1
|
Nomura T, Hayakawa K, Sato N, Obinata T. Periodic Stretching of Cultured Myotubes Enhances Myofibril Assembly. Zoolog Sci 2022; 39. [DOI: 10.2108/zs220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Takahiro Nomura
- Department of Biology, Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan
| | - Kimihide Hayakawa
- Department of Biology, Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan
| | - Naruki Sato
- Department of Biology, Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan
| | - Takashi Obinata
- Department of Biology, Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan
| |
Collapse
|
2
|
Total iron binding capacity is a predictor for muscle loss in maintenance hemodialysis patients. Clin Exp Nephrol 2022; 26:583-592. [PMID: 35179679 DOI: 10.1007/s10157-022-02193-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Protein-energy wasting in hemodialysis (HD) patients is characterized by decreased skeletal muscle mass and plasma protein. Some previous studies reported relationships between skeletal muscle dysfunction and iron deficiency. Dialysis patients with malnutrition may have a functional iron deficiency (FID) because of inflammation. Serum total iron binding capacity (TIBC), correlated with transferrin, is a nutritional status marker in HD patients and a biomarker of iron status. The relationship between muscle loss and iron status is unknown. The aim of the present study was to assess the relationship between iron status and change in skeletal muscle mass. METHODS A prospective cohort of 267 HD patients was examined for 12 months. Blood samples were obtained at baseline to measure TIBC, ferritin, transferrin saturation (TSAT), and hepcidin-25. Nutritional status and changes in muscle mass were assessed by subjective global assessment, albumin, creatinine index, and percentage creatinine generation rate. RESULTS At baseline, lower tertiles of TIBC were significantly related to lower muscle mass and albumin levels; they were also significantly correlated with high ferritin, hepcidin-25, and TSAT levels, as well as a higher proportion of use of erythropoiesis-stimulating agents. Multiple regression analysis adjusted with confounders showed TIBC was an independent biomarker for decreased muscle mass and albumin. Change in muscle mass remained significantly decreased in the lower tertile of TIBC and in malnourished patients. CONCLUSIONS The present study demonstrated relationships between FID and muscle loss. TIBC was an independent biomarker of muscle loss in HD patients, considering iron status, inflammation, oxidative stress, and malnutrition.
Collapse
|
3
|
Lee KY, Lee HJ, Choi HJ, Han ST, Lee KH, Park KJ, Park JS, Jung KM, Kim YM, Han HJ, Han JY. Highly elevated base excision repair pathway in primordial germ cells causes low base editing activity in chickens. FASEB J 2020; 34:15907-15921. [PMID: 33031594 DOI: 10.1096/fj.202001065rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
Base editing technology enables the generation of precisely genome-modified animal models. In this study, we applied base editing to chicken, an important livestock animal in the fields of agriculture, nutrition, and research through primordial germ cell (PGC)-mediated germline transmission. Using this approach, we successfully produced two genome-modified chicken lines harboring mutations in the genes encoding ovotransferrin (TF) and myostatin (MSTN); however, only 55.5% and 35.7% of genome-modified chickens had the desired base substitutions in TF and MSTN, respectively. To explain the low base-editing activity, we performed molecular analysis to compare DNA repair pathways between PGCs and the chicken fibroblast cell line DF-1. The results revealed that base excision repair (BER)-related genes were significantly elevated in PGCs relative to DF-1 cells. Subsequent functional studies confirmed that the editing activity could be regulated by modulating the expression of uracil N-glycosylase (UNG), an upstream gene of the BER pathway. Collectively, our findings indicate that the distinct DNA repair property of chicken PGCs causes low editing activity during genome modification, however, modulation of BER functions could promote the production of genome-modified organisms with the desired genotypes.
Collapse
Affiliation(s)
- Kyung Youn Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Soo Taek Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyu Hyuk Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Prajanban BO, Jangpromma N, Araki T, Klaynongsruang S. Antimicrobial effects of novel peptides cOT2 and sOT2 derived from Crocodylus siamensis and Pelodiscus sinensis ovotransferrins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:860-869. [PMID: 28159460 DOI: 10.1016/j.bbamem.2017.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/14/2017] [Accepted: 01/28/2017] [Indexed: 10/20/2022]
Abstract
In light of the increasing threat of bacterial drug resistance to human health on a global scale, research and development of antimicrobial peptides as a novel class of potent antibiotics has gained considerable attention. The present study focuses on the structural evaluation and membrane interaction of two new cationic antimicrobial peptides, cOT2 and sOT2, derived from Siamese crocodile (Crocodylus siamensis) and Chinese softshell turtle (Pelodiscus sinensis) ovotransferrins. Here, cOT1 (+3) and sOT1 (+3) were derived from reptile ovotransferrins by chromatographic purification and characterized by mass spectrometry and N-terminal sequencing analysis. In order to increase the antimicrobial efficacy, two novel peptides, cOT2 (+6) and sOT2 (+5), were designed and synthesized as "naturally-engineered" by primary amino acid sequence extension of cOT1 and sOT1, respectively. These rational designs of modified peptides were assayed in term of antimicrobial activity. These peptides display strong antimicrobial activity against several bacterial strains, e.g. Vibrio cholerae, Bacillus megaterium, and Bacillus pumilus TISTR 905, with MICs of 7-16.1μM. In terms of structural conformation in mimic environments, CD spectroscopic analysis of the secondary peptides structure features revealed fairly the similarity on α-helical content with magainin II. Hence, the modes of actions have been speculated as toroidal and carpet model. Furthermore, the disruption of intact bacterial cells induced by cOT2 and sOT2 was investigated by SEM and AFM. The results provided evidence that cOT2 and sOT2 have the potential to cause different morphological changes of bacterial cells and that these effects can be enhanced by increasing the peptide concentration.
Collapse
Affiliation(s)
- Bung-On Prajanban
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Office of the Dean, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tomohiro Araki
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto, 869-140, Japan
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
5
|
Wang Z, Cheung D, Zhou Y, Han C, Fennelly C, Criswell T, Soker S. An in vitro culture system that supports robust expansion and maintenance of in vivo engraftment capabilities for myogenic progenitor cells from adult mice. Biores Open Access 2014; 3:79-87. [PMID: 24940559 PMCID: PMC4048971 DOI: 10.1089/biores.2014.0007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Muscle cell therapy and tissue engineering require large numbers of functional muscle precursor/progenitor cells (MPCs), making the in vitro expansion of MPCs a critical step for these applications. The cells must maintain their myogenic properties upon robust expansion, especially for cellular therapy applications, in order to achieve efficacious treatment. A major obstacle associated with MPCs expansion is the loss of "stemness," or regenerative capacity, of freshly isolated cells, presumably due to the absence of the native cellular niches. In the current study, we developed an in vitro system that allowed for long-term culture and massive expansion of murine MPCs (mMPCs) with the preservation of myogenic regeneration capabilities. Long term in vitro expanded mMPC expressed the myogenic stem cell markers Pax3 and Pax7 and formed spontaneously contracting myotubes. Furthermore, expanded mMPC injected into the tibialis anterior muscle of nude mice engrafted and formed myofibers. Collectively, the method developed in this study can be potentially adapted for the expansion of human MPCs to high enough numbers for treatment of muscle injuries in human patients.
