1
|
Bechard AR, McElderry S. Environmental interventions reduced repetitive behavior in a mouse model. Physiol Behav 2024; 273:114386. [PMID: 37884109 DOI: 10.1016/j.physbeh.2023.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Repetitive motor behaviors are associated with several neurodevelopmental disorders including autism spectrum disorder. Non-invasive environmental interventions that can ameliorate repetitive behavior and be introduced in early development could benefit many. In Experiment 1, we characterized the development of repetitive circling in mice reared in standard and enriched environments. Environmental enrichment was associated with reduced repetitive behavior. In Experiment 2, two weekly injections of an A2A adenosine receptor agonist reduced repetitive behavior in mice fed a ketogenic diet. Together, these two approaches modified the environment and reduced repetitive behavior with potential implications for increased functioning of the indirect basal ganglia pathway.
Collapse
|
2
|
Elnozahi NA, AlQot HE, Mohy El-Din MM, Bistawroos AE, Abou Zeit-Har MS. Modulation of dopamine-mediated facilitation at the neuromuscular junction of Wistar rats: A role for adenosine A1/A2A receptors and P2 purinoceptors. Neuroscience 2016; 326:45-55. [PMID: 27060487 DOI: 10.1016/j.neuroscience.2016.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 11/28/2022]
Abstract
This study aims to understand how dopamine and the neuromodulators, adenosine and adenosine triphosphate (ATP) modulate neuromuscular transmission. Adenosine and ATP are well-recognized for their regulatory effects on dopamine in the central nervous system. However, if similar interactions occur at the neuromuscular junction is unknown. We hypothesize that the activation of adenosine A1/A2A and/or P2 purinoceptors may influence the action of dopamine on neuromuscular transmission. Using the rat phrenic nerve hemi-diaphragm, we assessed the influence of dopamine, adenosine and ATP on the height of nerve-evoked muscle twitches. We investigated how the selective blockade of adenosine A1 receptors (2.5nM DPCPX), adenosine A2A receptors (50nM CSC) and P2 purinoceptors (100μM suramin) modified the effects of dopamine. Dopamine alone increased indirect muscle contractions while adenosine and ATP either enhanced or depressed nerve-evoked muscle twitches in a concentration-dependent manner. The facilitatory effects of 256μM dopamine were significantly reduced to 29.62±2.79% or 53.69±5.45% in the presence of DPCPX or CSC, respectively, relative to 70.03±1.57% with dopamine alone. Alternatively, the action of 256μM dopamine was potentiated from 70.03±1.57, in the absence of suramin, to 86.83±4.36%, in the presence of suramin. It can be concluded that the activation of adenosine A1 and A2A receptors and P2 purinoceptors potentially play a central role in the regulation of dopamine effects at the neuromuscular junction. Clinically this study offers new insights for the indirect manipulation of neuromuscular transmission for the treatment of disorders characterized by motor dysfunction.
Collapse
Affiliation(s)
- Neveen A Elnozahi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Azarita, P.O. Box: 21521, Alexandria, Egypt
| | - Hadir E AlQot
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Azarita, P.O. Box: 21521, Alexandria, Egypt.
| | - Mahmoud M Mohy El-Din
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Azarita, P.O. Box: 21521, Alexandria, Egypt
| | - Azza E Bistawroos
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Azarita, P.O. Box: 21521, Alexandria, Egypt
| | - Mohamed S Abou Zeit-Har
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Azarita, P.O. Box: 21521, Alexandria, Egypt
| |
Collapse
|
3
|
Tomiyama M. Adenosine receptors and dyskinesia in pathophysiology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:117-26. [PMID: 25175963 DOI: 10.1016/b978-0-12-801022-8.00005-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
First, the recent progress in the pathogenesis of levodopa-induced dyskinesia was described. Serotonin neurons play an important role in conversion from levodopa to dopamine and in the release of converted dopamine into the striatum in the Parkinsonian state. Since serotonin neurons lack buffering effects on synaptic dopamine concentration, the synaptic dopamine markedly fluctuates depending on the fluctuating levodopa concentration in the serum after taking levodopa. The resultant pulsatile stimulation makes the striatal direct-pathway neurons get potential that releases excessive GABA into the output nuclei of the basal ganglia. When levodopa is administered, the stored GABA is released, the output nuclei become hypoactive, and then dyskinesias emerge. Second, effects of adenosine A2A receptor antagonists on dyskinesia were described. It has been demonstrated that the expression of adenosine A2A receptors is increased in Parkinson's disease (PD) patients with dyskinesias, suggesting that blockade of A2A receptors is beneficial for dyskinesias. Preclinical studies have shown that A2A receptor antagonists reduce liability of dyskinesias in PD models. Clinical trials have demonstrated that A2A antagonists increase functional ON-time (ON without troublesome dyskinesia) in PD patients suffering from wearing-off phenomenon, although they may increase dyskinesia in patients with advanced PD.
