1
|
Matsuo I, Kimura-Yoshida C, Ueda Y. Developmental and mechanical roles of Reichert's membrane in mouse embryos. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210257. [PMID: 36252218 PMCID: PMC9574627 DOI: 10.1098/rstb.2021.0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/23/2022] Open
Abstract
Embryonic development and growth in placental mammals proceeds in utero with the support of exchanges of gases, nutrients and waste products between maternal tissues and offspring. Murine embryos are surrounded by several extraembryonic membranes, parietal and visceral yolk sacs, and amnion in the uterus. Notably, the parietal yolk sac is the most outer membrane, consists of three layers, trophoblasts and parietal endoderm (PaE) cells, and is separated by a thick basal lamina termed Reichert's membrane (RM). RM is composed of extracellular matrix (ECM) initially formed as the basement membrane of the trophectoderm of pre-implanted embryos and followed by the heavy deposition of ECM mainly produced in PaE cells of post-implanted embryos. In addition to the physiological roles of RM, such as gas and nutrient exchange, it also plays a crucial role in cushioning and dispersing intrauterine pressures exerted on embryos for normal egg-cylinder morphogenesis. Mechanistically, such intrauterine pressures generated by uterine smooth muscle contractions appear to be involved in the elongation of the egg-cylinder shape, along with primary axis formation, as an important biomechanical element in utero. This review focuses on our current views of the roles of RM in properly buffering intrauterine mechanical forces for mouse egg-cylinder morphogenesis. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Grants
- Takeda Science Foundation
- a grant-in-aid for challenging Research(Exploratory)from the Ministry of Education, Culture, Sports, Science, and Technology, Japan
- from the Ministry a grant-in-aid for Scientific Research (C) of Education, Culture, Sports, Science, and Technology, Japan
- a grant-in-aid for Transformative Research Areas (A)from the Ministry of Education, Culture, Sports, Science, and Technology, Japan
Collapse
Affiliation(s)
- Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Yoko Ueda
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| |
Collapse
|
2
|
Shi S, Tan Q, Liang J, Cao D, Wang S, Liang J, Chen K, Wang Z. Placental trophoblast cell-derived exosomal microRNA-1290 promotes the interaction between endometrium and embryo by targeting LHX6. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:760-772. [PMID: 34729246 PMCID: PMC8526418 DOI: 10.1016/j.omtn.2021.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Communication between the maternal uterus and the embryo is vital for a successful pregnancy. Exosomes, subtypes of extracellular vesicles comprising many bioactive factors, regulate the early stages of pregnancy, specifically during embryo implantation. Nevertheless, the mechanism by which exosomal microRNAs (miRNAs) derived from placental trophoblasts regulate embryo implantation remains elusive. We isolated and identified exosomes derived from placental trophoblast cells (HTR8/SVneo). Subsequently, we evaluated the loading miRNA in exosomes by small RNA sequencing. Consequently, we showed that trophoblast cell-derived exosomes could transfer to endometrial epithelial cells. Besides, these exosomes promoted the epithelial-mesenchymal transition (EMT) as well as migration of endometrial cells and were implicated in the regulation of inflammation. Further, the specific miRNAs were screened in exosomes, and as a result, miRNA (miR)-1290 was enriched specifically in exosomes. miR-1290 promoted the expression of inflammatory factors (interleukin [IL]-6 and IL-8) and migration of endometrial epithelial cells. In addition, exosomal miR-1290 promoted angiogenesis in vitro. More importantly, by targeting LHX6, trophoblast HTR8/SVneo cell-derived exosomal miR-1290 promoted the EMT process of endometrial epithelial cell HEC-1-A. Altogether, our findings provide novel insights into the mechanism of trophoblast cell-derived exosomes during embryo implantation.
Collapse
Affiliation(s)
- Shuang Shi
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - Qiang Tan
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jingjie Liang
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dingren Cao
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - Shaoyu Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - Junyong Liang
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - Kaiyu Chen
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhengguang Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China.,Hainan Institute, Zhejiang University, Sanya 572000, PR China
| |
Collapse
|
3
|
Owusu-Akyaw A, Krishnamoorthy K, Goldsmith LT, Morelli SS. The role of mesenchymal-epithelial transition in endometrial function. Hum Reprod Update 2020; 25:114-133. [PMID: 30407544 DOI: 10.1093/humupd/dmy035] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The human uterine endometrium undergoes significant remodeling and regeneration on a rapid and repeated basis, after parturition, menstruation, and in some cases, injury. The ability of the adult endometrium to undergo cyclic regeneration and differentiation/decidualization is essential for successful human reproduction. Multiple key physiologic functions of the endometrium require the cells of this tissue to transition between mesenchymal and epithelial phenotypes, processes known as mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT). Although MET/EMT processes have been widely characterized in embryonic development and in the context of malignancy, mounting evidence demonstrates the importance of MET/EMT in allowing the endometrium the phenotypic and functional flexibility necessary for successful decidualization, regeneration/re-epithelialization and embryo implantation. OBJECTIVE AND RATIONALE The objective of this review is to provide a comprehensive summary of the observations concerning MET and EMT and their regulation in physiologic uterine functions, specifically in the context of endometrial regeneration, decidualization and embryo implantation. SEARCH METHODS Using variations of the search terms 'mesenchymal-epithelial transition', 'mesenchymal-epithelial transformation', 'epithelial-mesenchymal transition', 'epithelial-mesenchymal transformation', 'uterus', 'endometrial regeneration', 'endometrial decidualization', 'embryo implantation', a search of the published literature between 1970 and 2018 was conducted using the PubMed database. In addition, we searched the reference lists of all publications included in this review for additional relevant original studies. OUTCOMES Multiple studies demonstrate that endometrial stromal cells contribute to the regeneration of both the stromal and epithelial cell compartments of the uterus, implicating a role for MET in mechanisms responsible for endometrial regeneration and re-epithelialization. During decidualization, endometrial stromal cells undergo morphologic and functional changes consistent with MET in order to accommodate embryo implantation. Under the influence of estradiol, progesterone and multiple other factors, endometrial stromal fibroblasts acquire epithelioid characteristics, such as expanded cytoplasm and rough endoplasmic reticulum required for greater secretory capacity, rounded nuclei, increased expression of junctional proteins which allow for increased cell-cell communication, and a reorganized actin cytoskeleton. During embryo implantation, in response to both maternal and embryonic-derived signals, the maternal luminal epithelium as well as the decidualized stromal cells acquire the mesenchymal characteristics of increased migration/motility, thus undergoing EMT in order to accommodate the invading trophoblast. WIDER IMPLICATIONS Overall, the findings support important roles for MET/EMT in multiple endometrial functions required for successful reproduction. The endometrium may be considered a unique wound healing model, given its ability to repeatedly undergo repair without scarring or loss of function. Future studies to elucidate how MET/EMT mechanisms may contribute to scar-free endometrial repair will have considerable potential to advance studies of wound healing mechanisms in other tissues.
Collapse
Affiliation(s)
- Amma Owusu-Akyaw
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Kavitha Krishnamoorthy
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Laura T Goldsmith
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Sara S Morelli
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
4
|
Park D, Wershof E, Boeing S, Labernadie A, Jenkins RP, George S, Trepat X, Bates PA, Sahai E. Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions. NATURE MATERIALS 2020; 19:227-238. [PMID: 31659294 PMCID: PMC6989216 DOI: 10.1038/s41563-019-0504-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 09/10/2019] [Indexed: 05/12/2023]
Abstract
The isotropic or anisotropic organization of biological extracellular matrices has important consequences for tissue function. We study emergent anisotropy using fibroblasts that generate varying degrees of matrix alignment from uniform starting conditions. This reveals that the early migratory paths of fibroblasts are correlated with subsequent matrix organization. Combined experimentation and adaptation of Vicsek modelling demonstrates that the reorientation of cells relative to each other following collision plays a role in generating matrix anisotropy. We term this behaviour 'cell collision guidance'. The transcription factor TFAP2C regulates cell collision guidance in part by controlling the expression of RND3. RND3 localizes to cell-cell collision zones where it downregulates actomyosin activity. Cell collision guidance fails without this mechanism in place, leading to isotropic matrix generation. The cross-referencing of alignment and TFAP2C gene expression signatures against existing datasets enables the identification and validation of several classes of pharmacological agents that disrupt matrix anisotropy.
Collapse
Affiliation(s)
- Danielle Park
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Esther Wershof
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Stefan Boeing
- Bioinformatics Laboratory, The Francis Crick Institute, London, UK
| | - Anna Labernadie
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Robert P Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Samantha George
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, University of Barcelona, Barcelona, Spain
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
5
|
Cyclopamine, an Antagonist of Hedgehog (Hh) Signaling Pathway, Reduces the Hatching Rate of Parthenogenetic Murine Embryos. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
6
|
de Almeida PG, Pinheiro GG, Nunes AM, Gonçalves AB, Thorsteinsdóttir S. Fibronectin assembly during early embryo development: A versatile communication system between cells and tissues. Dev Dyn 2016; 245:520-35. [PMID: 26845241 DOI: 10.1002/dvdy.24391] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fibronectin extracellular matrix is essential for embryogenesis. Its assembly is a cell-mediated process where secreted fibronectin dimers bind to integrin receptors on receiving cells, which actively assemble fibronectin into a fibrillar matrix. During development, paracrine communication between tissues is crucial for coordinating morphogenesis, typically being mediated by growth factors and their receptors. Recent reports of situations where fibronectin is produced by one tissue and assembled by another, with implications on tissue morphogenesis, suggest that fibronectin assembly may also be a paracrine communication event in certain contexts. RESULTS Here we addressed which tissues express fibronectin (Fn1) while also localizing assembled fibronectin matrix and determining the mRNA expression and/or protein distribution pattern of integrins α5 and αV, α chains of the major fibronectin assembly receptors, during early chick and mouse development. We found evidence supporting a paracrine system in fibronectin matrix assembly in several tissues, including immature mesenchymal tissues, components of central and peripheral nervous system and developing muscle. CONCLUSIONS Thus, similarly to growth factor signaling, fibronectin matrix assembly during early development can be both autocrine and paracrine. We therefore propose that it be considered a cell-cell communication event at the same level and significance as growth factor signaling during embryogenesis.