Collapse
Affiliation(s)
- Zhan Wang
- Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina
| | - Daniel Cheung
- Oregon State University , School of Chemical, Biological, and Environmental Engineering, Corvallis, Oregon
| | - Yu Zhou
- Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina
| | - Changjie Han
- Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina
| | - Colin Fennelly
- Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina. ; Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina. ; Wake Forest School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
6
|
Miyauchi-Nomura S, Obinata T, Sato N. Cofilin is required for organization of sarcomeric actin filaments in chicken skeletal muscle cells. Cytoskeleton (Hoboken) 2012; 69:290-302. [PMID: 22396208 DOI: 10.1002/cm.21025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 12/15/2022]
Abstract
Cofilin is an actin regulatory protein that plays a critical role in actin filament dynamics in a variety of cells. We have previously demonstrated that excess cofilin in skeletal muscle cells leads to disruption of actin filaments, followed by actin-cofilin rod formation in the cytoplasm. In this study, to further clarify the role of cofilin in actin assembly during myofibrillogenesis, cofilin expression was suppressed in cultured chicken skeletal muscle cells. First, we confirmed that turnover of cofilin in myotubes was much higher than that of actin, and that the cofilin level could be decreased drastically within 2 days when cofilin de novo synthesis was suppressed. Next, cofilin expression in individual myotubes was suppressed by introducing antisense morpholino oligonucleotides into the cells by microinjection. Cofilin depletion at the early phase of myofibrillogenesis caused abnormal actin aggregates in myotubes and impaired actin organization into cross-striated myofibril structures. However, when cofilin expression was suppressed in developed myotubes, actin localization in striated myofibrils was scarcely affected. These results indicate that cofilin plays a critical role in the regulation of actin assembly at the early process of myofibrillogenesis.
Collapse
Affiliation(s)
- Saeko Miyauchi-Nomura
- Department of Biology, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 262-8533, Japan
| | | | | |
Collapse
|
7
|
Saruta K, Obinata T, Sato N. Differential expression of two cardiac myosin-binding protein-C isoforms in developing chicken cardiac and skeletal muscle cells. Zoolog Sci 2010; 27:1-7. [PMID: 20064001 DOI: 10.2108/zsj.27.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myosin-binding protein-C (MyBP-C), also known as C-protein, is a major myosin-binding protein characteristic of striated muscle, and plays a critical role in myofibril organization, especially in registration of thick filaments in the sarcomeres during myofibrillogenesis. We previously demonstrated that cardiac-type MyBP-C is involved early in the process of myofibrillogenesis in both cardiac and skeletal muscle during chicken muscle development. Two variants (type I and type II) have been detected in chicken cardiac MyBP-C; they differ only in the presence or absence of a sequence of 15 amino acid residues (termed P-seq) that includes a phosphorylation site for cyclic AMP-dependent kinase in the cardiac MyBP-C motif ( Yasuda et al, 1995 ). Therefore, types I and II are regarded as phosphorylatable and non-phosphorylatable isoforms, respectively. In this study, an antibody specific for P-seq was prepared. With this and other monoclonal antibodies to cardiac MyBP-C (C-315), expression and localization of the two MyBP-C isoforms in developing chicken cardiac and skeletal muscle were examined by immunocytochemistry and immunoblotting. The results showed that type I is predominantly expressed in the heart and is localized in myofibrils of both atrial and ventricular muscles through development. In contrast, type II is mainly expressed in embryonic skeletal muscle, although type I is faintly expressed in cultured skeletal muscle. These observations were confirmed by RT-PCR.
Collapse
Affiliation(s)
- Keiko Saruta
- Department of Biology, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | | | | |
Collapse
|
8
|
Sasai N, Agata N, Inoue-Miyazu M, Kawakami K, Kobayashi K, Sokabe M, Hayakawa K. Involvement of PI3K/Akt/TOR pathway in stretch-induced hypertrophy of myotubes. Muscle Nerve 2010; 41:100-6. [DOI: 10.1002/mus.21473] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Hosoda A, Sato N, Nagaoka R, Abe H, Obinata T. Activity of cofilin can be regulated by a mechanism other than phosphorylation/dephosphorylation in muscle cells in culture. J Muscle Res Cell Motil 2007; 28:183-94. [PMID: 17823847 DOI: 10.1007/s10974-007-9117-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 08/13/2007] [Indexed: 11/29/2022]
Abstract
Cofilin plays a critical role in actin filament dynamics in a variety of eukaryotic cells. Its activity is regulated by phosphorylation/dephosphorylation of a Ser3 residue on the N-terminal side and/or its binding to a phosphoinositide, PIP(2). To clarify how cofilin activity is regulated in muscle cells, we generated analogues of the unphosphorylated form (A3-cofilin) and phosphorylated form (D3-cofilin) by converting the phosphorylation site (Ser3) of cofilin to Ala and Asp, respectively. These mutated proteins, as well as the cofilin having Ser3 residue (S3-cofilin), were produced in an E. coli expression system and conjugated with fluorescent dyes. In an in vitro functional assay, A3-cofilin retained the ability to bind to F-actin. Upon injection into cultured muscle cells, A3-cofilin and S3-cofilin promptly disrupted actin filaments in the cytoplasm, and many cytoplasmic rods containing both the exogenous cofilin and actin were generated, while D3-cofilin was simply diffused in the cytoplasm without affecting actin filaments. Several hours after the injection, however, the activity of A3-cofilin and S3-cofilin was suppressed: the actin-A3-cofilin (or S3-cofilin) rods disappeared, the cofilin diffused in the cytoplasm like D3-cofilin, and actin filaments reformed. Both GFP-fused A3-cofilin and S3-cofilin that were produced by cDNA transfection were also suppressed in the cytoplasm of muscle cells in culture. Thus, some mechanism(s) other than phosphorylation can suppress A3-cofilin activity. We observed that PIP(2) can bind to A3-cofilin just as to S3-cofilin and inhibits the interaction of A3-cofilin with actin. Our results suggest that the activity of A3-cofilin and also S3-cofilin can be regulated by PIP(2) in the cytoplasm of muscle cells.
Collapse
Affiliation(s)
- Atsuko Hosoda
- Department of Biology, Faculty of Science, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
10
|
Kagawa M, Sato N, Obinata T. Effects of BTS (N-benzyl-p-toluene sulphonamide), an Inhibitor for Myosin-Actin Interaction, on Myofibrillogenesis in Skeletal Muscle Cells in Culture. Zoolog Sci 2006; 23:969-75. [PMID: 17189909 DOI: 10.2108/zsj.23.969] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Actin filaments align around myosin filaments in the correct polarity and in a hexagonal arrangement to form cross-striated structures. It has been postulated that this myosin-actin interaction is important in the initial phase of myofibrillogenesis. It was previously demonstrated that an inhibitor of actin-myosin interaction, BDM (2,3-butanedione monoxime), suppresses myofibril formation in muscle cells in culture. However, further study showed that BDM also exerts several additional effects on living cells. In this study, we further examined the role of actin-myosin interaction in myofibril assembly in primary cultures of chick embryonic skeletal muscle by applying a more specific inhibitor, BTS (N-benzyl-p-toluene sulphonamide), of myosin ATPase and actin-myosin interaction. The assembly of sarcomeric structures from myofibrillar proteins was examined by immunocytochemical methods with the application of BTS to myotubes just after fusion. Addition of BTS (10-50 microM) significantly suppressed the organization of actin and myosin into cross-striated structures. BTS also interfered in the organization of alpha-actinin, C-protein (or MyBP-C), and connectin (or titin) into ordered striated structures, though the sensitivity was less. Moreover, when myotubes cultured in the presence of BTS were transferred to a control medium, sarcomeric structures were formed in 2-3 days, indicating that the inhibitory effect of BTS on myotubes is reversible. These results show that actin-myosin interaction plays a critical role in the process of myofibrillogenesis.
