1
|
Boontra Y, Thanetnit C, Phanasathit M. Effects of electroacupuncture on cognitive symptoms in major depressive disorder: a pilot study and randomized controlled trial. F1000Res 2024; 13:479. [PMID: 39620153 PMCID: PMC11605169 DOI: 10.12688/f1000research.146897.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 12/06/2024] Open
Abstract
Objectives To investigate the impact of electroacupuncture on cognitive function, quality of life (QoL), and depression severity in patients with major depressive disorder (MDD). Methods This double-blinded randomized controlled trial included 60 participants aged 18-55 with cognitive symptoms related to MDD at Thammasat University Hospital. Participants were divided into two groups: the electroacupuncture group combined with standard antidepressant treatment (EG; n=30) and the control group receiving standard care with placebo acupuncture (CG; n=30). The study assessed 1) executive functions using the Trail making test- B and Stroop Color and Word Test, 2) delayed recall, and 3) subjective cognitive complaint and Quality of life (QoL) using WHODAS 2.0. Depressive symptoms were measured using the Thai version of the Patient Health Questionnaire (PHQ-9). Baseline and post-intervention assessments were conducted over 10 weeks. Mann-Whitney U test analyzed treatment effects by comparing median differences between groups. Results Both groups exhibited similar demographics and cognitive traits. Cognitive improvement was observed in both groups at the endpoint. Intention-to-treat analysis revealed significantly higher median scores for subjective cognitive complaints in the EG compared to the CG (EG: Median = 5.5, CG: Median = 0.0, p=0.049). No serious side effects were identified from either electroacupuncture or placebo acupuncture. Conclusions Electroacupuncture improved subjective complaints in MDD patients with cognitive symptoms, but did not show effects on specific cognitive functions, QoL, or depressive symptoms. This study provides initial evidence supporting the potential of electroacupuncture in MDD patients with cognitive symptoms, suggesting opportunities for further research. Trial registration NCT06239740, February 2, 2024, ClinicalTrials.gov.
Collapse
Affiliation(s)
- Yindee Boontra
- Department of Psychiatry, Thammasat University, Pathum Thani, 12120, Thailand
| | | | - Muthita Phanasathit
- Department of Psychiatry, Thammasat University, Pathum Thani, 12120, Thailand
- Center of Excellence in Applied Epidemiology, Faculty of Medicine, Thammasat University, Bangkok, Bangkok, 12120, Thailand
| |
Collapse
|
2
|
de Castro CM, Almeida-Santos AF, Mansk LMZ, Jaimes LF, Cammarota M, Pereira GS. BDNF-dependent signaling in the olfactory bulb modulates social recognition memory in mice. Neurobiol Learn Mem 2024; 208:107891. [PMID: 38237799 DOI: 10.1016/j.nlm.2024.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
An operative olfactory bulb (OB) is critical to social recognition memory (SRM) in rodents, which involves identifying conspecifics. Furthermore, OB also allocates synaptic plasticity events related to olfactory memories in their intricate neural circuit. Here, we asked whether the OB is a target for brain-derived neurotrophic factor (BDNF), a well-known mediator of plasticity and memory. Adult ICR-CD1 male mice had their SRM evaluated under the inhibition of BDNF-dependent signaling directly in the OB. We also quantified the expression of BDNF in the OB, after SRM acquisition. Our results presented an amnesic effect of anti-BDNF administered 12 h post-training. Although the western blot showed no statistical difference in pro-BDNF and BDNF expression, the analysis of fluorescence intensity in slices suggests SRM acquisition decreases BDNF in the granular cell layer of the OB. Next, to test the ability of BDNF to rescue SRM deficit, we administered the human recombinant BDNF (rBDNF) directly in the OB of socially isolated (SI) mice. Unexpectedly, rBDNF did not rescue SRM in SI mice. Furthermore, BDNF and pro-BDNF expression in the OB was unchanged by SI. Our study reinforces the OB as a plasticity locus in memory-related events. It also adds SRM as another type of memory sensitive to BDNF-dependent signaling.
Collapse
Affiliation(s)
- Caio M de Castro
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Ana F Almeida-Santos
- Departamento de Pesquisa e Desenvolvimento, Fundação Cristiano Varela. Faculdade de Minas- Faminas, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do, Norte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
3
|
Meissner S, Raos B, Svirskis D. Hydrogels can control the presentation of growth factors and thereby improve their efficacy in tissue engineering. Eur J Pharm Biopharm 2022. [DOI: 10.1016/j.ejpb.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Khang M, Bindra RS, Mark Saltzman W. Intrathecal delivery and its applications in leptomeningeal disease. Adv Drug Deliv Rev 2022; 186:114338. [PMID: 35561835 DOI: 10.1016/j.addr.2022.114338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
Intrathecal delivery (IT) of opiates into the cerebrospinal fluid (CSF) for anesthesia and pain relief has been used clinically for decades, but this relatively straightforward approach of bypassing the blood-brain barrier has been underutilized for other indications because of its lack of utility in delivering small lipid-soluble drugs. However, emerging evidence suggests that IT drug delivery be an efficacious strategy for the treatment of cancers in which there is leptomeningeal spread of disease. In this review, we discuss CSF flow dynamics and CSF clearance pathways in the context of intrathecal delivery. We discuss human and animal studies of several new classes of therapeutic agents-cellular, protein, nucleic acid, and nanoparticle-based small molecules-that may benefit from IT delivery. The complexity of the CSF compartment presents several key challenges in predicting biodistribution of IT-delivered drugs. New approaches and strategies are needed that can overcome the high rates of turnover in the CSF to reach specific tissues or cellular targets.
Collapse
|
5
|
Bruggeman K, Zhang M, Malagutti N, Soltani Dehnavi S, Williams R, Tricoli A, Nisbet D. Using UV-Responsive Nanoparticles to Provide In Situ Control of Growth Factor Delivery and a More Constant Release Profile from a Hydrogel Environment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12068-12076. [PMID: 35235309 DOI: 10.1021/acsami.1c24528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticles are popular delivery vehicles, but their diffusional release results in inconstant drug delivery. Here, we flatten the delivery profile into a more constant, zero-order profile. Brain-derived neurotrophic factor (BDNF) is attached to photoactive titanium dioxide nanoparticles and loaded into a nanofibrous self-assembling peptide (SAP) hydrogel. Different UV exposure conditions show three distinct profiles, including a counterintuitive decrease in release after UV exposure. We propose that the adsorption of the freed growth factor onto the hydrogel nanofibers affects release. Nanoparticles diffuse from the hydrogel readily, carrying the bound growth factor, but the freed growth factor (released from the nanoparticles by UV) instead interacts with─and is released less readily from─the hydrogel. UV shifts growth factor from nanoparticles to the hydrogel, therefore changing the diffusional release. Through midpoint UV exposure, we achieve a flattened delivery profile─unusual for diffusion─by changing in situ the amount of growth factor bound to the diffusing nanoparticles. With nanoparticle diffusion alone, we observed an increasing release profile with 36% of release in the first 6 h and 64% in the second 6 h. With midway UV exposure, this was controlled to 49 and 51%, respectively. The release of an unbound (soluble) control growth factor, glial cell-line derived neurotrophic factor (GDNF), was not affected by UV treatment, demonstrating the potential for independent control of temporal delivery profiles in a multiagent material.
Collapse
Affiliation(s)
- Kiara Bruggeman
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Meng Zhang
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Nicolo Malagutti
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Shiva Soltani Dehnavi
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Richard Williams
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Faculty of Engineering, The University of Sydney, Camperdown 2006, Australia
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, The Australian National University, Canberra 2601, Australia
| | - David Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne 3010, Australia
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
6
|
Kim YL, Han Y, Evans JW, Gordon MS. Effective Fragment Potential-Based Molecular Dynamics Studies of Diffusion in Acetone and Hexane. J Phys Chem A 2021; 125:3398-3405. [PMID: 33861600 DOI: 10.1021/acs.jpca.1c01865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To facilitate more reliable descriptions of transport properties in liquids, molecular dynamics (MD) simulations are performed based on the effective fragment potential (EFP) method derived from first-principles quantum mechanics (in contrast to MD based upon empirically fitted potentials). The EFP method describes molecular interactions in terms of Coulomb, polarization/induction, dispersion, exchange-repulsion, and charge-transfer interactions. The EFP MD simulations described in this paper, performed on hexane and acetone, are able to track the mean-square displacement of molecules for sufficient time to reliably extract translational diffusion coefficients. The results reported here are in reasonable agreement with experiment.
