1
|
Ozgur OS, Taggart M, Mojoudi M, Pendexter C, Filz von Reiterdank I, Kharga A, Yeh H, Toner M, Longchamp A, Tessier SN, Uygun K. Optimized partial freezing protocol enables 10-day storage of rat livers. Sci Rep 2024; 14:25260. [PMID: 39448774 PMCID: PMC11502795 DOI: 10.1038/s41598-024-76674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Preserving organs at subzero temperatures with halted metabolic activity holds the potential to prolong preservation and expand the donor organ pool for transplant. Our group recently introduced partial freezing, a novel approach in high-subzero storage at -15 °C, enabling 5-day storage of rodent livers through precise control over ice nucleation and unfrozen fraction. However, increased vascular resistance and tissue edema suggested a need for improvements to extend viable preservation. Here, we describe an optimized partial freezing protocol with key optimizations, including an increased concentration of polyethylene glycol (PEG) to enhance membrane stability while minimizing shear stress during cryoprotectant unloading with an acclimation period and a maintained osmotic balance through an increase in bovine serum albumin (BSA). These approaches ensured the viability during preservation and recovery processes, promoting liver function and ensuring optimal preservation. This was evidenced by increased oxygen consumption, decreased vascular resistance, and edema. Ultimately, we show that using the optimized protocol, livers can be stored for 10 days with comparable vascular resistance and lactate levels to 5 days, outperforming the viability of time-matched static cold stored (SCS) livers as the current gold standard. This study represents a significant advancement in expanding organ availability through prolonged preservation, thereby revolutionizing transplant medicine.
Collapse
Affiliation(s)
- Ozge Sila Ozgur
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Mclean Taggart
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Mohammedreza Mojoudi
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Casie Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Irina Filz von Reiterdank
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Anil Kharga
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Alban Longchamp
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA.
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA.
| |
Collapse
|
2
|
Ozgur OS, Taggart MS, Mojoudi M, Pendexter C, Kharga A, Yeh H, Toner M, Longchamp A, Tessier SN, Uygun K. Optimized Partial Freezing Protocol Enables 10-Day Storage of Rat Livers. RESEARCH SQUARE 2024:rs.3.rs-4584242. [PMID: 39011100 PMCID: PMC11247935 DOI: 10.21203/rs.3.rs-4584242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Preserving organs at subzero temperatures with halted metabolic activity holds the potential to prolong preservation and expand the donor organ pool for transplant. Our group recently introduced partial freezing, a novel approach in high-subzero storage at -15°C, enabling 5 days storage of rodent livers through precise control over ice nucleation and unfrozen fraction. However, increased vascular resistance and tissue edema suggested a need for improvements to extend viable preservation. Here, we describe an optimized partial freezing protocol with key optimizations including increased concentration of propylene glycol to reduce ice recrystallization and maintained osmotic balance through an increase in bovine serum albumin, all while minimizing sheer stress during cryoprotectant unloading with an acclimation period. These approaches ensured the viability during preservation and recovery processes, promoting liver function and ensuring optimal preservation. This was evidenced by increased oxygen consumption, decreased vascular resistance and edema. Ultimately, we show that using the optimized protocol, livers can be stored for 10 days with comparable vascular resistance and lactate levels to 5 days, outperforming the viability of time-matched cold stored livers as the current gold standard. This study represents a significant advancement in expanding organ availability through prolonged preservation and thereby revolutionizing transplant medicine.
Collapse
Affiliation(s)
| | | | | | | | - Anil Kharga
- Massachusetts General Hospital, Harvard Medical School
| | - Heidi Yeh
- Massachusetts General Hospital, Harvard Medical School
| | - Mehmet Toner
- Massachusetts General Hospital, Harvard Medical School
| | | | | | - Korkut Uygun
- Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
3
|
Niu Y, Li X, Zhang H, Xu T, Wei D, An Z, Storey KB. Hepatic transcriptome and gut microbiome provide insights into freeze tolerance in the high-altitude frog, Nanorana parkeri. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101147. [PMID: 37797475 DOI: 10.1016/j.cbd.2023.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/03/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Among amphibians, freeze tolerance is a low-temperature survival strategy that has been well studied in several species. One influence on animal health and survival under adverse conditions is the gut microbiome. Gut microbes can be greatly affected by temperature fluctuations but, to date, this has not been addressed in high-altitude species. Nanorana parkeri (Anura: Dicroglossidae) lives at high altitudes on the Tibetan plateau and shows a good freeze tolerance. In the present study, we addressed two goals: (1) analysis of the effects of whole body freezing on the liver transcriptome, and (2) assess modifications of the gut microbiome as a consequence of freezing. We found that up-regulated genes in liver were significantly enriched in lipid and fatty acid metabolism that could contribute to accumulating the cryoprotectant glycerol and raising levels of unsaturated fatty acids. The results suggest the crucial importance of membrane adaptations and fuel reserves for freezing survival of these frogs. Down-regulated genes were significantly enriched in the immune response and inflammatory response, suggesting that energy-consuming processes are inhibited to maintain metabolic depression during freezing. Moreover, freezing had a significant effect on intestinal microbiota. The abundance of bacteria in the family Lachnospiraceae was significantly increased after freezing exposure, which likely supports freezing survival of N. parkeri. The lower abundance of bacteria in the family Peptostreptococcaceae in frozen frogs may be associated with the hypometabolic state and decreased immune response. In summary, these findings provide insights into the regulatory mechanisms of freeze tolerance in a high-altitude amphibian at the level of gene expression and gut microbiome, and contribute to enhancing our understanding of the adaptations that support frog survival in high-altitude extreme environments.