Collapse
Affiliation(s)
- Maiko Kagawa
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | | | | |
Collapse
|
11
|
Abstract
Muscle cells grow by proliferation and protein accumulation. During the initial stages of development the participation of nerves is not always required. Myoblasts and satellite cells proliferate, fusing to form myotubes which further differentiate to muscle fibers. Myotubes and muscle fibers grow by protein accumulation and fusion with other myogenic cells. Muscle fibers finally reach a quasi-steady state which is then maintained for a long period. The mechanism of maintenance is not well understood. However, it is clear that protein metabolism plays a paramount role. The role played by satellite cells in the maintenance of muscle fibers is not known. Growth and maintenance of muscle cells are under the influence of various tissues and substances. Among them are Tf and the motor nerve, the former being the main object of this review and essential for both DNA and protein synthesis. Two sources of Tf have been proposed, i.e., the motor nerve and the tissue fluid. The first proposal is that the nervous trophic influence on muscle cells is mediated by Tf which is released from the nerve terminals. In this model, the sole source of Tf which is donated to muscle cells should be the nerve, and Tf should not be provided for muscle fiber at sites other than the synaptic region; otherwise, denervation atrophy would not occur, since Tf provided from TfR located at another site would cancel the effect of denervation. The second proposal is that Tf is provided from tissue fluid. This implies that an adequate amount of Tf is transferred from serum to tissue fluid; in this case TfR may be distributed over the entire surface of the cells. The trophic effects of the motor neuron have been studied in vivo, but its effects of myoblast proliferation have not been determined. There are few experiments on its effects on myotubes. Most work has been made on muscle fibers, where innervation is absolutely required for their maintenance. Without it, muscle fibers atrophy, although they do not degenerate. In contrast, almost all the work on Tf has been performed in vitro. Its effects on myoblast proliferation and myotube growth and maintenance have been established; myotubes degenerate following Tf removal. But its effects on mature muscle fibers in vivo are not well understood. Muscle fibers possess TfR all over on their cell surface and contain a variety of Fe-binding proteins, such as myoglobin. It is entirely plausible that muscle fibers require an amount of Tf, and that this is provided by TfR scattered on the cell surface.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
12
|
Belovari T, Stević N, Gajović S, Kostović-Knezević L. Differentiation and developmental potential of rat post-implantation embryo without extra-embryonic membranes cultured in vitro or grafted in vivo. Anat Histol Embryol 2004; 33:90-5. [PMID: 15027949 DOI: 10.1111/j.1439-0264.2003.00520.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Different experimental systems are used to study developmental processes in mammals. In this study, three experimental models were analysed and correlated: (1) cultivation of rat embryos in vitro; (2) cultivation in vitro and then transplantation in vivo; (3) direct transplantation in vivo. When embryos were cultivated in vitro and then transplanted in vivo, after the initial in vitro restriction, developmental potential was recovered. The in vitro restriction depended on medium used and duration of culture. Pre-cultivation in serum-free medium for 7 days restricted developmental potential for nervous tissue, and for 14 days restricted developmental potential for skeletal muscles, adipose tissue and glandular epithelia. Transferrin addition improved in vitro differentiation of neuroblasts, cartilage and columnar epithelium. In the combined in vitro and in vivo method, transferrin preserved developmental potential in comparable extent to the addition of the serum. Even in serum-free conditions in vitro, the subsequent in vivo wide expression of developmental potential was possible. Therefore, the combination of in vitro and in vivo methods turned to be advantageous than the isolated approaches (in vitro or in vivo only), and enabled testing in more detail the influence of a single substance on developmental course and potential.
Collapse
Affiliation(s)
- Tatjana Belovari
- Department of Histology and Embryology, School of Medicine, University of Osijek, Osijek, Croatia.
| | | | | | | |
Collapse
|
13
|
DOI J, HARA T, OHTSUKA A, HAYASHI K. Role of Ca2+in corticosterone-induced muscle growth retardation. Anim Sci J 2002. [DOI: 10.1046/j.1344-3941.2002.00053.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Dose Dependent Effects of Corticosterone of Proliferation and Differentiation in Chick Myoblasts. J Poult Sci 2001. [DOI: 10.2141/jpsa.38.348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Goto S, Miyazaki K, Funabiki T, Yasumitsu H. Serum-free culture conditions for analysis of secretory proteinases during myogenic differentiation of mouse C2C12 myoblasts. Anal Biochem 1999; 272:135-42. [PMID: 10415081 DOI: 10.1006/abio.1999.4163] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have been studying extracellular proteins such as proteinases and attachment factors under serum-free culture conditions. A number of studies on myogenesis using an in vitro culture system have reported that proteinases and ECM components play significant roles in muscle differentiation. However, most of the studies were performed in the presence of serum. Serum is abundant in the aforementioned proteins and its use in serum-free culture affects many cellular functions significantly. In this study, we tried to establish serum-free culture conditions for analyzing extracellular proteins involved in mouse myogenic differentiation. By evaluating media, supplements, and procedure of cell inoculation under serum-free conditions and by comparing the resultant conditions with conventional conditions on differentiated characteristics of the cells, it was revealed that serum-free Dulbecco's modified Eagle's medium/Ham's F-12 plus insulin more efficiently supported myogenesis morphologically and biochemically than conventional 2% horse serum-containing culture and that secretory proteinases obtained from our serum-free culture were different from those obtained utilizing conventional serum-free cultures in their activities and patterns. Since our serum-free medium consists of simple components, the medium is low cost and easy to prepare. Furthermore, the results suggest that our culture conditions are superior to conventional conditions biochemically and morphologically and will provide more precise and accurate information on extracellular proteins involved in myogenesis.
Collapse
Affiliation(s)
- S Goto
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Yokohama, Totsuka-ku, 244-0813, Japan
| | | | | | | |
Collapse
|
16
|
Nakashima K, Ohtsuka A, Hayashi K. Comparison of the effects of thyroxine and triiodothyronine on protein turnover and apoptosis in primary chick muscle cell cultures. Biochem Biophys Res Commun 1998; 251:442-8. [PMID: 9792793 DOI: 10.1006/bbrc.1998.9483] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary chick muscle cells were treated with physiological level of thyroxine (T4) or triiodothyronine (T3) to examine the effects of the hormones on growth, protein turnover, and apoptosis of the cells. Creatine kinase activity, as an index of differentiation, was increased by both T4 and T3. Even when the conversion from T4 to T3 was blocked by iopanoic acid, T4 increased creatine kinase activity. The rate of protein degradation estimated from [3H] tyrosine release was increased by T3 but not by T4. DNA cleavage and fragmentation, as indices of apoptosis, were induced by T3 but not by T4. These results show that T4 stimulates cell differentiation but not protein degradation and apoptosis in primary chick muscle cells, while all events are stimulated by T3.