Collapse
Affiliation(s)
- Yu Lim Kim
- Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Yong Han
- Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011, United States.,Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50010, United States
| | - James W Evans
- Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011, United States.,Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50010, United States
| | - Mark S Gordon
- Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
7
|
Xu D, Wu D, Qin M, Nih LR, Liu C, Cao Z, Ren J, Chen X, He Z, Yu W, Guan J, Duan S, Liu F, Liu X, Li J, Harley D, Xu B, Hou L, Chen ISY, Wen J, Chen W, Pourtaheri S, Lu Y. Efficient Delivery of Nerve Growth Factors to the Central Nervous System for Neural Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900727. [PMID: 31125138 DOI: 10.1002/adma.201900727] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The central nervous system (CNS) plays a central role in the control of sensory and motor functions, and the disruption of its barriers can result in severe and debilitating neurological disorders. Neurotrophins are promising therapeutic agents for neural regeneration in the damaged CNS. However, their penetration across the blood-brain barrier remains a formidable challenge, representing a bottleneck for brain and spinal cord therapy. Herein, a nanocapsule-based delivery system is reported that enables intravenously injected nerve growth factor (NGF) to enter the CNS in healthy mice and nonhuman primates. Under pathological conditions, the delivery of NGF enables neural regeneration, tissue remodeling, and functional recovery in mice with spinal cord injury. This technology can be utilized to deliver other neurotrophins and growth factors to the CNS, opening a new avenue for tissue engineering and the treatment of CNS disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Duo Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Di Wu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Meng Qin
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Biotechnology, Beijing, 100029, China
| | - Lina R Nih
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chaoyong Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Biotechnology, Beijing, 100029, China
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jie Ren
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, Shanghai, 200040, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Jiaoqiong Guan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Fang Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiangsheng Liu
- California NanoSystem Institute, Los Angeles, CA, 90095, USA
| | - Jesse Li
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, 90095, USA
| | - Dushawn Harley
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, 90095, USA
| | - Bin Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, 100029, China
| | - Irvin S Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Wen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing, 100029, China
| | - Sina Pourtaheri
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, 90095, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
8
|
Bruggeman KF, Moriarty N, Dowd E, Nisbet DR, Parish CL. Harnessing stem cells and biomaterials to promote neural repair. Br J Pharmacol 2019; 176:355-368. [PMID: 30444942 PMCID: PMC6329623 DOI: 10.1111/bph.14545] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
With the limited capacity for self-repair in the adult CNS, efforts to stimulate quiescent stem cell populations within discrete brain regions, as well as harness the potential of stem cell transplants, offer significant hope for neural repair. These new cells are capable of providing trophic cues to support residual host populations and/or replace those cells lost to the primary insult. However, issues with low-level adult neurogenesis, cell survival, directed differentiation and inadequate reinnervation of host tissue have impeded the full potential of these therapeutic approaches and their clinical advancement. Biomaterials offer novel approaches to stimulate endogenous neurogenesis, as well as for the delivery and support of neural progenitor transplants, providing a tissue-appropriate physical and trophic milieu for the newly integrating cells. In this review, we will discuss the various approaches by which bioengineered scaffolds may improve stem cell-based therapies for repair of the CNS.
Collapse
Affiliation(s)
- K F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of EngineeringThe Australian National UniversityCanberraACTAustralia
| | - N Moriarty
- Pharmacology and Therapeutics and Galway Neuroscience CentreNational University of Ireland GalwayGalwayIreland
| | - E Dowd
- Pharmacology and Therapeutics and Galway Neuroscience CentreNational University of Ireland GalwayGalwayIreland
| | - D R Nisbet
- Laboratory of Advanced Biomaterials, Research School of EngineeringThe Australian National UniversityCanberraACTAustralia
| | - C L Parish
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|
9
|
Vidal Yucha SE, Tamamoto KA, Nguyen H, Cairns DM, Kaplan DL. Human Skin Equivalents Demonstrate Need for Neuro-Immuno-Cutaneous System. ACTA ACUST UNITED AC 2018; 3:e1800283. [PMID: 32627348 DOI: 10.1002/adbi.201800283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Indexed: 12/14/2022]
Abstract
A variety of human skin equivalents (HSEs) has been designed for clinical use or for exploratory skin research. In vitro HSE models have been used to target relationships between the skin and nervous or immune systems but have not yet considered the neuro-immuno-cutaneous (NIC) system. In this study, HSEs are described, with and without neural and immune components, to discern these types of effects. These systems are composed of only primary human cells and contain an epidermis, dermis, hypodermis (with immune cells), and human induced neural stem cells for the neuronal component. RNA sequencing is utilized to confirm differences between sample groups and to identify unique or important genes with respect to sample type. Only samples with both neural and immune components result in the upregulation of genes in all the key biological pathways explored. The analysis of protein secretion confirms that this group has measurable functions related to all key cell types. Overall, this novel skin tissue system confirms that designing HSEs that include the NIC system results in a tissue model that reflects key functions. These systems could be used to identify selected targets of interest in skin research related to healthy or diseased states.
Collapse
Affiliation(s)
- Sarah E Vidal Yucha
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Kasey A Tamamoto
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | - Hanh Nguyen
- Department of Child Studies and Human Development, Tufts University, Medford, MA, 02155, USA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| |
Collapse
|
10
|
Bruggeman KF, Williams RJ, Nisbet DR. Dynamic and Responsive Growth Factor Delivery from Electrospun and Hydrogel Tissue Engineering Materials. Adv Healthc Mater 2018; 7. [PMID: 29193871 DOI: 10.1002/adhm.201700836] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/04/2017] [Indexed: 12/21/2022]
Abstract
Tissue engineering scaffolds are designed to mimic physical, chemical, and biological features of the extracellular matrix, thereby providing a constant support that is crucial to improved regenerative medicine outcomes. Beyond mechanical and structural support, the next generation of these materials must also consider the more dynamic presentation and delivery of drugs or growth factors to guide new and regenerating tissue development. These two aspects are explored expansively separately, but they must interact synergistically to achieve optimal regeneration. This review explores common tissue engineering materials types, electrospun polymers and hydrogels, and strategies used for incorporating drug delivery systems into these scaffolds.
Collapse
Affiliation(s)
- Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials; Research School of Engineering; The Australian National University; Canberra ACT 2601 Australia
| | - Richard J. Williams
- School of Engineering; RMIT University; Melbourne VIC 3001 Australia
- Biofab3D; Aikenhead Center for Medical Discovery; St. Vincent's Hospital; Melbourne VIC 3065 Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials; Research School of Engineering; The Australian National University; Canberra ACT 2601 Australia
- Biofab3D; Aikenhead Center for Medical Discovery; St. Vincent's Hospital; Melbourne VIC 3065 Australia
| |
Collapse
|
11
|
Bruggeman KF, Wang Y, Maclean FL, Parish CL, Williams RJ, Nisbet DR. Temporally controlled growth factor delivery from a self-assembling peptide hydrogel and electrospun nanofibre composite scaffold. NANOSCALE 2017; 9:13661-13669. [PMID: 28876347 DOI: 10.1039/c7nr05004f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue-specific self-assembling peptide (SAP) hydrogels designed based on biologically relevant peptide sequences have great potential in regenerative medicine. These materials spontaneously form 3D networks of physically assembled nanofibres utilising non-covalent interactions. The nanofibrous structure of SAPs is often compared to that of electrospun scaffolds. These electrospun nanofibers are produced as sheets that can be engineered from a variety of polymers that can be chemically modified to incorporate many molecules including drugs and growth factors. However, their macroscale morphology limits them to wrapping and bandaging applications. Here, for the first time, we combine the benefits of these systems to describe a two-component composite scaffold from these biomaterials, with the design goal of providing a hydrogel scaffold that presents 3D structures, and also has temporal control over drug delivery. Short fibres, cut from electrospun scaffolds, were mixed with our tissue-specific SAP hydrogel to provide a range of nanofibre sizes found in the extracellular matrix (10-300 nm in diameter). The composite material maintained the shear-thinning and void-filling properties of SAP hydrogels that have previously been shown to be effective for minimally invasive material injection, cell delivery and subsequent in vivo integration. Both scaffold components were separately loaded with growth factors, important signaling molecules in tissue regeneration whose rapid degradation limits their clinical efficacy. The two biomaterials provided sequential growth factor delivery profiles: the SAP hydrogel provided a burst release, with the release rate decreasing over 12 hours, while the electrospun nanofibres provided a more constant, sustained delivery. Importantly, this second release commenced 6 days later. The design rules established here to provide temporally distinct release profiles can enable researchers to target specific stages in regeneration, such as the acute immune response versus sustained protection and survival of cells following injury. In summary, this novel composite material combines the physical advantages of SAP hydrogels and electrospun nanofibres, while additionally providing a superior vehicle for the stabilisation and controlled delivery of growth factors necessary for optimal tissue repair.