Collapse
Affiliation(s)
- Yonggang Niu
- Department of Life Sciences, Dezhou University, Dezhou, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.
| | - Xiangyong Li
- Department of Life Sciences, Dezhou University, Dezhou, China; Wuhan National Laboratory for Optoelectronics, China
| | - Haiying Zhang
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Tisen Xu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Dengbang Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
4
|
Ozgur OS, Namsrai BE, Pruett TL, Bischof JC, Toner M, Finger EB, Uygun K. Current practice and novel approaches in organ preservation. FRONTIERS IN TRANSPLANTATION 2023; 2:1156845. [PMID: 38993842 PMCID: PMC11235303 DOI: 10.3389/frtra.2023.1156845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/16/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation remains the only treatment option for patients with end-stage organ failure. The last decade has seen a flurry of activity in improving organ preservation technologies, which promise to increase utilization in a dramatic fashion. They also bring the promise of extending the preservation duration significantly, which opens the doors to sharing organs across local and international boundaries and transforms the field. In this work, we review the recent literature on machine perfusion of livers across various protocols in development and clinical use, in the context of extending the preservation duration. We then review the next generation of technologies that have the potential to further extend the limits and open the door to banking organs, including supercooling, partial freezing, and nanowarming, and outline the opportunities arising in the field for researchers in the short and long term.
Collapse
Affiliation(s)
- Ozge Sila Ozgur
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Research Department, Shriners Children’s Boston, Boston, MA, United States
| | - Bat-Erdene Namsrai
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Timothy L. Pruett
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - John C. Bischof
- Departments of Mechanical and Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Mehmet Toner
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Research Department, Shriners Children’s Boston, Boston, MA, United States
| | - Erik B. Finger
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Korkut Uygun
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Research Department, Shriners Children’s Boston, Boston, MA, United States
| |
Collapse
|
5
|
Douglas K, Logan SM, Storey KB. Status of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in liver and skin of the freeze tolerant wood frog. Cryobiology 2022; 108:27-33. [PMID: 36100073 DOI: 10.1016/j.cryobiol.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/21/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022]
Abstract
The wood frog (Rana sylvatica) has adapted full-body freezing and thawing as a means of sub-zero winter survival and early-breeding in ephemeral pools. One such protective process implicated recently in freeze-thaw tolerance is that of anti-apoptotic signaling, which has been proposed to play a cytoprotective role by modulating stress-induced death signals. This study employed the use of immunoblotting to examine response of a potent cell cycle and apoptosis regulator, known as the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, to freezing and thawing in the liver and skin of the wood frog. This pathway demonstrably exhibits factor- and tissue-specific changes between non-frozen, 24 h-frozen, and 8 h-thawed conditions. There were few changes in JAK-STAT proteins in frozen frogs, but protective changes were observed upon thaw: Elevated levels of pJAK3 and nuclear localization of pSTAT3 and pSTAT5 suggested an increase in anti-apoptotic signaling after thaw. By contrast, both STAT1 and STAT3 signaling appeared to increase in frozen skin, suggesting frogs use homeostatic regulation of apoptotic- and anti-apoptotic signals, in an antagonistic and compensatory manner. As such, these findings support that JAK-STAT pathway signaling modulation is a plausible adaptation that contributes to fast and reversible manipulation of anti-apoptotic signals, thus assisting in freeze survival of the wood frog.
Collapse
Affiliation(s)
- Kurtis Douglas
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Samantha M Logan
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
6
|
Tessier SN, de Vries RJ, Pendexter CA, Cronin SEJ, Ozer S, Hafiz EOA, Raigani S, Oliveira-Costa JP, Wilks BT, Lopera Higuita M, van Gulik TM, Usta OB, Stott SL, Yeh H, Yarmush ML, Uygun K, Toner M. Partial freezing of rat livers extends preservation time by 5-fold. Nat Commun 2022; 13:4008. [PMID: 35840553 PMCID: PMC9287450 DOI: 10.1038/s41467-022-31490-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
The limited preservation duration of organs has contributed to the shortage of organs for transplantation. Recently, a tripling of the storage duration was achieved with supercooling, which relies on temperatures between -4 and -6 °C. However, to achieve deeper metabolic stasis, lower temperatures are required. Inspired by freeze-tolerant animals, we entered high-subzero temperatures (-10 to -15 °C) using ice nucleators to control ice and cryoprotective agents (CPAs) to maintain an unfrozen liquid fraction. We present this approach, termed partial freezing, by testing gradual (un)loading and different CPAs, holding temperatures, and storage durations. Results indicate that propylene glycol outperforms glycerol and injury is largely influenced by storage temperatures. Subsequently, we demonstrate that machine perfusion enhancements improve the recovery of livers after freezing. Ultimately, livers that were partially frozen for 5-fold longer showed favorable outcomes as compared to viable controls, although frozen livers had lower cumulative bile and higher liver enzymes.
Collapse
Affiliation(s)
- Shannon N. Tessier
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Reinier J. de Vries
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.7177.60000000084992262Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Casie A. Pendexter
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,Present Address: Sylvatica Biotech Inc., North Charleston, SC USA
| | - Stephanie E. J. Cronin
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Sinan Ozer
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Ehab O. A. Hafiz
- grid.420091.e0000 0001 0165 571XDepartment of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Siavash Raigani
- grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.32224.350000 0004 0386 9924Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Boston, MA USA
| | - Joao Paulo Oliveira-Costa
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Benjamin T. Wilks
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Manuela Lopera Higuita
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Thomas M. van Gulik
- grid.7177.60000000084992262Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Osman Berk Usta
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Shannon L. Stott
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Heidi Yeh
- grid.32224.350000 0004 0386 9924Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Boston, MA USA
| | - Martin L. Yarmush
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.430387.b0000 0004 1936 8796Department of Biomedical Engineering, Rutgers University, Piscataway, NJ USA
| | - Korkut Uygun
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Mehmet Toner
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| |
Collapse
|
7
|
Liu Z, Zheng X, Wang J. Bioinspired Ice-Binding Materials for Tissue and Organ Cryopreservation. J Am Chem Soc 2022; 144:5685-5701. [PMID: 35324185 DOI: 10.1021/jacs.2c00203] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryopreservation of tissues and organs can bring transformative changes to medicine and medical science. In the past decades, limited progress has been achieved, although cryopreservation of tissues and organs has long been intensively pursued. One key reason is that the cryoprotective agents (CPAs) currently used for cell cryopreservation cannot effectively preserve tissues and organs because of their cytotoxicity and tissue destructive effect as well as the low efficiency in controlling ice formation. In stark contrast, nature has its unique ways of controlling ice formation, and many living organisms can effectively prevent freezing damage. Ice-binding proteins (IBPs) are regarded as the essential materials identified in these living organisms for regulating ice nucleation and growth. Note that controversial results have been reported on the utilization of IBPs and their mimics for the cryopreservation of tissues and organs, that is, some groups revealed that IBPs and mimics exhibited unique superiorities in tissues cryopreservation, while other groups showed detrimental effects. In this perspective, we analyze possible reasons for the controversy and predict future research directions in the design and construction of IBP inspired ice-binding materials to be used as new CPAs for tissue cryopreservation after briefly introducing the cryo-injuries and the challenges of conventional CPAs in the cryopreservation of tissues and organs.