Collapse
Affiliation(s)
- Patrícia Gomes de Almeida
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo G Pinheiro
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia M Nunes
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - André B Gonçalves
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sólveig Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Change (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Wang K, Seo BR, Fischbach C, Gourdon D. Fibronectin Mechanobiology Regulates Tumorigenesis. Cell Mol Bioeng 2015; 9:1-11. [PMID: 26900407 PMCID: PMC4746220 DOI: 10.1007/s12195-015-0417-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/08/2015] [Indexed: 12/25/2022] Open
Abstract
Fibronectin (Fn) is an essential extracellular matrix (ECM) glycoprotein involved in both physiological and pathological processes. The structure–function relationship of Fn has been and is still being studied, as changes in its molecular structure are integral in regulating (or dysregulating) its biological activities via its cell, matrix component, and growth factor binding sites. Fn comprises three types of repeating modules; among them, FnIII modules are mechanically unstable domains that may be extended/unfolded upon cell traction and either uncover cryptic binding sites or disrupt otherwise exposed binding sites. Cells assemble Fn into a fibrillar network; its conformational flexibility implicates Fn as a critical mechanoregulator of the ECM. Fn has been shown to contribute to altered stroma remodeling during tumorigenesis. This review will discuss (i) the significance of the structure–function relationship of Fn at both the molecular and the matrix scales, (ii) the role of Fn mechanobiology in the regulation of tumorigenesis, and (iii) Fn-related advances in cancer therapy development.
Collapse
Affiliation(s)
- Karin Wang
- Department of Materials Science and Engineering, Cornell University, 327 Bard Hall, Ithaca, NY 14853 USA ; Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Bo Ri Seo
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Claudia Fischbach
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA ; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 USA
| | - Delphine Gourdon
- Department of Materials Science and Engineering, Cornell University, 327 Bard Hall, Ithaca, NY 14853 USA ; Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
8
|
Chen K, Chen X, He J, Ding Y, Geng Y, Liu S, Liu X, Wang Y. Mouse Endometrium Temporal and Spatial Expression mRNA and MicroRNA Associated With Embryo Implantation. Reprod Sci 2015; 22:1399-408. [DOI: 10.1177/1933719115580996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ke Chen
- Laboratory of Reproduction Biology, Chongqing Medical University, Yuzhong, Chongqing, People’s Republic of China
| | - Xuemei Chen
- Laboratory of Reproduction Biology, Chongqing Medical University, Yuzhong, Chongqing, People’s Republic of China
| | - Junlin He
- Laboratory of Reproduction Biology, Chongqing Medical University, Yuzhong, Chongqing, People’s Republic of China
| | - Yubin Ding
- Laboratory of Reproduction Biology, Chongqing Medical University, Yuzhong, Chongqing, People’s Republic of China
| | - Yanqing Geng
- Laboratory of Reproduction Biology, Chongqing Medical University, Yuzhong, Chongqing, People’s Republic of China
| | - Shangjing Liu
- Laboratory of Reproduction Biology, Chongqing Medical University, Yuzhong, Chongqing, People’s Republic of China
| | - Xueqing Liu
- Laboratory of Reproduction Biology, Chongqing Medical University, Yuzhong, Chongqing, People’s Republic of China
| | - Yingxiong Wang
- Laboratory of Reproduction Biology, Chongqing Medical University, Yuzhong, Chongqing, People’s Republic of China
| |
Collapse
|
9
|
Green CJ, Fraser ST, Day ML. Insulin-like growth factor 1 increases apical fibronectin in blastocysts to increase blastocyst attachment to endometrial epithelial cells in vitro. Hum Reprod 2014; 30:284-98. [PMID: 25432925 DOI: 10.1093/humrep/deu309] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
STUDY QUESTION Does insulin-like growth factor 1 (IGF1) increase adhesion competency of blastocysts to increase attachment to uterine epithelial cells in vitro? SUMMARY ANSWER IGF1 increases apical fibronectin on blastocysts to increase attachment and invasion in an in vitro model of implantation. WHAT IS KNOWN ALREADY Fibronectin integrin interactions are important in attachment of blastocysts to uterine epithelial cells at implantation. STUDY DESIGN, SIZE, DURATION Mouse blastocysts (hatched or near completion of hatching) were cultured in serum starved (SS) medium with varying treatments for 24, 48 or 72 h. Treatments included 10 ng/ml IGF1 in the presence or absence of the PI3 kinase inhibitor LY294002, an IGF1 receptor (IGF1R) neutralizing antibody or fibronectin. Effects of treatments on blastocysts were measured by attachment of blastocysts to Ishikawa cells, blastocyst outgrowth and fibronectin and focal adhesion kinase (FAK) localization and expression. Blastocysts were randomly allocated into control and treatment groups and experiments were repeated a minimum of three times with varying numbers of blastocysts used in each experiment. FAK and integrin protein expression on Ishikawa cells was quantified in the presence or absence of IGF1. PARTICIPANTS/MATERIALS, SETTING, METHODS Fibronectin expression and localization in blastocysts was studied using immunofluorescence and confocal microscopy. Global surface expression of integrin αvβ3, β3 and β1 was measured in Ishikawa cells using flow cytometry. Expression levels of phosphorylated FAK and total FAK were measured in Ishikawa cells and blastocysts by western blot and image J analysis. Blastocyst outgrowth was quantified using image J analysis. MAIN RESULTS AND THE ROLE OF CHANCE The presence of IGF1 significantly increased mouse blastocyst attachment to Ishikawa cells compared with SS conditions (P < 0.01). IGF1 treatment resulted in distinct apical fibronectin staining on blastocysts, which was reduced by the PI3 kinase inhibitor LY294002. This coincided with a significant increase in blastocyst outgrowth in the presence of IGF1 (P < 0.01) or fibronectin (P < 0.001), which was abolished by LY294002 (P < 0.001). Apical expression of integrin αvβ3, β3 and β1 in Ishikawa cells was unaltered by IGF1. However, IGF1 increased phosphorylated FAK (P < 0.05) and total FAK expression in Ishikawa cells. FAK signalling is linked to integrin activation and can affect the integrins' ability to bind and recognize extracellular matrix proteins such as fibronectin. Treatment of blastocysts with IGF1 before co-culture with Ishikawa cells increased their attachment (P < 0.05). This effect was abolished in the presence of LY294002 (P < 0.001) or an IGF1R neutralizing antibody (P < 0.05). LIMITATIONS, REASONS FOR CAUTION This study uses an in vitro model of attachment that uses mouse blastocysts and human endometrial cells. This involves a species crossover and although this use has been well documented as a model for attachment (as human embryo numbers are limited) the results should be interpreted carefully. WIDER IMPLICATIONS OF THE FINDINGS This study presents mechanisms by which IGF1 improves attachment of blastocysts to Ishikawa cells and documents for the first time how IGF1 can increase adhesion competency in blastocysts. Failure of the blastocyst to implant is the major cause of human assisted reproductive technology (ART) failure. As growth factors are absent during embryo culture, their addition to embryo culture medium is a potential avenue to improve IVF success. In particular, IGF1 could prove to be a potential treatment for blastocysts before transfer to the uterus in an ART setting.
Collapse
Affiliation(s)
- Charmaine J Green
- Discipline of Physiology, Bosch Institute, Sydney Medical School, University of Sydney, K25 - Medical Foundation Building, Sydney 2006, Australia
| | - Stuart T Fraser
- Discipline of Physiology, Bosch Institute, Sydney Medical School, University of Sydney, K25 - Medical Foundation Building, Sydney 2006, Australia Discipline of Anatomy and Histology, Sydney Medical School, University of Sydney, K25 - Medical Foundation Building, Sydney 2006, Australia
| | - Margot L Day
- Discipline of Physiology, Bosch Institute, Sydney Medical School, University of Sydney, K25 - Medical Foundation Building, Sydney 2006, Australia
| |
Collapse
|
10
|
Distribution of tubulointerstitial nephritis antigen-like 1 and structural matrix proteins in mouse embryos during preimplantation development in vivo and in vitro. ZYGOTE 2012; 22:259-65. [DOI: 10.1017/s0967199412000469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryTubulointerstitial nephritis antigen-like 1 (TINAGL1) is a novel matricellular protein that interacts with structural matrix proteins and promotes cell adhesion and spreading. We have previously reported unique localization of TINAGL1 to the trophectoderm (TE) of mouse blastocysts. TINAGL1 was found to be upregulated in implantation-competent blastocysts after estrogen treatment using progesterone-treated delayed-implantation models. Moreover, colocalization of TINAGL1 and extracellular matrix (ECM) protein laminin 1 was detected in the Reichert membrane on embryonic days 6.5 and 7.5. Although these data suggested a role for TINAGL1 in the embryo development at postimplantation, its relevance to other ECM proteins during preimplantation development is not clear. In this study, we examined the expression of TINAGL1 and its relevance to other ECM proteins fibronectin (FN) and collagen type IV (ColIV) during in vivo development of preimplantation embryos, particularly at blastocyst stage in detail. Localizations of TINAGL1, FN, and ColIV were similar. In 1-cell to 8-cell embryos, they were expressed in cytoplasm of blastomeres, and in morulae they were localized in the outer cells. FN and ColIV were expressed primarily on outer surface of the cells. In blastocysts, FN and ColIV were distributed in the cytoplasm of TE, but, just prior to implantation, they became localized uniquely to the blastocoelic surface of TE. In in vitro fertilized (IVF) blastocysts, expression levels of TINAGL1 and FN were lower than in in vivo blastocysts. These results suggest that, during preimplantation development, TINAGL1 may be involved in roles of structural matrix proteins, whose expression in blastocysts may be affected by in vitro culture.
Collapse
|
11
|
Kaneko Y, Murphy CR, Day ML. Extracellular matrix proteins secreted from both the endometrium and the embryo are required for attachment: a study using a co-culture model of rat blastocysts and Ishikawa cells. J Morphol 2012; 274:63-72. [PMID: 22972746 DOI: 10.1002/jmor.20076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/25/2012] [Accepted: 08/09/2012] [Indexed: 11/08/2022]
Abstract
Integrins are expressed in a highly regulated manner at the maternal-fetal interface during implantation. However, the significance of extracellular matrix (ECM) ligands during the integrin-mediated embryo attachment to the endometrium is not fully understood. Thus, the distribution of fibronectin in the rat uterus and blastocyst was studied at the time of implantation. Fibronectin was absent in the uterine luminal epithelial cells but was intensely expressed in the trophoblast cells and the inner cell mass suggesting that fibronectin secreted from the blastocyst may be a possible bridging ligand for the integrins expressed at the maternal-fetal interface. An Arg-Gly-Asp (RGD) peptide was used to block the RGD recognition sites on integrins, and the effect on rat blastocyst attachment to Ishikawa cells was examined. There was a significant reduction in blastocyst attachment when either the blastocysts or the Ishikawa cells were pre-incubated with the RGD-blocking peptide. Thus, successful attachment of the embryo to the endometrium requires the interaction of integrins on both the endometrium and the blastocyst with the RGD sequence of ECM ligands, such as fibronectin. Pre-treatment of both blastocysts and Ishikawa cells with the RGD peptide also inhibited blastocyst attachment, but not completely, suggesting that ECM bridging ligands that do not contain the RGD sequence are also involved in embryo attachment.