Collapse
Affiliation(s)
- Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
12
|
Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res 2017; 120:68-87. [DOI: 10.1016/j.phrs.2017.03.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/23/2017] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
|
13
|
Bruggeman KF, Rodriguez AL, Parish CL, Williams RJ, Nisbet DR. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel. NANOTECHNOLOGY 2016; 27:385102. [PMID: 27517970 DOI: 10.1088/0957-4484/27/38/385102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.
Collapse
Affiliation(s)
- Kiara F Bruggeman
- Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | |
Collapse
|
14
|
Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. J Control Release 2015; 206:187-205. [DOI: 10.1016/j.jconrel.2015.03.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/03/2023]
|
15
|
Experimental and numerical evaluation of drug release from nanofiber mats to brain tissue. J Biomed Mater Res B Appl Biomater 2014; 103:282-91. [DOI: 10.1002/jbm.b.33197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/31/2014] [Accepted: 04/24/2014] [Indexed: 01/29/2023]
|
16
|
Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv Drug Deliv Rev 2013; 65:1403-19. [PMID: 23726943 DOI: 10.1016/j.addr.2013.05.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/16/2013] [Accepted: 05/22/2013] [Indexed: 11/23/2022]
Abstract
Lab-on-a-chip technology is an emerging field evolving from the recent advances of micro- and nanotechnologies. The technology allows the integration of various components into a single microdevice. Microfluidics, the science and engineering of fluid flow in microscale, is the enabling underlying concept for lab-on-a-chip technology. The present paper reviews the design, fabrication and characterization of drug delivery systems based on this amazing technology. The systems are categorized and discussed according to the scales at which the drug is administered. Starting with the fundamentals on scaling laws of mass transfer and basic fabrication techniques, the paper reviews and discusses drug delivery devices for cellular, tissue and organism levels. At the cellular level, a concentration gradient generator integrated with a cell culture platform is the main drug delivery scheme of interest. At the tissue level, the synthesis of smart particles as drug carriers using lab-on-a-chip technology is the main focus of recent developments. At the organism level, microneedles and implantable devices with fluid-handling components are the main drug delivery systems. For drug delivery to a small organism that can fit into a microchip, devices similar to those of cellular level can be used.
Collapse
|
17
|
Casalini T, Masi M, Perale G. Drug eluting sutures: A model for in vivo estimations. Int J Pharm 2012; 429:148-57. [DOI: 10.1016/j.ijpharm.2012.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
18
|
Brown CD, Stayton PS, Hoffman AS. Semi-interpenetrating network of poly(ethylene glycol) and poly(D, L-lactide) for the controlled delivery of protein drugs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 16:189-201. [PMID: 15794485 DOI: 10.1163/1568562053115471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have prepared a semi-interpenetrating network (IPN) of poly(ethylene glycol) dimethacrylate (PEGDMA) with entrapped poly(D,L-lactide) (PLA) using photochemical techniques. These IPNs were developed for the controlled delivery of protein drugs such as growth factors. The PEG component draws water into the network, forming a hydrogel within the PLA matrix, controlling and facilitating release of the protein drug, while the PLA component both strengthens the PEG hydrogel and enhances the degradation and elimination of the network after the protein drug is released. The rate and extent of swelling and the resultant protein release kinetics could be controlled by varying the PEG/PLA ratio and total PLA content. These IPNs were prepared using a biocompatible benzyl benzoate/benzyl alcohol solvent system that yields a uniform, fine dispersion of the protein throughout the PEG/PLA IPN matrix. IPNs composed of high molecular mass PLA and lower PEG/PLA ratios exhibited lower equilibrium swelling ratios. The release of bovine serum albumin (BSA), a model protein, from these IPNs was characterized by a large initial burst, regardless of the PEG/PLA ratio, due to the entrapment of residual solvent within the network. Microparticles of the PEG/PLA IPNs were also prepared using a modified Prolease strategy. Residual solvent removal was significantly enhanced using this process. The microparticles also exhibited a significant reduction in the initial burst release of protein. Mixtures of different compositions of PEG/PLA microparticles should be useful for the delivery of a variety of protein drugs with different release kinetics from any tissue-engineering matrix.
Collapse
Affiliation(s)
- Chad D Brown
- University of Washington, Department of Bioengineering, Box 352255, Seattle, WA 98195, USA
| | | | | |
Collapse
|
19
|
Wang J, Hou T. Application of molecular dynamics simulations in molecular property prediction II: diffusion coefficient. J Comput Chem 2011; 32:3505-19. [PMID: 21953689 PMCID: PMC3193570 DOI: 10.1002/jcc.21939] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/10/2011] [Accepted: 08/14/2011] [Indexed: 11/08/2022]
Abstract
In this work, we have evaluated how well the general assisted model building with energy refinement (AMBER) force field performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, five organic compounds in aqueous solutions, four proteins in aqueous solutions, and nine organic compounds in nonaqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned errors and the root mean square errors are 0.137 and 0.171 × 10(-5) cm(-2) s(-1), respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for eight organic solvents with experimental data (R(2) = 0.784), four proteins in aqueous solutions (R(2) = 0.996), and nine organic compounds in nonaqueous solutions (R(2) = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide, and cyclohexane have been studied. The major molecular dynamics (MD) settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution.
Collapse
Affiliation(s)
- Junmei Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9050, USA
| | - Tingjun Hou
- Institute of Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
20
|
Stem cells and growth factor delivery systems for cardiovascular disease. J Biotechnol 2011; 154:291-7. [PMID: 21663773 DOI: 10.1016/j.jbiotec.2011.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 11/22/2022]
Abstract
Coronary (CAD) and peripheral (PAD) artery diseases are major causes of morbidity and mortality, and millions of CAD and PAD patients are treated by various medications, bypass surgery or angioplasty around the world. Such patients might benefit from novel stem cells and tissue engineering strategies aimed at accelerating natural processes of postnatal collateral vessel formation and repairing damaged tissues. By combining three fundamental "tools", namely stem cells, biomaterials and growth factors (GFs), such strategies may enhance the efficacy of cell therapy in several ways: (a) by supplying exogenous stem cells or GFs that stimulate resident cardiac stem cell (CSC) migration, engraftment and commitment to cardiomyocytes, and that induce and modulate arterial response to ischemia; (b) by supporting the maintenance of GFs and transplanted stem cells in the damaged tissues through the use of biocompatible and biodegradable polymers for a period of time sufficient to allow histological and anatomical restoration of the damaged tissue. This review will discuss the potential of combining stem cells and new delivery systems for growth factors, such as vehicle-based delivery strategies or cell-based gene therapy, to facilitate regeneration of ischemic tissues. These approaches would promote the ability of resident CSCs or of exogenous multipotent stem cells such as adipose tissue-derived mesenchymal stem cells (AT-MSCs) to induce the healing of damaged tissue, by recruiting and directing these cells into the damage area and by improving angiogenesis and reperfusion of ischemic tissues.
Collapse
|
21
|
Cooke MJ, Wang Y, Morshead CM, Shoichet MS. Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials 2011; 32:5688-97. [PMID: 21550655 DOI: 10.1016/j.biomaterials.2011.04.032] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/12/2011] [Indexed: 01/06/2023]
Abstract
One of the challenges in treating central nervous system (CNS) disorders with biomolecules is achieving local delivery while minimizing invasiveness. For the treatment of stroke, stimulation of endogenous neural stem/progenitor cells (NSPCs) by growth factors is a promising strategy for tissue regeneration. Epidermal growth factor (EGF) enhances proliferation of endogenous NSPCs in the subventricular zone (SVZ) when delivered directly to the ventricles of the brain; however, this strategy is highly invasive. We designed a biomaterials-based strategy to deliver molecules directly to the brain without tissue damage. EGF or poly(ethylene glycol)-modified EGF (PEG-EGF) was dispersed in a hyaluronan and methylcellulose (HAMC) hydrogel and placed epi-cortically on both uninjured and stroke-injured mouse brains. PEG-modification decreased the rate of EGF degradation by proteases, leading to a significant increase in protein accumulation at greater tissue depths than previously shown. Consequently, EGF and PEG-EGF increased NSPC proliferation in uninjured and stroke-injured brains; and in stroke-injured brains, PEG-EGF significantly increased NSPC stimulation. Our epi-cortical delivery system is a minimally-invasive method for local delivery to the brain, providing a new paradigm for local delivery to the brain.