Collapse
Affiliation(s)
- Zhang Liu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xia Zheng
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
8
|
CECCHETTO NICOLÁSR, MEDINA SUSANAM, BAUDINO FLORENCIA, IBARGÜENGOYTÍA NORAR. Wintertime tales: How the lizard Liolaemus lineomaculatus endures the temperate cold climate of Patagonia, Argentina. AN ACAD BRAS CIENC 2022; 94:e20210758. [DOI: 10.1590/0001-3765202220210758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - SUSANA M. MEDINA
- Consejo Nacional de Investigaciones Científicas y Técnicas (CIEMEP-CONICET), Argentina
| | - FLORENCIA BAUDINO
- Instituto de Investigaciones en Biodiversidad y Medioambiente, Argentina
| | | |
Collapse
|
9
|
Fitzpatrick MJ, Porter WP, Pauli JN, Kearney MR, Notaro M, Zuckerberg B. Future winters present a complex energetic landscape of decreased costs and reduced risk for a freeze-tolerant amphibian, the Wood Frog (Lithobates sylvaticus). GLOBAL CHANGE BIOLOGY 2020; 26:6350-6362. [PMID: 32871618 DOI: 10.1111/gcb.15321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Winter climate warming is rapidly leading to changes in snow depth and soil temperatures across mid- and high-latitude ecosystems, with important implications for survival and distribution of species that overwinter beneath the snow. Amphibians are a particularly vulnerable group to winter climate change because of the tight coupling between their body temperature and metabolic rate. Here, we used a mechanistic microclimate model coupled to an animal biophysics model to predict the spatially explicit effects of future climate change on the wintering energetics of a freeze-tolerant amphibian, the Wood Frog (Lithobates sylvaticus), across its distributional range in the eastern United States. Our below-the-snow microclimate simulations were driven by dynamically downscaled climate projections from a regional climate model coupled to a one-dimensional model of the Laurentian Great Lakes. We found that warming soil temperatures and decreasing winter length have opposing effects on Wood Frog winter energy requirements, leading to geographically heterogeneous implications for Wood Frogs. While energy expenditures and peak body ice content were predicted to decline in Wood Frogs across most of our study region, we identified an area of heightened energetic risk in the northwestern part of the Great Lakes region where energy requirements were predicted to increase. Because Wood Frogs rely on body stores acquired in fall to fuel winter survival and spring breeding, increased winter energy requirements have the potential to impact local survival and reproduction. Given the geographically variable and intertwined drivers of future under-snow conditions (e.g., declining snow depths, rising air temperatures, shortening winters), spatially explicit assessments of species energetics and risk will be important to understanding the vulnerability of subnivium-adapted species.
Collapse
Affiliation(s)
- Megan J Fitzpatrick
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Warren P Porter
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael R Kearney
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| | - Michael Notaro
- Nelson Institute Center for Climatic Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Xiang H, Yang X, Ke L, Hu Y. The properties, biotechnologies, and applications of antifreeze proteins. Int J Biol Macromol 2020; 153:661-675. [PMID: 32156540 DOI: 10.1016/j.ijbiomac.2020.03.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/30/2023]
Abstract
By natural selection, organisms evolve different solutions to cope with extremely cold weather. The emergence of an antifreeze protein gene is one of the most momentous solutions. Antifreeze proteins possess an importantly functional ability for organisms to survive in cold environments and are widely found in various cold-tolerant species. In this review, we summarize the origin of antifreeze proteins, describe the diversity of their species-specific properties and functions, and highlight the related biotechnology on the basis of both laboratory tests and bioinformatics analysis. The most recent advances in the applications of antifreeze proteins are also discussed. We expect that this systematic review will contribute to the comprehensive knowledge of antifreeze proteins to readers.
Collapse
Affiliation(s)
- Hong Xiang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Xiaohu Yang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Lei Ke
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Yong Hu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology.
| |
Collapse
|
11
|
Sharma A, Bischof JC, Finger EB. Liver Cryopreservation for Regenerative Medicine Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00131-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Cecchetto N, Medina S, Taussig S, Ibargüengoytía N. The lizard abides: cold hardiness and winter refuges of Liolaemus pictus argentinus in Patagonia, Argentina. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In environments where the temperature periodically drops below zero, it is remarkable that some lizards can survive. Behaviorally, lizards can find microsites for overwintering where temperatures do not drop as much as the air temperature. Physiologically, they can alter their biochemical balance to tolerate freezing or avoid it by supercooling. We evaluated the cold hardiness of a population of Liolaemus pictus argentinus Müller and Hellmich, 1939 in the mountains of Esquel (Patagonia, Argentina) during autumn. Additionally, we assessed the thermal quality (in degree-days) of potential refuges in a mid-elevation forest (1100 m above sea level (asl)) and in the high Andean steppe (1400 m asl). We analyzed the role of urea, glucose, total proteins, and albumin as possible cryoprotectants, comparing a group of lizards gradually exposed to temperatures lower than 0 °C with a control group maintained at room temperature. However, we found no evidence to support the presence of freeze tolerance or supercooling mechanisms in this species as related to the analyzed metabolites. Instead, the low frequency of degree-days below 0 °C and temperatures never lower than −3 °C in potential refuges suggest that L. p. argentinus might avoid physiological investments (such as supercooling and freeze tolerance) by behaviorally selecting appropriate refuges to overcome cold environmental temperatures.
