1
|
Rudge ES, Chan AHY, Leeper FJ. Prodrugs of pyrophosphates and bisphosphonates: disguising phosphorus oxyanions. RSC Med Chem 2022; 13:375-391. [PMID: 35647550 PMCID: PMC9020613 DOI: 10.1039/d1md00297j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Pyrophosphates have important functions in living systems and thus pyrophosphate-containing molecules and their more stable bisphosphonate analogues have the potential to be used as drugs for treating many diseases including cancer and viral infections. Both pyrophosphates and bisphosphonates are polyanionic at physiological pH and, whilst this is essential for their biological activity, it also limits their use as therapeutic agents. In particular, the high negative charge density of these compounds prohibits cell entry other than by endocytosis, prevents transcellular oral absorption and causes sequestration to bone. Therefore, prodrug strategies have been developed to temporarily disguise the charges of these compounds. This review examines the various systems that have been used to mask the phosphorus-containing moieties of pyrophosphates and bisphosphonates and also illustrates the utility of such prodrugs.
Collapse
Affiliation(s)
- Emma S Rudge
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
2
|
King BF. P2X3 receptors participate in purinergic inhibition of gastrointestinal smooth muscle. Auton Neurosci 2021; 234:102830. [PMID: 34116466 DOI: 10.1016/j.autneu.2021.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
The ATP analogue α,β-meATP is a potent relaxant of gastrointestinal smooth muscle, but its molecular target is uncertain inside the gut. α,β-meATP relaxed the carbachol-precontracted guinea-pig taenia coli in a concentration-dependent manner (EC50, 2.0 ± 0.1 μM). A luciferase-based assay confirmed that α,β-meATP solutions were minimally contaminated with ATP. α,β-meATP-evoked relaxations were inhibited by the competitive P2Y1 antagonist MRS2179 (pA2 = 5.36), but also by the competitive P2X3 antagonist, A-317491 (pA2 = 5.51). When MRS2179 and A-317491 were applied together, residual α,β-meATP responses converted from brief to prolonged relaxations. Sodium nitroprusside (a nitric oxide donor) also caused prolonged relaxations. Immunohistochemistry revealed that P2X3 receptors were present in myenteric ganglion cells and their varicose nerve terminals. The amplitude of α,β-meATP responses was not inhibited by TTX (NaV channel blocker) and ωCgTx (N-type CaV channel blocker). However, responses to α,β-meATP were inhibited by TEA (non-selective K+-channel blocker), indicating that relaxations involved opening K+-channels. The findings of this study are consistent with the conclusion that α,β-meATP stimulates Ca2+-permeable P2X3 receptors on varicose nerve terminals to release inhibitory nucleotides: 1) ATP and β-NAD release results in P2Y1-mediated brief relaxations; 2) another released transmitter (possibly NO) results in prolonged relaxations. Prejunctional P2X3 receptors represent a purinergic feed-forward mechanism to augment the action of inhibitory nerves on gut motility. This positive feed-forward mechanism may counter-balance the known negative feedback mechanism caused by adenosine and prejunctional A1 receptors on inhibitory motor nerves.
Collapse
Affiliation(s)
- Brian F King
- University College London (UCL), Research Department of Neuroscience, Pharmacology & Physiology (NPP), Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
3
|
Lam M, Mitsui R, Hashitani H. Electrical properties of purinergic transmission in smooth muscle of the guinea-pig prostate. Auton Neurosci 2016; 194:8-16. [DOI: 10.1016/j.autneu.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 11/24/2022]
|
4
|
Belchamber K, Hall DA, Hourani SMO. Smoking enhances the proinflammatory effects of nucleotides on cytokine release from human lung. PLoS One 2014; 9:e99711. [PMID: 24978193 PMCID: PMC4076178 DOI: 10.1371/journal.pone.0099711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/16/2014] [Indexed: 12/03/2022] Open
Abstract
Nucleotides have effects on immune cells which are complex but generally proinflammatory, and have been suggested to play a role in smoking-related lung diseases. However, there have been no studies directly measuring functional responses to nucleotides in human lungs taken from smokers. We used fragments of post mortem human lung from smokers and non-smokers, incubated them with a range of nucleotides (4–1000 µM) in the presence of lipopolysaccharide (LPS; 10 µg/ml) for 24 hours and measured cytokines (IL-1β, IFNγ, IL-17, TNFα, IL-6, IL-8, IL-2 and IL-10) in the supernatants using multiplex immunoassays. Although the basal cytokine levels in the smokers were generally higher in the smokers than the non-smokers, there were no significant differences in either the basal release or the LPS-stimulated release of any of the cytokines when lungs from smokers and non-smokers were compared. There were no significant effects of ATP, ADP, AMP, UTP, α,β-methylene-ATP, P1, P4-diATP, 2-methylthio-ATP or Bz-ATP on the release of cytokines from the lungs. However, the stable ATP analogue ATPγS increased the release of IL-1β and IFNγ, and the effect was greatly increased in lungs from smokers. In non-smokers but not in smokers ATPγS increased the release of IL-17. Overall these results clearly demonstrate for the first time that in normal human lung a stable ATP analogue can enhance LPS-induced pro-inflammatory cytokine release, and that these effects are greatly altered by a prior history of smoking. This provides strong support for the suggestion that nucleotides are involved in the pathogenesis of smoking-related diseases.
Collapse
Affiliation(s)
- Kylie Belchamber
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - David A. Hall
- Fibrosis Discovery Performance Unit, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
- * E-mail:
| | - Susanna M. O. Hourani
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
5
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
6
|
Reitz M, Makowska A, Ellrich J. Excitatory and inhibitory purinergic control of neck muscle nociception in anaesthetized mice. Cephalalgia 2009; 29:58-67. [PMID: 19126119 DOI: 10.1111/j.1468-2982.2008.01700.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tension-type headache is associated with noxious input from neck muscles. Due to the importance of purinergic mechanisms in muscle nociception, experimental studies typically inject alpha,beta-methyleneadenosine 5'-triphosphate (alpha,beta-meATP). In contrast to native adenosine 5'-triphosphate (ATP), alpha,beta-meATP has a narrow receptor profile and remains stable in tissue. The present study administered alpha,beta-meATP or ATP in semi-spinal neck muscles in anaesthetized mice (n = 65) in order to address different effects in neck muscle nociception. The jaw-opening reflex monitored the impact of neck muscle noxious input on brainstem processing. Injection of alpha,beta-meATP induced reflex facilitation in a dose-dependent manner. In contrast, only the lowest ATP dosage evoked facilitation. Preceding P2Y(1) receptor blockade revealed facilitation even under high-dosage ATP. Ongoing facilitation after alpha,beta-meATP injection neutralized under subsequent activation of P2Y(1) receptors. Results demonstrate opposing excitatory P2X and inhibitory P2Y effects of ATP in neck muscle nociception. These mechanisms may be involved in the pathophysiology of neck muscle pain in man.
Collapse
Affiliation(s)
- M Reitz
- Experimental Neurosurgery Section, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
7
|
Makowska A, Panfil C, Ellrich J. ATP induces sustained facilitation of craniofacial nociception through P2X receptors on neck muscle nociceptors in mice. Cephalalgia 2006; 26:697-706. [PMID: 16686909 DOI: 10.1111/j.1468-2982.2006.01095.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noxious input from neck muscles probably plays a key role in tension-type headache pathophysiology. ATP selectively excites group III and IV muscle afferents in vitro. Accordingly, ATP infusion into trapezius muscle induces strong pain and local tenderness in healthy man. The present study addresses the impact of ATP on neck muscle nociception in anaesthetized mice. Craniofacial nociceptive processing was tested by the jaw-opening reflex via noxious electrical tongue stimulation. Within 2 h after injection of 100 nmol/l or 1 micromol/l ATP into semispinal neck muscles, reflex integrals significantly increased by 114% or 328%, respectively. Preceding intramuscular administration of the P2X receptor antagonist PPADS (3-100 nmol/l) suppressed the ATP effect. Subsequent application of PPADS (100 nmol/l) caused a total recovery of facilitated reflex to baseline values. ATP induces sustained facilitation of craniofacial nociception by prolonged excitation of P2X receptors in neck muscles.
Collapse
Affiliation(s)
- A Makowska
- Department of Neurosurgery, Experimental Neurosurgery Section, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
8
|
Kinoshita N, Takahashi T, Tada S, Shinozuka K, Mizuno N, Takahashi K. Activation of P2Y receptor enhances high-molecular compound absorption from rat ileum. J Pharm Pharmacol 2006; 58:195-200. [PMID: 16451747 DOI: 10.1211/jpp.58.2.0006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
While there are no reports concerning the effects of extracellular nucleotides on the intestinal absorption of drugs, it is well known that extracellular nucleotides are important regulators of intestinal epithelial ion transport. This report using fluorescein isothiocyanate dextran 4000 (FD-4) as the model compound is the first to investigate the effects of purine nucleotides on absorption of poorly absorbed drugs from intestine. ATP enhanced the absorption of FD-4 from rat ileum in a concentration-dependent manner. ADP also enhanced the absorption of FD-4. Other purine nucleotides (adenosine, AMP, UTP and UDP) did not show an absorption-enhancing effect. The absorption-enhancing effect by ATP was inhibited by suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (PPADS), which are known P2 receptor antagonists. Additionally, 2-methylthio ATP (a P2Y receptor agonist) enhanced the absorption of FD-4, but alpha,beta-methylene ATP (a P2X receptor agonist) did not. These findings suggest that activation of the P2Y receptor may improve the absorption of water-soluble and high-molecular compounds from the ileum.
Collapse
Affiliation(s)
- Natsumi Kinoshita
- Departments of Pharmaceutics and Pharmacology, School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien, Kyuban-cho, Nishinomiya 663-8179, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Endoh T. Extracellular ATP both inhibits and facilitates calcium channel currents in acutely dissociated rat nucleus tractus solitarius. THE BULLETIN OF TOKYO DENTAL COLLEGE 2004; 45:59-63. [PMID: 15346884 DOI: 10.2209/tdcpublication.45.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The postsynaptic actions of exogenously applied adenosine 5'-triphosphate (ATP) were investigated in nucleus tractus solitarius (NTS) of the rat. Whole cell patch-clamp recordings were used to examine the regulation of voltage-dependent Ca2+ channels (VDCCs) currents (I(Ca)) by ATP in freshly dissociated NTS. Application of ATP inhibited I(Ca) from -905 pA to -741 pA. In addition to this inhibition, application of ATP facilitated I(Ca) from -941 pA to -1,094 pA in other neurons. The data presented here demonstrate for the first time that ATP has both inhibitory and facilitative effects on I(Ca) in NTS. It can be considered that ATP acts as a neurotransmitter in the NTS by having multiple regulatory effects on VDCCs.
