1
|
Veyres N, Hamadjida A, Huot P. Predictive Value of Parkinsonian Primates in Pharmacologic Studies: A Comparison between the Macaque, Marmoset, and Squirrel Monkey. J Pharmacol Exp Ther 2018; 365:379-397. [PMID: 29523699 DOI: 10.1124/jpet.117.247171] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/06/2018] [Indexed: 03/08/2025] Open
Abstract
The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate is the gold-standard animal model of Parkinson disease (PD) and has been used to assess the effectiveness of experimental drugs on dyskinesia, parkinsonism, and psychosis. Three species have been used in most studies-the macaque, marmoset, and squirrel monkey-the last much less so than the first two species; however, the predictive value of each species at forecasting clinical efficacy, or lack thereof, is poorly documented. Here, we have reviewed all the published literature detailing pharmacologic studies that assessed the effects of experimental drugs on dyskinesia, parkinsonism, and psychosis in each of these species and have calculated their predictive value of success and failure at the clinical level. We found that, for dyskinesia, the macaque has a positive predictive value of 87.5% and a false-positive rate of 38.1%, whereas the marmoset has a positive predictive value of 76.9% and a false-positive rate of 15.6%. For parkinsonism, the macaque has a positive predictive value of 68.2% and a false-positive rate of 44.4%, whereas the marmoset has a positive predictive value of 86.9% and a false-positive rate of 41.7%. No drug that alleviates psychosis in the clinic has shown efficacy at doing so in the macaque, whereas the marmoset has 100% positive predictive value. The small number of studies conducted in the squirrel monkey precluded us from calculating its predictive efficacy. We hope our results will help in the design of pharmacologic experiments and will facilitate the drug discovery and development process in PD.
Collapse
Affiliation(s)
- Nicolas Veyres
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada
| | - Adjia Hamadjida
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada
| | - Philippe Huot
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada
| |
Collapse
|
2
|
Non-human primate models of PD to test novel therapies. J Neural Transm (Vienna) 2017; 125:291-324. [PMID: 28391443 DOI: 10.1007/s00702-017-1722-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed L-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.
Collapse
|
3
|
Pereira A, Maraschin M. Banana (Musa spp) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health. JOURNAL OF ETHNOPHARMACOLOGY 2015; 160:149-63. [PMID: 25449450 DOI: 10.1016/j.jep.2014.11.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banana is a fruit with nutritional properties and also with acclaimed therapeutic uses, cultivated widely throughout the tropics as source of food and income for people. Banana peel is known by its local and traditional use to promote wound healing mainly from burns and to help overcome or prevent a substantial number of illnesses, as depression. AIM OF THE STUDY This review critically assessed the phytochemical properties and biological activities of Musa spp fruit pulp and peel. MATERIALS AND METHODS A survey on the literature on banana (Musa spp, Musaceae) covering its botanical classification and nomenclature, as well as the local and traditional use of its pulp and peel was performed. Besides, the current state of art on banana fruit pulp and peel as interesting complex matrices sources of high-value compounds from secondary metabolism was also approached. RESULTS Dessert bananas and plantains are systematic classified into four sections, Eumusa, Rhodochlamys, Australimusa, and Callimusa, according to the number of chromosomes. The fruits differ only in their ploidy arrangement and a single scientific name can be given to all the edible bananas, i.e., Musa spp. The chemical composition of banana's peel and pulp comprise mostly carotenoids, phenolic compounds, and biogenic amines. The biological potential of those biomasses is directly related to their chemical composition, particularly as pro-vitamin A supplementation, as potential antioxidants attributed to their phenolic constituents, as well as in the treatment of Parkinson's disease considering their contents in l-dopa and dopamine. CONCLUSION Banana's pulp and peel can be used as natural sources of antioxidants and pro-vitamin A due to their contents in carotenoids, phenolics, and amine compounds, for instance. For the development of a phytomedicine or even an allopathic medicine, e.g., banana fruit pulp and peel could be of interest as raw materials riches in beneficial bioactive compounds.
Collapse
Affiliation(s)
- Aline Pereira
- Federal University of Santa Catarina, Plant Morphogenesis and Biochemistry Laboratory, PO Box 476, 88049-900 Florianopolis, Brazil.
| | - Marcelo Maraschin
- Federal University of Santa Catarina, Plant Morphogenesis and Biochemistry Laboratory, PO Box 476, 88049-900 Florianopolis, Brazil.
| |
Collapse
|
4
|
Farkas S, Nagy K, Jia Z, Hortobágyi T, Varrone A, Halldin C, Csiba L, Gulyás B. Signal transduction pathway activity compensates dopamine D₂/D₃ receptor density changes in Parkinson's disease: a preliminary comparative human brain receptor autoradiography study with [³H]raclopride and [³⁵S]GTPγS. Brain Res 2012; 1453:56-63. [PMID: 22480734 DOI: 10.1016/j.brainres.2012.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/25/2022]
Abstract
The degeneration of dopaminergic nigrostriatal pathway in Parkinson's disease (PD) results in alterations of the dopamine receptor system. In the present study we have investigated the relationship between the disease related changes of expressed dopamine D₂/D₃ receptor density and the corresponding intracellular signal transduction route in cortical and sub-cortical brain structures in the human brain. Dopamine D₂/D₃ receptor autoradiography (ARG), using [³H]raclopride, and agonist stimulated [³⁵S]GTPγS (guanosine 5'-O-[γ-thio]triphosphate) binding autoradiography have been performed in human striatum, cingulate gyrus and medial frontal gyrus samples obtained from six deceased PD patients and six age matched control subjects. Receptor densities were expressed as fmol/gram tissue protein for [³H]raclopride; agonist stimulated [³⁵S]GTPγS binding was expressed in fmol/gram tissue and its change was expressed in percentage values above basal binding. Our results indicate that whereas there is a decrease of the dopamine D₂/D₃ receptors in the striatum demonstrated by classical receptor autoradiography (controls and PD: 24.08±2.06 fmol/gram (mean±SEM) and 18.43±2.82 fmol/gram, respectively; p<0.05), the corresponding agonist stimulated [³⁵S]GTPγS binding autoradiography shows unchanged basal [³⁵S]GTPγS binding (controls and PD: 199±17 fmol/g and 198±21 fmol/g, respectively; n.s.) and, at the same time, no change in stimulation (controls and PD: 0.40±4.57% and 1.51±2.27%, respectively; n.s.). In cingular gyrus and medial frontal gyrus neither the dopamine D₂/D₃ receptor densities nor the [³⁵S]GTPγS binding displayed significant differences between PD and age matched control brain samples, whereas the [³⁵S]GTPγS binding values were markedly higher in PD. These preliminary findings may indicate a possible compensatory mechanism in striatal regions of PD brains: the loss of the dopamine receptors in the striatum appears to be compensated by an increased post-synaptic intracellular signal transduction route activity. However, the accurate interpretation of the present findings requires detailed further studies.
Collapse
Affiliation(s)
- Szabolcs Farkas
- Department of Neurology, University of Debrecen Medical and Health Science Center, H-4012 Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
In patients with Parkinson disease, pulsatile administration of dopaminergic drugs is associated with motor fluctuations and dyskinesias. By contrast, treatments that provide more continuous dopaminergic stimulation are associated with less intense motor complications. This can be achieved by using drugs with longer half-lives, delayed release formulations, and routes of administration that permit continuous delivery. The mechanisms by which different modes of dopaminergic treatment (pulsatile or continuous) determine the motor response are not fully understood. However, the use of experimental models of parkinsonism has helped understand the motor complications associated with pulsatile dopamine replacement. These studies have provided important insights into the biochemical and molecular changes in the basal ganglia in response to continuous stimulation. In addition, these models have facilitated the development of new treatments that may stabilize the motor response and the biochemical alterations in the basal ganglia to provide more efficient forms of continuous dopaminergic stimulation in patients with Parkinson disease.