Collapse
Affiliation(s)
- Yui Kaneko
- Discipline of Anatomy and Histology, School of Medical Sciences and The Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | |
Collapse
|
12
|
Paule S, Aljofan M, Simon C, Rombauts LJF, Nie G. Cleavage of endometrial -integrins into their functional forms is mediated by proprotein convertase 5/6. Hum Reprod 2012; 27:2766-74. [DOI: 10.1093/humrep/des203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
13
|
Hunt GC, Singh P, Schwarzbauer JE. Endogenous production of fibronectin is required for self-renewal of cultured mouse embryonic stem cells. Exp Cell Res 2012; 318:1820-31. [PMID: 22710062 DOI: 10.1016/j.yexcr.2012.06.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 12/21/2022]
Abstract
Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomitantly inducing the loss of Nanog and Oct4 self-renewal markers. Conversely, reducing fibronectin production by mES cells growing on a feeder-free gelatin substrate caused loss of cell adhesion, decreased integrin signaling, and decreased expression of self-renewal markers. These effects were reversed by providing the cells with exogenous fibronectin, thereby restoring adhesion to the gelatin substrate. Interestingly, mES cells do not adhere directly to the gelatin substrate, but rather adhere indirectly through gelatin-bound fibronectin, which facilitates self-renewal via its effects on cell adhesion. These results provide new insights into the mechanism of regulation of self-renewal by growth on a gelatin-coated surface. The effects of increasing or decreasing fibronectin levels show that self-renewal depends on an intermediate level of cell-fibronectin interactions. By providing cell adhesive signals that can act with other self-renewal factors to maintain mES cell pluripotency, fibronectin is therefore a necessary component of the self-renewal signaling pathway in culture.
Collapse
Affiliation(s)
- Geoffrey C Hunt
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | |
Collapse
|
14
|
Du J, Takeuchi H, Leonhard-Melief C, Shroyer KR, Dlugosz M, Haltiwanger RS, Holdener BC. O-fucosylation of thrombospondin type 1 repeats restricts epithelial to mesenchymal transition (EMT) and maintains epiblast pluripotency during mouse gastrulation. Dev Biol 2010; 346:25-38. [PMID: 20637190 DOI: 10.1016/j.ydbio.2010.07.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/09/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
Thrombospondin type 1 repeat (TSR) superfamily members regulate diverse biological activities ranging from cell motility to inhibition of angiogenesis. In this study, we verified that mouse protein O-fucosyltransferase-2 (POFUT2) specifically adds O-fucose to TSRs. Using two Pofut2 gene-trap lines, we demonstrated that O-fucosylation of TSRs was essential for restricting epithelial to mesenchymal transition in the primitive streak, correct patterning of mesoderm, and localization of the definitive endoderm. Although Pofut2 mutant embryos established anterior/posterior polarity, they underwent extensive mesoderm differentiation at the expense of maintaining epiblast pluripotency. Moreover, mesoderm differentiation was biased towards the vascular endothelial cell lineage. Localization of Foxa2 and Cer1 expressing cells within the interior of Pofut2 mutant embryos suggested that POFUT2 activity was also required for the displacement of the primitive endoderm by definitive endoderm. Notably, Nodal, BMP4, Fgf8, and Wnt3 expression were markedly elevated and expanded in Pofut2 mutants, providing evidence that O-fucose modification of TSRs was essential for modulation of growth factor signaling during gastrulation. The ability of Pofut2 mutant embryos to form teratomas comprised of tissues from all three germ layer origins suggested that defects in Pofut2 mutant embryos resulted from abnormalities in the extracellular environment. This prediction is consistent with the observation that POFUT2 targets are constitutive components of the extracellular matrix (ECM) or associate with the ECM. For this reason, the Pofut2 mutants represent a valuable tool for studying the role of O-fucosylation in ECM synthesis and remodeling, and will be a valuable model to study how post-translational modification of ECM components regulates the formation of tissue boundaries, cell movements, and signaling.
Collapse
Affiliation(s)
- Jianguang Du
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Kopper O, Giladi O, Golan-Lev T, Benvenisty N. Characterization of gastrulation-stage progenitor cells and their inhibitory crosstalk in human embryoid bodies. Stem Cells 2010; 28:75-83. [PMID: 19921748 DOI: 10.1002/stem.260] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human embryoid bodies (HEBs) are cell aggregates that are produced during the course of embryonic stem cell differentiation in suspension. Mature HEBs have been shown to contain derivatives of the three embryonic germ layers. In this study, using a combination of laser capture microscopy followed by DNA microarray analysis and cell sorting, we demonstrate that early HEBs are composed of three major cell populations. These cell populations can be defined by the expression of specific cell markers, namely: (i) OCT4(+), REX1(-); (ii) NCAD(+), OCT4(-); and (iii) EPOR(+), OCT4(-). By analyzing gene expression in embryonic tissues, these cell populations could respectively be assigned to the embryonic ectoderm, mesendoderm, and extraembryonic endoderm lineages. We show that the extraembryonic endoderm, which selectively expresses platelet-derived growth factor B (PDGF-B), negatively affects the mesendoderm lineage, which selectively expresses the receptor PDGFRA. Our analysis suggests that early HEBs are spatially patterned and that cell differentiation is governed by interactions between the different cell types.
Collapse
Affiliation(s)
- Oded Kopper
- Stem Cell Unit, Department of Genetics, The Institute of Life Sciences, The Hebrew University, Edmund J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
16
|
Stenman S, von Smitten K, Vaheri A. Fibronectin and atherosclerosis. ACTA MEDICA SCANDINAVICA. SUPPLEMENTUM 2009; 642:165-70. [PMID: 6935942 DOI: 10.1111/j.0954-6820.1980.tb10949.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fibronectin is a polymorphic glycoprotein of plasma, other body fluids and connective tissue, and it occurs in an insoluble and a soluble form. Insoluble fibronectin is found associated with basement membranes and in loose connective tissue matrix as well as in the pericellular matrix formed around cultured adherent cells, such as endothelial, fibroblastic and smooth muscle cells. In these positions fibronectin apparently functions as a substrate for cell attachment and as a scaffold for cell migration and movement. Soluble fibronectin, present e.g. in the circulation (300 micronm/ml) exhibits some important interations with other proteins. It is covalently cross-linked to fibrin during thrombus formation and binds to collagen. Fibronectin is released from platelets during their aggregation and soluble fibronectin potentiates the action of plasminogen activator. We have detected fibronectin in the sub-endothelium, in the matrix of smooth muscle cells of the media and in the adventitia of arteries. By using immunohistological techniques we have further found that fibronectin is prominent in atherosclerotic lesions of the intima, especially in developing fibrous plaques. Fibronectin was also prominent in experimentally induced atherosclerotic lesions. These findings suggest that fibronectin is an indicator of connective tissue formation in atherosclerotic processes and that the protein can have a role in their pathogenesis.
Collapse
|
17
|
Kang Y, Nagy JM, Polak JM, Mantalaris A. Proteomic Characterization of the Conditioned Media Produced by the Visceral Endoderm-Like Cell Lines HepG2 and END2: Toward a Defined Medium for the Osteogenic/Chondrogenic Differentiation of Embryonic Stem Cells. Stem Cells Dev 2009; 18:77-91. [DOI: 10.1089/scd.2008.0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yunyi Kang
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | - Judit M. Nagy
- Institute of Biomedical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | - Julia M. Polak
- Department of Chemical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | - Anthanasios Mantalaris
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Armant DR. Blastocysts don't go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev Biol 2005; 280:260-80. [PMID: 15882572 PMCID: PMC2715296 DOI: 10.1016/j.ydbio.2005.02.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 01/16/2005] [Accepted: 02/08/2005] [Indexed: 01/02/2023]
Abstract
The preimplantation embryo floats freely within the oviduct and is capable of developing into a blastocyst independently of the maternal reproductive tract. While establishment of the trophoblast lineage is dependent on expression of developmental regulatory genes, further differentiation leading to blastocyst implantation in the uterus requires external cues emanating from the microenvironment. Recent studies suggest that trophoblast differentiation requires intracellular signaling initiated by uterine-derived growth factors and integrin-binding components of the extracellular matrix. The progression of trophoblast development from the early blastocyst stage through the onset of implantation appears to be largely independent of new gene expression. Instead, extrinsic signals direct the sequential trafficking of cell surface receptors to orchestrate the developmental program that initiates blastocyst implantation. The dependence on external cues could coordinate embryonic activities with the developing uterine endometrium. Biochemical events that regulate trophoblast adhesion to fibronectin are presented to illustrate a developmental strategy employed by the peri-implantation blastocyst.
Collapse
Affiliation(s)
- D Randall Armant
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201-1415, USA.
| |
Collapse
|
19
|
Shirai T, Miyagi S, Horiuchi D, Okuda-Katayanagi T, Nishimoto M, Muramatsu M, Sakamoto Y, Nagata M, Hagiwara K, Okuda A. Identification of an Enhancer That Controls Up-regulation of Fibronectin during Differentiation of Embryonic Stem Cells into Extraembryonic Endoderm. J Biol Chem 2005; 280:7244-52. [PMID: 15590650 DOI: 10.1074/jbc.m410731200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extraembryonic endoderm is derived from inner cell mass cells of the blastocyst during early mouse embryogenesis. Formation of the extraembryonic endoderm, which later contributes to the yolk sac, appears to be a prerequisite for subsequent differentiation of the inner cell mass. While embryonic stem cells can be induced to differentiate into extraembryonic endoderm cells in vitro, the molecular mechanisms underlying this process are poorly understood. We used a promoter trap approach to search for genes that are expressed in embryonic stem cells and are highly up-regulated during differentiation to the extraembryonic endoderm fate. We showed that fibronectin fits this expression profile. Moreover we identified an enhancer in the 12th intron of the fibronectin locus that recapitulated the endogenous pattern of fibronectin expression. This enhancer carries Sox protein-binding sequences, and our analysis demonstrated that Sox7 and Sox17, which are highly expressed in the extraembryonic endoderm, were involved in enhancer activity.