Collapse
Affiliation(s)
- Takayuki Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan
| |
Collapse
|
10
|
Gurin VN, Gurin AV, Melenchuk EV, Spyer KM. The effects of activation and blockade of central P2X receptors on body temperature. ACTA ACUST UNITED AC 2004; 33:845-51. [PMID: 14969421 DOI: 10.1023/a:1025967903081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of the present work was to identify the role of ATP acting on specific P2X receptors in the central mechanisms of thermoregulation. Immunohistochemical studies demonstrated that brainstem structures involved in controlling body temperature contained large number of nerve cells bearing P2X ATP receptors. Experiments on conscious rats involving intracerebroventricular administration of an ATP analog and P2X antagonists showed that both activation and blockade of central P2X receptors produced marked changes in body temperature. Analysis of the effects of these substances provided grounds for suggesting that ATP acting on P2X receptors fulfils an important function in the mechanisms of transmitting afferent information from peripheral thermal receptors to thermoregulatory centers in the brainstem with responsibility for heat loss, while in pyrogen-induced fever ATP acting on these receptors may be involved in the activity of the endogenous antipyretic system.
Collapse
Affiliation(s)
- V N Gurin
- Institute of Physiology, Belarus National Academy of Sciences, 28 Akademicheskaya Street, 220072 Minsk, Belarus
| | | | | | | |
Collapse
|
11
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 581] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
12
|
Abe M, Endoh T, Suzuki T. Extracellular ATP-induced calcium channel inhibition mediated by P1/P2Y purinoceptors in hamster submandibular ganglion neurons. Br J Pharmacol 2003; 138:1535-43. [PMID: 12721109 PMCID: PMC1573793 DOI: 10.1038/sj.bjp.0705174] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The presence and profile of purinoceptors in neurons of the hamster submandibular ganglion (SMG) have been studied using the whole-cell configuration of the patch-clamp technique. 2. Extracellular application of adenosine 5'-triphosphate (ATP) reversibly inhibited voltage-dependent Ca(2+) channel (VDCC) currents (I(Ca)) via G(i/o)-protein in a voltage-dependent manner. 3. Extracellular application of uridine 5'-triphosphate (UTP), 2-methylthioATP (2-MeSATP), alpha,beta-methylene ATP (alpha,beta-MeATP) and adenosine 5'-diphosphate (ADP) also inhibited I(Ca). The rank order of potency was ATP=UTP>ADP>2-MeSATP=alpha,beta-MeATP. 4. The P2 purinoceptor antagonists, suramin and pyridoxal-5-phosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS), partially antagonized the ATP-induced inhibition of I(Ca), while coapplication of suramin and the P1 purinoceptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), virtually abolished I(Ca) inhibition. DPCPX alone partially antagonized I(Ca) inhibition. 5. Suramin antagonized the UTP-induced inhibition of I(Ca), while DPCPX had no effect. 6. Extracellular application of adenosine (ADO) also inhibited I(Ca) in a voltage-dependent manner via G(i/o)-protein activation. 7. Mainly N- and P/Q-type VDCCs were inhibited by both ATP and ADO via G(i/o)-protein betagamma subunits in seemingly convergence pathways.
Collapse
Affiliation(s)
- Mitsuhiro Abe
- Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba 261-8502, Japan
| | - Takayuki Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba 261-8502, Japan
- Author for correspondence:
| | - Takashi Suzuki
- Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba 261-8502, Japan
| |
Collapse
|
13
|
Verspohl EJ, Johannwille B, Waheed A, Neye H. Effect of purinergic agonists and antagonists on insulin secretion from INS-1 cells (insulinoma cell line) and rat pancreatic islets. Can J Physiol Pharmacol 2002; 80:562-8. [PMID: 12117305 DOI: 10.1139/y02-079] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of purinergic agonists on insulin release are controversial in the literature. In our studies (mainly using INS-1 cells, but also using rat pancreatic islets), ATP had a dual effect on insulin release depending on the ATP concentration: increasing insulin release (EC50 approximately/= 0.0032 microM) and inhibiting insulin release (EC50 approximately/= 0.32 microM) at both 5.6 and 8.3 mM glucose. This is compatible with the view that either two different receptors are involved, or the cells desensitize and (or) the effect of an inhibitory degradation product such as adenosine (ectonucleotidase effect) emerges. The same dual effects of ATP on insulin release were obtained using rat pancreatic islets instead of INS-1 cells. ADPbetaS, which is less degradable than ATP and rather specific for P2Y1 receptors, had a dual effect on insulin release at 8.3 mM glucose: stimulatory (EC50 approximately/= 0.02 microM) and inhibitory (EC50 approximately/= 0.32 microM). The effectiveness of this compound indicates the possible involvement of a P2Y1 receptor. 2-Methylthio-ATP exhibited an insulinotropic effect at very high concentrations (EC50 approximately/= 15 microM at 8.3 mM glucose). This indicated that distinct P2X or the P2Y1 receptor may be involved in these insulin-secreting cells. UTP increased insulin release (EC50 approximately/= 2 microM) very weakly, indicating that a P2U receptor (P2X3 or possibly a P2Y2 or P2Y4) are not likely to be involved. Suramin (50 microM) antagonized the insulinotropic effect of ATP (0.01 microM) and UTP (0.32 microM). Since suramin is not selective, the data indicated that various P2X and P2Y receptors may be involved. PPADS (100 microM), a P2X and P2Y1,4,6 receptor antagonist, was ineffective using either low or high concentrations of ATP and ADPbetaS, which combined with the suramin data hints at a P2Y receptor effect of the compounds. Adenosine inhibited insulin release in a concentration-dependent manner. DPCPX (100 microM), an adenosine (A1) receptor antagonist, inhibited the inhibitory effects of both adenosine and of high concentrations of ATP. Adenosine deaminase (1 U/mL) abolished the inhibitory effect of high ATP concentrations, indicating the involvement of the degradation product adenosine. Repetitive addition of ATP did not desensitize the stimulatory effect of ATP. U-73122 (2 microM), a PLC inhibitor, abolished the ATP effect at low concentrations. The data indicate that ATP at low concentrations is effective via P2Y receptors and the PLC-system and not via P2X receptors; it inhibits insulin release at high concentrations by being metabolized to adenosine.
Collapse
Affiliation(s)
- E J Verspohl
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Müster, Germany.
| | | | | | | |
Collapse
|
14
|
Gourine AV, Melenchuk EV, Poputnikov DM, Gourine VN, Spyer KM. Involvement of purinergic signalling in central mechanisms of body temperature regulation in rats. Br J Pharmacol 2002; 135:2047-55. [PMID: 11959809 PMCID: PMC1573334 DOI: 10.1038/sj.bjp.0704679] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
1. P2 purinoreceptors are present in hypothalamic and brainstem nuclei that are involved in the regulation of body temperature (T(b)). The role of ATP acting on these P2 receptors in thermoregulation was investigated by studying the effects of the stable ATP analogue alpha,beta-methyleneATP (alpha,beta-meATP) and P2 receptor antagonists suramin and pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) on T(b) when injected intracerebroventricularly (i.c.v.) via a pre-implanted cannula in conscious rats at various ambient temperatures and during lipopolysaccharide (LPS)-induced fever. 2. Depending on ambient temperature, alpha,beta-meATP (0.2 micromol, i.c.v.) induced a fall in T(b) (-3.3 degrees C, P<0.05), no changes in T(b) when compared to pre-injection levels, or an increase in T(b) ( approximately 1.0 degrees C, P<0.05) in rats maintained at 10 degrees C, 25 degrees C and 30 degrees C ambient temperature, respectively. 3. Suramin (7 nmol, i.c.v.) induced a lasting (up to 6 h) increase in T(b) (on average 1.2 degrees C, P<0.05) in rats kept at 25 degrees C or 30 degrees C, but failed to induce any rise in T(b) in rats at 10 degrees C ambient temperature. An increase in T(b) was also observed in rats (25 degrees C ambient temperature) treated with PPADS (0.2 micromol, i.c.v.). 4. alpha,beta-meATP (0.2 micromol) injected i.c.v. or directly into the anterior hypothalamus caused a profound fall in T(b) (by 0.9 degrees C and 1.0 degrees C, respectively; P<0.05) during LPS (E.coli; 50 microg kg(-1))-induced fever in rats at 25 degrees C ambient temperature. Fever was initiated more rapidly in rats treated with suramin (7 nmol) or PPADS (70 nmol), however its late phase was unaffected. Suramin (7 nmol) and PPADS (70 nmol) injected at the time when fever was already developed (2.5 h after LPS injections) did not alter febrile T(b). 5. These data indicate that purinergic signalling may play a significant role in central mechanisms of T(b) regulation at various ambient temperatures and during fever.
Collapse
Affiliation(s)
- Alexander V Gourine
- Department of Physiology, Royal Free and University College London Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | | | |
Collapse
|
15
|
Connolly GP. Methyl orange antagonizes uridine 5' triphosphate and not alpha,beta-methylene-adenosine 5' triphosphate-evoked depolarization of rat superior cervical ganglia. JOURNAL OF AUTONOMIC PHARMACOLOGY 2001; 21:1-5. [PMID: 11422572 DOI: 10.1046/j.1365-2680.2001.00174.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Compared with the effects of adenosine 5' triphosphate (ATP) on the nervous system, the actions of pyrimidine nucleosides and their 5'-nucleotides, such as uridine 5' triphosphate (UTP), have received less attention. In part, this is because there is a need for a selective antagonist for responses mediated by UTP-activated receptors. The objective of this study was to discover such an antagonist. 2. Superior cervical ganglia isolated from male rats were superfused with a physiological salt solution. Responses to alpha,beta-methylene-ATP (alpha,beta-Me-ATP), potassium, adenosine and UTP were determined before and in the presence of 1-300 microM methyl orange. 3. Methyl orange at 1-100 microM did not alter resting potential or depolarizing responses to alpha,beta-Me-ATP, potassium, or adenosine-evoked hyperpolarizations, but at 10 and 100 microM methyl orange significantly antagonized UTP-evoked depolarizations (P < 0.05). 4. Although the antagonistic effects of methyl orange were not dramatic, this is the first report of a putative pyrimidinoceptor antagonist. These observations also support the idea of distinct receptors for UTP and ATP on rat superior cervical ganglia.
