) receptor antagonist, PACAP6-38, reduced cystitis-induced bladder overactivity. In summary, these studies support roles for PACAP in micturition and suggest that inflammation-induced plasticity in PACAP expression in peripheral and central micturition pathways contribute to bladder dysfunction with cystitis.
Collapse
Affiliation(s)
- Karen M. Braas
- University of Vermont College of Medicine, Departments of Anatomy and Neurobiology
| | - Victor May
- University of Vermont College of Medicine, Departments of Anatomy and Neurobiology
- Pharmacology Burlington, VT 05405 USA
| | | | | | | | | | | | - Margaret A. Vizzard
- University of Vermont College of Medicine, Departments of Anatomy and Neurobiology
- Neurology and
| |
Collapse
|
45
|
Papka RE, Workley M, Usip S, Mowa CN, Fahrenkrug J. Expression of pituitary adenylate cyclase activating peptide in the uterine cervix, lumbosacral dorsal root ganglia and spinal cord of rats during pregnancy. Peptides 2006; 27:743-52. [PMID: 16181705 DOI: 10.1016/j.peptides.2005.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 11/17/2022]
Abstract
The uterine cervix is highly innervated by the sensory nerves containing neuropeptides which change during pregnancy and are regulated, in part, by estrogen. These neuropeptides act as transmitters both in the spinal cord and cervix. The present study was undertaken to determine the expression pattern of the neuropeptide pituitary adenylate cyclase activating peptide (PACAP) in the cervix and its nerves during pregnancy and the influence of estrogen on this expression using immunohistochemistry, radioimmunoassay and RT-PCR. PACAP immunoreactivity was detected in nerves in the cervix, lumbosacral (L6-S1) dorsal root ganglia (DRG) and spinal cord. PACAP immunoreactivity was highest at day 15 of pregnancy in the cervix and dorsal spinal cord, but then decreased over the last trimester of pregnancy. However, levels of PACAP mRNA increased in the L6-S1 DRG at late pregnancy relative to early pregnancy. DRG of ovariectomized rats treated with estrogen showed increased PACAP mRNA synthesis in a dose-related manner, an effect partially blocked by the estrogen receptor (ER) antagonist ICI 182,780. We postulate that synthesis of PACAP in L6-S1 DRG and utilization in the cervix and spinal cord increase over pregnancy and this synthesis is the under influence of the estrogen-ER system. Since PACAP is expressed by sensory nerves and may have roles in nociception and vascular function, collectively, these data are consistent with the hypothesis that sensory nerve-derived neuronal factors innervate the cervix and play a role in cervical ripening.
Collapse
Affiliation(s)
- R E Papka
- Northeastern Ohio Universities College of Medicine, Department of Neurobiology, 4209 State Route 44, P.O. Box 95, Rootstown OH 44272, USA.
| | | | | | | | | |
Collapse
|
46
|
Girard BM, Young BA, Buttolph TR, Locknar SA, White SL, Parsons RL. Trophic factor modulation of cocaine- and amphetamine-regulated transcript peptide expression in explant cultured guinea-pig cardiac neurons. Neuroscience 2006; 139:1329-41. [PMID: 16516394 DOI: 10.1016/j.neuroscience.2006.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 01/10/2006] [Accepted: 01/21/2006] [Indexed: 11/24/2022]
Abstract
The present study investigated the influence of trophic factors on the expression of cocaine- and amphetamine-regulated transcript peptide (CARTp) in guinea-pig cardiac ganglia maintained in explant culture. In acutely isolated cardiac ganglia preparations, <1% of the cholinergic cardiac neurons exhibited CARTp immunoreactivity. In contrast, this number increased to >25% of the cardiac neurons after 72 h in explant culture. This increase in the number of CARTp neurons in cultured cardiac ganglia explants was accompanied by an increase in CARTp transcript levels as assessed by real time polymerase chain reaction. Treatment of cardiac ganglia cultures with neurturin or glial-derived trophic factor (both at 10 ng/ml) for 72 h prevented the increase in neurons that exhibited CARTp immunoreactivity. In contrast, treatment with ciliary neurotrophic factor (50 ng/ml) for 72 h produced a small significant increase in the percentage of CARTp-immunoreactive cardiac neurons and treatment with nerve growth factor (100 ng/ml) had no effect. Neurturin treatment also decreased cardiac neuron CARTp levels after 72 h in explant culture. Cardiac neurons exhibited immunoreactivity to the neurturin receptor GFRalpha2 whereas non-neural cells preferentially exhibited immunoreactivity to the glial-derived neurotrophic factor receptor GFRalpha1 and neurturin transcripts were detected in cardiac tissue extracts. We hypothesize that a target-derived inhibitory factor, very likely neurturin, is a critical factor suppressing the expression of CARTp in guinea-pig cardiac neurons. These observations contrast with those reported in sympathetic neurons that suggest up-regulation of trophic factors after axotomy or during explant culture is a key factor contributing to the up-regulation of many neuropeptides.