Collapse
Affiliation(s)
- Michael J Cooke
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, Canada M5S 3E5
| | | | | | | |
Collapse
|
22
|
Wang Y, Cooke MJ, Lapitsky Y, Wylie RG, Sachewsky N, Corbett D, Morshead CM, Shoichet MS. Transport of epidermal growth factor in the stroke-injured brain. J Control Release 2010; 149:225-35. [PMID: 21035512 DOI: 10.1016/j.jconrel.2010.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 12/21/2022]
Abstract
Stroke is a neurological disorder that currently has no cure. Intrathecal delivery of growth factors, specifically recombinant human epidermal growth factor (rhEGF), stimulates endogenous neural precursor cells in the subventricular zone (SVZ) and promotes tissue regeneration in animal models of stroke. In this model, rhEGF is delivered with an invasive minipump/catheter system, which causes trauma to the brain. A less invasive strategy is to deliver rhEGF from the brain cortex; however, this requires the protein to diffuse through the brain, from the site of injection to the SVZ. Although this method of delivery has great potential, diffusion is limited by rapid removal from the extracellular space and hence for successful translation into the clinic strategies are needed to increase the diffusion distance. Using integrative optical imaging we investigate diffusion of rhEGF vs. poly(ethylene glycol)-modified rhEGF (PEG-rhEGF) in brain slices of both uninjured and stroke-injured animals. For the first time, we quantitatively show that PEG modification reduces the rate of growth factor elimination by over an order of magnitude. For rhEGF this corresponds to a two to threefold increase in predicted brain penetration distance, which we confirm with in vivo data.
Collapse
Affiliation(s)
- Yuanfei Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, Canada M5S 3E5
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Walker EY, Barbour DL. Designing in vivo concentration gradients with discrete controlled release: a computational model. J Neural Eng 2010; 7:046013. [PMID: 20644248 PMCID: PMC2922513 DOI: 10.1088/1741-2560/7/4/046013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One promising neurorehabilitation therapy involves presenting neurotrophins directly into the brain to induce growth of new neural connections. The precise control of neurotrophin concentration gradients deep within neural tissue that would be necessary for such a therapy is not currently possible, however. Here we evaluate the theoretical potential of a novel method of drug delivery, discrete controlled release (DCR), to control effective neurotrophin concentration gradients in an isotropic region of neocortex. We do so by constructing computational models of neurotrophin concentration profiles resulting from discrete release locations into the cortex and then optimizing their design for uniform concentration gradients. The resulting model indicates that by rationally selecting initial neurotrophin concentrations for drug-releasing electrode coatings in a square 16-electrode array, nearly uniform concentration gradients (i.e. planar concentration profiles) from one edge of the electrode array to the other should be obtainable. DCR therefore represents a promising new method of precisely directing neuronal growth in vivo over a wider spatial profile than would be possible with single release points.
Collapse
Affiliation(s)
- Edgar Y Walker
- Laboratory of Sensory Neuroscience and Neuroengineering, Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | | |
Collapse
|
24
|
Sirianni RW, Olausson P, Chiu AS, Taylor JR, Saltzman WM. The behavioral and biochemical effects of BDNF containing polymers implanted in the hippocampus of rats. Brain Res 2010; 1321:40-50. [PMID: 20096671 DOI: 10.1016/j.brainres.2010.01.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/25/2009] [Accepted: 01/14/2010] [Indexed: 01/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is closely linked with neuronal survival and plasticity in psychiatric disorders. In this work, we engineered degradable, injectable alginate microspheres and non-degradable, implantable poly(ethylene vinyl acetate) matrices to continuously deliver BDNF to the dorsal hippocampus of rats for two days or more than a week, respectively. The antidepressant-like behavioral effects of BDNF delivery were examined in the Porsolt forced swim test. Rats were sacrificed 10days after surgery and tissue samples were analyzed by western blot. A small dose of BDNF delivered in a single infusion, or from a two-day sustained-release alginate implant, produced an antidepressant-like behavior, whereas the same dose delivered over a longer period of time to a larger tissue region did not produce antidepressant-like effects. Prolonged delivery of BDNF resulted in a dysregulation of plasticity-related functions: increased dose and duration of BDNF delivery produced increased levels of TrkB, ERK, CREB, and phosphorylated ERK, while also producing decreased phosphorylated CREB. It is evident from this work that both duration and magnitude of BDNF dosing are of critical importance in achieving functional outcome.
Collapse
Affiliation(s)
- Rachael W Sirianni
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|
25
|
Foley CP, Nishimura N, Neeves KB, Schaffer CB, Olbricht WL. Flexible microfluidic devices supported by biodegradable insertion scaffolds for convection-enhanced neural drug delivery. Biomed Microdevices 2009; 11:915-24. [PMID: 19353271 DOI: 10.1007/s10544-009-9308-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Convection enhanced delivery (CED) can improve the spatial distribution of drugs delivered directly to the brain. In CED, drugs are infused locally into tissue through a needle or catheter inserted into brain parenchyma. Transport of the infused material is dominated by convection, which enhances drug penetration into tissue compared with diffusion mediated delivery. We have fabricated and characterized an implantable microfluidic device for chronic convection enhanced delivery protocols. The device consists of a flexible parylene-C microfluidic channel that is supported during its insertion into tissue by a biodegradable poly(DL-lactide-co-glycolide) scaffold. The scaffold is designed to enable tissue penetration and then erode over time, leaving only the flexible channel implanted in the tissue. The device was able to reproducibly inject fluid into neural tissue in acute experiments with final infusate distributions that closely approximate delivery from an ideal point source. This system shows promise as a tool for chronic CED protocols.
Collapse
Affiliation(s)
- Conor P Foley
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
26
|
Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm 2008; 364:328-43. [DOI: 10.1016/j.ijpharm.2008.09.004] [Citation(s) in RCA: 837] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 11/29/2022]
|
27
|
Linninger AA, Somayaji MR, Zhang L, Smitha Hariharan M, Penn RD. Rigorous mathematical modeling techniques for optimal delivery of macromolecules to the brain. IEEE Trans Biomed Eng 2008; 55:2303-13. [PMID: 18713700 DOI: 10.1109/tbme.2008.923920] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several treatment modalities for neurodegenerative diseases or tumors of the central nervous system involve invasive delivery of large molecular weight drugs to the brain. Despite the ample record of experimental studies, accurate drug targeting for the human brain remains a challenge. This paper proposes a systematic design method of administering drugs to specific locations in the human brain based on first principles transport in porous media. The proposed mathematical framework predicts achievable treatment volumes in target regions as a function of brain anatomy and infusion catheter position. A systematic procedure to determine the optimal infusion and catheter design parameters that maximize the penetration depth and volumes of distribution will be discussed. The computer simulations are validated with agarose gel phantom experiments and rat data. The rigorous computational approach will allow physicians and scientists to better plan the administration of therapeutic drugs to the central nervous system.
Collapse
Affiliation(s)
- Andreas A Linninger
- Laboratory for Product and Process Design, Department of Chemical and Bioengineering, University of Illinois, Chicago, IL 60607, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is approximately 20% and the tortuosity is approximately 1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.
Collapse
Affiliation(s)
- Eva Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
29
|
Linninger AA, Somayaji MR, Erickson T, Guo X, Penn RD. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. J Biomech 2008; 41:2176-87. [PMID: 18550067 DOI: 10.1016/j.jbiomech.2008.04.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 11/16/2022]
Abstract
Effective drug delivery for many neurodegenerative diseases or tumors of the central nervous system is challenging. Targeted invasive delivery of large macromolecules such as trophic factors to desired locations inside the brain is difficult due to anisotropy and heterogeneity of the brain tissue. Despite much experimental research, prediction of bio-transport phenomena inside the brain remains unreliable. This article proposes a rigorous computational approach for accurately predicting the fate of infused therapeutic agents inside the brain. Geometric and physiological properties of anisotropic and heterogeneous brain tissue affecting drug transport are accounted for by in-vivo diffusion tensor magnetic resonance imaging data. The three-dimensional brain anatomy is reconstructed accurately from subject-specific medical images. Tissue anisotropy and heterogeneity are quantified with the help of diffusion tensor imaging (DTI). Rigorous first principles physical transport phenomena are applied to predict the fate of a high molecular weight trophic factor infused into the midbrain. Computer prediction of drug distribution in humans accounting for heterogeneous and anisotropic brain tissue properties have not been adequately researched in open literature before.