Collapse
Affiliation(s)
- K Nakashima
- Department of Biochemical Science and Technology, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890, Japan
| | | | | |
Collapse
|
17
|
Carlevaro MF, Albini A, Ribatti D, Gentili C, Benelli R, Cermelli S, Cancedda R, Cancedda FD. Transferrin promotes endothelial cell migration and invasion: implication in cartilage neovascularization. J Cell Biol 1997; 136:1375-84. [PMID: 9087450 PMCID: PMC2132523 DOI: 10.1083/jcb.136.6.1375] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During endochondral bone formation, avascular cartilage differentiates to hypertrophic cartilage that then undergoes erosion and vascularization leading to bone deposition. Resting cartilage produces inhibitors of angiogenesis, shifting to production of angiogenic stimulators in hypertrophic cartilage. A major protein synthesized by hypertrophic cartilage both in vivo and in vitro is transferrin. Here we show that transferrin is a major angiogenic molecule released by hypertrophic cartilage. Endothelial cell migration and invasion is stimulated by transferrins from a number of different sources, including hypertrophic cartilage. Checkerboard analysis demonstrates that transferrin is a chemotactic and chemokinetic molecule. Chondrocyte-conditioned media show similar properties. Polyclonal anti-transferrin antibodies completely block endothelial cell migration and invasion induced by purified transferrin and inhibit the activity produced by hypertrophic chondrocytes by 50-70% as compared with controls. Function-blocking mAbs directed against the transferrin receptor similarly reduce the endothelial migratory response. Chondrocytes differentiating in the presence of serum produce transferrin, whereas those that differentiate in the absence of serum do not. Conditioned media from differentiated chondrocytes not producing transferrin have only 30% of the endothelial cell migratory activity of parallel cultures that synthesize transferrin. The angiogenic activity of transferrins was confirmed by in vivo assays on chicken egg chorioallantoic membrane, showing promotion of neovascularization by transferrins purified from different sources including conditioned culture medium. Based on the above results, we suggest that transferrin is a major angiogenic molecule produced by hypertrophic chondrocytes during endochondral bone formation.
Collapse
Affiliation(s)
- M F Carlevaro
- Istituto Nazionale per la Ricerca sul Cancro, Università di Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Trace mineral metabolism in the developing avian embryo begins with the formation of the egg and the trace mineral stores contained within it. Vitellogenin, the yolk precursor protein, serves as a trace mineral transporting protein that mediates the transfer of these essential nutrients from stores within the liver of the hen to the ovary and developing oocyte, and hence, to the yolk of the egg. Lipovitellin and phosvitin, derived from intraoocytic proteolytic processing of vitellogenin, are also trace mineral binding proteins that form important storage sites within the granule subfraction of yolk. The mobilization and uptake of egg trace mineral stores is mediated by the extra-embryonic membranes, principally the yolk sac membrane. The yolk sac also serves as a short-term storage site for trace minerals. Because it is an important site of plasma protein synthesis, the yolk sac has the ability to regulate the export of trace minerals to the embryo during development. Within the embryo, specific metaloproteins function in the interorgan transport cellular uptake, and intracellular storage of trace minerals. Thus, embryonic trace mineral homeostasis is established through the coordinated actions of the yolk sac, which mobilizes and exports trace minerals derived from egg stores; the vitelline circulation, which transports them to the embryo; and the liver, which accumulates trace minerals and distributes them to the rest of the tissues of the embryo via the embryonic circulation.
Collapse
Affiliation(s)
- M P Richards
- USDA, Growth Biology Laboratory, Beltsville, Maryland 20705-2350, USA
| |
Collapse
|
19
|
Hayakawa K, Ono S, Nagaoka R, Saitoh O, Obinata T. Differential assembly of cytoskeletal and sarcomeric actins in developing skeletal muscle cells in vitro. Zoolog Sci 1996; 13:509-17. [PMID: 8940906 DOI: 10.2108/zsj.13.509] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Monoclonal antibodies (McAb) to actin were prepared to analyze the assembly of actin isoforms in developing muscle cells in vitro. One of the antibodies (SkA-06) was specific for alpha-sarcomeric actin isoforms in skeletal and cardiac muscles, while the others recognized cytoskeletal (beta, gamma) actin isoforms in smooth muscle and non-muscle tissues as well as the sarcomeric (alpha) actins. Using SkA-06 and a polyclonal antibody (PcAb) specific for cytoskeletal actins, the subcellular localization of the actin isoforms was examined by immunocytochemical methods. While in developing young myotubes, cytoskeletal and sarcomeric actins were co-localized in nascent myofibrils or stress-fiber-like structures, sarcomeric actins predominated in striated myofibrils in more developed myotubes. When FITC-labeled cytoskeletal and sarcomeric actins were introduced into young myotubes by a microinjection method, the latter became detectable in striated structures sooner than the former but they were finally incorporated into striated myofibrils. These results suggest that alpha-actin(s) as well as beta- and gamma-actins can be incorporated into myofibrils, but alpha-actin(s) is assembled preferentially into myofibrils in developing muscle cells.
Collapse
Affiliation(s)
- K Hayakawa
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | | | | | |
Collapse
|
20
|
Abstract
The myogenic precursor cells of postnatal and adult skeletal muscle are situated underneath the basement membrane of the myofibers. It is because of their unique positions that these precursor cells are often referred to as satellite cells. Such defined satellite cells can first be detected following the formation of a distinct basement membrane around the fiber, which takes place in late stages of embryogenesis. Like myoblasts found during development, satellite cells can proliferate, differentiate, and fuse into myofibers. However, in the normal, uninjured adult muscle, satellite cells are mitotically quiescent. In recent years several important questions concerning the biology of satellite cells have been asked. One aspect has been the relationship between satellite cells and myoblasts found in the developing muscle: are these myogenic populations identical or different? Another aspect has been the physiological cues that control the quiescent, proliferative, and differentiative states of these myogenic precursors: what are the growth regulators and how do they function? These issues are discussed, referring to previous work by others and further emphasizing our own studies on avian and rodent satellite cells. Collectively, the studies presented indicate that satellite cells represent a distinct myogenic population that becomes dominant in late stages of embryogenesis. Moreover, although satellite cells are already destined to be myogenic precursors, they do not express any of the four known myogenic regulatory genes unless their activation is induced in the animal or in culture. Furthermore, multiple growth factors are important regulators of satellite cell proliferation and differentiation. Our work on the role of one of these growth factors [platelet-derived growth factor (PDGF)] during proliferation of adult myoblasts is further discussed with greater detail and the possibility that PDGF is involved in the transition from fetal to adult myoblasts in late embryogenesis is brought forward.
Collapse
Affiliation(s)
- Z Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Seattle 98195, USA
| |
Collapse
|
21
|
Kurama T, Kurata S, Natori S. Molecular Characterization of an Insect Transferrin and its Selective Incorporation into Eggs During Oogenesis. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20254.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Ono S, Abe H, Nagaoka R, Obinata T. Colocalization of ADF and cofilin in intranuclear actin rods of cultured muscle cells. J Muscle Res Cell Motil 1993; 14:195-204. [PMID: 8315023 DOI: 10.1007/bf00115454] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immunofluorescence microscopy revealed that two actin-binding proteins of low molecular weight with different functional activity, ADF and cofilin, are transported into nuclei of cultured myogenic cells to form rod structures there together with actin, when the cells were incubated in medium containing dimethylsulfoxide. In most cases, ADF and cofilin colocalized in the same nuclear actin rods, but ADF appeared to predominate in mononucleated cells, while cofilin was present in multinucleated myotubes. In some mononucleated cells, the nuclear actin rods were composed of ADF and actin but devoid of cofilin. An ADF homologue in mammals, destrin, was also translocated into nuclear actin rods under similar conditions. As a nuclear transport signal sequence exists in cofilin and ADF but not in actin, ADF and/or cofilin may be responsible for the nuclear import of actin in myogenic cells under certain conditions.
Collapse
Affiliation(s)
- S Ono
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | | | |
Collapse
|
23
|
Wakita M, Yamabata N, Kobayashi Y, Hoshino S. Characteristics of chicken serum transferrin and immunological determination of its serum levels in dwarf chickens. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0305-0491(92)90121-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Tu GF, Achen MG, Aldred AR, Southwell BR, Schreiber G. The distribution of cerebral expression of the transferrin gene is species specific. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38104-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Abstract
Transferrin and its receptor are involved in the delivery of iron to most cells. Previous studies have demonstrated that transferrin is associated with oligodendrocytes, the myelin-producing cells in the central nervous system. In the peripheral nervous system, the Schwann cell produces myelin. This study used immunohistochemistry and immunoblot analysis to determine whether expression of transferrin is unique to myelinated peripheral nerves. Immunohistochemical examination demonstrated cytoplasmic accumulation of transferrin in Schwann cells of the myelinated sciatic nerve, but not in the unmyelinated cervical sympathetic trunk. Immunoblot analysis revealed there is 10 X the amount of transferrin in the sciatic nerve compared to the cervical sympathetic trunk. These results are consistent with the hypothesis that transferrin may play a role in myelination.