Collapse
|
6
|
Jenner P. Functional models of Parkinson's disease: a valuable tool in the development of novel therapies. Ann Neurol 2009; 64 Suppl 2:S16-29. [PMID: 19127585 DOI: 10.1002/ana.21489] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Functional models of Parkinson's disease (PD) have led to effective treatment for the motor symptoms. Toxin-based models, such as the 6-hydroxydopamine-lesioned rat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate, have resulted in novel dopaminergic therapies and new therapeutic strategies. They have also been used to study processes underlying motor complications, particularly dyskinesia, and for developing pharmacological approaches to dyskinesia avoidance and suppression. Symptomatic models of PD based on nigrostriatal degeneration have a high degree of predictability of clinical effect of dopaminergic drugs on motor symptoms in humans. However, the effects of nondopaminergic drugs in these models do not translate effectively into clinical efficacy. Newer experimental models of PD have attempted to reproduce the pathogenic process and to involve all areas of the brain pathologically affected in humans. In addition, models showing progressive neuronal death have been sought but so far unsuccessfully. Pathogenic modeling has been attempted using a range of toxins, as well as through the use of transgenic models of gene defects in familial PD and mutant rodent strains. However, there are still no accepted progressive models of PD that mimic the processes known to occur during cell death and that result in the motor deficits, pathology, biochemistry, and drug responsiveness as seen in humans. Nevertheless, functional models of PD have led to many advances in treating the motor symptoms of the disorder, and we have been fortunate to have them available. They are an important reason the treatment of PD is so much better compared with treatments for related illnesses.
Collapse
Affiliation(s)
- Peter Jenner
- Neurodegenerative Disease Research Centre, School of Health and Biomedical Sciences, King's College, London, United Kingdom.
| |
Collapse
|
7
|
Marin C, Aguilar E, Mengod G, Cortés R, Rodríguez-Oroz M, Obeso J. Entacapone potentiates the long-duration response but does not normalize levodopa-induced molecular changes. Neurobiol Dis 2008; 32:340-8. [DOI: 10.1016/j.nbd.2008.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/04/2008] [Accepted: 07/25/2008] [Indexed: 11/15/2022] Open
|
8
|
Larramendy C, Taravini IR, Saborido MD, Ferrario JE, Murer MG, Gershanik OS. Cabergoline and pramipexole fail to modify already established dyskinesias in an animal model of parkinsonism. Behav Brain Res 2008; 194:44-51. [DOI: 10.1016/j.bbr.2008.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/13/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
|
9
|
Sharif NA, McLaughlin MA, Kelly CR, Katoli P, Drace C, Husain S, Crosson C, Toris C, Zhan GL, Camras C. Cabergoline: Pharmacology, ocular hypotensive studies in multiple species, and aqueous humor dynamic modulation in the Cynomolgus monkey eyes. Exp Eye Res 2008; 88:386-97. [PMID: 18992242 DOI: 10.1016/j.exer.2008.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/19/2008] [Accepted: 10/01/2008] [Indexed: 12/11/2022]
Abstract
The aims of the current studies were to determine the in vitro and in vivo ocular and non-ocular pharmacological properties of cabergoline using well documented receptor binding, cell-based functional assays, and in vivo models. Cabergoline bound to native and/or human cloned serotonin-2A/B/C (5HT(2A/B/C)), 5HT(1A), 5HT(7), alpha(2B), and dopamine-2/3 (D(2/3)) receptor subtypes with nanomolar affinity. Cabergoline was an agonist at human recombinant 5HT(2), 5HT(1A) and D(2/3) receptors but an antagonist at 5HT(7) and alpha(2) receptors. In primary human ciliary muscle (h-CM) and trabecular meshwork (h-TM) cells, cabergoline stimulated phosphoinositide (PI) hydrolysis (EC(50)=19+/-7 nM in TM; 76 nM in h-CM) and intracellular Ca(2+) ([Ca(2+)](i)) mobilization (EC(50)=570+/-83 nM in h-TM; EC(50)=900+/-320 nM in h-CM). Cabergoline-induced [Ca(2+)](i) mobilization in h-TM and h-CM cells was potently antagonized by a 5HT(2A)-selective antagonist (M-100907, K(i)=0.29-0.53 nM). Cabergoline also stimulated [Ca(2+)](i) mobilization more potently via human cloned 5HT(2A) (EC(50)=63.4+/-10.3 nM) than via 5HT(2B) and 5HT(2C) receptors. In h-CM cells, cabergoline (1 microM) stimulated production of pro-matrix metalloproteinases-1 and -3 and synergized with forskolin to enhance cAMP production. Cabergoline (1 microM) perfused through anterior segments of porcine eyes caused a significant (27%) increase in outflow facility. Topically administered cabergoline (300-500 microg) in Dutch-belted rabbit eyes yielded 4.5 microMM and 1.97 microM levels in the aqueous humor 30 min and 90 min post-dose but failed to modulate intraocular pressure (IOP). However, cabergoline was an efficacious IOP-lowering agent in normotensive Brown Norway rats (25% IOP decrease with 6 microg at 4h post-dose) and in conscious ocular hypertensive cynomolgus monkeys (peak reduction of 30.6+/-3.6% with 50 microg at 3h post-dose; 30.4+/-4.5% with 500 microg at 7h post-dose). In ketamine-sedated monkeys, IOP was significantly lowered at 2.5h after the second topical ocular dose (300 microg) of cabergoline by 23% (p<0.02) and 35% (p<0.004) in normotensive and ocular hypertensive eyes, respectively. In normotensive eyes, cabergoline increased uveoscleral outflow (0.69+/-0.7 microL/min-1.61+/-0.97 microL/min, n=13; p<0.01). However, only seven of the eleven ocular hypertensive monkeys showed significantly increased uveoscleral outflow. These data indicate that cabergoline's most prominent agonist activity involves activation of 5HT(2), 5HT(1A), and D(2/3) receptors. Since 5HT(1A) agonists, 5HT(7) antagonists, and alpha(2) antagonists do not lower IOP in conscious ocular hypertensive monkeys, the 5HT(2) and dopaminergic agonist activities of cabergoline probably mediated the IOP reduction observed with this compound in this species.
Collapse
Affiliation(s)
- Najam A Sharif
- Discovery Ophthalmology Research, Alcon Research Ltd, Fort worth, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jenner P. Preventing and controlling dyskinesia in Parkinson's disease-A view of current knowledge and future opportunities. Mov Disord 2008; 23 Suppl 3:S585-98. [DOI: 10.1002/mds.22022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
11
|
Lane E, Dunnett S. Animal models of Parkinson's disease and L-dopa induced dyskinesia: how close are we to the clinic? Psychopharmacology (Berl) 2008; 199:303-12. [PMID: 17899020 DOI: 10.1007/s00213-007-0931-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 08/27/2007] [Indexed: 01/27/2023]
Abstract
BACKGROUND Several different animal models are currently used to research the neurodegenerative movement disorder Parkinson's disease (PD). RESULTS Models based on the genetic deficits associated with a small percentage of sufferers demonstrate the pathological accumulation of alpha-synuclein characteristic of the disease but have few motor deficits and little neurodegeneration. Conversely, toxin-based models recreate the selective nigrostriatal cell death and show extensive motor dysfunction. However, these toxin models do not reproduce the extra-nigral degeneration that also occurs as part of the disease and lack the pathological hallmark of Lewy body inclusions. DISCUSSION Recently, several therapies that appeared promising in the MPTP-treated non-human primate and 6-OHDA-lesioned rat models have entered clinical trials, with disappointing results. We review the animal models in question and highlight the features that are discordant with PD, discussing if our search for pharmacological treatments beyond the dopamine system has surpassed the capacity of these models to adequately represent the disease.