Collapse
Affiliation(s)
- Andreas A Linninger
- Laboratory for Product and Process Design, Department of Chemical Engineering and Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street-218, Chicago, IL 60607, USA.
| | | | | | | | | |
Collapse
|
30
|
Willerth SM, Sakiyama-Elbert SE. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv Drug Deliv Rev 2007; 59:325-38. [PMID: 17482308 PMCID: PMC1976339 DOI: 10.1016/j.addr.2007.03.014] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 03/28/2007] [Indexed: 02/07/2023]
Abstract
This review seeks to give an overview of the current approaches to drug delivery from scaffolds for neural tissue engineering applications. The challenges presented by attempting to replicate the three types of nervous tissue (brain, spinal cord, and peripheral nerve) are summarized. Potential scaffold materials (both synthetic and natural) and target drugs are discussed with the benefits and drawbacks given. Finally, common methods of drug delivery, including degradable/diffusion-based delivery systems, affinity-based delivery systems, immobilized drug delivery systems, and electrically controlled drug delivery systems, are examined and critiqued. Based on the current body of work, suggestions for future directions of research in the field of neural tissue engineering are presented.
Collapse
Affiliation(s)
| | - Shelly E. Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University in St. Louis
- Center for Materials Innovation, Washington University in St. Louis
- * To whom correspondence should be addressed: Shelly Sakiyama-Elbert, Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130,
| |
Collapse
|
31
|
Mahoney MJ, Krewson C, Miller J, Saltzman WM. Impact of cell type and density on nerve growth factor distribution and bioactivity in 3-dimensional collagen gel cultures. ACTA ACUST UNITED AC 2006; 12:1915-27. [PMID: 16889521 DOI: 10.1089/ten.2006.12.1915] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Local delivery of protein agents is potentially important in many tissue engineering systems. In this report, we evaluate an experimental system for measuring the rate of nerve growth factor (NGF) transport and biological activity within a 3-dimensional, tissue-like environment. Fetal brain cells or PC12 cells were suspended throughout collagen gel cultures; controlled-release matrices were used to control the spatial and temporal pattern of NGF release. Experimentally measured concentration profiles were compared to profiles predicted by a mathematical model encompassing diffusion and first-order elimination. Our results suggest that NGF moves through gels by diffusion while being eliminated at a rate that depends on cell density. Since diffusion and elimination also govern protein transport in brain tissue, the collagen gel serves as a model system that replicates the main features of transport in the brain and, therefore, can be used to identify new strategies that enhance NGF distribution in the central nervous system. As an example of the utility of this biophysical model, we demonstrate that implantation of multiple controlled-release matrices can broaden NGF distribution in gel cultures; this broadening was accompanied by a significant increase in cellular biological activity. This approach may be useful in customizing NGF distribution throughout degenerating or damaged central nervous system tissue while minimizing toxicity to surrounding healthy tissue.
Collapse
Affiliation(s)
- Melissa J Mahoney
- Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA.
| | | | | | | |
Collapse
|
32
|
Luk YO, Chen WYK, Wong WJ, Hu HH, Hsu LC, Chern CM, Huang KJ, Law SL. Treatment of focal cerebral ischemia with liposomal nerve growth factor. Drug Deliv 2006; 11:319-24. [PMID: 15742557 DOI: 10.1080/10717540490494104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Liposomal nerve growth factor (NGF) was used for the treatment of focal cerebral ischemia in a rat model. Positive charge inducing agents of sphingosine (SP) and stearylamine (S) were formulated in the liposomal NGF. Dose-response of intraventricular injection of liposomal NGF showed significant reduction in infarct volume at the dose of 5 and 10 microg/rat of NGF. The liposomal NGF formulated with SP or S demonstrated similar results in the reduction of total infarct volume in rats. When we increased the molar ratio of SP and S from 0.15 to 0.3, the infarct volume from rats showed a similar value as that of the control treated with NGF solution. Liposomal NGF was given prior to the development of ischemia. We found that NGF was effective in prevention of neuronal death. The NGF concentrations in brain for liposomal NGF were maintained in a level significantly higher than those for NGF solution. This was attributed to the positively charged liposomal NGF bound effectively in brain ventricle and caused longer retention time than free NGF for localization in brain. Therefore, the effect of liposomal NGF on reduction of infarct volume was significant. We assumed that the transportation of NGF might go through the cerebrospinal fluid pathway throughout the ventricular system and subarachnoid system to cerebral cortex to produce a therapeutic effect on ischemia.
Collapse
Affiliation(s)
- Yun-On Luk
- Neurological Institute, Taipei Veterans General Hospital and National Yang-Ming University, School of Medicine, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Li H, Tran VV, Hu Y, Mark Saltzman W, Barnstable CJ, Tombran-Tink J. A PEDF N-terminal peptide protects the retina from ischemic injury when delivered in PLGA nanospheres. Exp Eye Res 2006; 83:824-33. [PMID: 16822505 DOI: 10.1016/j.exer.2006.04.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/06/2006] [Accepted: 04/09/2006] [Indexed: 01/26/2023]
Abstract
The neuroprotective effects of small pigment epithelium-derived factor (PEDF) peptides injected intravitreally as free peptides or delivered in poly(lactide-co-glycolide) (PLGA) nanospheres, were tested in retinal ischemic injury. We induced transient ischemia in C57BL/6 mice by elevating the intraocular pressure to the equivalent of 120 mmHg for 60 min, then injected these eyes with one of the following: PBS, full-length native PEDF, N-terminal peptides-PEDF(136-155) and PEDF(82-121), blank PLGA nanospheres or PLGA loaded with PEDF(82-121) (PLGA-PEDF(82-121)). Morphometric analysis and TUNEL assays were used to determine the extent of retinal damage. Transient ischemia caused a rapid reduction in the number of viable cells in the retinal ganglion cell (RGC) layer over 48h as compared to non-ischemic retinas. About 76% surviving cells in the RGC layer were observed in the full-length PEDF protein treated group, whereas only 32% of cells survived in the PBS group. Thus, PEDF prevented approximately 44% of the cell death in the RGC layer resulting from transient ischemia. PEDF(82-121) peptide was as effective as full-length PEDF when injected as either a free peptide or delivered in PLGA nanospheres. PLGA-PEDF(82-121) showed longer-term protection of the RGC layer with no noticeable side effects at 7days. PEDF and PEDF(82-121) lessened damage to the IPL as measured by layer thickness. PEDF and PEDF(82-121) also delayed retinal responses to ischemic injury as measured by GFAP immunolabeling in Müller cells. PEDF(82-121) is an effective neuroprotective peptide in retinal ischemia. PLGA-PEDF(82-121) offers greater protection to the retina suggesting that this peptide and the method of delivering therapeutically active drugs have potential clinical advantages for longer-term treatments of retinal diseases.
Collapse
Affiliation(s)
- Hong Li
- Department of Ophthalmology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
34
|
Siepmann J, Siepmann F, Florence AT. Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms. Int J Pharm 2006; 314:101-19. [PMID: 16647231 DOI: 10.1016/j.ijpharm.2005.07.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 07/12/2005] [Indexed: 10/24/2022]
Abstract
The mass transport mechanisms involved in the controlled delivery of drugs to living brain tissue are complex and yet not fully understood. Often the drug is embedded within a polymeric or lipidic matrix, which is directly administered into the brain tissue, that is, intracranially. Different types of systems, including microparticles and disc- or rod-shaped implants are used to control the release rate and, thus, to optimize the drug concentrations at the site of action in the brain over prolonged periods of time. Most of these dosage forms are biodegradable to avoid the need for the removal of empty remnants after drug exhaustion. Various physical and chemical processes are involved in the control of drug release from these systems, including water penetration, drug dissolution, degradation of the matrix and drug diffusion. Once the drug has been released from the delivery system, it has to be transported through the living brain tissue to the target site(s). Again, a variety of phenomena, including diffusion, drug metabolism and degradation, passive or active uptake into CNS tissue and convection can be of importance for the fate of the drug. An overview is given of the current knowledge of the nature of barriers to free access of drug to tumour sites within the brain and the state of the art of: (i) mathematical modeling approaches describing the physical transport processes and chemical reactions which can occur in different types of intracranially administered drug delivery systems, and of (ii) theories quantifying the mass transport phenomena occurring after drug release in the living tissue. Both, simplified as well as complex mathematical models are presented and their major advantages and shortcomings discussed. Interestingly, there is a significant lack of mechanistically realistic, comprehensive theories describing both parts in detail, namely, drug transport in the dosage form and in the living brain tissue. High quality experimental data on drug concentrations in the brain tissue are difficult to obtain, hence this is itself an issue in testing mathematical approaches. As a future perspective, the potential benefits and limitations of these mathematical theories aiming to facilitate the design of advanced intracranial drug delivery systems and to improve the efficiency of the respective pharmacotherapies are discussed.