Collapse
Affiliation(s)
- H H Lin
- Department of Anatomy, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | | | |
Collapse
|
26
|
Hagiwara Y, Ozawa E. Suppression of transferrin internalization in myogenic L6 cells by dibucaine. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1051:237-41. [PMID: 2310774 DOI: 10.1016/0167-4889(90)90128-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dibucaine, a potent local anesthetic, is known to suppress myogenesis. The promotion of myogenesis requires transferrin (Tf) which transports Fe to the cells. Therefore, the effects of dibucaine on Fe uptake and Tf internalization were studied using myogenic cell line L6. Dibucaine at 200 microM suppressed 55Fe accumulation which was transported by 55Fe-transferrin to the cells. The anesthetic changed neither the number of Tf receptors nor the affinity of Tf to Tf receptors on the cell membrane. Dibucaine retarded the endocytosis and exocytosis cycle of Tf, and this retardation acted to suppress Fe accumulation.
Collapse
Affiliation(s)
- Y Hagiwara
- Division of Cell Biology, National Institute of Neuroscience, Tokyo, Japan
| | | |
Collapse
|
27
|
Funanage VL, Schroedl NA, Moses PA, Smith SM, Kirwin JJ, Hartzell CR. Hemin enhances differentiation and maturation of cultured regenerated skeletal myotubes. J Cell Physiol 1989; 141:591-7. [PMID: 2592428 DOI: 10.1002/jcp.1041410318] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Satellite cells, isolated from marcaine-damaged rat skeletal muscle, differentiate in culture to form contracting, cross-striated myotubes. Addition of 20 microM hemin (ferriprotoporphyrin IX chloride) to the culture medium resulted in increases in the number, size, and alignment of myotubes; in the number of myotubes that exhibited cross-striations; and in the strength and frequency of myotube contractions. Hemin increased satellite cell fusion by 27%, but decreased cell proliferative rate by 30%. Hemin increased the specific activity of creatine kinase (CK), a sensitive indicator of muscle differentiation, by 157%. Separation of CK isoenzymes by agarose gel electrophoresis showed that hemin increased only the muscle-specific CK isoenzymes (MM-CK and MB-CK). Thus, hemin seems to duplicate some of the effects of innervation on cultured myotubes by increasing contraction frequency and strength, appearance of cross-striations, and muscle-specific isoenzymes. In contrast, 3-amino-1,2,4-triazole, an inhibitor of heme biosynthesis, decreased the number of cross-striated myotubes, the strength and frequency of myotube contractions, and CK activity. These inhibitory effects were reversed by hemin. Collectively, these results demonstrate a physiologically significant role for heme in myotube maturation.
Collapse
Affiliation(s)
- V L Funanage
- Research Department, Alfred I. duPont Institute, Wilmington, Delaware 19899
| | | | | | | | | | | |
Collapse
|
28
|
Watanabe K, Fujioka M, Takeshita T, Tsuda T, Kawahara A, Amano M. Scleral fibroblasts of the chick embryo proliferate by an autocrine mechanism in protein-free primary cultures: differential secretion of growth factors depending on the growth state. Exp Cell Res 1989; 182:321-9. [PMID: 2656277 DOI: 10.1016/0014-4827(89)90237-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Scleral fibroblasts of the chick embryo in primary culture proliferated in a protein-free medium. Conditioned medium (CdM) from the culture contained plural growth-promoting factors, which were active to the same cell type. The activity of one of the growth-promoting factors (SAF-I) was heat-resistant and the rest (SAF-II) were heat-sensitive. SAF-I accumulated in the CdM only during the growing phase; on the other hand, SAF-II accumulated in the CdM during the stationary phase. SAF-I showed the same time course of DNA synthesis-promoting activity as human PDGF. However, the activity of the SAF-I was not neutralized by anti-human PDGF. On the other hand, a part of the SAF-II (SAF-II a) showed a strong affinity for heparin.
Collapse
Affiliation(s)
- K Watanabe
- Cell and Developmental Biology Laboratory, Faculty of Integrated Arts and Sciences, Hiroshima University, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Fujioka M, Shimamoto N, Kawahara A, Amano M, Watanabe K. Purification of an autocrine growth factor in conditioned medium obtained from primary cultures of scleral fibroblasts of the chick embryo. Exp Cell Res 1989; 181:400-8. [PMID: 2924797 DOI: 10.1016/0014-4827(89)90097-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Scleral fibroblasts of the chick embryo were found to secrete autocrine growth factors. One of the factors was purified from conditioned medium collected from growing-phase cultures of these cells by DEAE-Sepharose column chromatography and following non-denaturing polyacrylamide gel electrophoresis. The specific activity was increased 1100-fold by this purification. The chromatographically purified growth factor was still active after incubation at 95 degrees C, at pH 10 or pH 3, or with glycosidase H, but inactive after incubation with dithiothreitol or trypsin. An active protein having a molecular weight of 32 kDa was found to be the major component of the final preparation.
Collapse
Affiliation(s)
- M Fujioka
- Faculty of Integrated Arts and Sciences, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
30
|
Festoff BW, Munoz PA, Patel MK, Harris M, Beach RL. Monoclonal antibody detects embryonic epitope specific for nerve-derived transferrin. J Neurosci Res 1989; 22:425-38. [PMID: 2474665 DOI: 10.1002/jnr.490220408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monoclonal antibodies were generated against transferrin purified from chick embryo extract by fusing spleen cells from BALB/c mice immunized against embryonic transferrin, with myeloma cells. Antibodies produced by the selected hybridoma clones were all type IgG. Twelve clones were selected for secretion of antibodies to the embryo extract-derived transferrin, and three clones were studied extensively. Immunoblotting was used to demonstrate antibody binding to several avian transferrin proteins derived from adult chicken serum, adult chicken peripheral nerves, and ovotransferrin. Screening and detailed epitope analysis were accomplished by solid-phase immunoassay. The results indicated that two clones, 2G9.1 and 2B11.1, recognized the embryonic and egg antigens in preference to the adult proteins. However, a third clone, 6H2.1, recognized the nerve-derived transferrin preferentially to both the embryonic and adult serum antigens. None of the clones recognized the serum-derived transferrin in preference to the other antigens. These results indicate that embryonic epitope(s) are conserved in the nerve- but not the serum-derived transferrin. They also show that the neural antigen has site(s) distinct from the embryonic proteins. No changes in displacement curves were observed after these proteins were digested with neuraminidase, indicating that the epitope differences discovered are not intimately related to sialic acid residues on the various transferrins.