Collapse
Affiliation(s)
- N.R. Cecchetto
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Quintral 1250, San Carlos de Bariloche, 8400, Argentina
| | - S.M. Medina
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esquel, Chubut, 9200, Argentina
| | - S. Taussig
- Laboratorios DiBio, Morales 645, San Carlos de Bariloche, 8400, Argentina
| | - N.R. Ibargüengoytía
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Quintral 1250, San Carlos de Bariloche, 8400, Argentina
| |
Collapse
|
13
|
Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Transplant 2019; 23:353-360. [PMID: 29702495 DOI: 10.1097/mot.0000000000000534] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The objective of this review is to describe the physical and biological barriers to organ cryopreservation, historic approaches for conventional cryopreservation and evolving techniques for ice-free cryopreservation by vitrification. RECENT FINDINGS Vitrification is a process whereby a biologic substance is cooled to cryogenic temperatures without the destructive phase transition of liquid to solid ice. Recent advances in cryoprotective solutions, organ perfusion techniques and novel heating technologies have demonstrated the potential for vitrification and rewarming organs on a scale applicable for human transplantation. SUMMARY Successful strategies for organ cryopreservation could enable organ banking, which would recast the entire process in which organs are recovered, allocated, stored and prepared for transplant.
Collapse
|
14
|
Tessier SN, Weng L, Moyo WD, Au SH, Wong KHK, Angpraseuth C, Stoddard AE, Lu C, Nieman LT, Sandlin RD, Uygun K, Stott SL, Toner M. Effect of Ice Nucleation and Cryoprotectants during High Subzero-Preservation in Endothelialized Microchannels. ACS Biomater Sci Eng 2018; 4:3006-3015. [PMID: 31544149 DOI: 10.1021/acsbiomaterials.8b00648] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cryopreservation is of significance in areas including tissue engineering, regenerative medicine, and organ transplantation. We investigated endothelial cell attachment and membrane integrity in a microvasculature model at high subzero temperatures in the presence of extracellular ice. The results show that in the presence of heterogeneous extracellular ice formation induced by ice nucleating bacteria, endothelial cells showed improved attachment at temperature minimums of -6 °C. However, as temperatures decreased below -6 °C, endothelial cells required additional cryoprotectants. The glucose analog, 3-O-methyl-D-glucose (3-OMG), rescued cell attachment optimally at 100 mM (cells/lane was 34, as compared to 36 for controls), while 2% and 5% polyethylene glycol (PEG) were equally effective at -10 °C (88% and 86.4% intact membranes). Finally, endothelialized microchannels were stored for 72 h at -10 °C in a preservation solution consisting of the University of Wisconsin (UW) solution, Snomax, 3-OMG, PEG, glycerol, and trehalose, whereby cell attachment was not significantly different from unfrozen controls, although membrane integrity was compromised. These findings enrich our knowledge about the direct impact of extracellular ice on endothelial cells. Specifically, we show that, by controlling the ice nucleation temperature and uniformity, we can preserve cell attachment and membrane integrity. Further, we demonstrate the strength of leveraging endothelialized microchannels to fuel discoveries in cryopreservation of thick tissues and solid organs.
Collapse
Affiliation(s)
- Shannon N Tessier
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States.,Shriners Hospital for Children, 51 Blossom Street, Boston, Massachusetts 02114, United States
| | - Lindong Weng
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Will D Moyo
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Sam H Au
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Keith H K Wong
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States.,Shriners Hospital for Children, 51 Blossom Street, Boston, Massachusetts 02114, United States
| | - Cindy Angpraseuth
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Amy E Stoddard
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Chenyue Lu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Linda T Nieman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Rebecca D Sandlin
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States.,Shriners Hospital for Children, 51 Blossom Street, Boston, Massachusetts 02114, United States
| | - Korkut Uygun
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States.,Shriners Hospital for Children, 51 Blossom Street, Boston, Massachusetts 02114, United States
| | - Shannon L Stott
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States.,Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Mehmet Toner
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States.,Shriners Hospital for Children, 51 Blossom Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
15
|
Urea and plasma ice-nucleating proteins promoted the modest freeze tolerance in Pleske's high altitude frog Nanorana pleskei. J Comp Physiol B 2018; 188:599-610. [PMID: 29663031 DOI: 10.1007/s00360-018-1159-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 10/17/2022]
Abstract
The frog Nanorana pleskei (Dicroglossidae) is indigenous to the Qinghai-Tibetan Plateau. To identify its strategies in coping with the cold climate, we measured the hibernacula microhabitat temperature during winter. We also examined the freezing-induced and seasonal variation of several putative cryoprotectants in the heart, liver, brain, kidney and muscle, as well as ice-nucleating protein in plasma. Our results showed that N. pleskei survived exposure to temperatures as low as - 2.5 ± 0.40 °C during hibernation, which was lower than the body fluid freezing point (- 0.43 ± 0.01 °C). Experimental freezing results indicated that four of six specimens could survive 12 h of freezing at - 2 °C with 27.5 ± 2.5% of total body water as ice. Concomitantly, the water contents of all examined organs decreased after being frozen for 24 h at - 2 °C. The levels of urea in heart significantly increased from 71.05 ± 7.19 to 104.59 ± 10.11 µmol g-1, and in muscle increased from 72.23 ± 3.40 to 102.42 ± 6.24 µmol g-1 when exposed to freezing; other cryoprotectants (glucose, glycerol, and lactate) showed no significant increase in all examined tissues. In addition, urea levels were significantly higher in fall-collected frogs than summer-collected frogs in the tissues of heart, brain, kidney, and muscle. The results of differential scanning calorimetry indicated that the ice-nucleating protein was present only in cold-acclimated and fall-collected frogs' plasma. We concluded that the urea serves as a primary cryoprotectant and accumulates in anticipation of freezing in N. pleskei, coupling with the seasonal production of plasma ice-nucleating protein.