Collapse
Affiliation(s)
- Masahiko Tomiyama
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.
| |
Collapse
|
4
|
Morin N, Di Paolo T. Interaction of adenosine receptors with other receptors from therapeutic perspective in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:151-67. [PMID: 25175965 DOI: 10.1016/b978-0-12-801022-8.00007-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Altered dopaminergic neurotransmission in the basal ganglia is observed in Parkinson's disease (PD) and L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias (LID). An attractive alternative for treating LID is to use adjunct drugs to modulate nondopaminergic neurotransmitter systems in the basal ganglia. For example, adenosine receptors have received attention over the past years for the treatment of PD and LID. Adenosine interacts closely with dopamine and plays an important role in the function of striatal GABAergic efferent neurons. Excitatory glutamatergic neurotransmission is also modulated by adenosine in the striatum. Hence, based on the unique cellular and regional distribution of this system, adenosine neurotransmission could have an important implication for the development of new therapeutic strategies targeting the basal ganglia disorders. Indeed, A2A adenosine receptor antagonists were shown to improve motor deficits in PD and to reduce the severity of LID. A2A receptor subtypes are selectively found on striatopallidal neurons and can couple with receptors of interest in PD, such as D2 dopamine and metabotropic glutamate receptor type 5 (mGlu5) receptors, and form functional heteromeric complexes. This chapter will review relevant studies investigating the role and contribution of adenosine receptor subtypes in pathophysiology of PD and LID. The interactions of adenosine receptors, especially A1 and A2A receptor subtypes, with other receptors implicated in the pathophysiology of PD and LID such as dopaminergic and glutamatergic receptors will be reviewed. The implication of these interactions in the development and expression of PD symptoms and LID needs further investigation to find novel drug targets.
Collapse
Affiliation(s)
- Nicolas Morin
- Neuroscience Research Unit, Centre de recherche du CHU de Québec, Quebec, Quebec, Canada; Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre de recherche du CHU de Québec, Quebec, Quebec, Canada; Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
| |
Collapse
|
5
|
Shen HY, Canas PM, Garcia-Sanz P, Lan JQ, Boison D, Moratalla R, Cunha RA, Chen JF. Adenosine A₂A receptors in striatal glutamatergic terminals and GABAergic neurons oppositely modulate psychostimulant action and DARPP-32 phosphorylation. PLoS One 2013; 8:e80902. [PMID: 24312250 PMCID: PMC3842921 DOI: 10.1371/journal.pone.0080902] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/17/2013] [Indexed: 12/03/2022] Open
Abstract
Adenosine A2A receptors (A2AR) are located postsynaptically in striatopallidal GABAergic neurons, antagonizing dopamine D2 receptor functions, and are also located presynaptically at corticostriatal terminals, facilitating glutamate release. To address the hypothesis that these two A2AR populations differently control the action of psychostimulants, we characterized A2AR modulation of cocaine-induced effects at the level of DARPP-32 phosphorylation at Thr-34 and Thr-75, c-Fos expression, and psychomotor activity using two lines of cell-type selective A2AR knockout (KO) mice with selective A2AR deletion in GABAergic neurons (striatum-A2AR-KO mice), or with A2AR deletion in both striatal GABAergic neurons and projecting cortical glutamatergic neurons (forebrain-A2AR-KO mice). We demonstrated that striatum-A2AR KO mice lacked A2ARs exclusively in striatal GABAergic terminals whereas forebrain-A2AR KO mice lacked A2ARs in both striatal GABAergic and glutamatergic terminals leading to a blunted A2AR-mediated facilitation of synaptosomal glutamate release. The inactivation of A2ARs in GABAergic neurons reduced striatal DARPP-32 phosphorylation at Thr-34 and increased its phosphorylation at Thr-75. Conversely, the additional deletion of corticostriatal glutamatergic A2ARs produced opposite effects on DARPP-32 phosphorylation at Thr-34 and Thr-75. This distinct modulation of DARPP-32 phosphorylation was associated with opposite responses to cocaine-induced striatal c-Fos expression and psychomotor activity in striatum-A2AR KO (enhanced) and forebrain-A2AR KO mice (reduced). Thus, A2ARs in glutamatergic corticostriatal terminals and in GABAergic striatal neurons modulate the action of psychostimulants and DARPP-32 phosphorylation in opposite ways. We conclude that A2ARs in glutamatergic terminals prominently control the action of psychostimulants and define a novel mechanism by which A2ARs fine-tune striatal activity by integrating GABAergic, dopaminergic and glutamatergic signaling.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Molecular Neuropharmacology Lab, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Paula M. Canas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Patricia Garcia-Sanz