Collapse
Affiliation(s)
- Tetsu Shirai
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical School, 1397-1 Yamane, Hidaka, Saitama 350-1241, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vejlsted M, Avery B, Gjorret JO, Maddox-Hyttel P. Effect of leukemia inhibitory factor (LIF) on in vitro produced bovine embryos and their outgrowth colonies. Mol Reprod Dev 2005; 70:445-54. [PMID: 15685635 DOI: 10.1002/mrd.20221] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vitro produced (IVP) bovine embryos were subjected to in vitro culture with or without 1000 U/ml human recombinant leukemia inhibitory factor (LIF) added to the culture medium from Days 5 to 8 post insemination (p.i.). Resulting blastocysts were subsequently plated intact on mouse feeder cells in a medium with or without LIF. Significantly more embryos reached the hatched blastocyst stage, and the number of blastocysts with excellent morphology was significantly higher, when LIF was omitted. At Day 8 p.i., total cell count (TCC) and inner cell mass (ICM) cell count was significantly higher in embryos cultured without LIF. In embryos cultured with LIF, cytoplasmic vesicles and lipid droplets were abundant and a decreased expression of both Oct4 and laminin could be observed. Initial hypoblast formation was revealed in almost 1/3 of the LIF-cultured blastocysts whereas this feature was evident in 2/3 of the blastocysts cultured in the absence of LIF. Overall, almost 60% of the blastocysts cultured without LIF formed outgrowth colonies (OCs) when plated on feeders, whereas this phenomenon was only observed in 30% of the blastocysts cultured in the presence of LIF. A tendency for retaining a tightly packed central growth of putative ICM-derived cells was observed, when attachment to the feeder layer was initiated close to the embryonic pole of the blastocyst. At Day 8 of outgrowth culture, approximately 20% of the colonies contained a central core of putative ICM-derived cells appearing large enough for mechanical isolation and further subculture. Immunohistochemical labeling for Oct4 revealed staining of both trophectodermal and ICM-derived cells. The presence of LIF in the outgrowth culture medium did not have any apparent effect on the plating efficiency or colony type. In conclusion, LIF had an adverse effect on in vitro embryonic development when added to the culture medium in the period from Days 5 to 8 p.i., whereas it had no apparent effect on the OCs subsequently formed from such embryos.
Collapse
Affiliation(s)
- Morten Vejlsted
- Department of Animal and Veterinary Basic Sciences, Anatomy and Cell Biology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
21
|
El-Hashash AHK, Kimber SJ. Trophoblast differentiation in vitro: establishment and characterisation of a serum-free culture model for murine secondary trophoblast giant cells. Reproduction 2004; 128:53-71. [PMID: 15232064 DOI: 10.1530/rep.1.00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Differentiation of trophoblast giant cells is an early event during the process of murine embryo implantation. However, differentiation of secondary trophoblast giant cells in the rodent is still only partially understood, probably because of the lack of suitablein vitromodels and cell markers. In order to advance our understanding of trophoblast differentiation, suitablein vitromodels and markers are required to study their development. The objectives of this study were to establish and characterise a serum-freein vitromodel for murine secondary trophoblast cells. Secondary trophoblast giant cells growingin vitroand paraffin sections of day 8.5 postcoitum mouse embryos were processed for immunostaining to establish the expression of potential markers using antibodies to blood group antigens, E-cadherin, α7integrins and activator protein-γ, as well as placental lactogen-II. Within 3 days in serum-free culture, ectoplacental cone-derived secondary trophoblast cells underwent simultaneous induction of both morphological and functional differentiation. Secondary trophoblasts grewin vitroas a monolayer of cells with giant nuclei and expressed B and Le-b/Le-y blood group antigens, α7integrins and placental lactogen-II, as well as activator protein-γ. Transcripts for activator protein-γ and placental lactogen-II were detected in cultures by RT-PCR and for placental lactogen-II byin situhybridisation. At later time-points apoptosis increased. A fibronectin substrate significantly increased secondary trophoblast cell numbers and surface area of outgrowth. The increase in cells with giant nuclei coincided with induction of placental lactogen-II expression. A relationship was found between the nuclear area of secondary trophoblast cells and expression of placental lactogen-II.
Collapse
Affiliation(s)
- A H K El-Hashash
- School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
22
|
Abstract
Successful implantation is the result of reciprocal interactions between the implantation-competent blastocyst and receptive uterus. Although various cellular aspects and molecular pathways of this dialogue have been identified, a comprehensive understanding of the implantation process is still missing. The receptive state of the uterus, which lasts for a limited period, is defined as the time when the uterine environment is conducive to blastocyst acceptance and implantation. A better understanding of the molecular signals that regulate uterine receptivity and implantation competency of the blastocyst is of clinical relevance because unraveling the nature of these signals may lead to strategies to correct implantation failure and improve pregnancy rates. Gene expression studies and genetically engineered mouse models have provided valuable clues to the implantation process with respect to specific growth factors, cytokines, lipid mediators, adhesion molecules, and transcription factors. However, a staggering amount of information from microarray experiments is also being generated at a rapid pace. If properly annotated and explored, this information will expand our knowledge regarding yet-to-be-identified unique, complementary, and/or redundant molecular pathways in implantation. It is hoped that the forthcoming information will generate new ideas and concepts for a process that is essential for maintaining procreation and solving major reproductive health issues in women.
Collapse
Affiliation(s)
- S K Dey
- Department of Pediatrics, Vanderbilt University Medical Center, MCN D4100, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Rout UK, Wang J, Paria BC, Armant DR. α5β1, αVβ3 and the platelet-associated integrin αIIbβ3 coordinately regulate adhesion and migration of differentiating mouse trophoblast cells. Dev Biol 2004; 268:135-51. [PMID: 15031111 DOI: 10.1016/j.ydbio.2003.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Revised: 12/08/2003] [Accepted: 12/09/2003] [Indexed: 11/23/2022]
Abstract
During blastocyst implantation, interaction between integrins on the apical surface of the trophoblast and extracellular matrix (ECM) in the endometrium anchors the embryo to the uterine wall. Strong adhesion of the blastocyst to fibronectin (FN) requires integrin signaling initiated by exogenous fibronectin. However, it is not known how integrin signaling enhances blastocyst adhesion. We present new evidence that the integrin, alphaIIbbeta3, plays a key role in trophoblast adhesion to fibronectin during mouse peri-implantation development. Trafficking of alphaIIb to the apical surface of the trophoblast increased dramatically after blastocysts were exposed to fibronectin, whereas other fibronectin-binding integrins, alpha5beta1 and alphaVbeta3, were resident at the apical surface before ligand exposure. Functional comparisons among the three integrins revealed that ligation of alpha5beta1 most efficiently strengthened blastocyst fibronectin-binding activity, while subsequent trophoblast cell migration was dependent primarily on the beta3-class integrins. In vivo, alphaIIb was highly expressed by invasive trophoblast cells in the ectoplacental cone and trophoblast giant cells of the parietal yolk sac. These data demonstrate that trafficking of alphaIIb regulates adhesion between trophoblast cells and fibronectin as invasion of the endometrium commences.
Collapse
Affiliation(s)
- Ujjwal K Rout
- C.S. Mott Center for Human Growth and Development, Departments of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201-1415, USA
| | | | | | | |
Collapse
|
24
|
Rathjen J, Washington JM, Bettess MD, Rathjen PD. Identification of a biological activity that supports maintenance and proliferation of pluripotent cells from the primitive ectoderm of the mouse. Biol Reprod 2003; 69:1863-71. [PMID: 12904310 DOI: 10.1095/biolreprod.103.017384] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Pluripotent cell development in the mammalian embryo results in the sequential formation of several developmentally distinct populations, inner cell mass, primitive ectoderm, and the primordial germ lineage. Factors within medium conditioned by HepG2 cells (MEDII) have been implicated in the formation and maintenance of primitive ectoderm from inner cell mass cells both in vitro and in vivo. Here we demonstrate that MEDII, but not LIF, is able to support the maintenance and proliferation in culture of pluripotent cells derived from primitive ectoderm formed in vitro or during embryonic development. This distinguishes primitive ectoderm and inner cell mass (ICM) on the basis of cytokine responsiveness and validates the biological activity proposed for factors within MEDII in primitive ectoderm establishment and maintenance. Further, it potentially provides an alternative technology for the isolation of pluripotent cells from the mammalian embryo.
Collapse
Affiliation(s)
- Joy Rathjen
- School of Molecular and Biomedical Sciences, and Australian Research Council Special Research Centre for Molecular Genetics of Development, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
25
|
Hanashi H, Shiokawa S, Akimoto Y, Sakai K, Sakai K, Suzuki N, Kabir-Salmani M, Nagamatsu S, Iwashita M, Nakamura Y. Physiologic role of decidual beta1 integrin and focal adhesion kinase in embryonic implantation. Endocr J 2003; 50:189-98. [PMID: 12803239 DOI: 10.1507/endocrj.50.189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Implantation refers to a series of interactions between embryo and endometrium including hatching, attachment, and outgrowth. We investigated the expression and function of beta1 integrin and focal adhesion kinase (FAK) in human decidual cells during implantation. Immunofluorescent staining localized beta1 integrin to surfaces of cultured decidual cells. Double staining for beta1 integrin and mediators of intracellular signaling involving beta1 integrin, such as FAK and vinculin, colocalized beta1 integrin with these substances, suggesting that human decidual cells express beta1 integrin in the focal adhesion region. We next investigated the actions of beta1 integrin and FAK in implantation by co-culturing mouse embryos and human decidual cells. Mouse blastocysts attached to cultured decidual cells after embryo hatching, usually within 24 h of culture initiation. Blastocysts attached to decidual cells exhibited extensive outgrowth at 48 h. Treatment of decidual cells with an antibody against beta1 integrin or with an antisense FAK oligonucleotide did not affect hatching or attachment of blastocysts, but either one could inhibit outgrowth. Thus, it was concluded that human decidual beta1 integrin and FAK participate in this final step of implantation.
Collapse
Affiliation(s)
- Hideki Hanashi
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schilperoort-Haun KR, Menino AR. Evaluation of extracellular matrix proteins and tissue inhibitor of matrix metalloproteinases-2 on bovine inner cell mass outgrowth in vitro. In Vitro Cell Dev Biol Anim 2002; 38:41-7. [PMID: 11963967 DOI: 10.1290/1071-2690(2002)038<0041:eoempa>2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Effects of extracellular matrix proteins and tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) on bovine inner cell mass (ICM) outgrowth and proteinase production in vitro were determined. Inner cell masses were isolated immunosurgically from day 7 embryos (day 0 = onset of estrus) and cultured for 96 h. In experiment 1, cellular outgrowth and gelatinase production were evaluated for ICM cultured on collagen IV, fibronectin, or laminin. More (P < 0.05) ICM generated cellular outgrowth on fibronectin (71%). compared with collagen IV (0%) or laminin (15%). Inner cell mass and outgrowth areas were greatest (P < 0.05) on fibronectin after 96 h of culture, compared with laminin. Although the incidence of cellular outgrowth on laminin was limited, numbers of cells in outgrowths supported by laminin were similar (P > 0.10) to fibronectin except at 72 h of culture, where more (P < 0.05) cells were in laminin than in fibronectin outgrowths. Gelatinase activity was not detected in conditioned medium. In experiment 2, cellular outgrowth and plasminogen activator production by ICM cultured on fibronectin in medium containing 0 or 10 microg/ml TIMP-2 were evaluated. Inner cell mass and outgrowth areas, and numbers of cells in outgrowths were greater (P < 0.05) in 10 compared with 0 microg/ml TIMP-2 at 96 h of culture. Mean plasminogen activator activity in conditioned medium from ICM cultured in 10 microg/ml TIMP-2 was greater (P < 0.05) compared with 0 microg/ml TIMP-2 (16.2 +/- 4.8 versus 6.7 +/- 1.4 x 10(-3) IU/ml, respectively). These results demonstrate that cellular outgrowth from bovine ICM is supported by fibronectin and is stimulated by TIMP-2.