Collapse
|
16
|
Sun H, Zuo X, Sun L, Yan P, Zhang F, Xue H, Li E, Zhou Y, Wu R, Wu X. Insights into the seasonal adaptive mechanisms of Chinese alligators (Alligator sinensis) from transcriptomic analyses. AUST J ZOOL 2018. [DOI: 10.1071/zo18005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Chinese alligator (Alligator sinensis) is an endemic and rare species in China, and is considered to be one of the most endangered vertebrates in the world. It is known to hibernate, an energy-saving strategy against cold temperatures and food deprivation. Changes in gene expression during hibernation remain largely unknown. To understand these complex seasonal adaptive mechanisms, we performed a comprehensive survey of differential gene expression in heart, skeletal muscle, and kidney of hibernating and active Chinese alligators using RNA-Sequencing. In total, we identified 4780 genes differentially expressed between the active and hibernating periods. GO and KEGG pathway analysis indicated the likely role of these differentially expressed genes (DEGs). The upregulated DEGs in the active Chinese alligator, CSRP3, MYG and PCKGC, may maintain heart and skeletal muscle contraction, transport and storage of oxygen, and enhance the body’s metabolism, respectively. The upregulated DEGs in the dormant Chinese alligator, ADIPO, CIRBP and TMM27, may improve insulin sensitivity and glucose/lipid metabolism, protect cells against harmful effects of cold temperature and hypoxia, regulate amino acid transport and uptake, and stimulate the proliferation of islet cells and the secretion of insulin. These results provide a foundation for understanding the molecular mechanisms of the seasonal adaptation required for hibernation in Chinese alligators, as well as effective information for other non-model organisms research.
Collapse
|
17
|
Histone methylation in the freeze-tolerant wood frog (Rana sylvatica). J Comp Physiol B 2017; 188:113-125. [DOI: 10.1007/s00360-017-1112-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 12/28/2022]
|
18
|
Elliott GD, Wang S, Fuller BJ. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 2017; 76:74-91. [DOI: 10.1016/j.cryobiol.2017.04.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 04/07/2017] [Accepted: 04/16/2017] [Indexed: 02/08/2023]
|
19
|
Abstract
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
Collapse
Affiliation(s)
| | - Janet M. Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Varsaki A, Perisynakis A, Drainas C. Release of Cell-Free Ice Nucleators from Three Recombinant Ice Zymomonas mobilis Strains. J Mol Microbiol Biotechnol 2015. [PMID: 26202869 DOI: 10.1159/000433471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS This work is a study of the ability of three recombinant Zymomonas mobilis strains to release ice nucleators into their growth medium. METHODS The recombinant ice(+)Z. mobilis cells were tested for their ability to produce cell-free ice nucleators, under three different growth temperatures and three different glucose concentrations. RESULTS Cell-free ice nucleators were obtained from all the recombinant ice(+)Z. mobilis cells tested. The cell-free ice nucleation activity was not affected by the glucose concentration in the growth medium or the growth temperature. The freezing temperature threshold was below -7.6°C, demonstrating a class C nucleating structure of the ice nucleation protein. The size of the ice nucleators was less than 0.22 μm and their density was estimated as 1.024 ± 0.004 g/ml by Percoll density centrifugation. The properties of the detected ice nucleators, in addition to the absence of pyruvate decarboxylase activity in the spent medium (a cytosolic marker), support that the cell-free ice nucleation activity was due to the extracellular release of ice nucleators. CONCLUSION These findings indicate that the recombinant ice(+)Z. mobilis cells could be valuable for future use as a source of active cell-free ice nucleation protein.
Collapse
|
21
|
|
22
|
Sinclair BJ, Stinziano JR, Williams CM, Macmillan HA, Marshall KE, Storey KB. Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use. ACTA ACUST UNITED AC 2013; 216:292-302. [PMID: 23255194 DOI: 10.1242/jeb.076331] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ectotherms overwintering in temperate ecosystems must survive low temperatures while conserving energy to fuel post-winter reproduction. Freeze-tolerant wood frogs, Rana sylvatica, have an active response to the initiation of ice formation that includes mobilising glucose from glycogen and circulating it around the body to act as a cryoprotectant. We used flow-through respirometry to measure CO(2) production ( ) in real time during cooling, freezing and thawing. CO(2) production increases sharply at three points during freeze-thaw: at +1°C during cooling prior to ice formation (total of 104±17 μl CO(2) frog(-1) event(-1)), at the initiation of freezing (565±85 μl CO(2) frog(-1) freezing event(-1)) and after the frog has thawed (564±75 μ l CO(2) frog(-1) freezing event(-1)). We interpret these increases in metabolic rate to represent the energetic costs of preparation for freezing, the response to freezing and the re-establishment of homeostasis and repair of damage after thawing, respectively. We assumed that frogs metabolise lipid when unfrozen and that carbohydrate fuels metabolism during cooling, freezing and thawing, and when frozen. We then used microclimate temperature data to predict overwinter energetics of wood frogs. Based on the freezing and melting points we measured, frogs in the field were predicted to experience as many as 23 freeze-thaw cycles in the winter of our microclimate recordings. Overwinter carbohydrate consumption appears to be driven by the frequency of freeze-thaw events, and changes in overwinter climate that affect the frequency of freeze-thaw will influence carbohydrate consumption, but changes that affect mean temperatures and the frequency of winter warm spells will modify lipid consumption.