Collapse
Affiliation(s)
- B W Festoff
- Neurobiology Research Laboratory, Veterans Administration Medical Center, Kansas City, Missouri 64128
| | | | | | | | | |
Collapse
|
31
|
Kimura I, Gotoh Y, Ozawa E. Further purification of a fibroblast growth factor-like factor from chick embryo extract by heparin-affinity chromatography. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1989; 25:236-42. [PMID: 2925562 DOI: 10.1007/bf02628460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A mitogenic factor which promotes quail myoblast proliferation has been purified some 10(5)-fold from chick embryo extract by a combination of cation-exchange chromatography and heparin-affinity chromatography. The factor is eluted from heparin-Sepharose with 2 M NaCl and is a single-chain polypeptide with an apparent molecular weight of 15,000 to 17,000. It is active at subnanogram level in triggering the proliferation and thereby delaying temporarily fusion of myoblasts. It also stimulates the proliferation of quail fibroblasts in a similar effective concentration range. For both myoblasts and fibroblasts the dose-response to the factor is quantitatively and qualitatively comparable with that of bovine pituitary fibroblast growth factor. These observations strongly suggest that the factor very probably corresponds to chicken fibroblast growth factor or to a closely related molecule(s) and that it is possibly involved in the regulation of myogenesis.
Collapse
Affiliation(s)
- I Kimura
- Division of Cell Biology, National Center for Neurology and Psychiatry, Tokyo, Japan
| | | | | |
Collapse
|
32
|
Compton RS, Konigsberg IR. Cell cycle withdrawal without concomitant differentiation: analysis of a G1-specific temperature-sensitive murine myoblast cell line. Dev Biol 1988; 129:476-94. [PMID: 3417048 DOI: 10.1016/0012-1606(88)90394-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Skeletal muscle differentiation is accompanied by the withdrawal of the proliferating myoblasts from the cell cycle in the G1 phase. We showed earlier that the length of G1 and the timing of the differentiative transition could be controlled in large part by the composition of the culture medium. In this study we have asked whether a G1 arrest imposed independently of the culture medium is sufficient to elicit the differentiative response. To examine this possibility we have characterized a new G1-specific ts murine myoblast line. This line, ts-36, was identified as a G1-specific mutant on the basis of four criteria: prolonged viability at the nonpermissive temperature (npt), the kinetics of cell cycle withdrawal and reentry in temperature shift experiments, the ability of the cells to differentiate at the npt in low-growth medium, and, finally, the observation that, by the criterion of flow microfluorometry, the mutant cells block at the G1 landmark in the cell cycle. A ts-imposed G1 arrest of up to 96-hr duration is by itself insufficient to activate the differentiative program in ts-36 cells cultured in complete growth medium. The differentiated phenotype is expressed, however, in temperature-arrested cells cultured either in low-growth (conditioned) medium or in a medium from which mitogens have been removed by ultrafiltration. Differentiation can be reversed by refeeding with complete growth medium. The effects of growth medium can be mimicked by FGF to the extent of inhibiting activation of the differentiative program in temperature-arrested ts-36 cells and in eliciting downregulation of muscle-specific contractile protein synthesis. Extrapolating from these observations suggests that growth factors may have more than one role in myogenesis in vitro. They not only stimulate proliferation, but also inhibit differentiation in the absence of proliferation. Examining the kinetics of withdrawal from the cell cycle indicates that ts-36, cultured in conditioned medium blocks at the npt restriction point rather than the conditioned medium block. Our results suggest that two conditions must be met to trigger myogenic differentiation in vitro. Withdrawal from the cell cycle in G1 alone is not sufficient. Reduction of the mitogen level in the medium below a threshold level is an obligate condition for phenotypic expression.
Collapse
Affiliation(s)
- R S Compton
- Department of Biology, University of Virginia, Charlottesville 22901
| | | |
Collapse
|
33
|
Satin J, Fujii S, DeHaan RL. Development of cardiac beat rate in early chick embryos is regulated by regional cues. Dev Biol 1988; 129:103-13. [PMID: 3410155 DOI: 10.1016/0012-1606(88)90165-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mesoderm of each of the paired lateral heart-forming regions (HFRs) in the stage 5-7 chick embryo includes prospective conus (pre-C), ventricle (pre-V), and sinoatrial (pre-SA) cells, arranged in a rostrocaudal sequence (C-V-SA). With microsurgery we divided each HFR into three rostrocaudally arranged segments. After 24 hr of further incubation, each segment differentiated into a spontaneously beating vesicle of heart tissue to form a multiheart embryo. The cardiac vesicles in these embryos expressed left-right and rostrocaudal beat rate gradients: the left caudal pre-SA mesoderm produced tissue with the fastest beat rate of the six while the rostral vesicle formed from right pre-C was the slowest. In another operation, we prevented the HFRs from fusing in the midline by cutting through the anterior intestinal portal at stage 8, to produce cardia bifida (CB) embryos with an independently beating half-heart on each side. In these cases, the left half-heart of 87.2% of CB embryos beat faster than the right, confirming the left-right difference in intrinsic beat rate. To assess whether the future beat rate of each region is already determined in the st 5-7 HFR, we exchanged rectangular fragments of left pre-SA mesoderm and attached endoderm with right pre-C fragments to yield a left HFR with the sequence C-V-C and a right HFR with the sequence SA-V-SA. A CB operation was subsequently performed on these exchange embryos to prevent fusion of the lateral HFRs. Preconus mesoderm, transplanted to the pre-SA region, differentiated into tissue with a rapid beat rate, while pre-SA mesoderm relocated to the preconus region formed heart tissue with a slow spontaneous rate typical of the conus. In 73% of the exchange CB embryos, the left half-heart beat faster than the right, despite the origins of its mesoderm. The exchanged mesoderm developed a rate that was appropriate for its new location rather than the site of origin of the mesodermal fragment. In a third set of operations, we implanted a fragment of st 15 differentiated conus tissue into a site lateral to the left caudal HFR in st 5, 6, and 7 embryos, and subsequently performed CB operations on them. The implant caused the adjacent half-heart to develop with a slower beat rate than in unoperated or sham-operated controls.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Satin
- Department of Anatomy and Cell Biology, Emory University Health Science Center, Atlanta, Georgia 30322
| | | | | |
Collapse
|
34
|
Sanders EJ, Cheung E. Transferrin and iron requirements of embryonic mesoderm cells cultured in hydrated collagen matrices. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1988; 24:581-7. [PMID: 3391934 DOI: 10.1007/bf02629094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Very early embryonic mesoderm cells were taken from the primitive streak-stage chick embryo and cultured in a matrix of type I collagen in the presence of serum. Previous work has shown that under these conditions cells do not leave the explant and move in the collagen in the absence of supplemented avian transferrin. Cells explanted onto tissue culture plastic in the presence of serum do not require this transferrin supplement. These observations were investigated further by culturing cells in collagen in the presence of the lipophilic iron chelator, ferric pyridoxal isonicotinoyl hydrazone (FePIH), which can replace transferrin as an iron-delivery agent. Under conditions in which FePIH could effectively stimulate chick embryo myoblast growth, no such long-term stimulation was obtained with the early mesoderm cells in collagen. This suggested that for mesoderm cells, FePIH could not replace transferrin. Antibody to the transferrin receptor and to transferrin itself inhibited growth of myoblasts in collagen and on plastic, and of mesoderm cells in collagen. Mesoderm cells on plastic, however, were refractory to the presence of the antibody directed to the receptor and seemed to show a low dependency on transferrin-delivered iron under these conditions, inasmuch as antiserum to transferrin itself only caused a partial inhibition of outgrowth. The results suggest that mesoderm cells in collagen require transferrin for both iron uptake and for another unspecified function. It is consistent with the results to propose that transferrin binding might modulate the cells' attachment to collagen, thus influencing outgrowth. The distribution of the actin cytoskeleton in mesoderm cells actively migrating in collagen, such as in the presence of transferrin, suggests a stronger attachment to the collagen than nonmigrating cells.