Collapse
Affiliation(s)
- Emma Lane
- School of Bioscience, Cardiff University, Cardiff, UK.
| | | |
Collapse
|
12
|
|
13
|
Olanow CW, Obeso JA, Stocchi F. Continuous dopamine-receptor treatment of Parkinson's disease: scientific rationale and clinical implications. Lancet Neurol 2006; 5:677-87. [PMID: 16857573 DOI: 10.1016/s1474-4422(06)70521-x] [Citation(s) in RCA: 391] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Levodopa-induced motor complications are a common source of disability for patients with Parkinson's disease. Evidence suggests that motor complications are associated with non-physiological, pulsatile stimulation of dopamine receptors. In healthy brains, dopamine neurons fire continuously, striatal dopamine concentrations are relatively constant, and there is continuous activation of dopamine receptors. In the dopamine-depleted state, standard levodopa therapy does not normalise the basal ganglia. Rather, levodopa or other short-acting dopaminergic drugs induce molecular changes and altered neuronal firing patterns in basal ganglia neurons leading to motor complications. The concept of continuous dopaminergic stimulation proposes that continuous delivery of a dopaminergic drug will prevent pulsatile stimulation and avoid motor complications. In monkeys treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and patients with Parkinson's disease, long-acting or continuous infusion of a dopaminergic drug reduces the risk of motor complications. The current challenge is to develop a long-acting oral formulation of levodopa that provides clinical benefits but avoids motor complications.
Collapse
Affiliation(s)
- C Warren Olanow
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
14
|
Marin C, Aguilar E, Obeso JA. Coadministration of entacapone with levodopa attenuates the severity of dyskinesias in hemiparkinsonian rats. Mov Disord 2006; 21:646-53. [PMID: 16437585 DOI: 10.1002/mds.20780] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Levodopa-induced dyskinesias (LIDs) have been associated with a sequence of events that includes pulsatile stimulation of dopamine receptors. The degree of nigrostriatal degeneration, the half-life of dopaminomimetic agents, and the dose of levodopa used to treat parkinsonian symptoms are factors directly correlated with the development of motor complications in Parkinson's disease patients. Long-acting agents producing continuous dopaminergic stimulation are less likely to prime for dyskinesia than short-acting drugs that produce pulsatile stimulation of dopamine receptors. Inhibition of the enzyme catechol-O-methyl transferase (COMT) by entacapone extends the half-life of levodopa and minimizes variability in plasma levodopa levels. The aim of the present study was to characterize the effect of the early administration of the COMT inhibitor entacapone in the recently described model of LIDs in rats with a nigrostriatal lesion induced by 6-hydroxydopamine (6-OHDA). Male Sprague-Dawley rats received a unilateral 6-OHDA administration in the nigrostriatal pathway. Animals were treated either with levodopa (6 mg/kg, twice at day, i.p.) plus entacapone (30 mg/kg per day, i.p.) or levodopa (6 mg/kg, twice at day, i.p.) plus vehicle for 22 consecutive days. Early administration of entacapone, in association with levodopa, induces a decrease in the severity of dyskinesia and delays their onset in hemiparkinsonian rats. All dyskinesia subtypes evaluated, such as axial, limb, and orofacial dyskinesias, have shown similar reductions. These results suggest that entacapone, by extending levodopa elimination half-life, might reduce its propensity to induce motor complications.
Collapse
Affiliation(s)
- Concepció Marin
- Laboratori de Neurologia Experimental, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain.
| | | | | |
Collapse
|
15
|
Marin C, Aguilar E, Bonastre M, Tolosa E, Obeso JA. Early administration of entacapone prevents levodopa-induced motor fluctuations in hemiparkinsonian rats. Exp Neurol 2005; 192:184-93. [PMID: 15698633 DOI: 10.1016/j.expneurol.2004.10.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 09/27/2004] [Accepted: 10/05/2004] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to investigate the effect of the catechol-O-methyltransferase (COMT) inhibitor, entacapone, in the reversal and prevention of "wearing-off" phenomena in hemiparkinsonian rats. Catechol-O-methyltransferase (COMT) inhibitors increase the half-life and bioavailability of levodopa, providing more continuous dopamine receptor stimulation. This raises the possibility of using levodopa and a COMT inhibitor not only to treat motor complications, but also to prevent their development. Male Sprague-Dawley rats received a unilateral 6-hydroxydopamine (6-OHDA) administration in the nigrostriatal pathway. Two sets of experiments were performed. First, animals were treated with levodopa (50 mg/kg/day with benserazide 12.5 mg/kg/day, twice daily (b.i.d.), intraperitoneally (i.p.) for 22 days. On day 23, animals received either entacapone (30 mg/kg, i.p.) or vehicle with each levodopa dose. In the second set, animals were treated either with levodopa (50 mg/kg/day, i.p.) plus entacapone (30 mg/kg/day, i.p.) or levodopa (50 mg/kg/day, i.p.) plus vehicle, administered two or three times daily [b.i.d. or thrice daily (t.i.d.), respectively] for 22 consecutive days. Entacapone both reversed and prevented the shortening of the motor response duration that defines "wearing-off" motor fluctuations. Entacapone also decreased the frequency of failures to levodopa. The combination of levodopa and entacapone may reduce the likelihood of motor fluctuation development and may thus become a valuable approach to treat Parkinson disease whenever levodopa is needed.
Collapse
Affiliation(s)
- C Marin
- Laboratori de Neurologia Experimental, Servei de Neurologia, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
16
|
Tanaka KI, Ogawa N. Dopamine agonist cabergoline inhibits levodopa-induced caspase activation in 6-OHDA-lesioned mice. Neurosci Res 2005; 51:9-13. [PMID: 15596235 DOI: 10.1016/j.neures.2004.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
Levodopa therapy is the gold standard for symptomatic treatment of Parkinson's disease (PD), but levodopa and/or dopamine (DA)-induced neurotoxicity have been reported in both in vitro and in vivo experimental studies. To clarify the beneficial effects of combining DA agonists with levodopa in PD, the present study examines the effects of cabergoline, a DA agonist, on the levodopa-induced abnormal increase of lipid peroxidation (LPO) and caspase activities in 6-hydroxydopamine (6-OHDA)-lesioned mice. Daily treatments of levodopa/carbidopa for 7 days beginning at 1 day after 6-OHDA i.c.v. injection increased striatal DA levels and glutathione (GSH) contents. Furthermore, a high dose of levodopa/carbidopa (50/12.5 mg/kg) enhanced LPO and caspase-3, -8, and -9 activities in 6-OHDA-lesioned mouse brain. However, when levodopa/carbidopa (50/12.5 mg/kg) was combined with cabergoline (0.25 mg/kg), the effect reduced levodopa's enhancement of caspase-3, -8, and -9 activities in the 6-OHDA-lesioned mouse brain. In addition, the GSH-increasing effect of the combined cabergoline and levodopa/carbidopa treatment was stronger than that of the levodopa/carbidopa mono-treatment. Moreover, cabergoline prevented levodopa-induced abnormal increases of LPO in 6-OHDA-lesioned mice. These results indicate that such prevention is attributable mainly to the increase in GSH content and to the inhibition of caspase activities in 6-OHDA-lesioned mice.