Collapse
Affiliation(s)
- Bremxnt J Sinclair
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada.
| | | | | | | | | | | |
Collapse
|
23
|
Skin ice nucleators and glycerol in the freezing-tolerant frog Litoria ewingii. J Comp Physiol B 2011; 181:781-92. [DOI: 10.1007/s00360-011-0561-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 02/06/2011] [Accepted: 02/10/2011] [Indexed: 11/25/2022]
|
24
|
Costanzo JP, Lee RE, Ultsch GR. Physiological ecology of overwintering in hatchling turtles. ACTA ACUST UNITED AC 2008; 309:297-379. [PMID: 18484621 DOI: 10.1002/jez.460] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Temperate species of turtles hatch from eggs in late summer. The hatchlings of some species leave their natal nest to hibernate elsewhere on land or under water, whereas others usually remain inside the nest until spring; thus, post-hatching behavior strongly influences the hibernation ecology and physiology of this age class. Little is known about the habitats of and environmental conditions affecting aquatic hibernators, although laboratory studies suggest that chronically hypoxic sites are inhospitable to hatchlings. Field biologists have long been intrigued by the environmental conditions survived by hatchlings using terrestrial hibernacula, especially nests that ultimately serve as winter refugia. Hatchlings are unable to feed, although as metabolism is greatly reduced in hibernation, they are not at risk of starvation. Dehydration and injury from cold are more formidable challenges. Differential tolerances to these stressors may explain variation in hatchling overwintering habits among turtle taxa. Much study has been devoted to the cold-hardiness adaptations exhibited by terrestrial hibernators. All tolerate a degree of chilling, but survival of frost exposure depends on either freeze avoidance through supercooling or freeze tolerance. Freeze avoidance is promoted by behavioral, anatomical, and physiological features that minimize risk of inoculation by ice and ice-nucleating agents. Freeze tolerance is promoted by a complex suite of molecular, biochemical, and physiological responses enabling certain organisms to survive the freezing and thawing of extracellular fluids. Some species apparently can switch between freeze avoidance or freeze tolerance, the mode utilized in a particular instance of chilling depending on prevailing physiological and environmental conditions.
Collapse
Affiliation(s)
- Jon P Costanzo
- Department of Zoology, Miami University, Oxford, OH 45056, USA.
| | | | | |
Collapse
|
25
|
|
26
|
Lundheim R. Physiological and ecological significance of biological ice nucleators. Philos Trans R Soc Lond B Biol Sci 2002; 357:937-43. [PMID: 12171657 PMCID: PMC1693005 DOI: 10.1098/rstb.2002.1082] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When a pure water sample is cooled it can remain in the liquid state at temperatures well below its melting point (0 degrees C). The initiation of the transition from the liquid state to ice is called nucleation. Substances that facilitate this transition so that it takes place at a relatively high sub-zero temperature are called ice nucleators. Many living organisms produce ice nucleators. In some cases, plausible reasons for their production have been suggested. In bacteria, they could induce frost damage to their hosts, giving the bacteria access to nutrients. In freeze-tolerant animals, it has been suggested that ice nucleators help to control the ice formation so that it is tolerable to the animal. Such ice nucleators can be called adaptive ice nucleators. There are, however, also examples of ice nucleators in living organisms where the adaptive value is difficult to understand. These ice nucleators might be structures with functions other than facilitating ice formation. These structures might be called incidental ice nucleators.
Collapse
Affiliation(s)
- Rolv Lundheim
- Allforsk Biology, Queen Maud College, Thonning Owesensgt 18, 7044 Trondheim, Norway.
| |
Collapse
|
27
|
Lee RE, Costanzo JP. Biological ice nucleation and ice distribution in cold-hardy ectothermic animals. Annu Rev Physiol 2001; 60:55-72. [PMID: 9558454 DOI: 10.1146/annurev.physiol.60.1.55] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For many ectotherms, overwintering survival depends on the avoidance or regulation of ice nucleation and growth within their body fluids. Freeze avoidance via supercooling plays an important role in the cold hardiness of many small species, particularly terrestrial arthropods, that do not survive the freezing of their body fluids. In contrast, mechanisms that limit supercooling and initiate freezing at relatively high temperatures promote survival of the few invertebrates and vertebrates that tolerate freezing. These mechanisms include inoculative freezing, which results from contact with ice in the environment, and various ice nucleating proteins, microbes, and crystalloid compounds. In freeze-tolerant ectotherms, cold hardiness is influenced by complex, seasonally changing interactions among physiological factors, ice nucleators, and the physical microenvironment. Extraorgan sequestration of ice is a major adaptation of freeze tolerance. For most freeze-tolerant species, ice growth is primarily restricted to extracellular compartments; however, intracellular freezing also occurs in some species.
Collapse
Affiliation(s)
- R E Lee
- Department of Zoology, Miami University, Oxford, Ohio 45056, USA.
| | | |
Collapse
|
28
|
Costanzo JP, Litzgus JD, Iverson JB, Lee RE. Seasonal changes in physiology and development of cold hardiness in the hatchling painted turtle Chrysemys picta. J Exp Biol 2000; 203:3459-70. [PMID: 11044384 DOI: 10.1242/jeb.203.22.3459] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hatchling painted turtles (Chrysemys picta) commonly hibernate in shallow, natal nests where winter temperatures may fall below −10 degrees C. Although hatchlings are moderately freeze-tolerant, they apparently rely on supercooling to survive exposure to severe cold. We investigated seasonal changes in physiology and in the development of supercooling capacity and resistance to inoculative freezing in hatchling Chrysemys picta exposed in the laboratory to temperatures that decreased from 22 to 4 degrees C over a 5.5 month period. For comparison, we also studied hatchling snapping turtles (Chelydra serpentina), a less cold-hardy species that usually overwinters under water. Although Chrysemys picta and Chelydra serpentina differed in some physiological responses, both species lost dry mass, catabolized lipid and tended to gain body water during the acclimation regimen. Recently hatched, 22 degrees C-acclimated Chrysemys picta supercooled only modestly (mean temperature of crystallization −6.3+/−0.2 degrees C; N=6) and were susceptible to inoculation by ice nuclei in a frozen substratum (mean temperature of crystallization −1.1+/−0.1 degrees C; N=6) (means +/− s.e.m.). In contrast, cold-acclimated turtles exhibited pronounced capacities for supercooling and resistance to inoculative freezing. The development of cold hardiness reflected the elimination or deactivation of potent endogenous ice nuclei and an elevation of blood osmolality that was due primarily to the retention of urea, but was not associated with accumulation of the polyols, sugars or amino acids commonly found in the cryoprotection systems of other animals. Also, Chrysemys picta (and Chelydra serpentina) lacked both antifreeze proteins and ice-nucleating proteins, which are used by some animals to promote supercooling and to initiate freezing at the high temperatures conducive to freezing survival, respectively.