Collapse
Affiliation(s)
- G P Connolly
- Purine NeuroScience Laboratory, Chemical Pathology, Guy's, King's and St Thomas' Medical School, King's College London, London SE1 9RT, UK
| |
Collapse
|
16
|
Preston A, Lau WAK, Pennefather JN, Ventura S. Effects of adenine nucleosides and nucleotides on neuromuscular transmission to the prostatic stroma of the rat. Br J Pharmacol 2000; 131:1073-80. [PMID: 11082113 PMCID: PMC1572424 DOI: 10.1038/sj.bjp.0703652] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The aim of this study was to investigate the effects of adenine nucleosides and nucleotides on contractility of the smooth muscle of rat prostate gland. 2. Nerve terminals within rat isolated prostatic tissues were electrically field stimulated (60 V, 0.5 ms, 10 Hz, 20 pulses every 60 s). Adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP) and adenosine had no effect on baseline smooth muscle tone but concentration-dependently inhibited electrically-evoked contractile responses. The relative order of potency was ATP congruent with AMP congruent with adenosine>ADP. 3. The inhibition by ATP and adenosine of field stimulation-induced contractions in the rat prostate was antagonized by 8-phenyltheophylline (10 microM), but not by suramin (100 microM) and only slightly by reactive blue 2 (5 microM). 4. The adenosine metabolizing enzyme adenosine deaminase (0.1 unit ml(-1)) inhibited the inhibitory effects of ATP and adenosine. The P2 purinoceptor agonist 2-methylthio ATP (10 nM - 0.1 mM), had no effect on field stimulation-induced contractions of the rat prostate. 5. ATP and adenosine did not modify the contractile responses of the rat prostate to exogenously added noradrenaline (10 microM). 6. Inhibitory concentration-response curves to a number of adenosine analogues with differing stabilities and selectivities for the different adenosine receptors yielded a relative rank order of agonist potency of: N(6)-cyclopentyladenosine (CPA)>N(6)-cyclohexyladenosine (CHA) congruent with (-)-N(6)-(2-phenylisopropyl)-adenosine (R-PIA) congruent with 5'-(N-ethylcarboxamido)-adenosine (NECA)>(+)-N(6)-(2-phenylisopropyl)-adenosine (S-PIA)>2-p-[2-carboxyethyl]phenethyl-amino-5'-N-ethylcarboxamido-ade nosine (CGS 21680). 7. These results indicate that adenine nucleoside and nucleotide induced inhibition of electrically-evoked contractions in the rat prostate occurs through activation of adenosine but not ATP receptors. The relative order of potency of adenosine analogues is consistent with activation of receptors of the A(1)-adenosine receptor subtype. These receptors appear to be prejunctional.
Collapse
Affiliation(s)
- Ashley Preston
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Winnie A K Lau
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | | | - Sabatino Ventura
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
- Author for correspondence:
| |
Collapse
|
17
|
Connolly GP, Duley JA. Ecto-nucleotidase of cultured rat superior cervical ganglia: dipyridamole is a novel inhibitor. Eur J Pharmacol 2000; 397:271-7. [PMID: 10844124 DOI: 10.1016/s0014-2999(00)00273-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Based on studies of agonist potencies on intact rat superior cervical ganglia, it has been suggested that this ganglion possesses distinct receptors for purine and pyrimidine nucleotides. However, the potency of an agonist is dependent upon whether it is susceptible to extracellular metabolism by the tissue. The aim of this investigation was to study the metabolism of uridine or adenosine nucleotides and nucleosides and the effects of dipyridamole and an ecto-ATPase inhibitor ARL 67156 (6-N, N-diethyl-D-beta-gamma-dibromomethylene-ATP) on their metabolism. Adenosine- and uridine-5'-triphosphates (ATP and UTP) were catabolised by cultured rat superior cervical ganglia, to their di- and monophosphates. Both ATP and UTP breakdown was significantly inhibited by dipyridamole (10 mcM), whereas ARL 67156 (100 mcM), was a weaker inhibitor of ATP degradation and inhibited UTP breakdown by approximately 40%. Metabolism of ATP and UTP by cultured rat superior cervical ganglia was reduced after treatment with cytosine-beta-arabinoside, suggesting that non-neuronal cells along with neuronal cells contribute to their breakdown. In conclusion, these results indicate that rat superior cervical ganglia possess ecto-nucleotidases capable of catabolising purine and pyrimidine nucleotides to their nucleosides, and that dipyridamole is a potent inhibitor of ecto-nucleotidase activity.
Collapse
Affiliation(s)
- G P Connolly
- Purine NeuroScience Laboratory, Department of Chemical Pathology, Guy's, King's and St. Thomas' Medical Schools, 5th Floor Guy's Tower, London Bridge, SE1 9RT, London, UK.
| | | |
Collapse
|
18
|
Abstract
Axon terminal nucleotide P2 receptors mediating an inhibition of transmitter release have, so far, been detected in various sympathetically innervated tissues,(8,27) and on central noradrenergic,(14,26) glutamatergic(15) and serotonergic neurons. (28) We have now investigated the effect of ATP and related nucleotides on the release of endogenous dopamine from slices of rat neostriatum using fast cyclic voltammetry. Mutual interactions between the two neurotransmitters have been observed previously: ATP and related nucleotides induce a release of dopamine in PC12 pheochromocytoma cells, a frequently used model for sympathetic neurons;(10,22) they also increase the dopamine concentration in rat brain measured by in vivo microdialysis(16,32) and stimulate the uptake of dopamine by rat striatal synaptosomes.(3) Dopamine, in contrast, facilitates activation of ligand-gated cation channels (i. e. P2X(2) receptors) by ATP.(11,20) Here, we show that ATP and two of its analogues decrease the electrically evoked release of endogenous dopamine in rat neostriatum. The inhibitory effect of ATP is blocked by the P2 receptor antagonists suramin, reactive blue 2 and cibacron blue 3GA. Suramin, in addition, partly prevents the attenuation of dopamine release evoked by a single stimulus that follows a brief train of high-frequency pulses.These findings suggest the existence of release-inhibiting P2 receptors on dopaminergic nerve terminals and indicate that dopaminergic transmission in rat neostriatum might be modulated by an endogenous P2 receptor ligand, presumably ATP.
Collapse
Affiliation(s)
- A U Trendelenburg
- Pharmakologisches Institut, Hermann-Herder-Strasse 5, D-79104, Freiburg i.Br., Germany.
| | | |
Collapse
|
19
|
Shoshani I, Boudou V, Pierra C, Gosselin G, Johnson RA. Enzymatic synthesis of unlabeled and beta-(32)P-labeled beta-L-2', 3'-dideoxyadenosine-5'-triphosphate as a potent inhibitor of adenylyl cyclases and its use as reversible binding ligand. J Biol Chem 1999; 274:34735-41. [PMID: 10574941 DOI: 10.1074/jbc.274.49.34735] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-L-2',3'-Dideoxyadenosine-5'-triphosphate (beta-L-2', 3'-dd-5'-ATP) was prepared enzymatically from the corresponding monophosphate by the use of adenylate kinase, creatine phosphate, and creatine kinase in a single step. The beta-(32)P-labeled analog was prepared similarly, but in a two step reaction. beta-L-2', 3'-dd-5'-ATP inhibited adenylyl cyclase from rat brain competitively with respect to substrate (5'-ATP.Mn(2+)) and exhibited an IC(50) approximately 24 nM. The labeled ligand was used in the development of a reversible binding assay for adenylyl cyclases. Binding of beta-L-2',3'-dd-[beta-(32)P]5'-ATP was saturable with increasing concentrations of ligand and increased in proportion to membrane protein, and was enhanced by Mn(2+) to a greater extent than by Mg(2+). Binding was displaced with adenine nucleotides known to be either competitive or noncompetitive inhibitors but not by agents known not to act on the cyclase, or by 3-isobutyl-1-methylxanthine, creatine phosphate, or creatine kinase. Binding was rapid, with a half-time for the on-rate <1.8 min and for the off-rate <0.8 min. The potency and mechanism of the inhibition of this ligand and the pattern of agents that displace binding suggest an interaction with adenylyl cyclase per se and to a configuration of the enzyme consistent with an interaction at the catalytic active site. The data suggest that this is a pretransition state inhibitor and contrasts with the equipotent 2',5'-dd-3'ATP, a post-transition state noncompetitive inhibitor.
Collapse
Affiliation(s)
- I Shoshani
- Department of Physiology, Health Sciences Center, State University of New York, Stony Brook, New York 11794-8661, USA
| | | | | | | | | |
Collapse
|
20
|
Skladchikova G, Ronn LC, Berezin V, Bock E. Extracellular adenosine triphosphate affects neural cell adhesion molecule (NCAM)-mediated cell adhesion and neurite outgrowth. J Neurosci Res 1999; 57:207-18. [PMID: 10398298 DOI: 10.1002/(sici)1097-4547(19990715)57:2<207::aid-jnr6>3.0.co;2-m] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neural cell adhesion molecule (NCAM) plays an important role in synaptic plasticity in embryonic and adult brain. Recently, it has been demonstrated that NCAM is capable of binding and hydrolyzing extracellular ATP. The purpose of the present study was to evaluate the role of extracellular ATP in NCAM-mediated cellular adhesion and neurite outgrowth. We here show that extracellularly added adenosine triphosphate (ATP) and its structural analogues, adenosine-5'-O-(3-thiothiophosphate), beta, gamma-methylenadenosine-5'-triphosphate, beta, gamma-imidoadenosine-5-triphosphate, and UTP, in varying degrees inhibited aggregation of hippocampal neurons. Rat glial BT4Cn cells are unable to aggregate when grown on agar but acquire this capacity when transfected with NCAM. However, addition of extracellular ATP to NCAM-transfected BT4Cn cells inhibited aggregation. Furthermore, neurite outgrowth from hippocampal neurons in cultures allowing NCAM-homophilic interactions was inhibited by addition of extracellular nucleotides. These findings indicate that NCAM-mediated adhesion may be modulated by extracellular ATP. Moreover, extracellularly added ATP stimulated neurite outgrowth from hippocampal neurons under conditions non-permissive for NCAM-homophilic interactions, and neurite outgrowth stimulated by extracellular ATP could be inhibited by a synthetic peptide corresponding to the so-called cell adhesion molecule homology domain (CHD) of the fibroblast growth factor receptor (FGFR) and by FGFR antibodies binding to this domain. Antibodies against the fibronectin type-III homology modules of NCAM, in which a putative site for ATP binding and hydrolysis is located, also abolished the neurite outgrowth-promoting effect of ATP. The non-hydrolyzable analogues of ATP all strongly inhibited neurite outgrowth. Our results indicate that extracellular ATP may be involved in synaptic plasticity through a modulation of NCAM-mediated adhesion and neurite outgrowth.