Collapse
|
27
|
Abstract
The extracellular matrix interacts with cells and promotes and regulates cellular functions such as adhesion, migration, proliferation, differentiation, and morphogenesis. Extracellular molecules are linked to one another by multiple binding domains and form a stable, multifunctional matrix. Cells respond to the extracellular matrix through plasma membrane receptors, which include integrin and non-integrin receptors. The regulation of these interactions requires the coordination of a multiplicity of signals both spatially and temporally.
Collapse
Affiliation(s)
- N Zagris
- Division of Genetics and Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece.
| |
Collapse
|
28
|
Gardner RL. The initial phase of embryonic patterning in mammals. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:233-90. [PMID: 11131518 DOI: 10.1016/s0074-7696(01)03009-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Although specification of the antero-posterior axis is a critical intial step in development of the fetus, it is not known either how, or at what stage in development, this process begins. Such information is vital for understanding not only normal development in mammals but also monozygotic twinning, which, at least in man, is associated with a significantly increased incidence of birth defects. According to recent studies in the mouse, specification of the fetal anteroposterior axis begins well before gastrulation, and probably even before the conceptus implants. Moreover, evidence is accruing that the origin of relevant asymmetries depends on information that is already present in the zygote before it embarks on cleavage. Hence, early development in mammals does not differ as markedly from that in other animals as has generally been assumed. Consequently, at present, the possibility of adverse effects of techniques used to assist human reproduction cannot be disregarded.
Collapse
|
29
|
Murray P, Edgar D. Regulation of the differentiation and behaviour of extra-embryonic endodermal cells by basement membranes. J Cell Sci 2001; 114:931-9. [PMID: 11181176 DOI: 10.1242/jcs.114.5.931] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both the extracellular matrix and parathyroid hormone-related peptide (PTHrP) have been implicated in the differentiation and migration of extra-embryonic endodermal cells in the pre-implantation mammalian blastocyst. In order to define the individual roles and interactions between these factors in endodermal differentiation, we have used embryoid bodies derived from Lamc1(-/-) embryonic stem cells that lack basement membranes. The results show that in the absence of basement membranes, increased numbers of both visceral and parietal endodermal cells differentiate, but they fail to form organised epithelia. Furthermore, although parietal endodermal cells only migrate away from control embryoid bodies in the presence of PTHrP, they readily migrate from Lamc1(-/-) embryoid bodies in the absence of PTHrP, and this migration is unaffected by PTHrP. Thus, the basement membrane between epiblast and extra-embryonic endoderm is required for the proper organisation of visceral and parietal endodermal cells and also restricts their differentiation to maintain the population of primitive endodermal stem cells. Moreover, this basement membrane inhibits migration of parietal endodermal cells, the role of PTHrP being to stimulate delamination of parietal endodermal cells from the basement membrane rather than promoting migration per se.
Collapse
Affiliation(s)
- P Murray
- Department of Human Anatomy and Cell Biology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | | |
Collapse
|
30
|
Paria BC, Ma W, Tan J, Raja S, Das SK, Dey SK, Hogan BL. Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors. Proc Natl Acad Sci U S A 2001; 98:1047-52. [PMID: 11158592 PMCID: PMC14706 DOI: 10.1073/pnas.98.3.1047] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The implantation of a blastocyst into a receptive uterus is associated with a series of events, namely the attachment reaction followed by decidualization of the stroma. Previous studies established that the gene encoding heparin-binding EGF-like growth factor (HB-EGF) is expressed in the luminal epithelium solely at the site of blastocyst apposition preceding the attachment reaction. We report here the expression during implantation of 21 genes encoding other signaling proteins, including those belonging to the Bone morphogenetic protein (BMP), fibroblast growth factor (FGF), WNT, and Hedgehog (HH) pathways. We find that the attachment reaction is associated with a localized stromal induction of genes encoding BMP-2, FGF-2, and WNT-4. Despite efforts by many investigators, a simple in vitro model of implantation is not yet available to study either the hierarchy of the events triggered in the uterus by the embryo or the function of individual signaling proteins. We have therefore approached these questions by introducing beads loaded with purified factors into the receptive uterus. We show that beads soaked in HB-EGF or insulin-like growth factor-1 (IGF-1), but not other proteins, induce many of the same discrete local responses elicited by the blastocyst, including increased localized vascular permeability, decidualization, and expression of Bmp2 at the sites of the beads. By contrast, the expression domains of Indian hedgehog (Ihh), patched, and noggin become restricted as decidualization proceeds. Significantly, beads containing BMP-2 do not themselves elicit an implantation response but affect the spacing of implantation sites induced by blastocysts cotransferred with the beads.
Collapse
Affiliation(s)
- B C Paria
- Department of Pediatrics, University of Kansas Medical Center, Ralph L. Smith Research Center, Kansas City, KS 66160-7338, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Monkley SJ, Zhou XH, Kinston SJ, Giblett SM, Hemmings L, Priddle H, Brown JE, Pritchard CA, Critchley DR, Fässler R. Disruption of the talin gene arrests mouse development at the gastrulation stage. Dev Dyn 2000; 219:560-74. [PMID: 11084655 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1079>3.0.co;2-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies on cultured cells show that the cytoskeletal protein talin plays a key role in cell spreading and the assembly of cell-extracellular matrix junctions. To examine the role of talin in vivo, we have generated mice with a targeted disruption of the talin gene. Heterozygotes are normal, but no surviving homozygous mutant animals were obtained, proving that talin is required for embryogenesis. Mutant embryos develop normally to the blastocyst stage and implant, but there is a gross disorganization of the embryos at gastrulation (6.5-7.5 days post coitum), and they die around 8.5-9.5 days post coitum. The embryonic ectoderm is reduced in size, with fewer cells, and is incompletely organised compared with wild-type embryos. The mutant embryos show disorganised extraembryonic tissues, and the ectoplacental and excocoelomic cavities are not formed. This seems to be because embryonic mesoderm accumulates as a mass on the posterior side of the embryos and fails to migrate to extraembryonic regions, although mesodermal cells are evident in the embryo proper. Spreading of trophoblast cells derived from cultured mutant blastocysts on fibronectin and laminin is also considerably reduced. Therefore, the fundamental deficit in these embryos seems to be a failure of cell migration at gastrulation.
Collapse
Affiliation(s)
- S J Monkley
- Department of Biochemistry, University of Leicester, University Road, Leicester, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schultz JF, Mayernik L, Rout UK, Armant DR. Integrin trafficking regulates adhesion to fibronectin during differentiation of mouse peri-implantation blastocysts. DEVELOPMENTAL GENETICS 2000; 21:31-43. [PMID: 9291578 DOI: 10.1002/(sici)1520-6408(1997)21:1<31::aid-dvg4>3.0.co;2-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Trophoblast cells of the peri-implantation blastocyst differentiate from a polarized epithelium, the trophectoderm, into invasive cells having an apical surface occupied by integrins that mediate adhesion to the extracellular matrix. Blastocyst differentiation was assessed during serum-free culture using a fibronectin binding assay with intact mouse blastocysts. Fibronectin binding activity became elevated during a 24-h "window" after approximately 72 h of culture. Blastocyst differentiation was unaffected by transcriptional inhibition with alpha-amanitin, however, exposure of cavitating morulae to the drug significantly delayed the onset of maximal fibronectin-binding activity. Inhibition of de novo protein synthesis with cycloheximide delayed development only when added during the first 24 h of blastocyst culture, indicating that proteins required for adhesion to fibronectin were synthesized at least 24 h before blastocyst differentiation was completed. Since blastocyst differentiation did not appear to be regulated temporally by gene expression, the possible role of protein trafficking was investigated using the inhibitor, brefeldin A. Brefeldin A caused a reversible, dose-dependent decrease in fibronectin-binding activity when added to the culture medium between 48 and 72 h of culture. During the period of brefeldin A sensitivity, alpha 5 beta 1 integrin, a major fibronectin receptor, translocated to the apical surface of trophoblast cells, as determined by immunohistochemistry and confocal microscopy. Mouse blastocysts expressed other integrins that recognize the central cell-binding domain of fibronectin, including the alpha v integrins and alpha llb beta 3, but not alpha4 which recognizes the lllCS site. Trafficking of alpha 5 beta 1, and possibly other integrins, to the apical surface of trophoblast cells appears to be a critical step in the differentiation of the mouse blastocyst to an invasive phenotype.
Collapse
Affiliation(s)
- J F Schultz
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
33
|
Smith SE, French MM, Julian J, Paria BC, Dey SK, Carson DD. Expression of heparan sulfate proteoglycan (perlecan) in the mouse blastocyst is regulated during normal and delayed implantation. Dev Biol 1997; 184:38-47. [PMID: 9142982 DOI: 10.1006/dbio.1997.8521] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies have shown that expression of the heparan sulfate proteoglycan, perlecan, on the external trophectodermal cell surfaces of mouse blastocysts increases during acquisition of attachment competence. However, it is not clear if this change in perlecan protein expression also is reflected at the level of perlecan mRNA expression. In the present investigation, the spatial and temporal patterns of perlecan mRNA expression in the mouse embryo during the periimplantation period were examined by in situ hybridization and reverse transcriptase-polymerase chain reaction. In addition, a delayed implantation model was used to determine the expression of perlecan mRNA and protein in dormant and estrogen-activated hatched blastocysts. The results demonstrate that perlecan mRNA expression is low in morulae, but increases in Day 4 blastocysts, attaining maximal expression in Day 4.5 attachment-competent blastocysts. In contrast, perlecan mRNA is detected in both the dormant and estrogen-activated delayed blastocysts; however, within 12 hr of blastocyst activation by estrogen, both perlecan protein and heparan sulfate chain expression markedly increase. Taken together, these results suggest that during normal development perlecan mRNA expression increases with the acquisition of attachment competence. Moreover, perlecan protein expression also is attenuated during delayed implantation and appears to increase in response to nidatory estrogen, perhaps via the increased translation of preexisting perlecan mRNA.