Collapse
Affiliation(s)
- J Siepmann
- College of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany.
| | | | | |
Collapse
|
35
|
Popovic N, Brundin P. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int J Pharm 2006; 314:120-6. [PMID: 16529886 DOI: 10.1016/j.ijpharm.2005.09.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/09/2005] [Indexed: 12/28/2022]
Abstract
Several compounds that exhibit a therapeutic effect in experimental models of neurodegenerative diseases have been identified over recent years. Safe and effective drug delivery to the central nervous system is still one of the main obstacles in translating these experimental strategies into clinical therapies. Different approaches have been developed to enable drug delivery in close proximity to the desired site of action. In this review, we describe biodegradable polymeric systems as drug carriers in models of neurodegenerative diseases. Biomaterials described for intracerebral drug delivery are well tolerated by the host tissue and do not exhibit cytotoxic, immunologic, carcinogenic or teratogenic effects even after chronic exposure. Behavioral improvement and normalization of brain morphology have been observed following treatment using such biomaterials in animal models of Parkinson's, Alzheimer's and Huntington's diseases. Application of these devices for neuroactive drugs is still restricted due to the relatively small volume of tissue exposed to active compound. Further development of polymeric drug delivery systems will require that larger volumes of brain tissue are targeted, with a controlled and sustained drug release that is carefully controlled so it does not cause damage to the surrounding tissue.
Collapse
Affiliation(s)
- N Popovic
- Neuronal Survival Unit, Department of Experimental Medical Science, BMC A10, 22 184 Lund, Sweden.
| | | |
Collapse
|
36
|
Tatard VM, Venier-Julienne MC, Saulnier P, Prechter E, Benoit JP, Menei P, Montero-Menei CN. Pharmacologically active microcarriers: a tool for cell therapy. Biomaterials 2005; 26:3727-37. [PMID: 15621263 DOI: 10.1016/j.biomaterials.2004.09.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 09/21/2004] [Indexed: 02/05/2023]
Abstract
To overcome certain problems encountered in cell therapy, particularly cell survival, lack of cell differentiation and integration in the host tissue, we developed pharmacologically active microcarriers (PAM). These biodegradable particles made with poly(D,L-lactic-co-glycolic acid) (PLGA) and coated with adhesion molecules may serve as a support for cell culture and may be used as cell carriers presenting a controlled delivery of active protein. They can thus support the survival and differentiation of the transported cells as well as their microenvironment. To develop this tool, nerve growth factor (NGF)-releasing PAM, conveying PC12 cells, were produced and characterized. Indeed, these cells have the ability to differentiate into sympathetic-like neurons after adhering to a substrate, in the presence of NGF, and can then release large amounts of dopamine. Certain parameters such as the size of the microcarriers, the conditions enabling the coating of the microparticles and the subsequent adhesion of cells were thus studied to produce optimized PAM.
Collapse
Affiliation(s)
- V M Tatard
- INSERM U 646, Laboratoire d'ingénierie de la Vectorisation Particulaire, 10 rue André Boquel, 49100 Angers, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Stroh M, Zipfel WR, Williams RM, Ma SC, Webb WW, Saltzman WM. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion. NATURE MATERIALS 2004; 3:489-494. [PMID: 15208704 DOI: 10.1038/nmat1159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Accepted: 05/14/2004] [Indexed: 05/24/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a promising therapeutic agent for the treatment of neurodegenerative diseases. However, the limited distribution of this molecule after administration into the brain tissue considerably hampers its efficacy. Here, we show how multiphoton microscopy of fluorescently tagged BDNF in brain-tissue slices provides a useful and rapid screening method for examining the diffusion of large molecules in tissues, and for studying the effects of chemical modifications-for example, conjugating with polyethylene glycol (PEG)-on the diffusion constant. This single variable, obtained by monitoring short-term diffusion in real time, can be effectively used for rational drug design. In this study on fluorescently tagged BDNF and BDNF-PEG, we identify slow diffusion as a major contributing factor to the limited penetration of BDNF, and demonstrate how chemical modification can be used to overcome this barrier.
Collapse
Affiliation(s)
- Mark Stroh
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
38
|
Pizzo DP, Thal LJ. Intraparenchymal nerve growth factor improves behavioral deficits while minimizing the adverse effects of intracerebroventricular delivery. Neuroscience 2004; 124:743-55. [PMID: 15026115 DOI: 10.1016/j.neuroscience.2003.12.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2003] [Indexed: 11/19/2022]
Abstract
Nerve growth factor (NGF) delivered via intracerebroventricular (ICV) infusion restores behavioral and biochemical deficits in animal models of cholinergic hypofunction. However, ICV infusion of NGF induces an array of adverse events including weight loss, thermal hyperalgesia, and Schwann cell hyperplasia. We compared ICV administration with three different doses of intraparenchymally delivered NGF with cytochrome C infusion serving as a control. The goal of the study was to determine whether direct infusion of NGF would result in a more restricted topographical distribution of NGF leading to a reduction or elimination of the adverse events while still augmenting cholinergic functioning sufficiently to restore spatial mnemonic processing. Subsequent to bilateral ibotenic acid lesions of the nucleus basalis magnocellularis (NBM), NGF was delivered into the lateral ventricle or adjacent to the NBM for 11 weeks. Ibotenic acid lesions resulted in reductions in choline acetyltransferase (ChAT) activity in the cortex. The highest and medium dose of NGF led to significant restoration in ChAT activity on par with ICV infusion. The lowest dose was ineffective in altering ChAT activity in any region assayed. Similarly, the two highest doses did not alter weight gain, but ICV-NGF led to a significant weight loss. Intraparenchymal infusion resulted in a dose-dependent attenuation of the development of thermal hyperalgesia. However, the highest dose of intraparenchymal NGF induced Schwann cell hyperplasia at the level of the medulla and upper cervical spinal cord. ICV-NGF was able to completely restore spatial learning and memory as predicted while only the highest intraparenchymal dose was able to able to restore the mnemonic deficits. These data suggest that intraparenchymal infusion of growth factors may provide a viable delivery method in clinical trials using this mode of drug delivery once an optimal dose has been established.
Collapse
Affiliation(s)
- D P Pizzo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
39
|
Stroh M, Zipfel WR, Williams RM, Webb WW, Saltzman WM. Diffusion of nerve growth factor in rat striatum as determined by multiphoton microscopy. Biophys J 2003; 85:581-8. [PMID: 12829512 PMCID: PMC1303113 DOI: 10.1016/s0006-3495(03)74502-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neurotrophins such as nerve growth factor (NGF) may be useful for treating diseases in the central nervous system; our ability to harness the potential therapeutic benefit of NGF is directly related to our understanding of the fate of exogenously supplied factors in brain tissue. We utilized multiphoton microscopy to quantify the dynamic behavior of NGF in coronal, 400- micro m thick, fresh rat brain tissue slices. We administered a solution containing bioactive rhodamine nerve growth factor conjugate via pressure injection and monitored the dispersion in the striatal region of the coronal slices. Multiphoton microscopy facilitated repeated imaging deep ( approximately 200 micro m) into tissue slices with minimal photodamage of tissue and photobleaching of label. The pressure injection paradigm approximated diffusion from a point source, and we therefore used the corresponding solution to the diffusion equation to estimate an apparent diffusion coefficient in brain tissue (D(b)(34 degrees C)) of 2.75 +/- 0.24 x 10(-7) cm(2)/s (average +/- SE). In contrast, we determined a corresponding free diffusion coefficient in buffered solution (D(f)(34 degrees C)) of 12.6 +/- 0.9 x 10(-7) cm(2)/s using multiphoton fluorescence photobleaching recovery. The tortuosity, defined as the square root of the ratio of D(f) to D(b), was 2.14 and moderate in magnitude.