Collapse
Affiliation(s)
- G Skladchikova
- Protein Laboratory, Institute of Molecular Pathology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
21
|
Ingall AH, Dixon J, Bailey A, Coombs ME, Cox D, McInally JI, Hunt SF, Kindon ND, Teobald BJ, Willis PA, Humphries RG, Leff P, Clegg JA, Smith JA, Tomlinson W. Antagonists of the platelet P2T receptor: a novel approach to antithrombotic therapy. J Med Chem 1999; 42:213-20. [PMID: 9925726 DOI: 10.1021/jm981072s] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The platelet P2T receptor plays a major role in platelet aggregation, and its antagonists are predicted to have significant therapeutic potential as antithrombotic agents. We have explored analogues of adenosine triphosphate (ATP), which is a weak, nonselective but competitive P2T receptor antagonist. Modification of the polyphosphate side chain to prevent breakdown to the agonist adenosine diphosphate (ADP) and substitution of the adenine moiety to enhance affinity and selectivity for the P2T receptor led to the identification of 10e (AR-C67085MX), having an IC50 of 2.5 nM against ADP-induced aggregation of human platelets. Compound 10e was the first very potent antagonist of the P2T receptor, with a selectivity for that subtype of the P2 receptor family of >1000-fold. Further modification of the structure produced compound 10l (AR-C69931MX) having an IC50 of 0.4 nM. In vivo, at maximally effective antithrombotic doses, there is little prolongation of bleeding time (1.4-fold), which is in marked contrast to the 5-6-fold found with GPIIb/IIIa antagonists.
Collapse
Affiliation(s)
- A H Ingall
- Departments of Medicinal Chemistry and Pharmacology, ASTRA Charnwood, Bakewell Road, Loughborough LE11 5RH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Servos J, Reil�nder H, Zimmermann H. Catalytically active soluble ecto-5?-nucleotidase purified after heterologous expression as a tool for drug screening. Drug Dev Res 1998. [DOI: 10.1002/(sici)1098-2299(199811/12)45:3/4<269::aid-ddr25>3.0.co;2-b] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Park HS, Tennant JP, Waktolla GF, Sarkardei S, Kass GE, Hourani SM. Effects of adenosine 3?-phosphate 5?-phosphosulfate on P2 receptors in platelets and smooth muscle preparations. Drug Dev Res 1998. [DOI: 10.1002/(sici)1098-2299(199810)45:2<67::aid-ddr3>3.0.co;2-c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Some 6-phenylazopyridoxalphosphate derivatives influence P2-purinoreceptor-mediated effects. Pharm Chem J 1998. [DOI: 10.1007/bf02465767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Cario-Toumaniantz C, Loirand G, Ladoux A, Pacaud P. P2X7 receptor activation-induced contraction and lysis in human saphenous vein smooth muscle. Circ Res 1998; 83:196-203. [PMID: 9686759 DOI: 10.1161/01.res.83.2.196] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In cutaneous veins where purinergic neurotransmission is more prominent compared with in deep vessels, physiological and pathological roles of nerve-released ATP have been described. Neuronally released ATP has been reported to act through activation of unidentified ionotropic P2X receptor(s). This study analyzed P2X receptor subtypes expressed in human saphenous vein smooth muscle and their physiological functions. Transcripts for both hP2X1 receptors, already identified in other smooth muscles, and, surprisingly, hP2X7 receptors known to be responsible for the cytotoxic effect of ATP in macrophages were detected by Northern blot analysis in total RNA from saphenous vein smooth muscle. ATP and other P2X receptor agonists [alphabeta-methylene-ATP, 2-methylthio-ATP, and 2',3'-(4-benzoyl)benzoyl-ATP] dose-dependently contracted venous rings, but the contraction induced by 2-methylthio-ATP was more transient than that evoked by the other P2X agonists. The effect of hP2X1 agonists involved the activation of a rapidly desensitizing cation current recorded in freshly isolated myocytes. The action of hP2X7 receptor agonists was related to a maintained nondesensitizing cation current. In addition, hP2X7 receptor activation formed membrane pores that were permeable to large molecules. hP2X1 and hP2X7 receptors coexpressed in COS cells did not associate to form heteromultimers. Our data indicate that both hP2X1 and hP2X7 receptors are expressed as 2 separated populations of channels in human saphenous vein myocytes and are involved in ATP-induced tension. We suggest that cell lysis consequent to hP2X7 receptor-induced pore formation contributes to the disorganization and decrease in the amount of contractile myocytes in the media of varicose veins.
Collapse
Affiliation(s)
- C Cario-Toumaniantz
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, Valbonne, France
| | | | | | | |
Collapse
|
26
|
Duchêne AD, Takeda K. P2Y- and P2U-mediated increases in internal calcium in single bovine aortic endothelial cells in primary culture. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1998; 5:277-86. [PMID: 9588819 DOI: 10.3109/10623329709052592] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increases in intracellular calcium ([Ca2+]i) to ATP, ADP, AMP, adenosine, UTP, 2-methylthio ATP (2-MeSATP), 2-methylthio ADP (2-MeSADP) and alpha,beta-methylene ATP (alpha,beta-meATP) were investigated in single bovine aortic endothelial cells (BAEC) in primary culture using Indo-1. Evidence was obtained for the presence of P2Y and P2U, but not P2X receptors. Normalized concentration-effect curves for ATP, UTP and 2-MeSATP were biphasic in shape. At 10 nM, the agonist rank order was UTP > ATP approximately 2-MeSATP, while above 1 microM, it was ATP > or = UTP > or = 2-MeSATP. No cross-desensitization between responses to P2U and P2Y receptors was observed in normal external solution. However, when internal Ca2+ stores were depleted by exposure to 2-MeSATP or UTP in Ca2+-free solution and agonists then re-applied in presence of external Ca2+, homologous but not heterologous desensitization was seen. In the same conditions, heterologous desensitization was observed for UTP after ATP but not for ATP after UTP. Taken together, the results are consistent with the coexistence of P2Y and P2U receptors in primary-cultured BAEC and suggest that upon activation, different intracellular signaling pathways could be involved in increasing [Ca2+]i.
Collapse
Affiliation(s)
- A D Duchêne
- Université Louis Pasteur de Strasbourg, Laboratoire de Pharmacologie et Physiopathologie Cellulaires, CNRS URA600, Illkirch, France
| | | |
Collapse
|
27
|
|
28
|
Ross FM, Brodie MJ, Stone TW. Modulation by adenine nucleotides of epileptiform activity in the CA3 region of rat hippocampal slices. Br J Pharmacol 1998; 123:71-80. [PMID: 9484856 PMCID: PMC1565143 DOI: 10.1038/sj.bjp.0701586] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Hippocampal slices (450 microm) generate epileptiform bursts of an interictal nature when perfused with a zero magnesium medium containing 4-aminopyridine (50 microM). The effect of adenine nucleotides on this activity was investigated. 2. ATP and adenosine depressed this epileptiform activity in a concentration-dependent manner, with both purines being equipotent at concentrations above 10 microM. 3. Adenosine deaminase 0.2 u ml(-1), a concentration that annuls the effect of adenosine (50 microM), did not significantly alter the depression of activity caused by ATP (50 microM). 4. 8-Cyclopentyl-1,3-dimethylxanthine (CPT), an A1 receptor antagonist, enhanced the discharge rate significantly and inhibited the depressant effect of both ATP and adenosine such that the net effect of ATP or adenosine plus CPT was excitatory. 5. Several ATP analogues were also tested: alpha, beta-methyleneATP (alpha, beta-meATP), 2-methylthioATP (2-meSATP) and uridine triphosphate (UTP). Only alpha, beta-meATP (10 microM) produced an increase in the frequency of spontaneous activity which suggests a lack of involvement of P2Y or P2U receptors. 6. Suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), P2 receptor antagonists, failed to inhibit the depression produced by ATP (50 microM). The excitatory effect of alpha, beta-meATP (10 microM) was inhibited by suramin (50 microM) and PPADS (5 microM). 7. ATP therefore depresses epileptiform activity in this model in a manner which is not consistent with the activation of known P1 or P2 receptors, suggesting the involvement of a xanthine-sensitive nucleotide receptor. The results are also indicative of an excitatory P2X receptor existing in the hippocampal CA3 region.
Collapse
Affiliation(s)
- F M Ross
- Institute of Biomedical and Life Sciences, University of Glasgow
| | | | | |
Collapse
|
29
|
Zagorodnyuk V, Maggi CA. Pharmacological evidence for the existence of multiple P2 receptors in the circular muscle of guinea-pig colon. Br J Pharmacol 1998; 123:122-8. [PMID: 9484862 PMCID: PMC1565129 DOI: 10.1038/sj.bjp.0701558] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. By using the sucrose gap technique, we have investigated the effect of the metabolically stable P2Y receptor agonist, adenosine 5'-O-2-thiodiphosphate (ADPbetaS), on the membrane potential and tension in the circular muscle of the guinea-pig proximal colon. All experiments were performed in the presence of atropine (1 microM), guanethidine (3 microM), indomethacin (3 microM), nifedipine (1 microM), L-nitroarginine (L-NOARG, 100 microM) and of the tachykinin NK1 and NK2 receptor antagonists, SR 140333 (0.1 microM) and GR 94800 (0.1 microM), respectively. 2. ADPbetaS (100 microM for 15 s) evoked a tetrodotoxin- (1 microM) resistant hyperpolarization and contraction of the smooth muscle. In the presence of apamin (0.1 microM), the ADPbetaS-induced hyperpolarization was converted to depolarization and the contraction was potentiated while tetraethylammonium (TEA, 10 mM) did not affect significantly the response to ADPbetaS. The combined application of apamin and TEA reproduced the effect observed with apamin alone. 3. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acids (PPADS, 30 microM) slightly but significantly increased the ADPbetaS-induced hyperpolarization, while the contraction evoked by ADPbetaS was reduced by about 80%. Suramin (100 microM) did not affect the ADPbetaS-induced hyperpolarization but totally blocked the ADPbetaS-induced contraction. In the presence of suramin (100 microM), a small relaxation of the circular muscle was observed upon application of ADPbetaS. 4. The contraction and hyperpolarization evoked by ADPbetaS were abolished in Ca2+-free Krebs solution. The blocker of sarcoplasmic reticulum Ca2+ pump, cyclopiazonic acid (10 microM) reduced contraction and hyperpolarization induced by ADPbetaS by about 60 and 50%, respectively. 5. A comparison of our present and previous findings enables to conclude that at least 3 types of P2 receptors are present on the smooth muscle of the guinea-pig colon, as follows: (1) inhibitory P2 receptors, producing an apamin-sensitive hyperpolarization, which are activated by alpha,beta-methylene ATP (alpha,beta-meATP) and by endogenously released purines, sensitive to suramin and PPADS; (2) inhibitory P2 receptors, producing an apamin-sensitive hyperpolarization, which are activated by ADPbetaS and are resistant to suramin and PPADS; (3) excitatory P2 receptors, producing contraction, which are activated by ADPbetaS and are sensitive to suramin and PPADS. The data also support the idea of the existence of a restricted pool of specialized junctional P2 receptors producing the apamin-sensitive NANC inhibitory junction potential in response to endogenous ligand(s).