Collapse
Affiliation(s)
- Ken-ichi Tanaka
- Department of Clinical Pharmacy, Shujitsu University School of Pharmacy, Okayama 703-8516, Japan.
| | | |
Collapse
|
17
|
Monville C, Torres EM, Dunnett SB. Validation of the l-dopa-induced dyskinesia in the 6-OHDA model and evaluation of the effects of selective dopamine receptor agonists and antagonists. Brain Res Bull 2004; 68:16-23. [PMID: 16325000 DOI: 10.1016/j.brainresbull.2004.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 10/13/2004] [Accepted: 10/13/2004] [Indexed: 10/26/2022]
Abstract
Current treatments for Parkinson's disease (PD) rely on a dopamine replacement strategy and are reasonably effective, particularly in the early stages of the disease. However, chronic dopaminergic therapy is limited by the development of a range of side effects, including dyskinesia. This has led to a search for alternative treatments. Transplantation of foetal nigral dopamine neurons is a rational approach and many studies have shown that it can improve motor functions in parkinsonian rodents, primates and man. Recently, however, two clinical trials have reported an exacerbation of dyskinesias in some transplanted patients, raising concerns about the safety of the transplantation strategy. To study this issue, we have reproduced the l-dopa-induced dyskinesia model developed by Cenci et al. [M.A. Cenci, C.S. Lee, A. Bjorklund, l-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA, Eur. J. Neurosci. 10 (1998) 2694-2706] in the rat. We find that their abnormal involuntary movements rating scale is easy to apply and consistent to use. Moreover, the Schallert forelimb placing test has been used to assess l-dopa-induced recovery of function and we find that the rats continue to show good recovery on this test, even while they are exhibiting abnormal dyskinetic side effects. To further evaluate this model, we have studied the effects of selective dopamine receptor antagonists and agonists for D1, D2 and D3 receptors. Antagonists of all three receptors are able to block the l-dopa-induced dyskinesia without interfering with the beneficial effects of l-dopa on the placing test. This indicates that the effects of chronic l-dopa on recovery of parkinsonian symptoms and on induction of dyskinetic side effects can be dissociated, which may provide the basis for developing novel combination treatments, e.g. using grafts while blocking the unwanted adverse effects of the drugs.
Collapse
Affiliation(s)
- Christelle Monville
- Cardiff University, School of Biosciences, Museum Avenue, Cardiff CF10 3US, UK.
| | | | | |
Collapse
|
18
|
Blanchet PJ, Calon F, Morissette M, Hadj Tahar A, Bélanger N, Samadi P, Grondin R, Grégoire L, Meltzer L, Di Paolo T, Bédard PJ. Relevance of the MPTP primate model in the study of dyskinesia priming mechanisms. Parkinsonism Relat Disord 2004; 10:297-304. [PMID: 15196509 DOI: 10.1016/j.parkreldis.2004.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 10/26/2022]
Abstract
For nearly 20 years, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model has allowed great strides to be made in our understanding of the maladaptive changes underlying the levodopa-related motor response complications occurring in most parkinsonian patients. Studies indicate that sustained dopamine D2 receptor occupancy can prevent and reverse existing dyskinesias. Recent experiments in levodopa-treated MPTP animals, co-administered either a threshold dose of cabergoline or a glutamate NMDA NR2B-selective antagonist (CI-1041), have afforded protection against dyskinesia, perhaps through presynaptic inhibition of glutamate release and blockade of supersensitive postsynaptic NMDA receptors in the striatum, respectively. Some of the biochemical events that have correlated with dyskinesias, namely upregulated GABA(A) receptors in the internal pallidum, rise in pre-proenkephalin-A gene expression in the striatum, and upregulated striatal glutamate ionotropic receptors and adenosine A(2a) receptors, may be counteracted by these preventive strategies.
Collapse
Affiliation(s)
- Pierre J Blanchet
- Department of Stomatology, Faculty of Dental Medicine, University of Montreal, Que., Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bélanger N, Grégoire L, Hadj Tahar A, Bédard PJ. Chronic treatment with small doses of cabergoline prevents dopa-induced dyskinesias in parkinsonian monkeys. Mov Disord 2003; 18:1436-41. [PMID: 14673879 DOI: 10.1002/mds.10589] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Levodopa continues to be the most effective agent for the symptomatic treatment of Parkinson's disease (PD). But over time, initial benefits decline in efficacy because of a rise in adverse effects such as dyskinesias. The pathophysiology of levodopa-induced dyskinesias (LID) is not completely understood, but it appears to result from deficient regulation by dopamine of corticostriatal glutamatergic inputs leading to a cascade of neurochemical changes in the striatum and the output pathways. In the present study, we examined if the addition of small doses of cabergoline (a long-acting D(2) receptor agonist) to levodopa could prevent LID. The major hypothesis is that sustained activation of postsynaptic D(2) receptors on medium spiny neurons even by small doses of cabergoline could prevent or reduce LID. The minor hypothesis, and the more controversial of the two, is that the long-acting stimulation by small doses of cabergoline could diminish the release of glutamate by the corticostriatal pathway and prevent LID. Eight MPTP-treated monkeys with a long-standing and stable parkinsonian syndrome and having never received dopaminergic agents were used. Two groups of four were treated for 1 month with levodopa/benserazide administered orally (100 mg/25 mg). The second group received in addition a threshold dose of cabergoline (dose ranging from 0.015 to 0.035 mg/kg, SC). During the treatment, we observed LID in the levodopa group but not in the group receiving levodopa+cabergoline. Furthermore, the combination produced a comparable antiparkinsonian effect in terms of quality but prolonged the duration (by 1 to 2 hours) and increased the locomotion (mean for 2 weeks congruent with 104%). Our data suggest that a small dose of a long-acting D(2) agonist combined with high doses of levodopa could be preventive of LID in patients with PD and could be an alternative to using antiglutamatergic agents for this purpose.
Collapse
Affiliation(s)
- Nancy Bélanger
- Department of Medicine and Neuroscience Unit, Laval University and Research Center, Ste-Foy, Quebec, Canada
| | | | | | | |
Collapse
|
20
|
Jenner P. The contribution of the MPTP-treated primate model to the development of new treatment strategies for Parkinson's disease. Parkinsonism Relat Disord 2003; 9:131-7. [PMID: 12573867 DOI: 10.1016/s1353-8020(02)00115-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Current research into Parkinson's disease (PD) is directed at developing novel agents and strategies for improved symptomatic management. The aim of this research is to provide effective and maintained symptom control throughout the course of the disease without loss of efficacy and without priming the basal ganglia for the onset of dyskinesia. To achieve these objectives, it is important to have relevant animal models of PD in which new pharmacological agents and treatment strategies can be assessed prior to clinical assessment. At present, the most effective experimental model of PD is the methyl phenyl tetrahydropyridine (MPTP)-treated primate. Primates treated with MPTP develop motor disturbances resembling those seen in idiopathic PD, including bradykinesia, rigidity and postural abnormalities. In addition, MPTP-treated primates are responsive to all commonly used antiparkinsonian agents and display treatment-associated motor complications such as dyskinesia, wearing-off and on-off, which occur during the long-term treatment of the illness. This review examines how studies conducted in MPTP-treated primates have contributed to the development of dopaminergic therapies. There is now accumulating evidence that the pulsatile manner in which short-acting agents stimulate striatal dopamine receptors is a key contributing factor to the priming of the basal ganglia for dyskinesia induction. It has been suggested that providing more continuous stimulation of dopamine receptors will avoid the development of motor complications, particularly dyskinesia. So far, the actions of all commonly used antiparkinsonian drugs assessed in MPTP-treated primates have proved to be highly predictive of drug action in PD. These primate studies have demonstrated that long-acting dopamine agonists and levodopa given in combination with a catechol-O-methyl transferase (COMT) inhibitor (to increase its relatively short half-life), induce significantly less dyskinesia than occurs with standard levodopa therapy.