Collapse
Affiliation(s)
- E J Sanders
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
35
|
Abstract
Heparin or heparan sulfate proteoglycan (HeSPG), but not chondroitin sulfate or hyaluronic acid, exerts a pronounced inhibitory effect on muscle growth in vitro, as determined by total protein, myosin accumulation or synthesis, and [3H]thymidine incorporation studies. Primary muscle fibroblast culture growth is also inhibited by heparin but to a substantially lesser degree compared to muscle (30% and over 90% inhibition of growth, respectively). Heparin-induced inhibition of skeletal muscle growth is a consequence of its interaction with a growth factor(s) present in the media used to support myogenesis; heparin-Sepharose column absorbed horse serum can support muscle growth only in the presence of added heparin-binding growth factors like fibroblast growth factor (FGF) or chicken muscle growth factor (CMGF). Furthermore, heparin prevents the binding of iodinated FGF to the myoblast surface. We also show that the extent of muscle growth is a function of the relative amounts of heparin and FGF in culture. Finally, we provide evidence indicating that FGF can combine with endogenously occurring heparin-like components: immobilized FGF binds sodium-[35S]sulfate labeled components secreted in muscle culture conditioned medium, an interaction inhibited by anti-HeSPG antibodies or heparin, but not by other sulfated glycosaminoglycans. Since heparin binding growth factors not only stimulate myoblast proliferation but also actively inhibit the onset of muscle differentiation (G. Spitzz, D. Roman, and A. Strauss (1986). J. Biol. Chem. 261, 9483-9488), their interaction with naturally occurring heparin-like components may be an important physiological mechanism for modulating muscle growth and differentiation in development and regeneration.
Collapse
Affiliation(s)
- E Kardami
- Department of Zoology, University of California, Berkeley 94720
| | | | | |
Collapse
|
36
|
Paulsen DF, Solursh M. Microtiter micromass cultures of limb-bud mesenchymal cells. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1988; 24:138-47. [PMID: 3343192 DOI: 10.1007/bf02623891] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A method is described for growing high-density micromass cultures of chick and mouse limb mesenchyme cells in 96-well microtiter plates (microT microM cultures). Rapid quantitative estimates of chondrogenic expression were obtained by automated spectrophotometric analysis of Alcian-blue-stained cartilage matrix extracts performed in the wells in which the cells had been grown. Quantitative estimates of myogenic expression were obtained similarly using anti-sarcomere myosin monoclonal antibody and modified ELISA techniques. This microT microM-ELISA method may be adapted for use with other antigens for which specific antibodies are available. These methods were used to compare cartilage and muscle differentiation in 1 to 4 d microT microM cultures grown in serum-containing (SCM) and defined (DM) media. The DM contains minimal additives (insulin, hydrocortisone, and in some cases, ascorbate or transferrin) and supports both chondrogenesis and myogenesis. The colorimetric analyses agree well with the morphologic appraisal of chondrogenesis and myogenesis. Similar numbers of cartilage nodules formed in all cultures, but in DM the nodules failed to enlarge; explaining the reduced matrix synthesis in DM as compared with SCM, and suggesting that nodule enlargement is a discrete, serum-dependent step. Studies of selected additives to DM show that transferrin enhances myogenesis, ascorbic acid enhances chondrogenesis, and retinoic acid inhibits chondrogenesis. Together, the microT microM system, in situ colorimetric assays of chondrogenesis and myogenesis, and DM will allow rapid prescreening of teratogens and screening of various bioactive compounds (e.g., hormones, growth factors, vitamins, adhesion factors) for effects on limb mesenchymal cell differentiation.
Collapse
Affiliation(s)
- D F Paulsen
- Department of Biology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
37
|
Chapter 3 Myoblast Fusion–A Mechanistic Analysis. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/s0070-2161(08)60131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Bowman BH, Yang FM, Adrian GS. Transferrin: evolution and genetic regulation of expression. ADVANCES IN GENETICS 1988; 25:1-38. [PMID: 3057819 DOI: 10.1016/s0065-2660(08)60457-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- B H Bowman
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio 78284
| | | | | |
Collapse
|
39
|
Mason AB, Brown SA, Church WR. Domain-specific monoclonal antibodies to ovotransferrin indicate conservation of determinants involved in avian transferrin receptor recognition. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1988; 91:541-9. [PMID: 2466604 DOI: 10.1016/0305-0491(88)90019-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Three of five monoclonal antibodies produced to chicken ovotransferrin bound quail ovotransferrin but none of the antibodies bound human, bovine or equine serum transferrin. 2. Equilibrium binding experiments indicate that both quail and chicken ovotransferrin bind to transferrin receptors on chick reticulocytes although the quail protein binds to 40% fewer sites with an affinity which is three times lower than chicken ovotransferrin. 3. The antibodies that recognize quail ovotransferrin block binding of both radiolabelled chicken and quail ovotransferrin to chick reticulocytes. 4. Quail NH2-terminal half-molecule domain appears to be unable to form a functional hybrid holo-ovotransferrin with chicken C-terminal half-molecule domain.
Collapse
Affiliation(s)
- A B Mason
- Department of Biochemistry, University of Vermont College of Medicine, Burlington 05405
| | | | | |
Collapse
|
40
|
Mescher AL, Munaim SI. Transferrin and the growth-promoting effect of nerves. INTERNATIONAL REVIEW OF CYTOLOGY 1988; 110:1-26. [PMID: 3053497 DOI: 10.1016/s0074-7696(08)61846-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In addition to its role in the activity of specialized proteins such as hemoglobin and myoglobin, iron is required as a cofactor in several important enzymes common to most animal cells. One such enzyme, ribonucleotide reductase, which regulates the production of deoxyribonucleotides during DNA synthesis, requires a continuous supply of iron to maintain its activity throughout the process of DNA replication. The mechanism by which animal cells normally acquire iron involves receptor-mediated uptake of iron-loaded transferrin, followed by release of apotransferrin. The density of transferrin receptors on the cell surface is greatly increased in rapidly dividing normal and neoplastic cells. Various mitogens and certain organogenic tissue interactions have been shown to induce the appearance of transferrin receptors, signalling the onset of DNA replication. Interference with this process of iron delivery causes the rapid arrest of cell cycling, frequently during the S phase itself, which underscores the importance of iron for DNA replication. Although most circulating transferrin is synthesized in the liver and embryonic yolk sac, smaller quantities are produced in several other embryonic organs and certain other adult tissues. It has been suggested that local synthesis and/or release of transferrin supplies the iron required by rapidly growing cells in situations where the cells do not have ready access to adequate amounts of plasma transferrin due to incomplete development of the vasculature or the presence of blood-tissue barriers (Ekblom and Thesleff, 1985; Meek and Adamson, 1985). Oligodendrocytes and Schwann cells have been shown to synthesize and/or contain high concentrations of transferrin and these cells therefore may constitute a local source of this factor for neurons, whose growth and survival in vitro require transferrin. Transferrin in central and peripheral nervous tissues may be significant for the trophic or growth-promoting effect neurons exert on cells of certain tissues. Transferrin duplicates the activity of neural tissue or neural extracts on growth and development of cultured skeletal myoblasts from chick embryos and on proliferation of mesenchymal cells in blastemas from regenerating amphibian limbs, two systems that have been widely used in investigations of the growth-promoting influence of nerves. Moreover, removal of active transferrin from neural extracts, either with antibodies to transferrin or chelation of the iron, inhibits reversibly the effect of the extract in these developing systems. While the physiological significance of the extract in these developing systems.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A L Mescher
- Medical Sciences Program, Indiana University School of Medicine, Bloomington 47405
| | | |
Collapse
|
41
|
Affiliation(s)
- F J Barrantes
- Consejo Nacional de Investigaciones Cientificas y Tecnicas/Universidad Nacional del Sur, Bahia Blanca, Argentina
| |
Collapse
|
42
|
Riss TL, Sirbasku DA. Purification and identification of transferrin as a major pituitary-derived mitogen for MTW9/PL2 rat mammary tumor cells. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1987; 23:841-9. [PMID: 3693252 DOI: 10.1007/bf02620963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transferrin was identified as a major tissue-derived growth factor for MTW9/PL2 rat mammary tumor cells. Mitogenic activity was assayed by the ability to stimulate the increase in number of MTW9/PL2 cells over 4 d in Dulbecco's modified Eagle's medium containing only 15 mM HEPES, 2 mM glutamine, and 50 micrograms/ml gentamicin. This growth-promoting activity was purified from ammonium sulfate precipitates of phosphate buffered saline extracts of porcine pituitaries using DEAE-Sepharose, chromatofocusing, molecular sieve chromatography and reverse phase high performance liquid chromatography. Pig pituitary mitogen (PPM) migrated as a single band at molecular weight 78,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis, eluted from chromatofocusing at multiple pH values near 6.3, exhibited an absorption maximum at 465 nm which was diminished by removal of iron, showed a characteristic salmon-pink color in aqueous solution, and was similar in amino acid composition to previously reported values for porcine transferrin. Purified PPM stimulated the growth of MTW9/PL2 cells with mitogenic potency (ED50 = 190 to 280 ng/ml) similar to commercially available human transferrin (ED50 = 160 to 350 ng/ml). We have concluded that using serum-free assay conditions with MTW9/PL2 cells, transferrin was a major source of the mitogenic activity present in extracts of porcine pituitary.