Collapse
Affiliation(s)
- J P Costanzo
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|
29
|
Matutte B, Storey KB, Knoop FC, Conlon JM. Induction of synthesis of an antimicrobial peptide in the skin of the freeze-tolerant frog, Rana sylvatica, in response to environmental stimuli. FEBS Lett 2000; 483:135-8. [PMID: 11042268 DOI: 10.1016/s0014-5793(00)02102-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An extract of skin taken from specimens of the freeze-tolerant wood frog, Rana sylvatica, that were collected from cold (<7 degrees C) ponds and maintained at 5 degrees C lacked detectable antimicrobial activity. In contrast, an extract of skin taken from specimens maintained at 30 degrees C for 3 weeks under laboratory conditions contained a high concentration (approximately 4 nmol/g) of a single antimicrobial peptide of the brevinin-1 family (FLPVVAGLAAKVLPSIICAVTKKC). The peptide inhibited growth of Escherichia coli (minimum inhibitory concentration 45 microM) and Staphylococcus aureus (minimum inhibitory concentration 7 microM). The data suggest that synthesis of the peptide is induced when the animal is in an environment that promotes the growth of microorganisms consistent with a role in the animal's defense strategy.
Collapse
Affiliation(s)
- B Matutte
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178-0405, USA
| | | | | | | |
Collapse
|
30
|
Steiner AA, Petenusci SO, Brentegani LG, Branco LG. The importance of glucose for the freezing tolerance/intolerance of the anuran amphibians Rana catesbeiana and Bufo paracnemis. REVISTA BRASILEIRA DE BIOLOGIA 2000; 60:321-8. [PMID: 10959117 DOI: 10.1590/s0034-71082000000200017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several species of terrestrially hibernating frogs, turtles and insects have developed mechanisms, such as increased plasma glucose, anti-freeze proteins and antioxidant enzymes that resist to freezing, for survival at subzero temperatures. In the present study, we assessed the importance of glucose to cryoresistance of two anuran amphibians: the frog Rana catesbeiana and the toad Bufo paracnemis. Both animals were exposed to -2 degrees C for measurements of plasma glucose levels, liver and muscle glycogen content, haematocrit and red blood cell volume. Frogs survived cold exposure but toads did not. Blood glucose concentration increased from 40.35 +/- 7.25 to 131.87 +/- 20.72 mg/dl (P < 0.01) when the frogs were transferred from 20 to -2 degrees C. Glucose accumulation in response to cold exposition in the frogs was accompanied by a decrease (P < 0.05) in liver glycogen content from 3.94 +/- 0.42 to 1.33 +/- 0.36 mg/100 mg tissue, indicating that liver carbohydrate reserves were probably the primary carbon source of glucose synthesis whereas muscle carbohydrate seems unimportant. In the toads, the cold-induced hyperglycaemia was less (P < 0.05) pronounced (from 27.25 +/- 1.14 to 73.72 +/- 13.50 mg/dl) and no significant change could be measured in liver or muscle glycogen. Cold exposition had no effect on the haematocrit of the frogs but significantly reduced (P < 0.01) the haematocrit of toads from 20.0 +/- 2.1% to 5.8 +/- 1.7% due to a decreased red blood cell volume (from 1532 +/- 63 to 728 +/- 87 mm3). When toads were injected with glucose, blood glucose increased to levels similar to those of frogs and haematocrit did not change, but this failed to make them cryoresistent. In conclusion, the lack of cold-induced glucose catabolism may not be the only mechanism responsible for the freeze intolerance of Bufo paracnemis, a freeze-intolerant species.
Collapse
Affiliation(s)
- A A Steiner
- Departamento de Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | | | | | |
Collapse
|
31
|
Saito T, Sugimoto K, Adachi Y, Wu Q, Mori KJ. Cloning and characterization of amphibian cold inducible RNA-binding protein. Comp Biochem Physiol B Biochem Mol Biol 2000; 125:237-45. [PMID: 10817911 DOI: 10.1016/s0305-0491(99)00174-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene expression of cold inducible RNA-binding protein (CIRP) was examined in the frog. In Xenopus laevis, expression of CIRP (XCIRP) was observed in both brain and liver at 24 degrees C. Circadian expression of XCIRP was observed in brain. Expression of XCIRP in brain was induced by cold treatment and gradually decreased to the control level at 24 degrees C, but no significant changes were observed in liver. Employing the sequence of murine CIRP, bullfrog (Rana catesbeiana) CIRP gene was cloned. The bullfrog CIRP gene, designated BFCIRP, was 706 bp in length and encoded a putative protein of 164 amino acid residues. The deduced protein contained one consensus sequence of RNA-binding domain (CS-RBD) and a glycine rich domain (GRD). The amino acid sequence of BFCIRP was 78.4% identical to XCIRP. Expression of BFCIRP in brain was stronger in winter than that in summer. These findings suggest that BFCIRP expression in brain may link to hibernation.