Collapse
Affiliation(s)
- B M Girard
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, 05405, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lutz EM, Ronaldson E, Shaw P, Johnson MS, Holland PJ, Mitchell R. Characterization of novel splice variants of the PAC1 receptor in human neuroblastoma cells: consequences for signaling by VIP and PACAP. Mol Cell Neurosci 2005; 31:193-209. [PMID: 16226889 DOI: 10.1016/j.mcn.2005.09.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 08/24/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022] Open
Abstract
Expression of VPAC and PAC1 receptor isoforms was determined in six neuroblastoma cell lines as well as in human embryonic and adult brain using reverse transcriptase PCR and quantitative PCR. PAC1 receptor splice variants missing a 21 amino acid sequence in the amino terminal domain were found to be the major receptor variants in the neuroblastoma cell lines and also were highly expressed in embryonic brain compared to adult brain. In four of the neuroblastoma cell lines, VIP and PACAP stimulated cyclic AMP production with different potencies and levels of maximal stimulation. High potency and greatest maximal stimulation of cyclic AMP for each peptide were recorded in SH-SY5Y cells, indicating the presence of high affinity VIP and PACAP receptors. Further characterization of specific VPAC and PAC1 receptor isoforms was carried out in the SH-SY5Y cell line, where along with known PAC1 receptor splice variants and the VPAC2 receptor, a number of novel PAC1 receptor splice variants were identified. The comparatively low level expression of the VPAC2 receptor along with the poor responsiveness of SH-SY5Y cells to the VPAC2 receptor-specific agonist Ro 25-1553 indicated that this receptor did not contribute significantly to the observed VIP responses. When the individual PAC1 receptor isoforms were expressed in COS 7 cells, the ability of VIP to activate cyclic AMP production was increased more than 50-fold at the majority of the PAC1 receptor variants lacking the 21 amino acid amino terminal domain sequence compared to those with the complete domain. Smaller changes were seen in the potency of PACAP-38. Similar trends were seen with inositol phosphate responses, where in each case agonist potencies were lower than for cyclic AMP production. The results of this study show that the combination of different amino terminal and intracellular loop 3 splicing variants in the PAC1 receptor dictates the ability of agonists, particularly VIP, to activate signaling pathways. VIP has considerably greater potency at most PAC1 receptors with the short amino terminal domain, and these therefore may mediate physiological effects of both VIP and PACAP. Furthermore, there may be a phenotypic switch in the expression of different PAC1 receptor amino terminal splice variants between embryonic and mature nervous system, indicating that regulation of this event may have an important role in VIP/PACAP function, particularly in the developing nervous system.
Collapse
Affiliation(s)
- E M Lutz
- Molecular Signalling Group, Department of Bioscience, University of Strathclyde, Royal College, 204 George St., Glasgow G1 1XW, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Hua XY, Salgado KF, Gu G, Fitzsimmons B, Kondo I, Bartfai T, Yaksh TL. Mechanisms of antinociception of spinal galanin: how does galanin inhibit spinal sensitization? Neuropeptides 2005; 39:211-6. [PMID: 15944014 DOI: 10.1016/j.npep.2004.12.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 12/02/2004] [Indexed: 11/30/2022]
Abstract
Galanin by a spinal action has been shown to have an antihyperalgesic action. Thus, in rats with lumbar intrathecal (IT) catheters, the thermal hyperalgesia evoked by carrageenan paw injection was blocked by IT delivery of galanin(1-29) (Gal(1-29)) and galanin(2-11) (Gal(2-11)) with the rank order of activity being Gal(1-29)>Gal(2-11). We sought to determine whether this spinal action reflects an effect upon afferent transmitter release, e.g., substance P (SP), and/or on secondary neurons, e.g., signaling postsynaptic to neurokinin 1 (NK1) receptor activation. To address the question on afferent release, we investigated the effect of IT administration of galanin on tissue injury-induced spinal NK1 internalization (an indicator of SP release). Noxious stimulation (paw compression) produced an increase in NK1 internalization in dorsal horn lamina I. IT pretreatment of rats with Gal(1-29) and Gal(2-11) significantly attenuated the evoked NK1 internalization, with the rank order of activity being Gal(1-29)>Gal(2-11)>saline. To address the question of postsynaptic action, we examined the effects of IT galanin upon IT SP-induced thermal hyperalgesia and spinal PGE2 release. Application of SP (30 nmol) directly to spinal cord led to a decrease in thermal thresholds and a profound increase in PGE(2) concentration in spinal dialysates. Both phenomena were reversed by Gal(1-29) and Gal(2-11) (10nmol, IT). These findings suggest that the antihyperalgesic effect of spinal galanin is due to its action on sites both presynaptic (inhibition of SP release) and postsynaptic (blockade of SP-evoked hyperalgesia and PGE2 production) to the primary afferents.