Collapse
Affiliation(s)
- Peter Jenner
- Neurodegenerative Disease Research Centre, Hodgkin Building, GKT School of Biomedical Sciences, King's College, SE1 1UL, London, UK.
| |
Collapse
|
21
|
Smith LA, Tel BC, Jackson MJ, Hansard MJ, Braceras R, Bonhomme C, Chezaubernard C, Del Signore S, Rose S, Jenner P. Repeated administration of piribedil induces less dyskinesia than L-dopa in MPTP-treated common marmosets: a behavioural and biochemical investigation. Mov Disord 2002; 17:887-901. [PMID: 12360537 DOI: 10.1002/mds.10200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Piribedil ([1-(3,4-methylenedioxybenzyl)-4-(2-pyrimidinyl)piperazine]; S 4200) is a dopamine agonist with equal affinity for D(2)/D(3) dopamine receptors effective in treating Parkinson's disease as monotherapy or as an adjunct to levodopa (L-dopa). However, its ability to prime basal ganglia for the appearance of dyskinesia is unknown. We now report on the ability of repeated administration of piribedil to induce dyskinesia in drug naïve 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -lesioned common marmosets compared with L-dopa and its actions on the direct and indirect striatal outflow pathways. Administration of piribedil (4.0-5.0 mg/kg orally) or L-dopa (12.5 mg/kg orally plus carbidopa 12.5 mg/kg orally twice daily) produced equivalent increases in locomotor activity and reversal of motor deficits over a 28-day study period. Administration of L-dopa resulted in the progressive development of marked dyskinesia over the period of study. In contrast, administration of piribedil produced a significantly lower degree and intensity of dyskinesia. Surprisingly, piribedil caused an increase in vigilance and alertness compared to L-dopa, which may relate to the recently discovered alpha(2)-noradrenergic antagonist properties of piribedil. The behavioural differences between piribedil and L-dopa are reflected in the biochemical changes associated with the direct striatal output pathway. Administration of L-dopa or piribedil did not reverse the MPTP-induced up-regulation of preproenkephalin A mRNA in rostral or caudal areas of the putamen or caudate nucleus. In contrast, administration of either piribedil or L-dopa reversed the downregulation of preprotachykinin mRNA induced by MPTP in rostral and caudal striatum. L-dopa, but not Piribedil, reversed the decrease in preproenkephalin B mRNA produced by MPTP treatment.
Collapse
Affiliation(s)
- Lance A Smith
- Neurodegenerative Diseases Research Centre, Guy's, King's and St. Thomas' School of Biomedical Sciences, King's College, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yoshioka M, Tanaka KI, Miyazaki I, Fujita N, Higashi Y, Asanuma M, Ogawa N. The dopamine agonist cabergoline provides neuroprotection by activation of the glutathione system and scavenging free radicals. Neurosci Res 2002; 43:259-67. [PMID: 12103444 DOI: 10.1016/s0168-0102(02)00040-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Free radicals are involved in the pathogenesis and/or progression of Parkinson's disease (PD). Several ergot derivative dopamine (DA) agonists have been reported to scavenge free radicals in vitro and to show a neuroprotective effect in vivo. We investigated the in vitro free radical scavenging and antioxidant activities of cabergoline, a long-acting ergot DA agonist, as well as its ability to activate glutathione (GSH), catalase (Cat) and superoxide dismutase (SOD) activating effects and its in vivo neuroprotective properties against 6-hydroxydopamine (6-OHDA) intracerebroventricularly (i.c.v.) in mice. The striatal DA turnover induced by i.c.v. injection of 6-OHDA was completely normalized by pretreatment with cabergoline. Moreover, cabergoline scavenged free radicals in vitro and significantly reduced lipid peroxidation in vitro and in vivo. Furthermore, daily administration of cabergoline to mice significantly increased striatal GSH levels by activation of RNA expressions of GSH-related enzymes, although striatal Cat and SOD activities did not change. In addition, our present results suggest that repeated administration of cabergoline attenuates both 6-OHDA-induced nigrostriatal DAergic dysfunction and DA neuronal cell death, since cabergoline also had a neuroprotective effect in the immunohistochemical experiment. In conclusion, our findings indicate that the multiple antioxidant mechanisms of cabergoline, such as activation of the GSH system and the direct free radical scavenging activity, may explain the neuroprotective effect of this ergot DA agonist.
Collapse
Affiliation(s)
- Michiyo Yoshioka
- Department of Brain Science, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikatacho, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Calon F, Morissette M, Ghribi O, Goulet M, Grondin R, Blanchet PJ, Bédard PJ, Di Paolo T. Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:127-38. [PMID: 11853103 DOI: 10.1016/s0278-5846(01)00237-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal lesion and dopaminomimetic treatment on parameters of glutamatergic activity within the basal ganglia of monkeys were studied in relation with the development of dyskinesias. Drug-naive controls, saline-treated MPTP monkeys, as well as MPTP monkeys treated with either a long-acting D2 agonist (cabergoline) or a D1 agonist (SKF-82958) given by intermittent injections or continuous infusion, were included in this study. 3H-L-glutamate, 3H-alpha-amino-3-hydroxy-5-methylisoxasole-4-propionate (AMPA), 3H-glycine, 3H-CGP39653 (an N-methyl-D-aspartate, NMDA, antagonist selective for NR1/NR2A assembly) and 3H-Ro 25-6981 (an NMDA antagonist selective for NR1/NR2B assembly), specific binding to glutamate receptors, the expression of the NR1 subunit of NMDA receptors and glutamate, glutamine and glycine concentrations were studied by autoradiography, in situ hybridization and high-performance liquid chromatography (HPLC), respectively. Pulsatile SKF-82958 and cabergoline treatment relieved parkinsonian symptoms, whereas animals continuously treated with SKF-82958 remained akinetic. Pulsatile SKF-82958 induced dyskinesias in two of the three animals tested, whereas cabergoline did not. MPTP induced no significant changes of striatal specific binding of the radioligands used, NR1 mRNA expression and amino acid concentrations. In the putamen, pulsatile SKF-82958 treatment was associated with decreased content of glycine and glutamate, whereas only glycine was decreased in cabergoline-treated monkeys. Cabergoline and continuous administration of SKF-82958 led to lower levels of NR1 mRNA in the caudate in comparison to pulsatile SKF-82958 administration. The development of dyskinesias following a D1 agonist treatment was associated with an upregulation of 3H-glutamate [+49%], 3H-AMPA [+38%], 3H-CGP39653 [+ 111%], 3H-glycine [+ 26%, nonsignificant] and 3H-Ro 25-6981 [+ 33%] specific binding in the striatum in comparison to nondyskinetic MPTP monkeys. Our data suggest that supersensitivity to glutamatergic input in the striatum might play a role in the pathogenesis of dopaminomimetic-induced dyskinesias and further support the therapeutic potential of glutamate antagonists in Parkinson's disease.
Collapse
Affiliation(s)
- Frédéric Calon
- Oncology and Molecular Endocrinology Research Center Laval University Medical Center (CHUL), Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hadj Tahar A, Ekesbo A, Grégoire L, Bangassoro E, Svensson KA, Tedroff J, Bédard PJ. Effects of acute and repeated treatment with a novel dopamine D2 receptor ligand on L-DOPA-induced dyskinesias in MPTP monkeys. Eur J Pharmacol 2001; 412:247-54. [PMID: 11166288 DOI: 10.1016/s0014-2999(01)00737-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
(S)-(-)-3-(3-(methylsulfonyl)phenyl)-1-propylpiperidine ((-)-OSU6162) is a phenylpiperidine derivative which exhibits low affinity to the dopamine D2 receptor in vitro. However, in vivo, positron emission tomography scanning studies show that the compound displaces the selective dopamine D2 receptor antagonist, raclopride. We have evaluated, in this study, the effect of (-)-OSU6162, on L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias in a primate model of Parkinson's disease. Five 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated cynomolgus monkeys with a stable parkinsonian syndrome and reproducible dyskinesias to L-DOPA were used in this study. The monkeys were housed in observation cages equipped with an electronic motility monitoring system. They were injected subcutaneously (s.c.) with L-DOPA methyl ester (125 mg per animal) plus benserazide (50 mg per animal; L-DOPA/benserazide) alone or in combination with (-)-OSU6162 (1.0, 3.0, 6.0 or 10 mg/kg, s.c.). Subcutaneous injection of sterile saline was used as control. L-DOPA/benserazide increased locomotion and improved parkinsonism but also induced dyskinesias. Co-administration of (-)-OSU6162 with L-DOPA/benserazide produced a significant reduction in L-DOPA-induced dyskinesias. This improvement in L-DOPA-induced dyskinesias occurred mainly at the onset of the L-DOPA/benserazide effect as reflected by an increase in the duration of the "ON" state without dyskinesias up to 3.4 fold after (-)-OSU6162 co-administration as compared to L-DOPA/benserazide alone. The anti-dyskinetic effect of (-)-OSU6162 was maintained during 14 days and no tolerance to this effect was observed. Our data suggests that (-)-OSU6162 could be of significant clinical value to reduce L-DOPA-induced dyskinesias in fluctuating advanced Parkinson's disease patients.