Collapse
Affiliation(s)
- Mark Stroh
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
40
|
Pizzo DP, Winkler J, Sidiqi I, Waite JJ, Thal LJ. Modulation of sensory inputs and ectopic presence of Schwann cells depend upon the route and duration of nerve growth factor administration. Exp Neurol 2002; 178:91-103. [PMID: 12460611 DOI: 10.1006/exnr.2002.8010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nerve growth factor (NGF) ameliorates deficits in models of cholinergic hypofunction. However, notable adverse effects of intracerebroventricular (ICV) infusion of NGF include weight loss, Schwann cell hyperplasia (SCH), and aberrant sensory and sympathetic sprouting. In order to maintain efficacy on the cholinergic basal forebrain (CBF) and minimize these detrimental effects, intraparenchymal NGF infusion was compared with ICV administration to assess morphological and functional measures. NGF was delivered intraparenchymally (Intra-NGF) or intracerebroventricularly (ICV-NGF) for 3 and 6 months. Hypertrophy of cholinergic nucleus basalis neurons at 3 and 6 months was not different between both routes of administration, indicating similar efficacy for the CBF. SCH surrounding the medulla was observed in both Intra- and ICV-NGF animals due to the widespread distribution of NGF from the infusion site. The thickness of SCH reached a plateau at 3 months in ICV-NGF animals, while further proliferation occurred in Intra-NGF animals. More importantly, ectopic Schwann cells and aberrant sensory and sympathetic sprouting within the medulla oblongata were found solely in ICV-NGF animals. Differential changes in sensory processing were evident by an exaggerated response to acoustic stimuli in Intra-NGF animals and a decrease in thermal pain threshold in ICV-NGF-treated animals. Intra-NGF treatment did not produce the reduction in body weight exhibited by ICV-NGF-treated rats. These results indicate that different routes of NGF administration are identically efficacious for CBF neurons, but differentially modulate behaviors and structures leading to distinct profiles of adverse effects. Thus, current trophic factor delivery methods require further refinement to abolish detrimental effects.
Collapse
Affiliation(s)
- Donald P Pizzo
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093-0624, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Controlled release delivery of carmustine from biodegradable polymer wafers was approved as an adjunct to surgical resection in the treatment of recurrent glioblastoma multiforme after it was shown in clinical trials to be well tolerated and effective. Given the localised nature of the drug in the brain tissue, no direct pharmacokinetic measurements have been made in humans after implantation of a carmustine wafer. However, drug distribution and clearance have been extensively studied in both rodent and non-human primate brains at various times after implantation. In addition, studies to characterise the degradation of the polymer matrix, the release kinetics of carmustine and the metabolic fate of the drug and polymer degradation products have been conducted both in vitro and in vivo. GLIADEL wafers have been shown to release carmustine in vivo over a period of approximately 5 days; when in continuous contact with interstitial fluid, wafers should degrade completely over a period of 6 to 8 weeks. Metabolic elimination studies of the polymer degradation products have demonstrated that sebacic acid monomers are excreted from the body in the form of expired CO(2), whereas 1,3-bis-(p-carboxyphenoxy)propane monomers are excreted primarily through the urine. Carmustine degradation products are also excreted primarily through the urine. Pharmacokinetic studies in animals and associated modelling have demonstrated the capability of this modality to produce high dose-delivery (millimolar concentrations) within millimetres of the polymer implant, with a limited penetration distance of carmustine from the site of delivery. The limited spread of drug is presumably due to the high transcapillary permeability of this lipophilic molecule. However, the presence of significant convective flows due to postsurgical oedema may augment the diffusive transport of drug in the hours immediately after wafer implantation, leading to a larger short-term spread of drug. Additionally, in non-human primates, the presence of significant doses in more distant regions of the brain (centimetres away from the implant) has been shown to persist over the course of a week. The drug in this region was presumed to be transported from the implant site by either cerebral blood flow or cerebrospinal fluid flow, suggesting that although drug is able to penetrate the blood-brain barrier at the site of delivery, it may re-enter within the confines of the brain tissue.
Collapse
|
42
|
Kohane DS, Plesnila N, Thomas SS, Le D, Langer R, Moskowitz MA. Lipid-sugar particles for intracranial drug delivery: safety and biocompatibility. Brain Res 2002; 946:206-13. [PMID: 12137923 DOI: 10.1016/s0006-8993(02)02878-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Controlled release of drugs to specific locales in the brain has engendered considerable interest. Here we evaluate the safety and biocompatibility of 6-microm diameter particles composed of dipalmitoylphosphatidylcholine and chondroitin sulfate A, when delivered into the cerebral parenchyma and ventricles, and in the case of intravascular injection. Some particles were loaded with fluorescein-labeled albumin to facilitate detection. Particles placed in medium with cultured murine primary cortical neurons did not increase cell death at concentrations as high as 4 mg/ml. When particles (100 microg in 2 microl) were placed stereotactically in the striatum and lateral ventricles, there was no histological evidence on hematoxylin-eosin stained sections of tissue injury outside of the needle track in any animal 3, 7, and 14 days after injection (n=6 each), and no inflammation. Ventricular size was not significantly different between animals given intraventricular injections of particles and albumin solution at those time points (n=4 each). Intracarotid injection of particles at concentrations of 0.2 and 1 mg/ml (n=4 each) did not affect relative cerebral blood flow, and there were no embolic events on histology. In one animal in the group injected with 5 mg/ml (n=3), there was a profound decrease in rCBF, with patchy emboli on histology. These novel biodegradable particles are biocompatible in and around the brain, and may be safe for intracranial sustained drug delivery either in the parenchyma or into the CSF.
Collapse
Affiliation(s)
- Daniel S Kohane
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | | | | | | | |
Collapse
|
43
|
Butt CM, Zhao B, Duncan MJ, Debski EA. Sculpting the visual map: the distribution and function of serotonin-1A and serotonin-1B receptors in the optic tectum of the frog. Brain Res 2002; 931:21-31. [PMID: 11897085 DOI: 10.1016/s0006-8993(01)03370-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Agonists of serotonin (5-HT)-1 receptors modulate the synaptic strength of the connection between retinal ganglion cells and neurons of the frog optic tectum in brain slices (Brain Res. 1998;781:167-181). We have now used autoradiographic receptor binding techniques to determine the location of 5-HT1A and 5-HT1B binding sites in the laminated optic tectum. 5-HT1A binding sites, as labeled with [3H]8-hydroxy-dipropylaminotetralin (8-OH-DPAT), were highest in the superficial, retinorecipient layers of the tectum, intermediate in layers 6 and 7 and low in the remaining layers. Binding densities in all of these layers were unaffected by optic nerve lesion. 5-HT1B binding sites were visualized using [125I]iodocyanopindolol (ICYP). Binding densities were highest in the plexiform layers 5 and 7 and intermediate in layers 6 and 8. Binding sites were present at low levels in layer 9; however, optic nerve lesion resulted in a strong upregulation of these sites in this layer. Pharmacological manipulation of receptor activation resulted in changes in the activity-dependent visual map that is created at the tectum by retinal ganglion cell terminals. Chronic treatment of the tectum with SB-224289, a selective antagonist of 5-HT1B receptors, disrupted the topographic map. In contrast, exposure to WAY-100635, a selective antagonist of 5-HT1A receptors, refined it. We conclude that both 5-HT1A and 5-HT1B receptors are present in the adult frog tectum and that changes in their activation levels can produce changes in retinotectal transmission levels that drive visual plasticity in opposite directions.
Collapse
Affiliation(s)
- Christopher M Butt
- School of Biological Sciences, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA
| | | | | | | |
Collapse
|
44
|
Abstract
The creation of efficient methods for manufacturing biotechnology drugs--many of which influence fundamental but complex cell behaviours, such as proliferation, migration and differentiation--is creating new opportunities for tissue repair. Many agents are potent and multifunctional; that is, they produce different effects within different tissues. Therefore, control of tissue concentration and spatial localization of delivery is essential for safety and effectiveness. Synthetic systems that can control agent delivery are particularly promising as materials for enhancing tissue regeneration. This review discusses the state of the art in controlled-release and microfluidic drug delivery technologies, and outlines their potential applications for tissue engineering.
Collapse
Affiliation(s)
- W Mark Saltzman
- School of Chemical Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, USA.
| | | |
Collapse
|
45
|
Thorne RG, Frey WH. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 2002; 40:907-46. [PMID: 11735609 DOI: 10.2165/00003088-200140120-00003] [Citation(s) in RCA: 348] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurotrophic factors are proteins with considerable potential in the treatment of central nervous system (CNS) diseases and traumatic injuries. However, a significant challenge to their clinical use is the difficulty associated with delivering these proteins to the CNS. Neurotrophic factors are hydrophilic, typically basic, monomeric or dimeric proteins, mostly in the size range of 5 to 30 kDa. Neurotrophic factors potently support the development, growth and survival of neurons, eliciting biological effects at concentrations in the nanomolar to femtomolar range. They are not orally bioavailable and the blood-brain and blood-cerebrospinal fluid barriers severely limit their ability to enter into and act on sites in the CNS following parenteral systemic routes of administration. Most neurotrophic factors have short in vivo half-lives and poor pharmacokinetic profiles. Their access to the CNS is restricted by rapid enzymatic inactivation, multiple clearance processes, potential immunogenicity and sequestration by binding proteins and other components of the blood and peripheral tissues. The development of targeted drug delivery strategies for neurotrophic factors will probably determine their clinical effectiveness for CNS conditions. Achieving significant CNS target site concentrations while limiting systemic exposure and distribution to peripheral sites of action will lessen unwanted pleiotropic effects and toxicity. Local introduction of neurotrophic factors into the CNS intraparenchymally by direct injection/infusion or by implantation of delivery vectors such as polymer matrices or genetically modified cells yields the highest degree of targeting, but is limited by diffusion restrictions and invasiveness. Delivery of neurotrophic factors into the cerebrospinal fluid (CSF) following intracerebroventricular or intrathecal administration is less invasive and allows access to a much wider area of the CNS through CSF circulation pathways. However, diffusional and cellular barriers to penetration into surrounding CNS tissue and significant clearance of CSF into the venous and lymphatic circulation are also limiting. Unconventional delivery strategies such as intranasal administration may offer some degree of CNS targeting with minimal invasiveness. This review presents a summary of the neurotrophic factors and their indications for CNS disorders, their physicochemical characteristics and the different approaches that have been attempted or suggested for their delivery to the CNS. Future directions for further research such as the potential for CNS disease treatment utilising combinations of neurotrophic factors, displacement strategies, small molecule mimetics, chimaeric molecules and gene therapy are also discussed.