Collapse
Affiliation(s)
- T L Riss
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225
| | | |
Collapse
|
43
|
Weydert A, Barton P, Harris AJ, Pinset C, Buckingham M. Developmental pattern of mouse skeletal myosin heavy chain gene transcripts in vivo and in vitro. Cell 1987; 49:121-9. [PMID: 3829126 DOI: 10.1016/0092-8674(87)90762-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have studied the transcripts of the embryonic, perinatal, and adult fast myosin heavy chain (MHC) genes in mouse skeletal muscle in vivo before and after birth, and in vitro in myogenic cell lines. In vivo, in 15-day fetal muscle, embryonic and perinatal MHC mRNAs are both present, and the former is the major transcript. By 18 days the perinatal is predominant and the adult MHC mRNA appears. In beta-bungarotoxin-treated fetuses, a similar developmental pattern is detected, suggesting that it is nerve-independent and that primary myotubes alone undergo the same developmental changes. In vitro, in the absence of the nerve, embryonic, perinatal, and adult IIB MHC mRNAs accumulate. The level of the latter two isomRNAs is influenced by culture conditions.
Collapse
|
44
|
Partanen AM, Thesleff I. Levels and patterns of 125I-labeled transferrin binding in mouse embryonic teeth and kidneys at various developmental stages. Differentiation 1987; 34:18-24. [PMID: 3609530 DOI: 10.1111/j.1432-0436.1987.tb00046.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The iron-transporting serum glycoprotein, transferrin, is necessary for the cell proliferation, morphogenesis, and differentiation of mouse embryonic teeth and kidneys in organ culture. The stimulatory effect of transferrin is mediated by the binding of transferrin to its specific cell-surface receptor and by receptor-mediated endocytosis. Since, in both teeth and kidneys, the requirement for and responsiveness to transferrin depend on the developmental stage of the organ, we studied the binding of transferrin at various stages of tooth and kidney development by incubating tissues with 125I-labeled transferrin. The amount of bound transferrin was determined by measuring the tissue-incorporated radioactivity, and the binding sites were localized by autoradiography. During tooth development in vitro, the requirement for exogenous transferrin is lost as the teeth proceed from the early cap stage to the bell stage. The level of transferrin binding was found to decrease simultaneously, and in bell-stage teeth, the transferrin receptors were concentrated in the areas of most active cell proliferation. In kidneys, the number of transferrin receptors was highest at the stage during which the undifferentiated kidney mesenchyme becomes responsive to transferrin. These receptors were located in both the ureter epithelium and the metanephric mesenchyme, and they dramatically decreased in number with advancing kidney differentiation. The results of the present study indicate that, during the embryonic development of teeth and kidneys, the amount and localization of transferrin binding are correlated with cell proliferation. The number of transferrin receptors is highest during the developmental stages when cell proliferation is most active, and decreases with advancing differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
45
|
Aldred A, Dickson P, Marley P, Schreiber G. Distribution of transferrin synthesis in brain and other tissues in the rat. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61187-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Hagiwara Y, Saito K, Atsumi S, Ozawa E. Iron supports myogenic cell differentiation to the same degree as does iron-bound transferrin. Dev Biol 1987; 120:236-44. [PMID: 3817292 DOI: 10.1016/0012-1606(87)90121-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
T. Hasegawa, K. Saito, I. Kimura, and E. Ozawa (1981, Proc. Jopan Acad. B 57, 206-210) have shown that Fe ion can promote myogenic cell growth as Fe-bound transferrin. In the present work, the effects of these substances in supporting myogenic cell differentiation were examined. The hallmarks of differentiation adopted were appearance of structural and regulatory proteins, myofibrils, sarcoplasmic reticulum, and Ca-activated activities of myosin B and phosphorylase kinase; isoform transition of creatine kinase; and acquisition of cell membrane excitability and contractility following electrical stimulation of myotubes. The degree of differentiation of myotubes cultured in the presence of Fe ion was almost the same as that of myotubes cultured in the presence of Fe-bound transferrin. These facts suggest that transferrin protein molecules do not play a primary role in differentiation. Further, it has also been shown that myotubes acquire excitation-contraction and metabolism coupling qualitatively similar to that of adult muscle fiber.
Collapse
|
47
|
Barald KF, Phillips GD, Jay JC, Mizukami IF. A component in mammalian muscle synaptic basal lamina induces clustering of acetylcholine receptors. PROGRESS IN BRAIN RESEARCH 1987; 71:397-408. [PMID: 3588957 DOI: 10.1016/s0079-6123(08)61841-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
MATSUDA RYOICHI. <b>Regenerating skeletal muscle contains transferrin and a transferrin-dependent growth </b><b>factor </b>. Biomed Res 1987. [DOI: 10.2220/biomedres.8.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
|
50
|
Delaporte C, Varet B, Fardeau M, Nochy D, Ract A. In vitro myotrophic effect of serum kappa chain immunoglobulins from a patient with kappa light chain myeloma and muscular hypertrophy. J Clin Invest 1986; 78:922-7. [PMID: 3093534 PMCID: PMC423719 DOI: 10.1172/jci112681] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Muscle hypertrophy due to enlarged muscle fibers was accompanied by kappa light chain myeloma in a 62-yr-old man. Immunofluorescence showed kappa light chain deposits around muscle fibers. We hypothesized that a circulating growth factor may be involved in the pathogeny of this muscular hypertrophy. Patient serum cultured with muscle cells showed that (a) the patient's serum exhibited a trophic effect on human muscle cells in culture, (b) this trophic effect increased the differentiation and did not influence the proliferation of human muscle cells, and (c) the fraction of the patient's serum immunoadsorbed on antihuman kappa chain antibodies exhibited the same in vitro effect on the muscle cells, whereas the fraction immunoadsorbed on antihuman lambda chain antibodies did not. These results support the hypothesis that the patient's kappa light chains have a specific enhancing effect on human muscle cell differentiation, perhaps leading to an acquired muscular hypertrophy.
Collapse
|