Collapse
Affiliation(s)
- S E Smith
- Department of Biochemistry and Molecular Biology, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
34
|
Peters JH, Hynes RO. Fibronectin isoform distribution in the mouse. I. The alternatively spliced EIIIB, EIIIA, and V segments show widespread codistribution in the developing mouse embryo. CELL ADHESION AND COMMUNICATION 1996; 4:103-25. [PMID: 8937746 DOI: 10.3109/15419069609010766] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fibronectins (FNs) are extracellular matrix glycoproteins that are essential for embryonic development. In order to gain clues to possible developmental roles played by the particular isoforms of FN, we used indirect immunofluorescence microscopy to examine and compare the distributions of the alternatively spliced EIIIB, EIIIA, and V segments, as well as the total pool of FNs, in serial sections from mouse embryos. Antibodies to each of these segments produced staining patterns that colocalized during gastrulation (E7.5) and during early morphogenesis of somites and notochord (E9.5). During the period of continuing organogenesis in the latter half of gestation (E10.5 to E16.5), the antibodies generally continued to produce similar staining patterns localized to epithelial basement membranes, stromal connective tissues, blood vessel walls, and muscles. However, as development proceeded, there was a gradual decline in the intensity of staining for the spliced segments relative to the total pool of FN, with a particularly noticeable decline in staining for EIIIB and EIIIA segments in certain glandular organs, including the liver. A specific reduction in expression of these latter two segments was also evident in the uterus and placenta at early timepoints in gestation. However, the most dramatic difference in the expression of the spliced segments occurred in developing hyaline cartilage, which showed a selective reduction in staining for the EIIIA segment that was evident in the axial skeletal precursors by E12.5 and complete throughout the embryo by E15.5. Our findings suggest that the alternatively spliced EIIIB, EIIIA, and V segments are included in the FN that is required for the morphogenesis of "FN dependent" structures, including somites, notochord, and the vasculature. Conversely, these segments would appear to play divergent, and sometimes exclusive, biological roles in specific tissues such as liver, cartilage, and placenta.
Collapse
Affiliation(s)
- J H Peters
- Division of Pulmonary Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | |
Collapse
|
35
|
Babiarz B, Romagnano L, Afonso S, Kurila G. Localization and expression of fibronectin during mouse decidualization in vitro: mechanisms of cell:matrix interactions. Dev Dyn 1996; 206:330-42. [PMID: 8896988 DOI: 10.1002/(sici)1097-0177(199607)206:3<330::aid-aja10>3.0.co;2-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
During implantation, the embryonic trophoblast aggressively invades the uterine stroma. The resulting uterine reaction, decidualization, involves differentiation of new cell morphologies and remodeling of the extracellular matrix. This creates an environment that first permits invasion, then controls this invasion to allow the establishment of the placenta. The production, organization, and cellular interactions with the matrix are thought to underlie decidual functions. We have begun a reductional analysis of the components of the decidual matrix, focusing on extracellular fibronectin (FN). Using decidual cell cultures prepared from day 7 implantation sites, the synthesis, extracellular organization, and details of decidual cell:FN interaction were studied. Employing immunofluorescence, immunoprecipitation, and dot blot analysis, decidualizing cultures showed a constitutive level of FN synthesis and deposition. The differentiating cells organized extracellular FN in patterns similar to that seen in vivo. The predominant, flattened dendritic decidual cells organized FN in long, thin fibrils. Large, rounded decidual cells, limited to the primary decidual zone in vivo, showed FN limited to punctate membrane patches and short, thick fibrils. Using double labeling techniques, FN expression was co-localized with actin microfilament (MF) bundles during the cytoskeletal changes associated with the differentiation of both decidual cell types. The function of MFs in maintaining morphology was demonstrated by cytochalasin B perturbation. Attachment of decidual cells to FN was calcium dependent and gly-arg-gly-asp-ser-pro (GRGDSP) sensitive, with dendritic decidual cells expressing the alpha 5 and beta 1 integrin subunits. This suggests that an integrin system functions to attach decidual MF bundles to extracellular FN. This work shows that during decidual matrix remodeling, constitutive levels of FN are maintained to provide an extracellular framework to stabilize the decidual cytoskeleton and support morphological differentiation of decidual cells.
Collapse
Affiliation(s)
- B Babiarz
- Department of Biological Sciences, Rutgers University, Piscataway, NJ 08855-1059, USA
| | | | | | | |
Collapse
|
36
|
Yang Y, Todt JC, Svinarich DM, Qureshi F, Jacques SM, Graham CH, Chung AE, Gonik B, Yelian FD. Human trophoblast cell adhesion to extracellular matrix protein, entactin. Am J Reprod Immunol 1996; 36:25-32. [PMID: 8831898 DOI: 10.1111/j.1600-0897.1996.tb00135.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PROBLEM Trophoblast interaction with endometrial extracellular matrix (ECM) is crucial during human embryo implantation and placentation. Entactin, a ubiquitous basement membrane glycoprotein, plays a central role in ECM assembly, cell attachment, and chemotaxis. The present study was conducted to examine the possible role of entactin in promoting human trophoblast adhesion. METHODS Using an extended life span first trimester trophoblast cell line HTR-8/SVneo (HTR) and a cell adhesion assay, we measured the adherence of human first trimester trophoblasts to recombinant entactin and its domains. Also, we used flow cytometry and indirect immunofluorescence to detect the presence of integrins that may be involved in human trophoblast-entactin interaction; these methods were used to analyze HTR cells, as well as tissue sections and freshly isolated human trophoblasts from first trimester and term placenta. RESULTS We found that first trimester trophoblast cells were highly adherent to entactin and its E and G2 domains but not to G1 or G3 domains. Using indirect immunofluorescence and flow cytometry, we found that both beta 1 and beta 3 integrin subunits were expressed on the surface of HTR trophoblast cells adhering to entactin; in contrast, beta 2 and beta 4 integrin subunits were not detected. In addition, we found that alpha v beta 3 was expressed on freshly isolated villous cytotrophoblasts and cytotrophoblast and syncytiotrophoblasts in tissue sections from term placenta. The beta 3 integrin subunit was expressed in cytotrophoblasts and syncytiotrophoblasts in villi of first trimester placental tissue sections. CONCLUSION Recombinant entactin promotes human trophoblast cell adhesion through both its E and G2 domains and these specific adhesive interactions may be mediated by beta 1 and/or beta 3 class integrins.
Collapse
Affiliation(s)
- Y Yang
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shehu D, Marsicano G, Fléchon JE, Galli C. Developmentally regulated markers of in vitro-produced preimplantation bovine embryos. ZYGOTE 1996; 4:109-21. [PMID: 8913024 DOI: 10.1017/s0967199400002987] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Expression of various developmentally regulated markers was screened throughout the preimplantation stages of in vitro-derived bovine embryos. This was done by investigating the distribution of several nuclear, cytoplasmic and extracellular proteins by means of immunofluorescence microscopy. While lamin B appeared as a constitutive component of nuclei of all preimplantation stages, lamins A/C had a stage-related distribution. The early cleavage stage nuclei contained lamins A/C which generally disappeared in the following stages, with the possible exception of a few positive nuclei in the morula and early blastocyst stage. In the expanded blastocyst stage the nuclei of trophectoderm cells became positive while no positivity was observed in the inner cell mass cells. Starting from day 6, the appearance and/or polarised distribution of various cytoskeletal and cytoskeleton-related components such as F-actin, alpha-catenin and E-cadherin gave an insight into the timing of events related to compaction of bovine embryos. Compaction was correlated with the first differentiation event, i.e. the formation of trophectoderm; this is the first embryonic epithelium, characterised by cytokeratins and desmoplakin. Extracellular fibronectin was first detected in the early blastocyst stage shortly before the morphological differentiation of primitive endoderm, and in the later stages it was localised at the interface between trophectoderm and extraembryonic endoderm. Laminin and collagen IV were expressed by the endoderm cells and contributed to the extracellular matrix underlying the trophectoderm. This study is a first attempt to characterise the cells of in vitro-derived bovine embryos valid for cell line derivation.
Collapse
|
38
|
Behrendtsen O, Alexander CM, Werb Z. Cooperative interactions between extracellular matrix, integrins and parathyroid hormone-related peptide regulate parietal endoderm differentiation in mouse embryos. Development 1995; 121:4137-48. [PMID: 8575314 DOI: 10.1242/dev.121.12.4137] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The outgrowth of parietal endoderm (PE) cells from precursor endodermal cells is one of the first differentiation events that occur in mouse embryos. We have analyzed the molecular determinants of this process by placing isolated inner cell masses (ICMs) on defined extracellular matrix substrata in microdrop cultures. Differentiation and outgrowth of PE required a fibronectin substratum. Laminin supported the adhesion and outgrowth of visceral endoderm (VE) and actively suppressed the differentiation of PE in mixtures of fibronectin and laminin. Collagen type IV, gelatin, vitronectin or entactin supported little or no endodermal outgrowth. Trophectoderm (TE) cells have been implied to be important in PE induction in vivo. We found that recombination of ICMs in culture with TE cells, or with medium conditioned by TE cells, greatly increased the differentiation of PE. TE cells stimulated PE outgrowth on substrata other than fibronectin. One cytokine secreted by trophoblast and endodermal cells, parathyroid hormone-related peptide (PTHrP), was critical for outgrowth on any substratum. A function-perturbing antibody to PTHrP reduced the number of PE cells, whereas the addition of PTHrP increased that number. Furthermore, addition of PTHrP changed the substratum requirements for outgrowth, making laminin, vitronectin and low concentrations of fibronectin permissive for PE outgrowth. Immunostaining with anti-integrin antibodies showed that fully differentiated PE cells outgrowing on fibronectin expressed alpha 5, alpha 6 and alpha v beta 3 integrins. However, analysis of outgrowths in the presence of function-perturbing antibodies to alpha 5, alpha 6 and alpha v beta 3 integrins showed that these integrins directed PE outgrowth only on fibronectin, laminin and vitronectin substrata, respectively. We have shown that there is a cooperative interplay of extracellular matrix, integrins and PTHrP that modulates PE outgrowth.