Collapse
Affiliation(s)
- A Hadj Tahar
- Neuroscience Research Unit (RC-9800), CHUL, Laval University Research Center, 2705 Boul. Laurier, G1V 4G2, Ste.-Foy, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Olanow W, Schapira AH, Rascol O. Continuous dopamine-receptor stimulation in early Parkinson's disease. Trends Neurosci 2000; 23:S117-26. [PMID: 11052229 DOI: 10.1016/s1471-1931(00)00030-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic L-dopa therapy is associated with the development of motor complications in the majority of Parkinson's disease (PD) patients. Although the precise mechanism responsible for these events is not known, increasing laboratory and clinical evidence points to a sequence of events that is initiated by abnormal pulsatile stimulation of dopamine receptors by the intermittent administration of agents with short half-lives such as L-dopa. Initiating therapy with a long-acting dopamine agonist has been shown to delay the onset and reduce the severity of motor complications in MPTP monkeys and PD patients. Administering L-dopa with a catechol-O-methyltransferase (COMT) inhibitor to block its peripheral metabolism increases its plasma half-life and might have a similar effect. Thus, a rational strategy for treating PD would be to initiate therapy with a long-acting dopamine-receptor agonist and supplement at the appropriate time with L-dopa combined with a COMT inhibitor.
Collapse
Affiliation(s)
- W Olanow
- Dept of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
26
|
Abstract
Apomorphine was the first dopaminergic drug ever used to treat symptoms of Parkinson's disease. While powerful antiparkinsonian effects had been observed as early as 1951, the potential of treating fluctuating Parkinson's disease by subcutaneous administration of apomorphine has only recently become the subject of systematic study. A number of small scale clinical trials have unequivocally shown that intermittent subcutaneous apomorphine injections produce antiparkinsonian benefit close if not identical to that seen with levodopa and that apomorphine rescue injections can reliably revert off-periods even in patients with complex on-off motor swings. Continuous subcutaneous apomorphine infusions can reduce daily off-time by more than 50% in this group of patients, which appears to be a stronger effect than that generally seen with add-on therapy with oral dopamine agonists or COMT inhibitors. Extended follow-up studies of up to 8 years have demonstrated long-term persistence of apomorphine efficacy. In addition, there is convincing clinical evidence that monotherapy with continuous subcutaneous apomorphine infusions is associated with marked reductions of preexisting levodopa-induced dyskinesias. The main side effects of subcutaneous apomorphine treatment are related to cutaneous tolerability problems, whereas sedation and psychiatric complications play a lesser role. Given the marked degree of efficacy of subcutaneous apomorphine treatment in fluctuating Parkinson's disease, this approach seems to deserve more widespread clinical use.
Collapse
Affiliation(s)
- W Poewe
- Department of Neurology, University Hospital Innsbruck, Austria
| | | |
Collapse
|
27
|
Hadj Tahar A, Grégoire L, Bangassoro E, Bédard PJ. Sustained cabergoline treatment reverses levodopa-induced dyskinesias in parkinsonian monkeys. Clin Neuropharmacol 2000; 23:195-202. [PMID: 11020123 DOI: 10.1097/00002826-200007000-00005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pathophysiology of L-Dopa-induced dyskinesias (LID), a common problem after long-term use of L-dopa in the treatment of Parkinson's disease (PD), is not completely understood. Oscillations in L-Dopa concentrations in the brain are believed to be responsible, at least in part, for their pathogenesis. This study was aimed at verifying whether chronic administration of cabergoline, a long-acting dopamine D2-like receptor agonist, can reverse established LID. Four MPTP-treated cynomolgus monkeys with long-standing and stable parkinsonian syndrome and reproducible dyskinesias to L-Dopa, were used in this study. We compared the antiparkinsonian and dyskinetic responses of L-Dopa methyl ester (62.5 mg and 125 mg), given with benserazide (50 mg) (L-Dopa/benserazide), administered before and after a 6-week period during which the animals were treated only by daily administration of cabergoline (doses ranging from 0.125 to 0.185 mg/kg, subcutaneous). During cabergoline treatment, the monkeys initially showed marked dyskinesias, which were reduced significantly after 4 weeks of treatment. However, there was no tolerance to its antiparkinsonian effect. L-Dopa/benserazide given 4 days after cabergoline withdrawal produced a significant antiparkinsonian effect, but dyskinesias were dramatically reduced compared to what had been seen before chronic cabergoline treatment. The duration of the L-Dopa response was not increased after chronic administration of cabergoline. Our data suggest that sustained dopamine D2 receptor stimulation could be of value when trying to reduce or to reverse LID in patients with fluctuating advanced PD.
Collapse
Affiliation(s)
- A Hadj Tahar
- Department of Medicine, School of Medicine, Laval University Research Center, Ste-Foy, Québec, Canada
| | | | | | | |
Collapse
|
28
|
Goulet M, Grondin R, Morissette M, Maltais S, Falardeau P, Bédard PJ, Di Paolo T. Regulation by chronic treatment with cabergoline of dopamine D1 and D2 receptor levels and their expression in the striatum of Parkinsonian-monkeys. Prog Neuropsychopharmacol Biol Psychiatry 2000; 24:607-17. [PMID: 10958154 DOI: 10.1016/s0278-5846(00)00096-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Chronic treatment for one month with the long-acting dopamine D2-like agonist cabergoline (0.25 mg/kg s.c. every 48 hours), had despite partial tolerance, sustained antiparkinsonian activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinsonian monkeys (Macaca fascicularis). 2. Cabergoline treatment decreased by half striatal D2 receptor binding density measured by [3H]spiperone autoradiography versus untreated MPTP monkeys. No change in D2 mRNA measured by in situ hybridization and D2 receptor immunostaining was observed. 3. No change in either D1 receptor binding density or D1 receptor mRNA levels was observed in cabergoline-treated MPTP-monkeys compared to untreated MPTP-monkeys, suggesting receptor subfamily specificity of cabergoline. 4. The present results suggest that the cabergoline-induced behavioral partial tolerance is accompanied by a decrease in D2 receptor binding but not due to alterations in the steady state of D2 mRNA levels.