Collapse
Affiliation(s)
- T Saito
- Department of Cell Science, Faculty of Graduated School of Science and Technology, Niigata University, Japan
| | | | | | | | | |
Collapse
|
32
|
Costanzo JP, Bayuk JM, Lee RE. Inoculative freezing by environmental ice nuclei in the freeze-tolerant wood frog, Rana sylvatica. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1999; 284:7-14. [PMID: 10368930 DOI: 10.1002/(sici)1097-010x(19990615)284:1<7::aid-jez2>3.0.co;2-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Efficacy of inoculative freezing by ice nuclei in a simulated winter environment was studied in the wood frog (Rana sylvatica), a freeze-tolerant species that overwinters on the forest floor beneath organic detritus. Adult frogs were confined to plastic canisters and cooled to -2 degrees C over 24 hr with their ventral skin in contact with substrate (humic soil hydrated to 40, 10, or 5%, or soil/peat mixture hydrated to 20 or 10%, w/w), or their dorsal skin in contact with damp leaf mould. Whereas only 20% of control frogs cooled in dry, plastic canisters froze, freezing occurred in nearly all (98%) frogs contacting soil or leaf mould. Inoculation was briefly delayed in frogs exposed to drier substrates. Frogs exposed to an unfreezable substrate (humic soil, 5% moisture) themselves froze, apparently due to the action of constituent nuclei which commonly occur in natural materials. Although the surface over which inoculation can occur is greater in larger frogs, inoculation susceptibility was not correlated with body mass in our frogs (mean +/- SE body mass = 14.0 +/- 0.2 g; range, 9.8-17.8 g). We conclude that the high susceptibility to inoculative freezing in R. sylvatica, which is conferred by its moist, highly permeable integument, promotes freeze tolerance by ensuring that inoculation commences at relatively high temperatures.
Collapse
Affiliation(s)
- J P Costanzo
- Department of Zoology, Miami University, Oxford, Ohio 45056, USA.
| | | | | |
Collapse
|
33
|
Adaptations for Freezing Survival in Ectothermic Vertebrates. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Verdier JM, Ewart KV, Griffith M, Hew CL. An immune response to ice crystals in North Atlantic fishes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:740-3. [PMID: 8944760 DOI: 10.1111/j.1432-1033.1996.00740.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In mammals, the presence of crystals composed of small organic molecules, including urate and related compounds, has been shown to trigger an inflammatory response and the subsequent production of specific immunoglobulins (Ig's). Many fishes that are exposed to ice crystals in cold temperate and polar oceans may harbour ice crystals internally. Here, we report evidence for a specific immune response to ice crystals in cold-ocean marine fishes. Using ice nucleation activity as an assay, anti-ice Ig's were detected in the sera of the cold-ocean marine fish species, ocean pout (Macrozoarces americanus) and Atlantic herring (Clupea harengus harengus), but not in the sera of species that are not exposed to ice. Purified Ig's isolated from ocean pout serum using two different protocols showed ice nucleation activity, thus demonstrating the presence of ice binding specificity among these Ig's.
Collapse
|
35
|
Affiliation(s)
- Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6 Canada
| | - Janet M. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6 Canada
| |
Collapse
|
36
|
Swanson DL, Graves BM, Koster KL. Freezing tolerance/intolerance and cryoprotectant synthesis in terrestrially overwintering anurans in the Great Plains, USA. J Comp Physiol B 1996; 166:110-9. [PMID: 8766908 DOI: 10.1007/bf00301174] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mechanistic bases for freezing tolerance in anurans have been well-studied only in wood frogs, Rana sylvatica, so comprehensive explanations for the mechanisms and evolution of freezing tolerance in anurans are lacking. We measured crystallization temperatures, freezing tolerance/intolerance, and tissue glucose and glycogen phosphorylase activities in frozen and unfrozen winter-acclimated Pseudacris triseriata, Bufo cognatus and B. woodhousei. Freezing occurred at higher subzero temperatures on wet substrate than on dry substrate in all species, indicating susceptibility to inoculative freezing. P. triseriata was freeze-tolerant, but survival was dependent on the level of supercooling prior to freezing. All Bufo were freezing intolerant, regardless of crystallization temperature. Glucose was significantly elevated by freezing in both liver (35-fold) and leg muscle (22-fold) in winter P. triseriata, but only liver glucose was significantly elevated in B. cognatus. However, freezing did not alter glycogen phosphorylase activity in either species. Liver phosphorylase activity was significantly higher in P. triseriata than in B. cognatus, suggesting that capacity for mobilizing glucose from liver glycogen is associated with freezing tolerance. Summer measurements of liver phosphorylase activity, however, did not differ between species. Thus, P. triseriata, but not B. cognatus, exhibited winter increment of liver phosphorylase activity that is correlated with the development of freezing tolerance.
Collapse
Affiliation(s)
- D L Swanson
- Department of Biology, University of South Dakota, Vermillion 57069-239, USA
| | | | | |
Collapse
|
37
|
Storey KB, Baust JG, Wolanczyk JP. Biochemical modification of plasma ice nucleating activity in a freeze-tolerant frog. Cryobiology 1992; 29:374-84. [PMID: 1499322 DOI: 10.1016/0011-2240(92)90038-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, we reported the presence of ice nucleating activity, apparently proteinaceous, in the plasma of a freeze-tolerant frog, Rana sylvatica, collected in autumn and spring. Although this protein has not been purified, its ice nucleating behavior can act as an internal reference for tests that attempt to modify its ability to nucleate ice formation. If the addition of a chemical reagent alters the temperature of ice crystallization compared with the control, it can be assumed that protein modification may have occurred. The ice nucleating protein in R. sylvatica showed resistance to proteolysis with four different proteases although there was a significant reduction in the temperatures of nucleation with these treatments (ANOVA P less than 0.001). However, ice nucleating activity was lost when plasma was treated with the addition of urea or N-bromosuccinimide. Modification of protein sulphydryl groups with iodoacetamide did not affect the crystallization temperature (Tc) but treatment with iodoacetic acid resulted in a significant increase in Tc of plasma. An abrupt loss of ice nucleating ability was observed in plasma samples after heating above 87 degrees C. Anomalous potentiation of ice nucleating activity occurred when the plasma was heated to and held at temperatures between 67-75 degrees C.
Collapse
Affiliation(s)
- K B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
38
|
|
39
|
Westh P, Kristiansen J, Hvidt A. ICE-nucleating activity in the freeze-tolerant tardigrade Adorybiotus coronifer. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0300-9629(91)90023-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|