Collapse
Affiliation(s)
- V Zagorodnyuk
- Pharmacology Department, Menarini Ricerche, Florence, Italy
| | | |
Collapse
|
30
|
Brownhill VR, Hourani SM, Kitchen I. Ontogeny of P2-purinoceptors in the longitudinal muscle and muscularis mucosae of the rat isolated duodenum. Br J Pharmacol 1997; 122:225-32. [PMID: 9313929 PMCID: PMC1564932 DOI: 10.1038/sj.bjp.0701375] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The ontogeny of P2-purinoceptors in the longitudinal muscle and the muscularis mucosae of the rat isolated duodenum was investigated by use of functional assays in tissues from neonatal animals. The degradation of purinoceptor agonists by the rat duodenum muscularis mucosae was also investigated. 2. In the rat duodenum muscularis mucosae adenosine 5'-(alpha, beta-methylene)triphosphonate (AMPCPP), adenosine 5'-triphosphate (ATP), uridine 5'-triphosphate (UTP) and 2-methylthioadenosine 5'-triphosphate (2-Me-S-ATP) all caused a contraction from day 10 to day 40, day 10 being the earliest age it could be tested. The potency order of agonists above day 25 was AMPCPP > ATP = UTP > 2-Me-S-ATP and this is similar to the potency order previously obtained for the adult tissue. However, in the neonatal tissues below day 20, 2-Me-S-ATP was the most potent agonist and at days 10 and 15 the order was 2-Me-S-ATP > AMPCPP > ATP = UTP. 3. In the rat duodenum muscularis mucosae desensitization was observed with AMPCPP at day 30 but not at day 15. At day 30, cross-desensitization was also observed between AMPCPP and 2-Me-S-ATP but not between AMPCPP and ATP or UTP, whereas no cross-desensitization was observed at day 15 with AMPCPP and any of the agonists. At day 15 and below AMPCPP and 2-Me-S-ATP may therefore both activate P2Y-receptors (2-Me-S-ATP > AMPCPP, no desensitization with AMPCPP) whereas above day 20 the agonists activate P2X-receptors (AMPCPP > 2-Me-S-ATP, desensitization with AMPCPP) which is similar to the adult tissue. Since ATP and UTP were equipotent in the muscularis mucosae and as no cross-desensitization was observed with AMPCPP and UTP or ATP at days 15 or 30, it is likely that ATP and UTP both activate P2U-receptors throughout the ages, as in the adult. 4. The potency of all the agonists in causing contraction in the rat duodenum muscularis mucosae decreased with age. The potency of AMPCPP and 2-Me-S-ATP in causing contractions was highest in the neonates before day 25, and reached values not significantly different from adult by day 30, and the potency of ATP and UTP causing contractions in this tissue was also highest in the neonates at days 10 and 15, and reached values not significantly different from adult by day 20. This suggests either that the receptor populations mediating contraction are highest in the neonates below day 20 or that the agonists are degraded by the muscularis mucosae to a greater extent after day 20. 5. In the rat duodenum muscularis mucosae the degradation of ATP, UTP, 2-Me-S-ATP and AMPCPP was followed by high pressure liquid chromatography at days 15 and 30. ATP was degraded to adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP) and inosine with no adenosine being detected, 2-Me-S-ATP was degraded to 2-methylthioadenosine 5'-diphosphate (2-Me-S-ADP), 2-methylthioadenosine 5'-monophosphate (2-Me-S-AMP) and 2-methylthioadenosine (2-Me-S-adenosine), and UTP was degraded to uridine 5'-diphosphate (UDP), uridine 5'-monophosphate (UMP) and uridine. The rate of degradation of these agonists was much faster at day 30 than at day 15, probably due to the increase in the size of the tissue. AMPCPP was also degraded with adenosine 5'-(alpha,beta-methylene)diphosphonate (AMPCP) being detected at both ages. However, at day 30 the rate of degradation of AMPCPP was much slower than for ATP, UTP or 2-Me-S-ATP. 6. In the rat duodenum longitudinal muscle 2-Me-S-ATP and AMPCPP both caused a relaxation with a potency order of 2-Me-S-ATP > AMPCPP, suggesting the activation of P2Y-receptors, as previously found for the adult tissue. Weak relaxations were observed to both the agonists at day 15 (the earliest age it could be studied), and the potency of the agonists reached values not significantly different from adult tissues by day 25. 7. Overall, these results suggest that in the neonatal rat duodenum longitudinal muscle there are P2Y-receptors mediating relaxation and that the receptor population i
Collapse
Affiliation(s)
- V R Brownhill
- Receptors and Cellular Regulation Research Group, School of Biological Sciences, University of Surrey, Guildford
| | | | | |
Collapse
|
31
|
Bohmann C, von Kügelgen I, Rump LC. P2-receptor modulation of noradrenergic neurotransmission in rat kidney. Br J Pharmacol 1997; 121:1255-62. [PMID: 9257901 PMCID: PMC1564821 DOI: 10.1038/sj.bjp.0701259] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. ATP has previously been shown to act as a sympathetic cotransmitter in the rat kidney. The present study analyses the question of whether postganglionic sympathetic nerve endings in the kidney possess P2-receptors which modulate noradrenaline release. Rat kidneys were perfused with Krebs-Henseleit solution containing the noradrenaline uptake blockers cocaine and corticosterone and the alpha2-adrenoceptor antagonist rauwolscine. The renal nerves were electrically stimulated, in most experiments by 30 pulses applied at 1 Hz. The outflow of endogenous noradrenaline (or, in some experiments, of ATP and lactate dehydrogenase) as well as the perfusion pressure were measured simultaneously. 2. The P2-receptor agonist adenosine-5'-O-(3-thiotriphosphate) (ATPgammaS, 3-30 microM) reduced the renal nerve stimulation (RNS)-induced outflow of noradrenaline (estimated EC50 =8 microM). The P2-receptor antagonist cibacron blue 3GA (30 microM) shifted the concentration-inhibition curve for ATPgammaS to the right (apparent pKB value 4.7). 3. Cibacron blue 3GA (3-30 microM) and its isomer reactive blue 2 (3-30 microM) significantly increased RNS-induced outflow of noradrenaline in the presence of the P1-receptor antagonist 8-(p-sulphophenyl)theophylline (8-SPT, 100 microM) by about 70% and 90%, respectively. The P2-receptor antagonist suramin (30-300 microM) only tended to enhance RNS-induced outflow of noradrenaline. When the nerves were stimulated by short pulse trains consisting of 6 pulses applied at 100 Hz (conditions under which autoinhibition is inoperative), reactive blue 2 did not affect the RNS-induced outflow of noradrenaline. 4. RNS (120 pulses applied at 4 Hz) induced the outflow of ATP but not of the cytoplasmatic enzyme lactate dehydrogenase. 5. ATPgammaS (3-30 microM) concentration-dependently reduced pressor responses to RNS at 1 Hz. Cibacron blue 3GA, reactive blue 2 as well as suramin also reduced pressor responses to RNS (maximally by 50 to 70%). 6. This study in rat isolated kidney, in which the release of endogenous noradrenaline was measured, demonstrates that renal sympathetic nerves possess prejunctional P2-receptors that mediate inhibition of transmitter release. These prejunctional P2-receptors are activated by endogenous ligands, most likely ATP, released upon nerve activity. Both, P2-receptor agonists and P2-receptor antagonists reduced pressor responses to RNS either by inhibiting transmitter release or by blocking postjunctional vasoconstrictor P2-receptors.
Collapse
Affiliation(s)
- C Bohmann
- Medizinische Universitätsklinik Freiburg, Innere Medizin IV, Germany
| | | | | |
Collapse
|
32
|
Todorov LD, Mihaylova-Todorova S, Westfall TD, Sneddon P, Kennedy C, Bjur RA, Westfall DP. Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature 1997; 387:76-9. [PMID: 9139824 DOI: 10.1038/387076a0] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Efficient control of synaptic transmission requires a rapid mechanism for terminating the actions of neurotransmitters. For amino acids and monoamines, this is achieved by their uptake into the cell by specific high-affinity transporters; acetylcholine is first broken down in the extracellular space and then choline is taken up by the cell. Because ATP is hydrolysed to adenosine by membrane-bound enzymes (ectonucleotidases) that are present in most tissues, it has been assumed that these enzymes terminate the neurotransmitter actions of ATP in the brain and in the periphery. We show here, however, that stimulation of sympathetic nerves innervating the guinea-pig vas deferens releases not only neuronal ATP, but also soluble nucleotidases that break down this ATP to adenosine, indicating that inactivation of ATP is increased by nerve activity. This release of specific nucleotidases together with ATP represents a new mechanism for terminating the actions of a neurotransmitter.
Collapse
Affiliation(s)
- L D Todorov
- Department of Pharmacology, University of Nevada School of Medicine, Reno 89557, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Chen BC, Lin WW. Inhibition of ecto-ATPase by the P2 purinoceptor agonists, ATPgammaS, alpha,beta-methylene-ATP, and AMP-PNP, in endothelial cells. Biochem Biophys Res Commun 1997; 233:442-6. [PMID: 9144554 DOI: 10.1006/bbrc.1997.6478] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ecto-ATPase is a plasma membrane-bound enzyme that sequentially dephosphorylates extracellular nucleotides such as ATP. This breakdown of ATP and other nucleotides makes it difficult to characterize and classify P2 purinoceptors. We have previously shown that the P2 purinergic antagonists, PPADS, suramin and reactive blue, act as ecto-ATPase inhibitors in various cell lines. Here, we show that the P2 purinergic agonists, ATPgammaS, alpha,beta-methylene ATP (alpha,beta-MeATP) and AMP-PNP, inhibit the ecto-ATPase of bovine pulmonary artery endothelial cells (CPAE), with pIC50 values of 5.2, 4.5 and 4.0, respectively. In CPAE, FPL67156, a selective ecto-ATPase inhibitor, also inhibits ecto-ATPase activity, with a pIC50 value of 4.0. In addition, alpha,beta-MeATP (3-100 microM), which itself does not induce phosphoinositide (PI) turnover, left-shifted the agonist-concentration effect (E/[A]) curves for ATP, 2MeS-ATP and UTP by approximate 100-300 fold, while those for ATPgammaS and AMP-PNP were only shifted approximately 2-3 fold. Moreover, in the presence of alpha,beta-MeATP, not only was the potentiation effect of PPADS on the UTP response lost, but a slight inhibition of the UTP response by PPADS was also seen. Thus, we conclude that the action of ATPgammaS, alpha,beta-MeATP and AMP-PNP as ecto-ATPase inhibitors account for their high agonist potency, and also provide information for the development of ecto-ATPase inhibitors of high selectivity and potency.