Collapse
Affiliation(s)
- R G Thorne
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
46
|
Whitaker MJ, Quirk RA, Howdle SM, Shakesheff KM. Growth factor release from tissue engineering scaffolds. J Pharm Pharmacol 2001; 53:1427-37. [PMID: 11732745 DOI: 10.1211/0022357011777963] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Synthetic scaffold materials are used in tissue engineering for a variety of applications, including physical supports for the creation of functional tissues, protective gels to aid in wound healing and to encapsulate cells for localized hormone-delivery therapies. In order to encourage successful tissue growth, these scaffold materials must incorporate vital growth factors that are released to control their development. A major challenge lies in the requirement for these growth factor delivery mechanisms to mimic the in-vivo release profiles of factors produced during natural tissue morphogenesis or repair. This review highlights some of the major strategies for creating scaffold constructs reported thus far, along with the approaches taken to incorporate growth factors within the materials and the benefits of combining tissue engineering and drug delivery expertise.
Collapse
Affiliation(s)
- M J Whitaker
- School of Pharmaceutical Sciences, The University of Nottingham, UK
| | | | | | | |
Collapse
|
47
|
Veziers J, Lesourd M, Jollivet C, Montero-Menei C, Benoit JP, Menei P. Analysis of brain biocompatibility of drug-releasing biodegradable microspheres by scanning and transmission electron microscopy. J Neurosurg 2001; 95:489-94. [PMID: 11565872 DOI: 10.3171/jns.2001.95.3.0489] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Stereotactically guided implantation of biodegradable microspheres is a promising strategy for delivery of neurotrophic factors in a precise and spatially defined brain area. The goal in this study was to show the biocompatibility of poly(D,L,lactide-co-glycolide) microspheres with brain tissue at the ultrastructural level and to analyze the three-dimensional (3D) ultrastructure after intrastriatal implantation of these microparticles. METHODS Scanning and transmission electron microscopy were used to study the microspheres and their environment after implantation in an inert material (gelatin) and in the rat striatum. Observations were made at different time periods, ranging from 24 hours to 2 months postimplantation. CONCLUSIONS The progressive degradation of the microspheres, with vacuolization, deformation, and shrinkage, was well visualized. This degradation was identical in microspheres implanted in the inert material and in the rat brain tissue, independent of the presence of macrophages. The studies preformed in the striatum permitted the authors to demonstrate the structural integrity of axons in contact with microspheres, confirming the biocompatibility of the polymer. Furthermore, scanning electron microscopy showed the preservation of the 3D ultrastructure of the striatum around the microparticles. These microparticles, which can be stereotactically implanted in functional areas of the brain and can release neurotrophic factors, could represent, for some indications, an alternative to gene therapy.
Collapse
Affiliation(s)
- J Veziers
- Service de Neurochirurgie, Centre Hospitalo-Universitaire d'Angers, France
| | | | | | | | | | | |
Collapse
|
48
|
Tu S, Debski EA. Neurotrophins, but not depolarization, regulate substance P expression in the developing optic tectum. ACTA ACUST UNITED AC 2001. [PMID: 11438942 DOI: 10.1002/neu.1047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurotransmitter expression can be regulated by both activity and neurotrophins in a number of in vitro systems. We examined whether either of these factors was likely to play a role in the in vivo optic nerve-dependent regulation of a substance P-like immunoreactive (SP-ir) population of cells in the developing optic tectum of the frog. In contrast to our previous results with the adult system, blocking tectal cell responses to glutamate release by retinal ganglion cells with 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) did not affect the percent of SP-ir cells in the developing tectum. Treatment with d-(-)-2-amino-5-phosphonovaleric acid (d-AP-5) was also ineffective in this regard, although both it and CNQX treatment disrupted visual map topography. Chronic treatment with brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5) produced increases in SP-ir cells in the treated lobes of normal animals, which were significant in the case of NT-4/5. Both substances also prevented the decrease of SP cells that would otherwise occur in the deafferented lobe of unilaterally optic nerve-transected tadpoles. These changes in the percent of SP-ir cells occurred without any detectable changes in the overall number of tectal cells. NGF had no effect on SP expression. Nor did it affect topographic map formation, which was disrupted by treatment with either BDNF or NT-4/5. Our results demonstrate that different mechanisms regulate SP expression in the developing and adult tectum. They indicate that neurotrophin levels in the developing optic tectum may selectively regulate a specific neuropeptide-expressing population of cells.
Collapse
Affiliation(s)
- S Tu
- School of Biological Sciences, University of Kentucky, Lexington, Kentucky 40506, USA
| | | |
Collapse
|
49
|
Fleming AB, Saltzman WM. Simultaneous delivery of an active protein and neutralizing antibody: creation of separated regions of biological activity. J Control Release 2001; 70:29-36. [PMID: 11166405 DOI: 10.1016/s0168-3659(00)00318-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spatial control over the biological activity of nerve growth factor (NGF) via a novel type of controlled-release device was demonstrated in an in vitro system. Two-layer polymer matrices that simultaneously released NGF and a neutralizing antibody (anti-NGF) from opposite faces were placed in PC12 cell-populated collagen gels. Biological activity in the gels was assessed over the course of 10 days by direct observation of the cells, which extend neuronal processes in the presence of NGF in a dose-dependent manner. The concentrations of both proteins in the gels were determined by ELISA as a function of distance from the polymer matrices at various time points. A boundary in biological activity was established within a few days of the initiation of the cultures; this boundary persisted and became more pronounced throughout the duration of the experiment. ELISA analysis revealed regions of high concentration of both NGF and anti-NGF on their respective sides of the polymer matrix early in the experiment. The theoretical amount of active NGF in the gel sections was calculated on the basis of these ELISA results; the concentration of active NGF in the region adjacent to the polymer correlated with the observed degree of biological response. These experiments suggest that spatial control over the biological activity of a potent agent can be obtained by an appropriately designed controlled-release device.
Collapse
Affiliation(s)
- A B Fleming
- School of Chemical Engineering, 120 Olin Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
50
|
Read TA, Sorensen DR, Mahesparan R, Enger PO, Timpl R, Olsen BR, Hjelstuen MH, Haraldseth O, Bjerkvig R. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol 2001; 19:29-34. [PMID: 11135548 DOI: 10.1038/83471] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We describe a technique for the treatment of malignant brain tumors based on local delivery of the anti-angiogenic protein endostatin from genetically engineered cells encapsulated in ultrapure sodium alginate. Alginate consists of L-guluronic and D-mannuronic acid, which in the presence of divalent cations forms an extended gel network, in which cells reside and remain immunoisolated, when implanted into the rat brain. Here, we show that endostatin-transfected cells encapsulated in alginate maintain endostatin secretion for at least four months after intracerebral implantation in rats. During the implantation period 70% of the encapsulated cells remained viable, as opposed to 85% in in vitro-cultured capsules. Rats that received transplants of BT4C glioma cells, together with endostatin-producing capsules (0.2 microg/ml per capsule), survived 84% longer than the controls. The endostatin released from the capsules led to an induction of apoptosis, hypoxia, and large necrotic avascular areas within 77% of the treated tumors, whereas all the controls were negative. The encapsulation technique may be used for many different cell lines engineered to potentially interfere with the complex microenvironment in which tumor and normal cells reside. The present work may thus provide the basis for new therapeutic approaches toward brain tumors.
Collapse
Affiliation(s)
- T A Read
- Department of Anatomy and Cell Biology, University of Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|