Collapse
Affiliation(s)
- M Goulet
- Faculty of Pharmacy, Laval University and Department of Molecular Endocrinology, Laval University Medical Centre, Ste-Foy, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Calon F, Morissette M, Goulet M, Grondin R, Blanchet PJ, Bédard PJ, Di Paolo T. 125I-CGP 64213 binding to GABA(B) receptors in the brain of monkeys: effect of MPTP and dopaminomimetic treatments. Exp Neurol 2000; 163:191-9. [PMID: 10785458 DOI: 10.1006/exnr.2000.7366] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much evidence indicates that abnormal GABA neurotransmission may be implicated in the pathophysiology of Parkinson's disease (PD) and dopaminomimetic-induced dyskinesias (DID). In this study, autoradiography using (125)I-CGP 64213 was performed to investigate GABA(B) receptor density in the brain of control monkeys as well as monkeys with MPTP-induced nigrostriatal depletion. Three MPTP monkeys received pulsatile administrations of the D1 dopamine (DA) receptor agonist (SKF 82958) whereas a long-acting D2 DA receptor agonist (cabergoline) was given to another three animals. SKF 82958 treatment relieved parkinsonian symptoms but two of three animals developed DID. Cabergoline induced a comparable motor benefit effect without persistent DID. (125)I-CGP 64213 binding to GABA(B) receptors was heterogeneous throughout the brain with the highest levels in the medial habenula of the thalamus. MPTP induced a decrease (-40%) of (125)I-CGP 64213 binding to GABA(B) receptors in the substantia nigra pars compacta (SNpc) and an increase (+29%) in the internal segment of the globus pallidus (GPi). This increase in the GPi was not affected by SKF 82958 but partly reversed by cabergoline. No change was seen in the striatum, the thalamus, the external segment of the globus pallidus, and the substantia nigra pars reticulata following MPTP and dopaminomimetic treatments. The changes of GABA(B) receptors observed in the SNpc and in the GPi suggest that alteration of GABA(B) receptors may play a role in the pathophysiology of PD and DID.
Collapse
Affiliation(s)
- F Calon
- Oncology and Molecular Endocrinology Research Center, Laval University Medical Center (CHUL), Québec, Qc, G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Calon F, Morissette M, Goulet M, Grondin R, Blanchet PJ, Bédard PJ, Di Paolo T. Chronic D1 and D2 dopaminomimetic treatment of MPTP-denervated monkeys: effects on basal ganglia GABA(A)/benzodiazepine receptor complex and GABA content. Neurochem Int 1999; 35:81-91. [PMID: 10403433 DOI: 10.1016/s0197-0186(99)00064-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of various chronic dopaminergic treatments in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys on the brain gamma-aminobutyric acid type A (GABA(A)) /benzodiazepine receptor complex and GABA content was investigated in order to assess the GABAergic involvement in dopaminomimetic-induced dyskinesia. Three MPTP monkeys received for one month pulsatile administrations of the D1 dopamine (DA) receptor agonist SKF 82958 whereas three others received the same dose of SKF 82958 by continuous infusion. A long acting D2 DA receptor agonist, cabergoline, was given to another three animals. Untreated MPTP as well as naive control animals were also included. Pulsatile SKF 82958 relieved parkinsonian symptoms but was also associated with dyskinesia in two of the three animals whereas animals treated continuously with SKF 82958 remained as untreated MPTP monkeys. Chronic cabergoline administration improved motor response with no persistent dyskinesia. MPTP treatment induced a decrease of 3H-flunitrazepam binding in the medial anterior part of caudate-putamen and an increase in the internal segment of globus pallidus (GPi) which was in general unchanged by pulsatile or continuous SKF 82958 administration. Throughout the striatum, binding of 3H-flunitrazepam remained reduced in MPTP monkeys treated with cabergoline but was not significantly lower than untreated MPTP monkeys. Moreover, cabergoline treatment reversed the MPTP-induced increase in 3H-flunitrazepam binding in the GPi. GABA concentrations remained unchanged in the striatum, external segment of globus pallidus and GPi following MPTP denervation. Pulsatile but not continuous SKF 82958 administration decreased putamen GABA content whereas cabergoline treatment decreased caudate GABA. No alteration in GABA levels were observed in the GPe and GPi following the experimental treatments. These results suggest that: (1) D2-like receptor stimulation with cabergoline modulates GABA(A) receptor density in striatal subregions anatomically related to associative cortical afferent and (2) the absence of dyskinesia in dopaminomimetic-treated monkeys might be associated with the reversal of the MPTP-induced upregulation of the GABA(A)/benzodiazepine receptor complex in the Gpi.
Collapse
Affiliation(s)
- F Calon
- Centre de Recherches en Endocrinologie Moléculaire, Le Centre Hospitalier Universitaire de Québec, Pavillon CHUL, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Goulet M, Morissette M, Grondin R, Falardeau P, Bédard PJ, Rostène W, Di Paolo T. Neurotensin receptors and dopamine transporters: effects of MPTP lesioning and chronic dopaminergic treatments in monkeys. Synapse 1999; 32:153-64. [PMID: 10340626 DOI: 10.1002/(sici)1098-2396(19990601)32:3<153::aid-syn2>3.0.co;2-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of denervation with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of the dopamine (DA) nigrostriatal pathway on neurotensin (NT) receptor and DA transporter (DAT) in basal ganglia of monkeys (Macaca fascicularis) was investigated. The MPTP lesion induced a marked depletion of DA (90% or more vs. control) in the caudate nucleus and putamen. The densities of NT agonist binding sites labeled with [125I]NT and the NT antagonist binding sites labeled with [3H]SR142948A decreased by half in the caudate-putamen of MPTP-monkeys. In addition, the densities of [125I]NT and [3H]SR142948A binding sites markedly decreased (-77 and -63%, respectively) in the substantia nigra of MPTP-monkeys. Levocabastine did not compete with high affinity for [125I]NT binding in the monkey cingulate cortex, suggesting that only one class of NT receptors was labelled in the monkey brain. An extensive decrease of [3H]GBR12935 DAT binding sites (-92% vs. Control) was observed in the striatum of MPTP-monkeys and an important loss of DAT mRNA(-86% vs. Control) was observed in substantia nigra. Treatments for 1 month with either the D1 agonist SKF-82958 (3 mg/kg/day) or the D2 agonist cabergoline (0.25 mg/kg/day) had no effect on the lesion-induced decrease in NT and DAT binding sites or DAT mRNA levels. The decrease of striatal NT binding sites was less than expected from the decrease of DA content in this nucleus, suggesting only partial localization of NT receptors on nigrostriatal DAergic projections. These data also suggest that under severe DA denervation, treatment with D1 or D2 DA agonists does not modulate NT receptors and DAT density.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Adamantane/analogs & derivatives
- Adamantane/metabolism
- Animals
- Autoradiography
- Binding Sites/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Caudate Nucleus/drug effects
- Caudate Nucleus/metabolism
- Denervation
- Dopamine/metabolism
- Dopamine Agents/metabolism
- Dopamine Agents/pharmacology
- Dopamine Plasma Membrane Transport Proteins
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Imidazoles/metabolism
- In Situ Hybridization
- Macaca fascicularis
- Membrane Glycoproteins
- Membrane Transport Proteins
- Neostriatum/drug effects
- Neostriatum/metabolism
- Nerve Tissue Proteins
- Neurotensin/metabolism
- Piperidines/metabolism
- Putamen/drug effects
- Putamen/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Dopamine/metabolism
- Receptors, Neurotensin/agonists
- Receptors, Neurotensin/antagonists & inhibitors
- Receptors, Neurotensin/metabolism
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
Collapse
Affiliation(s)
- M Goulet
- Faculty of Pharmacy, Laval University, Québec, Qc, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Rascol O. Dopamine agonists: what is the place of the newer compounds in the treatment of Parkinson's disease? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1999; 55:33-45. [PMID: 10335491 DOI: 10.1007/978-3-7091-6369-6_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Three new dopamine agonists (cabergoline, pramipexole, ropinirole) have been put on to the market within the past months to treat patients with Parkinson's disease. Like any marketed dopamine agonists, the new compounds bind to the D2-like receptors. Pramipexole and ropinirole appear to be quite close drugs. Both are selective non ergot D2 (and preferentially D3) agonists, with an elimination half-life of 5 to 10 hours. Conversely, cabergoline is an ergot derivative, less selective for the D2 receptors, with a much longer elimination half-life (60 hours or more). In moderately advanced levodopa treated patients with Parkinson's disease and motor fluctuations, cabergoline, pramipexole and ropinirole all do significantly better than placebo in reducing UPDRS motor examination scores, time spent off and daily dose of levodopa. None of the 3 newer agonists proved to do significantly better than bromocriptine in this indication, at the cost of very similar adverse effects. In de novo levodopa naive patients, pramipexole and ropinirole did significantly better than placebo in short-term (few months) follow-up trials, at the cost again of classical dopaminergic adverse effects. Ropinirole was marginally more effective than bromocriptine, while its use induced the same risk of psychosis than the "old" reference agonist. Early treatment with cabergoline, compared with levodopa, in a long-term (5 year) study reduced the relative risk of developping motor complication by more than 50%. A similar study is presently on-going to compare ropinirole and levodopa. Clinical trials to assess putative neuroprotective effects are also on going with ropinirole and pramipexole. Up to now, the available clinical controlled data suggest that the newer dopamine agonists have very similar clinical effects with only minor superiority, if any, versus bromocriptine.