Collapse
Affiliation(s)
- B C Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei
| | | |
Collapse
|
34
|
Chessell IP, Michel AD, Humphrey PP. Functional evidence for multiple purinoceptor subtypes in the rat medial vestibular nucleus. Neuroscience 1997; 77:783-91. [PMID: 9070752 DOI: 10.1016/s0306-4522(96)00523-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular recording techniques were used in brain slices to characterize excitatory responses produced by purine nucleotides in the rat medial vestibular nucleus, an area where functional purinoceptors have not previously been described. In the continued presence of the adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine, which alone caused a small increase in the spontaneous firing rate, the P2 purinoceptor agonists alpha,beta-methyleneadenosine 5'-triphosphate (alphabeta meATP) and adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS) caused concentration-dependent increases in spontaneous firing rate, with EC50 values of 41.8 and 1.7 microM, respectively. Only approximately 35% of all neurons studied displayed excitatory responses to these agents. Responses waned in the continued presence of high concentrations of the latter, but not the former agonist. Furthermore, in the continued presence of a maximal concentration of alphabeta meATP, ADPbetaS produced further increases in the firing rate of these neurons. The P2 antagonist, suramin, ablated responses to alphabeta meATP, but did not affect responses to ADPbetaS, whereas pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid antagonized responses to both agonists. The nucleotide analogue alpha,beta-methyleneadenosine 5'-diphosphate, which displays affinity for putative P2X receptors in brain, also produced concentration-dependent increases in firing frequency, which were also markedly antagonized in the presence of suramin, this agonist being only slightly less potent than alphabeta meATP. In conclusion, a subpopulation of rat medial vestibular neuronal responses mediated by both P2X and P2Y purinoceptors can be distinguished. Comparison of their properties with those of recombinantly expressed P2X and P2Y receptors suggests that these endogenous P2 purinoceptor types differ in several important aspects from heterologously expressed recombinant receptors identified from cloning studies.
Collapse
Affiliation(s)
- I P Chessell
- Glaxo Institute of Applied Pharmacology, University of Cambridge, U.K
| | | | | |
Collapse
|
35
|
Babenko AP, Vassort G. Purinergic facilitation of ATP-sensitive potassium current in rat ventricular myocytes. Br J Pharmacol 1997; 120:631-8. [PMID: 9051301 PMCID: PMC1564515 DOI: 10.1038/sj.bjp.0700960] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The effects of different purinergic agonists on the cardiac adenosine 5'-triphosphate (ATP)-sensitive potassium current (IK(ATP)), appearing during dialysis of rat isolated ventricular myocytes with a low-ATP (100 microM) internal solution under whole-cell patch-clamp conditions, were examined in the presence of a P1 purinoceptor antagonist. 2. The extracellular application of ATP in the micromolar range induced, besides known inward currents through cationic and chloride channels, the facilitation of IK(ATP) once IK(ATP) had already been partially activated during the low-ATP dialysis. 3. Analogues of ATP, alpha, beta-methyleneadenosine 5'-triphosphate (alpha, beta meATP), 2-methylthioadenosine triphosphate (2MeSATP), adenosine 5'-O-3-thiotriphosphate (ATP gamma S) similarly facilitated IK(ATP). UTP and ADP were very weak agonists while AMP and adenosine had no detectable effect. 4. The half-maximal stimulating concentration (C50) of alpha, beta meATP, an analogue that did not elicite the interfering inward cationic current was 1.5 microM. Similar apparent C50 (1-2 microM) were observed for ATP and analogues tested with somewhat less maximal effect of ATP gamma S. 5. Suramin, a nonselective P2-purinoceptor antagonist, altered IK(ATP) at the relatively high concentration required to inhibit purinoceptors. Pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), a supposedly predominantly P2x-purinoceptor antagonist, at micromolar concentration inhibited the transient inward current but did not block the facilitation of IK(ATP). 6. Our results demonstrate that ATP and its analogues facilitate IK(ATP) in rat ventricular myocytes by stimulation of non-P1-, non-P2x-purinoceptors.
Collapse
Affiliation(s)
- A P Babenko
- INSERM U.390, CHU Arnaud de Villeneuve, Montpellier, France
| | | |
Collapse
|
36
|
Ziganshin AU, Ziganshina LE, Bernstock G. Pharmacological characteristics of ATP receptors (a review). Pharm Chem J 1997. [DOI: 10.1007/bf02464673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Otsuguro K, Ito S, Ohta T, Nakazato Y. Influence of purines and pyrimidines on circular muscle of the rat proximal stomach. Eur J Pharmacol 1996; 317:97-105. [PMID: 8982725 DOI: 10.1016/s0014-2999(96)00694-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of UTP were examined to characterize the receptor subtypes for UTP in the circular smooth muscle of the rat proximal stomach. The rank order of potency for contraction was 2-methylthio ATP > > ATP > or = UDP = UTP > or = adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S) > > UMP > CTP = alpha,beta-methylene ATP > adenosine = uridine. In tissues contracted by acetylcholine, ATP, 2-methylthio ATP, alpha,beta-methylene ATP and adenosine each caused relaxation. alpha,beta-Methylene ATP had the most potent effect and UTP caused only a small relaxation. Suramin inhibited ATP- and UTP-induced contractions. The contractile responses to ATP decreased in tissues desensitized with UTP, ATP-gamma-S and 2-methylthio ATP, but not with alpha,beta-methylene ATP. However, UTP-induced contraction was not inhibited by desensitization with ATP, alpha,beta-methylene ATP, ATP-gamma-S and 2-methylthio ATP. These results suggest that UTP causes contraction via receptors different from common P2 purinoceptors. These receptors are blocked by suramin in the rat proximal stomach.
Collapse
Affiliation(s)
- K Otsuguro
- Laboratory of Pharmacology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
38
|
Qi AD, Kwan YW. Modulation by extracellular ATP of L-type calcium channels in guinea-pig single sinoatrial nodal cell. Br J Pharmacol 1996; 119:1454-62. [PMID: 8968555 PMCID: PMC1915808 DOI: 10.1111/j.1476-5381.1996.tb16058.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The effects of extracellular adenosine 5'-triphosphate ([ATP]zero) on the L-type Ca2+ channel currents in guinea-pig single sinoatrial nodal (SAN) cells, isolated by enzymatic dissociation, were investigated by use of whole-cell patch-clamp techniques. 2. The application of [ATP]zero (2 microM-1 mM) produced an inhibitory effect on the L-type Ca2+ channel current peak amplitude (10 mM Ba2+ as charge carrier) in a concentration-dependent and reversible manner with an IC50 of 100 microM and a Hill coefficient of 1.83. 3. The presence of the adenosine receptor antagonists, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 0.1 microM) and 8-phenyltheophylline (10 microM) did not affect the [ATP]zero-induced inhibition of the Ca2+ channel currents. Adenosine (100 microM) had little effect on the basal Ca2+ channel currents. Adenosine 500 microM, caused 23% inhibition of the Ca2+ channel current, which was abolished by 0.1 microM DPCPX. 4. The presence of the P2-purinoceptor antagonists, suramin (1, 10 and 100 microM), reactive blue 2 (1 and 10 microM) and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 50 and 100 microM) failed to affect the inhibitory action of [ATP]zero on Ca2+ channel currents. 5. The relative rank order of potency of different nucleotides and nucleosides, at a concentration of 100 microM, on the inhibition of the Ca2+ channel currents is as follows: adenosine 5'-triphosphate (ATP) = alpha,beta-methylene-ATP (alpha,beta MeATP) > > 2-methylthioATP (2-MeSATP) > or = adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) > > uridine 5'-triphosphate (UTP) = adenosine 5'-diphosphate (ADP) > adenosine 5'-monophosphate (AMP) > or = adenosine. 6. These results suggest that [ATP]zero may play an important role in the heart beat by inhibiting the L-type Ca2+ channel currents in single SAN cells. This inhibitory effect is not due to the formation of adenosine resulting from the enzymatic degradation of [ATP]zero. Based on the relative order of inhibitory potency of different nucleotides and nucleosides on the L-type Ca2+ channel currents and the ineffectiveness of the purinoceptor antagonists tested, a novel type of purinoceptor may be involved.
Collapse
Affiliation(s)
- A D Qi
- Department of Pharmacology, Faculty of Medicine, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | |
Collapse
|
39
|
|
40
|
Zimmermann H. Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 1996; 49:589-618. [PMID: 8912394 DOI: 10.1016/0301-0082(96)00026-3] [Citation(s) in RCA: 351] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nucleotides such as ATP, ADP, UTP or the diadenosine polyphosphates and possibly even NAD+ are extracellular signaling substances in the brain and in other tissues. Enzymes located on the cell surface catalyze the hydrolysis of these compounds and thus limit their spatio-temporal activity. As a final hydrolysis product they generate the nucleoside and phosphate. The paper discusses the biochemical properties, cellular localization and functional properties of surface-located enzymes that hydrolyse nucleotides released from nervous tissue. This is preceded by a brief discussion of nucleotide receptors, cellular storage and mechanisms of nucleotide release. In nervous tissue nucleoside 5'-triphosphates are hydrolysed by ecto-ATP-diphosphohydrolase and possibly in addition also by ecto-nucleoside triphosphatase and ecto-nucleoside diphosphatase. The molecular identity of the ATP-diphosphohydrolase has now been revealed. The hydrolysis of nucleoside 5'-monophosphates is catalysed by 5'-nucleotidase whose biochemical properties and molecular structure have been studied in detail. Little is known about the molecular properties of the diadenosine polyphosphatases. Surface located enzymes for the extracellular hydrolysis of NAD+ and also ecto-protein kinases are discussed briefly. The cellular localization of the ecto-nucleotidases is only partly defined. Whereas in adult mammalian brain activity for hydrolysis of ATP and ADP may be associated with nerve cells or glial cells 5'-nucleotidase appears to have a preferential glial allocation in the adult mammal. The extracellular hydrolysis of the nucleotides is of functional importance not only during synaptic transmission where it functions in signal elimination. It plays a crucial role also for the survival and differentiation of neural cells in vitro and presumably during neuronal development in vivo.
Collapse
Affiliation(s)
- H Zimmermann
- Biozentrum der J.W Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
41
|
Picher M, Sévigny J, D'Orléans-Juste P, Beaudoin AR. Hydrolysis of P2-purinoceptor agonists by a purified ectonucleotidase from the bovine aorta, the ATP-diphosphohydrolase. Biochem Pharmacol 1996; 51:1453-60. [PMID: 8630086 DOI: 10.1016/0006-2952(96)00086-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pharmacologists are becoming more and more aware of the possibility that certain ATP analogues currently used to classify the P2-purinoceptors are dephosphorylated by ectonucleotidases. In this study, we provide evidence that in the vascular system, these purine analogues are hydrolysed by an ATP-diphosphohydrolase (ATPDase). This enzyme is known as the major plasma membrane nucleotidase of endothelial and smooth muscle cells, and is believed to dephosphorylate extracellular triphospho- and diphosphonucleosides. Assays were conducted with a purified ATPDase from smooth muscle cells of bovine aorta. At a concentration of 250 microM, adenosine 5'-(alpha,beta-methylene) triphosphonate (alpha,beta-metATP), adenosine 5'-(beta,gamma-methylene) triphosphonate (beta,gamma-metATP), adenosine 5'-(alpha,beta-methylene) disphosphonate (alpha,beta-metADP), adenylyl 5'-(beta,gamma-imido) diphosphonate (beta,gamma-imidoATP) and adenosine 5'-O-(2-thiodiphosphate) (ADP beta S) all resisted dephosphorylation, whereas 2-chloroadenosine triphosphate (2-chloroATP), 2-methylthioadenosine triphosphate (2-MeSATP) and 8-bromoadenosine triphosphate (8-bromo-ATP) were hydrolysed at 99, 63, and 20% of the rate of ATP hydrolysis, respectively. All the non-hydrolysable analogues tested, except alpha,beta-metADP, competed with ATP and ADP for the ATPDase catalytic site, reducing their hydrolysis by 35-50%. Apparent Km values for ATP and ADP were estimated at 14.1 and 12.0 microM, respectively, whereas apparent Km and Ki values for the purine analogues ranged from 12 to 28 microM. These results strongly support the view that (1) the ATPDase is expected to reduce substantially the P2-response induced by ATP, ADP, and some hydrolysable agonists; and (2) by competing with the hydrolysis of endogenously released ATP and ADP, non-hydrolysable analogues could alter the amplitude or direction of the cellular response induced by these natural substrates.