Collapse
Affiliation(s)
- O Behrendtsen
- Department of Anatomy and Program in Developmental Biology, University of California, San Francisco 94143-0750, USA
| | | | | |
Collapse
|
39
|
Suzuki HR, Solursh M, Baldwin HS. Relationship between fibronectin expression during gastrulation and heart formation in the rat embryo. Dev Dyn 1995; 204:259-77. [PMID: 8573718 DOI: 10.1002/aja.1002040305] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
By utilizing myosin immunostaining, we were able to identify early rat myocardium as a thin epithelial sheet and realized that its cohesive movement toward the midline leads to the straight heart tube formation. Localization study of fibronectin mRNA and protein was, therefore, carried out to investigate its tissue origin and possible roles in facilitating mesoderm migration and heart formation. Fibronectin mRNAs were first detected throughout the mesoderm during the early primitive streak stage, suggesting that the mesoderm is the source of fibronectin. By pre-head fold (pre-somite) and head fold (early somite) stages, the mesoderm became largely down-regulated for fibronectin mRNAs, while it was also at these stages when myosin-positive myocardium formed itself into the epithelium and was subsequently folding toward the midline. Thus, there appears to be little fibronectin synthesis during and directly relevant to early heart tube formation. Later, during the early straight heart tube stage (5 somite and older), endocardium became highly positive for fibronectin mRNAs, suggesting that the endocardium is the major source of fibronectin for the cardiac jelly. Based on the results, we present a map for the early mammalian heart in which the heart is a single crescentic band lying in front of the prechordal plate. We also suggest a process for heart tube formation based on the cohesive movement of the myocardial epithelium. During heart tube formation, fibronectin protein had been deposited previously by the mesoderm and was found uniformly in the ECM and not newly produced by any adjacent tissue. The data contradict the endodermal guidance of heart migration by fibronectin gradient and suggest, instead, a permissive role for the fibronectin substrate.
Collapse
Affiliation(s)
- H R Suzuki
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
40
|
Babalola GO, Schultz RM. Modulation of gene expression in the preimplantation mouse embryo by TGF-alpha and TGF-beta. Mol Reprod Dev 1995; 41:133-9. [PMID: 7654366 DOI: 10.1002/mrd.1080410203] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of growth factors on regulating gene expression in the preimplantation mouse embryo was examined, since results of previous experiments revealed a stimulatory effect of exogenously-added growth factors on preimplantation development in vitro. Treatment of early cavitating blastocysts with either 250 pM TGF-alpha or TGF-beta results in changes in the pattern of total protein synthesis as assessed by high-resolution two-dimensional gel electrophoresis. In some cases, the synthesis of a particular polypeptide is either up- or downregulated by each growth factor, whereas in other instances the synthesis of a polypeptide is modulated by one but not the other growth factor. Use of the mRNA differential display method permitted the identification of genes whose expression is either up- or downregulated by these growth factors. Treatment of mouse blastocysts with either TGF-alpha or TGF-beta results in the increased expression of the b subunit of the F0ATPase. TGF-beta also stimulates the expression of the DNA polymerase alpha. TGF-alpha treatment results in the increase in expression of a gene homologous to the human HEPG2 cDNA, as well as in a decrease in expression of fibronectin.
Collapse
Affiliation(s)
- G O Babalola
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA
| | | |
Collapse
|
41
|
Saraga-Babić M, Lehtonen E, Svajger A, Wartiovaara J. Morphological and immunohistochemical characteristics of axial structures in the transitory human tail. Ann Anat 1994; 176:277-86. [PMID: 8059973 DOI: 10.1016/s0940-9602(11)80496-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ultrastructural relationships between the notochord and neighboring spinal cord were examined during the regression of the human tail. Also, the presence of certain extracellular matrix components in the notochord was immuno-histochemically analysed in the 4th to 12th week old embryos. At the early stages, a close apposition of the notochord to the spinal cord exists in the entire tail region. The external surface of both structures is covered with a continuous basal lamina. The narrow tissue interspace contains interdigitating cell processes and both amorphous and fibrillar extracellular matrix material. With advancing embryonic age, separation of the two structures occurs in craniocaudal direction and the widening interspace becomes occupied by mesenchymal cells. During tail regression and spinal cord retraction, the appearance of large intercellular spaces and cell degeneration takes place in both tissues. With age, the extracellular matrix of the notochord, predominantly the perinotochordal sheath, increases in amount and antigenic complexity. While the intensity of laminin, collagen type IV and type III expression rises continuously during the period examined, the expression of fibronectin begins first at later stages, after the separation of the notochord from the spinal cord. The possible developmental significance of the described phenomena in the regression of the posterior end of the human tail remains to be elucidated.
Collapse
Affiliation(s)
- M Saraga-Babić
- Institute of Histology and Embryology, School of Medicine at Split, University of Zagreb, Croatia
| | | | | | | |
Collapse
|
42
|
Armant DR, Kameda S. Mouse trophoblast cell invasion of extracellular matrix purified from endometrial tissue: a model for peri-implantation development. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1994; 269:146-56. [PMID: 8207385 DOI: 10.1002/jez.1402690208] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have investigated the invasive activity of mouse trophoblast cells during embryo implantation in vitro by culturing blastocysts with extracellular matrix (ECM) purified from mouse endometrium obtained on day 4 of pregnancy. Endometrium was dissected from lyophilized mouse uteri, and intact ECM was isolated by sequential precipitation in nonionic detergent and high salt. Electron microscopic examination of the ECM revealed typical collagen fibers plus an amorphous material resembling basement membrane. Electrophoretic analysis of the ECM revealed an enrichment of high molecular weight proteins, and immunoblotting indicated the presence of fibronectin, laminin, entactin, and type IV collagen, but not the intracellular proteins 2',3'-cyclic nucleotide-3'-phosphodiesterase or vimentin. Mouse blastocysts cultured with this ECM attached to it within 3 days, and the trophoblast cells began to migrate through the matrix in a manner resembling trophoblast invasion in utero. Unlike blastocysts cultured on plastic surfaces, the trophoblast did not flatten and become disorganized, but retained a polarized, spherical structure. Fluorescent microscopy with fluorescein isothiocyanate-labeled phalloidin revealed a high degree of microfilament organization and established that actin was absent from the ECM preparation. In the presence of a serum substitute, differentiation continued through yolk sac formation. Without serum components, yolk sac did not form; however, light and electron microscopic examination indicated that the invasive behavior of trophoblast cells persisted and was comparable to that of trophoblasts cultured in the presence of the serum substitute. A three-dimensional model for investigating trophoblast behavior in ECM from the endometrium should be of great value in elucidating the cellular and molecular events surrounding the process of blastocyst implantation.
Collapse
Affiliation(s)
- D R Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | |
Collapse
|
43
|
Klinowska TC, Ireland GW, Kimber SJ. A new in vitro model of murine mesoderm migration: the role of fibronectin and laminin. Differentiation 1994; 57:7-19. [PMID: 8070623 DOI: 10.1046/j.1432-0436.1994.5710007.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Examination of the factors involved in primary mesodermal migration in the mouse has been complicated by the lack of a suitable in vitro model. We have developed a new culture system using primitive streak stage embryos denuded of primitive endoderm, which allows easy observation and manipulation of the outgrowing cells. The cells migrating away from these explants were shown by immunocytochemistry to express vimentin and an epitope of the I antigen recognised by the antibody C6, both of which are present on the newly emerged mesoderm and not on the embryonic ectoderm in sections of embryos in utero. Conversely, cytokeratin, stage-specific embryonic antigen 1 (SSEA-1), E-cadherin and desmoplakin are expressed by the embryonic ectoderm but lost during mesoderm formation in vivo. They are absent or expressed very weakly by the migrated cells in vitro. In addition, only explants of the ectoplacental cone (EPC) and visceral endoderm alone, expressed a carbohydrate epitope (recognised by monoclonal antibody BOO6), characteristic of the EPC and primitive endoderm in utero, but absent from mesoderm. Thus we conclude that the cells which outgrow in this system are indeed mesodermal in phenotype. We have confirmed the work of others in demonstrating the presence of fibronectin (FN) and laminin (LN) in the migratory path of the mesoderm, at the ectoderm-visceral endoderm interface. We also report that the beta 1 integrin subunit of the FN and LN receptor is expressed by mesodermal cells at this interface. Using our in vitro model we have examined the role of the extracellular matrix (ECM) in mesodermal migration. Mesodermal cells migrate further and faster on substrates coated with FN or LN, and this increased migration is abolished by appropriate blocking antibodies. We conclude that the ECM, in particular FN and LN, plays an important role in the migration of primary mesodermal cells during gastrulation in the mouse embryo.