Collapse
Affiliation(s)
- X-Y Hua
- Anesthesia Research Laboratory, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0818, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Zvarova K, Dunleavy JD, Vizzard MA. Changes in pituitary adenylate cyclase activating polypeptide expression in urinary bladder pathways after spinal cord injury. Exp Neurol 2005; 192:46-59. [PMID: 15698618 DOI: 10.1016/j.expneurol.2004.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 09/29/2004] [Accepted: 10/20/2004] [Indexed: 12/25/2022]
Abstract
These studies examined changes in the pituitary adenylate cyclase activating polypeptide (PACAP) expression in micturition reflex pathways after spinal cord injury (SCI) of various durations. In spinal-intact animals, PACAP immunoreactivity (IR) was expressed in fibers in the superficial dorsal horn in all segmental levels examined (L1, L2, L4-S1). Bladder-afferent cells (35-45%) in the dorsal root ganglia (DRG; L1, L2, L6, S1) from spinal-intact animals also exhibited PACAP-IR. After SCI (6 weeks), PACAP-IR was dramatically increased in spinal segments and DRG (L1, L2, L6, S1) involved in micturition reflexes. The density of PACAP-IR was increased in the superficial laminae (I-II) of the L1, L2, L6, and S1 spinal segments. No changes in PACAP-IR were observed in the L4-L5 segments. Staining was also dramatically increased in a fiber bundle extending ventrally from Lissauer's tract (LT) in lamina I along the lateral edge of the dorsal horn to the sacral parasympathetic nucleus (SPN) in the L6-S1 spinal segments (lateral collateral pathway of Lissauer, LCP). After SCI (range 48 h to 6 weeks), PACAP-IR in cells in the L1, L2, L6, and S1 DRG significantly (P < or = 0.001) increased and the percentage of bladder-afferent cells expressing PACAP-IR also significantly (P < or = 0.001) increased (70-92%). No changes were observed in the L4-L5 DRG. PACAP-IR was reduced throughout the urothelium and detrusor smooth muscle whole mounts after SCI. These studies demonstrate changes in PACAP expression in micturition reflex pathways after SCI that may contribute to urinary bladder dysfunction or reemergence of primitive voiding reflexes after SCI.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Female
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Immunohistochemistry
- Lumbar Vertebrae
- Muscle, Smooth/innervation
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Nerve Growth Factors/metabolism
- Neural Pathways/metabolism
- Neural Pathways/pathology
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neuropeptides/metabolism
- Neurotransmitter Agents/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Posterior Horn Cells/metabolism
- Posterior Horn Cells/pathology
- Rats
- Rats, Wistar
- Reflex/physiology
- Sacrum
- Spinal Cord Injuries/complications
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/pathology
- Up-Regulation/physiology
- Urinary Bladder/innervation
- Urinary Bladder/metabolism
- Urinary Bladder/pathology
- Urinary Bladder, Neurogenic/etiology
- Urinary Bladder, Neurogenic/metabolism
- Urinary Bladder, Neurogenic/pathology
- Urination/physiology
- Urothelium/metabolism
- Visceral Afferents/metabolism
- Visceral Afferents/pathology
Collapse
Affiliation(s)
- Katarina Zvarova
- Department of Neurology, University of Vermont, College of Medicine, D411 Given Building, Burlington, VT 05405, USA
| | | | | |
Collapse
|
50
|
Nilsson A, Moller K, Dahlin L, Lundborg G, Kanje M. Early changes in gene expression in the dorsal root ganglia after transection of the sciatic nerve; effects of amphiregulin and PAI-1 on regeneration. ACTA ACUST UNITED AC 2005; 136:65-74. [PMID: 15893588 DOI: 10.1016/j.molbrainres.2005.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 12/29/2004] [Accepted: 01/08/2005] [Indexed: 01/04/2023]
Abstract
To characterize the gene activity that may be required for neuronal survival and regeneration, we used the Affymetrix GeneChip Mu74A to screen 12000 genes and expressed sequence tag (EST) mRNA from L4 and L5 mouse dorsal root ganglia (DRG) 12 h and 24 h after sciatic nerve transection. At 12 h, we found 17 upregulated transcripts, and at 24 h, 49 that met our criteria of a significant 2-fold increase in expression. The alterations included a total of eight transcription factors and several genes associated with TGF-beta- and IL-6-mediated signaling. Two of the changes, amphiregulin and plasminogen activator inhibitor-1 (PAI-1), were confirmed by real-time quantitative PCR (QPCR). Addition of amphiregulin (20 ng/ml) to organ-cultured DRG stimulated axonal outgrowth while PAI-1 (20 nM) inhibited migration of Schwann cells from the ganglia.
Collapse
Affiliation(s)
- Anna Nilsson
- Cell and Organism Biology, Lund University, Helgonav3 B, SE-223 62 Lund, Sweden.
| | | | | | | | | |
Collapse
|