Collapse
Affiliation(s)
- M Picher
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|
42
|
Najbar AT, Li CG, Rand MJ. Evidence for two distinct P2-purinoceptors subserving contraction of the rat anococcygeus smooth muscle. Br J Pharmacol 1996; 118:537-42. [PMID: 8762075 PMCID: PMC1909706 DOI: 10.1111/j.1476-5381.1996.tb15435.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The effects of the P2-purinoceptor agonists, adenosine 5'-triphosphate (ATP), alpha, beta-methylene ATP (alpha, beta-MeATP), beta, gamma-methylene ATP (beta, gamma-MeATP), L-beta, gamma-methylene ATP (L-beta, gamma-MeATP), adenosine-5'-O-(2-thiodiphosphate) (ADP beta S), and 2-methylthio ATP (2-MeSATP) were investigated on the isometric tension of the rat anococcygeus muscle. 2. Non-cumulative additions of ATP (100-1500 microM), alpha, beta-MeATP (1-300 microM), beta, gamma-MeATP (10-300 microM), L-beta, gamma-MeATP (3-100 microM) and ADP beta S (1-100 microM) produced concentration-dependent contractions, whereas 2-MeSATP (1-100 microM) had no effect. The rank order of potency was alpha, beta-MeATP > L-beta, gamma-MeATP > or = ADP beta S > beta, gamma-MeATP > > ATP > 2-MeSATP. 3. Contractions to cumulative additions of ATP, alpha, beta-MeATP, beta, gamma-MeATP and L-beta, gamma-MeATP were subject to desensitization whilst those to ADP beta S were unaffected. 4. Contractions to ATP, alpha, beta-MeATP, beta, gamma-MeATP and ADP beta S were abolished by the non-selective P2X/. P2Y-purinoceptor antagonist, suramin (100 microM). In contrast, contractions to ATP, alpha, beta-MeATP and beta, gamma-MeATP were not affected by the non-selective P1-purinoceptor antagonist 8-(p-sulphophenyl)-theophylline (8SPT, 30 microM). Blockade of P2X-purinoceptors with the selective P2X-purinoceptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 10 microM) or desensitization with L-beta, gamma-MeATP (10 microM) abolished contractions to alpha, beta-MeATP, but enhanced those to ADP beta S. The P2Y-purinoceptor antagonist, reactive blue 2 (RB2, 100 microM) enhanced contractions to ATP and alpha, beta-MeATP but abolished those to ADP beta S. 5. Simultaneous addition of alpha, beta-MeATP and ADP beta S produced an additive contraction. 6. The findings suggest that in the rat anococcygeus, smooth muscle cells are endowed with two distinct P2-purinoceptors which subserve contractions: a P2X-purinoceptor activated by ATP and its analogues, and another type of P2-purinoceptor activated by ADP beta S.
Collapse
Affiliation(s)
- A T Najbar
- Department of Medical Laboratory Science, RMIT University, Melbourne, Vic., Australia
| | | | | |
Collapse
|
43
|
Hourani SM, Welford LA, Cusack NJ. Effects of 2-methylthioadenosine 5?-?,?-methylenetriphosphonate and 2-ethylthioadenosine 5?-monophosphate on human platelet activation induced by adenosine 5?-diphosphate. Drug Dev Res 1996. [DOI: 10.1002/(sici)1098-2299(199605)38:1<12::aid-ddr2>3.0.co;2-o] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Johnson CR, Charlton SJ, Hourani SM. Responses of the longitudinal muscle and the muscularis mucosae of the rat duodenum to adenine and uracil nucleotides. Br J Pharmacol 1996; 117:823-30. [PMID: 8851497 PMCID: PMC1909395 DOI: 10.1111/j.1476-5381.1996.tb15267.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Previous studies have shown that the rat duodenum contains P1 and P2Y purinoceptors via which it relaxes to adenosine and adenosine 5'-triphosphate (ATP) respectively. It has also been shown to contract to uridine 5'-triphosphate (UTP) and adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S), and based on their differential inhibition by the P2 antagonist suramin it has been suggested that they act via two separate receptors. In addition, the rat duodenum has been shown to dephosphorylate ATP rapidly via ectonucleotidases and adenosine deaminase. In this study the responses of two preparations from the rat duodenum, the longitudinal muscle and the muscularis mucosae, were investigated using a series of nucleotides and suramin. 2. 2-Methylthioadenosine 5'-triphosphate (2-MeSATP), ATP, ATP-gamma-S and adenosine 5'-alpha,beta-methylene-triphosphonate (AMPCPP) each relaxed the longitudinal muscle, with an agonist potency order of 2-MeSATP > ATP = ATP-gamma-S > AMPCPP, while UTP and uridine 5'-diphosphate (UDP) were not observed to elicit relaxation. This indicates the presence of a relaxant P2Y-purinoceptor on the longitudinal muscle. The longitudinal muscle did not contract to any of the agonists at concentrations of 300 microM, apart from ATP-gamma-S which caused very weak contractions. 3. ATP-gamma-S, adenosine 5'-methylenediphosphonate (AMPCP), AMPCPP, ATP, UTP, adenosine 5'-diphosphate (ADP), UDP and 2-MeSATP each contracted the muscularis mucosae with an agonist potency order of ATP-gamma-S > or = AMPCP > or = AMPCPP = ATP = UTP = ADP = UDP >> 2-MeSATP, although maximal responses were not obtained at concentrations of 300 microM. The muscularis mucosae did not relax to any of the agonists at concentrations of 300 microM. 4. Suramin (1 mM) inhibited relaxations induced by ATP on the longitudinal muscle, shifting the relaxation concentration-response curve to the right. This further supports the presence of a P2Y-purinoceptor on this muscle layer. Suramin (1 mM) inhibited contractions induced by AMPCPP, but not those induced by ATP, UTP or ATP-gamma-S, in the muscularis mucosae. Desensitization of the muscularis mucosae was seen with AMPCPP, but not with UTP or ATP-gamma-S, and no cross-desensitization between AMPCPP and UTP or ATP-gamma-S was observed. This suggests there are two receptors which mediate contraction on the rat duodenum muscularis mucosae, one suramin-sensitive and the other suramin-insensitive. 5. ATP was rapidly degraded by the muscularis mucosae to ADP, adenosine 5'-monophosphate (AMP) and inosine, with no adenosine being detected. A similar rate of degradation was seen for UTP with UDP, uridine 5'-monophosphate (UMP) and uridine being formed and for 2-MeSATP with 2-methylthioadenosine 5'-diphosphate (2-MeSADP), 2-methylthioadenosine 5'-monophosphate (2-MeSAMP) and 2-methylthioadenosine being formed. AMPCPP and ATP-gamma-S were both degraded more slowly, AMPCPP being degraded to AMPCP, and ATP-gamma-S to ADP, AMP and inosine. Suramin (1 mM), did not significantly affect the rate and pattern of degradation of these nucleotides, apart from AMPCPP which was degraded slightly more slowly in the presence of suramin. 6. These results show that there is a P2Y-purinoceptor which mediates relaxation in the rat duodenum longitudinal muscle. They also show that there is a contraction-mediating suramin-sensitive receptor on the rat duodenum muscularis mucosae which is desensitized by AMPCPP, and thus is probably of the P2X subtype. In addition, there is a contraction-mediating suramin-insensitive receptor on the rat duodenum muscularis mucosae which is not desensitized by UTP or ATP-gamma-S, and at which ATP and UTP show equal potency, and is thus probably of the P2U subtype. In addition, the rat duodenum muscularis mucosae contains ectonucleotidases and adenosine deaminase, which rapidly degrade nucleotides, although the inhibition by suramin of this deg
Collapse
Affiliation(s)
- C R Johnson
- School of Biological Sciences, University of Surrey, Guildford
| | | | | |
Collapse
|
45
|
Bültmann R, Dudeck O, Starke K. Evaluation of P2-purinoceptor antagonists at two relaxation-mediating P2-purinoceptors in guinea-pig taenia coli. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1996; 353:445-51. [PMID: 8935712 DOI: 10.1007/bf00261442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The guinea-pig taenia coli possesses two relaxation-mediating receptors for nucleotides: a prototypic P2Y-purinoceptor, which is activated by adenosine 5'-O-(2-thio-diphosphate) (ADP beta S), and a separate receptor for alpha, beta-methylene ATP (alpha,beta-MeATP). Effects of several as yet incompletely characterized P2-purinoceptor antagonists at these receptors were examined. The concentration-relaxation curve of ADP beta S was shifted to the right by reactive blue 2, suramin, 8-(3,5-dinitro-phenylenecarbonylimino)-1,3,5-naphthalenetrisulp honic acid (XAMR0721; at 1000 microM only), pyridoxalphosphate-6-azophenyl-2',5'-disulphonic acid (iso-PPADS), pyridoxal 5-phosphate, trypan blue and Evans blue (at 320 microM only). Schild plots for the antagonism of reactive blue 2, suramin, iso-PPADS and pyridoxal 5-phosphate against ADP beta S had slopes < 1. The concentration-relaxation curve of alpha,beta-MeATP was shifted to the right by reactive blue 2, suramin, XAMR0721, iso-PPADS, pyridoxal 5-phosphate and trypan blue but not by Evans blue (320 microM). Schild plots for the antagonism of suramin, XAMR0721 and iso-PPADS against alpha,beta-MeATP had slopes > 1. Only XAMR0721 differed clearly in potency against the two nucleotides: it was considerably more potent against alpha,beta-MeATP than against ADP beta S. 2-Methylthio ATP (MeSATP; 1 microM) and ATP (100 microM) were degraded by pieces of taenia coli. All antagonists except trypan blue attenuated the degradation of either or one of the two nucleotides. The selective effect of XAMR0721 against alpha,beta-MeATP confirms the existence of two relaxation-mediating P2-purinoceptors in guinea-pig taenia coli. Comparison of the apparent affinities of the antagonists for the two taenia coli receptors with affinities for the P2X-purinoceptor of the rat vas deferens shows that reactive blue 2, suramin, iso-PPADS, pyridoxal 5-phosphate and trypan blue have little selectivity for any of the three receptors. XAMR0721, which has been shown to possess relatively high affinity for the P2Y-purinoceptor in turkey erythrocytes, was very weak at the P2Y-receptor of the taenia, thus supporting the existence of pharmacologic P2Y-receptor subtypes. Evans blue, with little effect in the taenia coli but a marked effect in the rat vas defrens, is the most selective P2X- (versus P2Y-) purinoceptor antagonists presently known, although its effect on the degradation of nucleotides must be kept in mind.