Collapse
Affiliation(s)
- T C Klinowska
- School of Biological Sciences, University of Manchester, UK
| | | | | |
Collapse
|
44
|
Ray PE, Bruggeman LA, Horikoshi S, Aguilera G, Klotman PE. Angiotensin II stimulates human fetal mesangial cell proliferation and fibronectin biosynthesis by binding to AT1 receptors. Kidney Int 1994; 45:177-84. [PMID: 8127007 DOI: 10.1038/ki.1994.21] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The renin-angiotensin system is activated during vascular development and injury. Furthermore, angiotensin II (Ang II) is a comitogen for fetal mesangial cells in vitro and it may be important in vascular smooth cell growth in disease states. Since fibronectin is an important extracellular matrix protein for vascular development and it too is overexpressed in the mesangium of diseased glomeruli, we explored the interrelationship of fibronectin and Ang II in fetal mesangial cell growth. In human fetal kidney, Ang II type 2 receptors (AT2) were detected in abundance by ex vivo autoradiography. When mesangial cells were isolated from fetal kidney and grown in culture, Ang II type 1 receptors (AT1) were also detected. To explore the mitogenic properties Ang II and fibronectin as well as the effects of Ang II on fibronectin metabolism, studies were performed in vitro, isolated from the potentially confounding variables of hemodynamic influence and circulating growth factors and cytokines. In vitro, mesangial cells expressed a single class of AT1 receptors that were not altered by growth on various substrates. Ang II (10(-7) M) significantly increased thymidine incorporation by confluent human fetal mesangial cells (twofold). When subconfluent, Ang II-stimulated proliferation was greater (fourfold). Ang II significantly increased cell-associated and secreted fibronectin as determined by immunoprecipitation at concentrations that also stimulate mitogenesis. Both of these Ang II-mediated responses were inhibited by the AT1 receptor antagonist DuP-753 (10(-5) M) but not by AT2 receptor antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P E Ray
- Laboratory of Developmental Biology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
45
|
Sutherland AE, Calarco PG, Damsky CH. Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development 1993; 119:1175-86. [PMID: 8306881 DOI: 10.1242/dev.119.4.1175] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The trophectoderm layer of the mouse blastocyst differentiates at the late blastocyst stage to form the invasive trophoblast that mediates implantation of the embryo into the uterine wall. The first sign that trophoblast cells have developed an invasion-specific cell behavior appears about 10–15 hours after the embryo hatches from the zona pellucida, when the quiescent, non-adherent trophectoderm cells initiate protrusive activity and become adhesive to extracellular matrix. Our previous findings that trophoblast outgrowth on extracellular-matrix-coated substrata involves the integrin family of adhesion receptors (Sutherland, A. E., Calarco, P. G. and Damsky, C. H., 1988, J. Cell Biol. 106, 1331–1348), suggested that the onset of trophoblast adhesive and migratory behavior at the time of implantation may be due to changes in expression or distribution of integrin receptors. We have thus examined the mRNA and protein expression of individual integrin subunits during pre- and periimplantation development (E0-E7.5). A basic repertoire of integrins, including receptors for fibronectin (alpha 5 beta 1), laminin (alpha 6B beta 1) and vitronectin (alpha v beta 3), was expressed continuously throughout this period, whereas the expression of five other integrin subunits was developmentally regulated. The mRNA for three of these (alpha 2, alpha 6A and alpha 7) was first detected in the late blastocyst, coincident with endoderm differentiation and development of attachment competence. The mRNA for another (alpha 1) was not detected until after trophoblast outgrowth had begun, suggesting that its expression may be induced by contact with matrix. At E7.5, three of the temporally regulated integrins (alpha 1, apha 6A, alpha 7), all of which can form receptors for laminin, were detected only in the ectoplacental cone (differentiating trophoblast), and may thus play specific roles in trophoblast adhesion and/or differentiation. Because laminin expression is upregulated in decidualized uterine stroma in response to the implanting embryo, we examined trophoblast-laminin interactions, using laminin fragments and integrin antibodies to determine which integrin receptors were involved. Trophoblast cells attached and spread on both the E8 and P1′ fragments of laminin; however, the P1′ binding site was cryptic in intact laminin. Interaction with P1′ was RGD- and alpha v beta 3-dependent, whereas outgrowth on E8 was RGD-independent and not inhibited by antibodies to the laminin receptor alpha 6 beta 1, suggesting that alpha 7 beta 1 is the major trophoblast integrin E8 receptor.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A E Sutherland
- Department of Stomatology, University of California San Francisco 94143
| | | | | |
Collapse
|
46
|
George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 1993; 119:1079-91. [PMID: 8306876 DOI: 10.1242/dev.119.4.1079] [Citation(s) in RCA: 795] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To examine the role of fibronectin in vivo, we have generated mice in which the fibronectin gene is inactivated. Heterozygotes have one half normal levels of plasma fibronectin, yet appear normal. When homozygous, the mutant allele causes early embryonic lethality, proving that fibronectin is required for embryogenesis. However, homozygous mutant embryos implant and initiate gastrulation normally including extensive mesodermal movement. Neural folds also form but the mutant embryos subsequently display shortened anterior-posterior axes, deformed neural tubes and severe defects in mesodermally derived tissues. Notochord and somites are absent; the heart and embryonic vessels are variable and deformed, and the yolk sac, extraembryonic vasculature and amnion are also defective. These abnormalities can be interpreted as arising from fundamental deficits in mesodermal migration, adhesion, proliferation or differentiation as a result of the absence of fibronectin. The nature of these embryonic defects leads to reevaluation of suggested roles for fibronectin during early development based on results obtained in vitro and in embryos of other species.
Collapse
Affiliation(s)
- E L George
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | |
Collapse
|
47
|
Hisaoka M, Haratake J, Hashimoto H. Pancreatic morphogenesis and extracellular matrix organization during rat development. Differentiation 1993; 53:163-72. [PMID: 8405767 DOI: 10.1111/j.1432-0436.1993.tb00705.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We investigated the rat pancreatic morphology at various developmental stages ranging from 12 days of gestation to the neonatal stage, with special emphasis on alterations in extracellular matrix organization in vivo. The rat pancreatic development in utero could be divided into four representative stages as follows: (1) initial epithelial buds (12 days of gestation), (2) elongated and branching epithelium (13-14 days), (3) tubular structure (15-16 days), and (4) acinar structure (17 days or more). Ultrastructurally, the fetal and neonatal pancreata were almost constantly encompassed by continuous basal lamina, except for the earliest stage, in which minute disruptions of basal lamina were observed. Through the disruption, the direct epithelial-mesenchymal contact was formed between an endocrine cell and an adjacent mesenchymal cell, which implied epithelial-mesenchymal interactions in processes of endocrine cell differentiation. Collagen fibrils were frequently accumulated at the cleft (branchpoint) of the branching epithelium during the second and third stages mentioned above. Immunohistochemically, fibronectin and collagen type-I were localized particularly beside the neck (narrow part) or cleft of the pancreatic epithelium at these stages, although continuous linear localization of these matrices was noted around the initial pancreatic bud. This was in contrast to invariable linear localization of laminin and collagen type-IV at the epithelial/mesenchymal interface throughout the pancreatic development. Diffuse fibrillar localization of fibronectin and collagen type-I in the mesenchyme was pronounced at the later stages and after birth. Collagen type-III was only focally detectable around the pancreatic epithelium from the second stage, and its distinct localization was noted in the interlobular connective tissue after birth. Thus, chronological changes in extracellular matrix organization seemed to be closely related to morphogenetic processes of the rat pancreas, especially in the branching epithelial morphogenesis, and the major alterations appeared prior to distinct acinar cell differentiation.
Collapse
Affiliation(s)
- M Hisaoka
- Department of Pathology and Oncology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | |
Collapse
|
48
|
Burdsal CA, Damsky CH, Pedersen RA. The role of E-cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak. Development 1993; 118:829-44. [PMID: 7521282 DOI: 10.1242/dev.118.3.829] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the role of cell-cell and cell-extracellular matrix (ECM) interactions during mesoderm differentiation and migration at the primitive streak of the mouse embryo with the use of function-perturbing antibodies. Explants of epiblast or mesoderm tissue dissected from the primitive streak of 7.5- to 7.8-day mouse embryos were cultured on a fibronectin substratum in serum-free, chemically defined medium. After 16–24 hours in culture, cells in explants of epiblast exhibited the typical close-packed morphology of epithelia, and the tissue remained as a coherent patch of cells that were shown to express transcripts of the cytokeratin Endo B by in situ analysis. In contrast, cells in explants of primitive streak mesoderm exhibited a greatly flattened, fibroblastic morphology, did not express Endo B transcripts, and migrated away from the center of the explant. As epiblast cells in vivo undergo the epithelial-mesenchymal transition at the primitive streak, they cease expressing the prominent calcium-sensitive cell adhesion molecule E-cadherin (uvomorulin, Cell-CAM 120/80). We asked whether the loss of E-cadherin expression was a passive result of differentiation or if it might play a more causative role in mesoderm differentiation and migration. Culture with function-perturbing antibodies against E-cadherin caused cells within epiblast explants to lose cell-cell contacts, to flatten, and to assume a mesenchymal morphology; they were also induced to migrate. Anti-E-cadherin antibodies had no effect on explants of primitive streak mesoderm. In immunofluorescence studies, anti-E-cadherin-treated epiblast cells ceased to express SSEA-1, a carbohydrate moiety that is lost as mesoderm differentiates from the epiblast in vivo, and they also ceased to express E-cadherin itself. In contrast, these cells began to express the intermediate filament protein vimentin, a cytoskeletal protein characteristic of the primitive streak mesoderm at this stage of development. As epiblast cells differentiate into mesoderm, their predominant adhesive interactions change from cell-cell to cell-substratum. Therefore, we also investigated the adhesive interactions between primitive streak tissues and extracellular matrix (ECM) components. Epiblast explants adhered well to fibronectin, more poorly to laminin and type IV collagen, and not at all to vitronectin. In contrast, mesoderm explants attached well to all these proteins. Furthermore, epiblast, but not mesoderm, displayed an anchorage-dependent viability in culture. After anti-E-cadherin treatment, epiblast cells that had assumed the mesenchymal morphology did attach to vitronectin, another characteristic shared with primitive streak mesoderm.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C A Burdsal
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143
| | | | | |
Collapse
|
49
|
Yelian FD, Edgeworth NA, Dong LJ, Chung AE, Armant DR. Recombinant entactin promotes mouse primary trophoblast cell adhesion and migration through the Arg-Gly-Asp (RGD) recognition sequence. J Cell Biol 1993; 121:923-9. [PMID: 8491783 PMCID: PMC2119796 DOI: 10.1083/jcb.121.4.923] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In vitro culture of mouse blastocysts during the period coinciding with implantation has revealed that primary trophoblast cells can adhere and migrate in serum-free medium when provided with certain extracellular matrix components, including fibronectin and laminin. Tightly associated with laminin is the glycoprotein, entactin, that may play an important role in basement membrane assembly and cell attachment. Mouse blastocysts were studied using this in vitro model to determine whether entactin was capable of mediating trophoblast invasive activity. Although entactin has never been shown to promote cell migration, we report here that recombinant entactin supported blastocyst outgrowth in a dose-dependent manner, with a maximal effect at 20-50 micrograms/ml. The ability of trophoblast cells to adhere and migrate on entactin was specifically inhibited by anti-entactin antibody, but not by antibodies raised against laminin. The synthetic peptide, Gly-Arg-Gly-Asp-Ser-Pro, that contains the Arg-Gly-Asp (RGD) integrin recognition site, reversibly inhibited entactin-mediated blastocyst outgrowth in a dose-dependent manner, but had no effect on laminin-mediated outgrowth. The synthetic peptide, Gly-Phe-Arg-Gly-Asp-Gly-Gln, that comprises the actual RGD-containing sequence within entactin, promoted trophoblast outgrowth when immobilized on the substratum. Furthermore, a mutated recombinant entactin, altered to contain a Glu in place of Asp at the RGD site, provided no trophoblast cell adhesive activity. We conclude that entactin promotes trophoblast outgrowth through a mechanism mediated by the RGD recognition site, and that it may play an important role during invasion of the endometrial basement membrane at implantation.
Collapse
Affiliation(s)
- F D Yelian
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | | | | | |
Collapse
|
50
|
Dardik A, Doherty AS, Schultz RM. Protein secretion by the mouse blastocyst: stimulatory effect on secretion into the blastocoel by transforming growth factor-alpha. Mol Reprod Dev 1993; 34:396-401. [PMID: 8385965 DOI: 10.1002/mrd.1080340408] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have previously demonstrated that newly synthesized proteins are secreted into the mouse blastocoel [Dardik and Schultz (1991): Biol Reprod 45:328-333]. In the present study we examine the effect of transforming growth factor-alpha (TGF-alpha) on these proteins. We observe that TGF-alpha stimulates secretion of these newly synthesized proteins into the blastocoel and apical medium, which faces the zona pellucida, by about 65%. Although one-dimensional gel electrophoretic analysis does not reveal any marked differences in the patterns of newly synthesized proteins secreted into the blastocoel in response to TGF-alpha, zymography reveals a marked stimulation in the secretion of several gelatinases into the blastocoel and apical medium. These results suggest additional functions for TGF-alpha in mouse preimplantation development.
Collapse
Affiliation(s)
- A Dardik
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018
| | | | | |
Collapse
|