Collapse
Affiliation(s)
- O Rascol
- Department of Clinical Pharmacology, INSERM U455, University Hospital, Toulouse, France
| |
Collapse
|
33
|
Morissette M, Grondin R, Goulet M, Bédard PJ, Di Paolo T. Differential regulation of striatal preproenkephalin and preprotachykinin mRNA levels in MPTP-lesioned monkeys chronically treated with dopamine D1 or D2 receptor agonists. J Neurochem 1999; 72:682-92. [PMID: 9930741 DOI: 10.1046/j.1471-4159.1999.0720682.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys and in parkinsonian patients show elevated preproenkephalin (PPE) mRNA levels, unaltered by chronic L-DOPA therapy, whereas preprotachykinin (PPT) mRNA levels are decreased by the lesion and corrected by L-DOPA. The relative contributions of the dopamine D1 and D2 receptors for PPE mRNA regulation were investigated in the present study and compared with those for PPT mRNA. In situ hybridization was used to measure peptide mRNA levels in the striatum of MPTP cynomolgus monkeys after chronic 1-month treatment with the D1 agonist SKF-82958, administered subcutaneously in pulsatile or continuous mode, compared with the long-acting D2 agonist cabergoline. Normal as well as untreated MPTP animals were also studied. PPE mRNA levels were elevated in the caudate nucleus and putamen of untreated MPTP monkeys compared with control animals with a more pronounced increase in the lateral as compared with the medial part of both structures. PPT mRNA levels showed a rostrocaudal gradient, with higher values in the middle of the caudate-putamen and more so in the medial versus the lateral parts. PPT mRNA levels were decreased in the caudate and putamen of untreated MPTP monkeys compared with control animals, and this was observed in the middle and posterior parts of these brain areas. Elevated PPE and decreased PPT mRNA levels observed after MPTP exposure were corrected after treatment with cabergoline (0.25 mg/kg, every other day), a dose that had antiparkinsonian effects and did not give sustained dyskinesia. In contrast, elevated PPE mRNA levels observed in untreated MPTP monkeys were markedly increased by pulsatile administration of SKF-82958 (1 mg/kg, three times daily) in two monkeys in which the parkinsonian symptoms were improved and dyskinesias developed, whereas it remained close to control values in a third one that did not display dyskinesias despite a sustained improvement in disability; a shorter duration of motor benefit (wearing off) over time was observed in these three animals. By contrast, pulsatile administration of SKF-82958 corrected the decreased PPT level observed in untreated MPTP monkeys. Continuous treatment with SKF-82958 (equivalent daily dose) produced no clear antiparkinsonian and dyskinetic responses and did not alter the denervation-induced elevation of PPE or decrease of PPT mRNA levels. The present data suggest an opposite contribution of the dopamine D1 receptors (stimulatory) as compared with the dopamine D2 receptors (inhibitory) on PPE mRNA, whereas a similar stimulatory contribution of D1 or D2 receptors is observed for PPT mRNA. An increase in PPE expression could be involved in the induction of dyskinesias and wearing off, whereas our data do not support this link for PPT. The antiparkinsonian response was associated with a correction of the lesion-induced decrease of PPT.
Collapse
Affiliation(s)
- M Morissette
- Centre de Recherches en Endocrinologie Moléculaire, Le Centre Hospitalier Universitaire de Québec, and Faculty of Pharmacy, Laval University, Québec, Canada
| | | | | | | | | |
Collapse
|
34
|
Morissette M, Goulet M, Grondin R, Blanchet P, Bédard PJ, Di Paolo T, Lévesque D. Associative and limbic regions of monkey striatum express high levels of dopamine D3 receptors: effects of MPTP and dopamine agonist replacement therapies. Eur J Neurosci 1998; 10:2565-73. [PMID: 9767387 DOI: 10.1046/j.1460-9568.1998.00264.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of the dopamine D3 receptor subtype in the central nervous system is still not well understood. It has a distinct and restricted distribution, mostly associated with limbic territories of the striatum (olfactory tubercle and the shell of nucleus accumbens) in rat brain. Dopaminergic denervation induced by a 6-hydroxydopamine lesion of the nigrostriatal system in rat down-regulates the expression of the D3 receptor. In the present study, we investigated the functional neuroanatomy of the dopamine D3 receptor subtype in the monkey (Macaca fascicularis) basal ganglia. We also studied the effect of administration of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and chronic D1-like (SKF 82958) or D2-like (cabergoline) agonist treatments on dopamine D3 receptor levels using receptor autoradiography. Our results clearly show that the distribution of D3 receptors in the monkey is more closely related to associative and limbic components of the striatum (caudate-putamen), as compared with its sensorimotor counterpart. Hence, D3 receptors may be more specifically involved in cognitive and motivational aspects of striatal functions, which are elaborated in prefrontal, temporal, parietal, cingulate and limbic cortices. Moreover, MPTP administration significantly decreased levels of D3 receptors and this effect was reversed or compensated by a chronic treatment with a D1-like, but not a D2-like, receptor agonist. The D3 receptor may represent an important target for adjunct or direct therapy designed to improve cognitive deficits observed in patients with Parkinson's disease, schizophrenia and other illnesses with frontal lobe cognitive disturbances.
Collapse
Affiliation(s)
- M Morissette
- Unités 1d'Endocrinologie Moléculaire et de ; Facultés de 3Pharmacie et de, Québec, Canada, G1V 4G2
| | | | | | | | | | | | | |
Collapse
|
35
|
Hagan JJ, Middlemiss DN, Sharpe PC, Poste GH. Parkinson's disease: prospects for improved drug therapy. Trends Pharmacol Sci 1997; 18:156-63. [PMID: 9184476 DOI: 10.1016/s0165-6147(97)01050-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
L-Dopa has long been the mainstay of therapy for Parkinson's disease but its long-term shortcomings, principally uncoordinated, spasmodic or irregular movements (dyskinesias) and fluctuating control of motor symptoms (on/off fluctuations), are well documented. The postulated neuroprotective properties of L-deprenyl, often used as an adjunct to L-dopa, are under scrutiny and doubts have also been raised regarding its safety. Alternative therapeutic approaches are clearly needed. In this review, Jim Hagan, Derek Middlemiss, Paul Sharpe and George Poste outline some new approaches to treatment, with an emphasis on novel, selective dopamine receptor agonists. In addition, Parkinson's disease is commonly thought to be caused by the neurotoxic effects of an unidentified agent but recent data indicate a greater genetic component than previously recognized. Developments in the genetics of Parkinson's disease may provide the key to the next generation of therapeutics.
Collapse
Affiliation(s)
- J J Hagan
- SmithKline Beecham Pharmaceuticals, Harlow, UK
| | | | | | | |
Collapse
|