Collapse
Affiliation(s)
- R Bültmann
- Pharmakologisches Institut, Freiburg i.Br., Germany
| | | | | |
Collapse
|
46
|
Michel AD, Humphrey PP. High affinity P2x-purinoceptor binding sites for [35S]-adenosine 5'-O-[3-thiotriphosphate] in rat vas deferens membranes. Br J Pharmacol 1996; 117:63-70. [PMID: 8825344 PMCID: PMC1909358 DOI: 10.1111/j.1476-5381.1996.tb15155.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The binding sites labelled by [35S]-adenosine 5'-O-[3-thiotriphosphate]([35S]-ATP gamma S) at 4 degrees C in rat vas deferens membranes were studied and compared to the sites labelled by [3H]-alpha,beta-methylene ATP ([3H]-alpha beta meATP) to ascertain whether [35S]-ATP gamma S can be used to label the P2x purinoceptor. 2. In the presence of 4 mM CaCl2, the binding of 0.2 nM [35S]-ATP gamma S to vas deferens membranes was increased 3.4 fold, when compared to studies performed in the absence of calcium. However, binding did not appear to be solely to P2x purinoceptors since [35S]-ATP gamma S labelled a heterogeneous population of sites and about 72% of the sites possessed high affinity (pIC50 = 7.5) for guanosine 5'-O-[3-thiotriphosphate] (GTP gamma S). Even in the presence of 1 microM GTP gamma S, to occlude the sites with high affinity for GTP gamma S, the binding of [35S]-ATP gamma S was heterogeneous and since there was also evidence of extensive metabolism of ATP in the presence of calcium, the binding of [35S]-ATP gamma S under these conditions was not studied further. 3. In the absence of calcium ions, [35S]-ATP gamma S bound to a single population of sites (pKD = 9.23; Bmax = 4270 fmol mg-1 protein). Binding reached steady state within 3 h (t1/2 = 38 min), was stable for a further 4 h and was readily reversible upon addition of 10 microM unlabelled ATP gamma S (t1/2 = 45 min). In competition studies the binding of 0.2 nM [35S]-ATP gamma S was inhibited by a number of P2x purinoceptor agonists and antagonists, but not by adenosine receptor agonists, staurosporine (1 microM) or several ATPase inhibitors. The rank order of agonist affinity estimates (pIC50 values) in competing for the [35S]-ATP gamma S binding sites was: ATP (9.01), 2-methylthio- ATP (8.79), ATP gamma S (8.73), alpha beta meATP (7.57), ADP (7.24), beta, gamma-methylene ATP (7.18), L-beta, gamma-methylene ATP (5.83), alpha, beta-methylene ADP (4.36). 4. Affinity estimates (pIC50 values) for the P2x purinoceptor antagonists, suramin (5.20), pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (4.23), pyridoxal 5-phosphate (3.42), cibacron blue (5.70) and Evan's blue (5.79) were broadly similar to those obtained at the [3H]-alpha beta meATP binding sites in vas deferens. However, ATP, 2-methylthio-ATP, ATP gamma S and ADP displayed 17-512 fold higher affinity for the [35S]-ATP gamma S, than for the [3H]-alpha beta meATP binding sites, whereas alpha beta meATP and L-beta, gamma-methylene ATP displayed 5 and 28 fold, respectively, higher affinity for the [3H]-alpha beta meATP than for the [35S]-ATP gamma S binding sites. 5. The differences in agonist affinity for the [35S]-ATP gamma S and [3H]-alpha beta meATP binding sites probably reflect the fact that the former sites were labelled in the absence of calcium, while the latter sites were labelled in its presence. This could differentially affect ionisation state and/or metabolism of the nucleotides when using the two radioligands. Since affinity estimates for ATP, 2-methylthio-ATP, ATP gamma S, alpha beta meATP and L-beta, gamma-methylene ATP were different when calcium ions were omitted in studies using [3H]-alpha beta meATP but similar to the affinity estimates obtained at the [35S]-ATP gamma S binding sites labelled in the absence of calcium, it is likely that [35S]-ATP gamma S and [3H]-alpha beta meATP label the same sites in rat vas deferens. 6. We conclude that, in the absence of divalent cations, [35S]-ATP gamma S labels P2x purinoceptors in rat vas deferens and as such may represent a new, high specific activity, radioligand for the study of such receptors.
Collapse
Affiliation(s)
- A D Michel
- Department of Pharmacology, University of Cambridge
| | | |
Collapse
|
47
|
|
48
|
Martin PL, Gero TW, Potts AA, Cusack NJ. Structure-activity studies of analogs of ?, ?-methylene-ATP at P2X-purinoceptors in the rabbit ear central artery. Drug Dev Res 1995. [DOI: 10.1002/ddr.430360402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Windscheif U, Pfaff O, Ziganshin AU, Hoyle CH, Bäumert HG, Mutschler E, Burnstock G, Lambrecht G. Inhibitory action of PPADS on relaxant responses to adenine nucleotides or electrical field stimulation in guinea-pig taenia coli and rat duodenum. Br J Pharmacol 1995; 115:1509-17. [PMID: 8564212 PMCID: PMC1908869 DOI: 10.1111/j.1476-5381.1995.tb16644.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. The effect of pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) on the relaxant response to adenine nucleotides was examined in the carbachol-contracted guinea-pig taenia coli and rat duodenum, two tissues possessing P2y-purinoceptors. In addition, in the taenia coli PPADS was investigated for its effect on relaxations evoked by adenosine, noradrenaline and electrical field stimulation. In order to assess the selectivity of PPADS between P2-purinoceptor blockade and ectonucleotidase activity, its influence on ATP degradation was studied in guinea-pig taenia coli. 2. The resulting rank order of potency for the adenine nucleotides in guinea-pig taenia coli was: 2-methylthio ATP >> ATP > alpha,beta-methylene ATP with the respective pD2-values 7.96 +/- 0.08 (n = 23), 6.27 +/- 0.12 (n = 21) and 5.88 +/- 0.04 (n = 24). 3. In guinea-pig taenia coli, PPADS (10-100 microM) caused a consistent dextral shift of the concentration-response curve (CRC) of 2-methylthio ATP and ATP resulting in a biphasic Schild plot. A substantial shift was only observed at 100 microM PPADS, the respective pA2-values at this particular concentration were 5.26 +/- 0.16 (n = 5) and 5.15 +/- 0.13 (n = 6). Lower concentrations of PPADS (3-30 microM) antagonized the relaxant effects to alpha,beta-methylene ATP in a surmountable manner. An extensive shift of the CRC was produced only by 30 microM PPADS (pA2 = 5.97 +/- 0.08, n = 6), and the Schild plot was again biphasic. 4. The relaxant responses to electrical field stimulation (80 V, 0.3 ms, 5 s, 0.5-16 Hz) in guinea-pigtaenia coli were concentration-dependently inhibited by PPADS (10-100 microM).5. In guinea-pig taenia coli, the potency of ATP in inducing relaxation appeared to be independent of its rate of degradation by ecto-nucleotidases, since the Km-value (366 microM) obtained in the enzyme assay was much higher than the functional EC50-value (0.45 microM) of ATP. PPADS (3-100 microM) was only weakly active in inhibiting ecto-nucleotidase activity leaving a residual activity of 81.8 +/- 5.1% at 100 microM.Enzyme inhibition by PPADS was concentration-independent and non-competitive.6. In rat duodenum, the rank order of potency was: 2-methylthio ATP >ATP> >alpha,beta-methylene ATP,the respective pD2-values being 6.98 +/- 0.04 (n = 76), 6.26 +/- 0.02 (n = 6) and 4.83 +/- 0.02 (n = 6). Among these agonists, 2-methylthio ATP displayed the lowest apparent efficacy.7. The CRC of 2-methylthio ATP in rat duodenum was shifted to the right by PPADS (10-100 microM) ina concentration-dependent manner, and Schild analysis gave a pA2-value of 5.09 +/- 0.06 (slope = 1.02,n=14).8 PPADS was without any effect on the carbachol-induced contraction in guinea-pig taenia coli or rat duodenum and on the relaxation to noradrenaline or adenosine in guinea-pig taenia coli.9 In conclusion, the antagonistic properties of PPADS at the taenia coli and rat duodenum P2y-purinoceptors were different from those recently described at the P2x-subtype: inhibition of P2y-purinoceptor-mediated responses was observed at higher concentrations (3-100 microM vs. 1-10 (30) microM).Furthermore, we conclude that in addition to the classical P2y-subtype, which is largely PPADS-resistant,the guinea-pig taenia coli may be endowed with a distinct relaxation-mediating P2-purinoceptor subtype which is sensitive to PPADS.
Collapse
Affiliation(s)
- U Windscheif
- Department of Anatomy and Developmental Biology, University College London
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The guinea-pig taenia caeci contains both P1 and P2 purinoceptors mediating relaxation. The P2 purinoceptors have been further characterized using an experimental approach designed to minimise complicating factors. In the presence of the adenosine uptake inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBTI, 300 nM) and a pA100 concentration of the P1 purinoceptor antagonist 8-sulphophenyltheophylline (140 microM), the potency order of agonists was: 2-methylthio-ATP >> adenosine 5'-triphosphate (ATP) = alpha, beta-methylene ATP > beta, gamma-methylene ATP >> uridine 5'-triphosphate. Suramin antagonized ATP (pA2 = 5.52 +/- 0.17, Schild plot slope = 0.67 +/- 0.08) and 2-methylthio-ATP (pA2 = 5.78 +/- 0.30, Schild plot slope = 1.37 +/- 0.39) while responses to 5'-N-ethylcarboxamidoadenosine (NECA) were unaffected. The findings suggest that suramin, while it is selective for P2 relative to P1 purinoceptors, is not a true competitive antagonist. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) antagonized ATP in isolated guinea-pig vas deferens, but had no effect on responses to ATP in guinea-pig taenia caeci indicating it is selective for P2X relative to P2Y purinoceptors.
Collapse
Affiliation(s)
- A S Piper
- Smooth Muscle Pharmacology Group, School of Biological Sciences, University of Manchester, UK
| | | |
Collapse
|