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, and Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Jing-Quan Lan
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon, United States of America
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon, United States of America
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, and Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Rodrigo A. Cunha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Lab, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Jones N, Bleickardt C, Mullins D, Parker E, Hodgson R. A2A receptor antagonists do not induce dyskinesias in drug-naive or L-dopa sensitized rats. Brain Res Bull 2013; 98:163-9. [PMID: 23838432 DOI: 10.1016/j.brainresbull.2013.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/26/2022]
Abstract
L-dopa, the precursor to dopamine, is currently the gold standard treatment for Parkinson's disease (PD). However, chronic exposure is associated with L-dopa-induced dyskinesias (LIDs), a serious side effect characterized by involuntary movements. Adenosine A2A receptor antagonists have been studied as a novel non-dopaminergic PD treatment. Because A2A receptor antagonists do not act on dopamine receptors, it has been hypothesized that they will not induce dyskinesias characteristic of L-dopa. To test this hypothesis in a rodent model, the A2A receptor antagonists SCH 412348 (3 mg/kg), vipadenant (10 mg/kg), caffeine (30 mg/kg), or istradefylline (3 mg/kg) were chronically (19-22 days) administered to Sprague Dawley rats, and dyskinetic behaviors were scored across this chronic dosing paradigm. Unlike L-dopa, there was no evidence of dyskinetic activity resulting from any of the four A2A receptor antagonists tested. When delivered to animals previously sensitized with L-dopa (6 mg/kg), SCH 412348, vipadenant, caffeine or istradefylline treatment produced no dyskinesias. When administered in combination with L-dopa (6 mg/kg), SCH 412348 (3 mg/kg) neither exacerbated nor prevented the induction of LIDs over the course of 19 days of treatment. Collectively, our data indicate that A2A receptor antagonists are likely to have a reduced dyskinetic liability relative to L-dopa but do not block dyskinesias when coadministered with L-dopa. Clinical studies are required to fully understand the dyskinesia profiles of A2A receptor antagonists.
Collapse
Affiliation(s)
- N Jones
- Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | | | | | | | | |
Collapse
|
7
|
Adenosine A2A receptors in the nucleus accumbens bi-directionally alter cocaine seeking in rats. Neuropsychopharmacology 2012; 37:1245-56. [PMID: 22169945 PMCID: PMC3306886 DOI: 10.1038/npp.2011.312] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Repeated cocaine administration enhances dopamine D(2) receptor sensitivity in the mesolimbic dopamine system, which contributes to drug relapse. Adenosine A(2A) receptors are colocalized with D(2) receptors on nucleus accumbens (NAc) medium spiny neurons where they antagonize D(2) receptor activity. Thus, A(2A) receptors represent a target for reducing enhanced D(2) receptor sensitivity that contributes to cocaine relapse. The aim of these studies were to determine the effects of adenosine A(2A) receptor modulation in the NAc on cocaine seeking in rats that were trained to lever press for cocaine. Following at least 15 daily self-administration sessions and 1 week of abstinence, lever pressing was extinguished in daily extinction sessions. We subsequently assessed the effects of intra-NAc core microinjections of the A(2A) receptor agonist, CGS 21680 (4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride), and the A(2A) receptor antagonist, MSX-3 (3,7-dihydro-8-[(1E)-2-(3-methoxyphenyl)ethenyl]-7-methyl-3-[3-(phosphonooxy)propyl-1-(2-propynyl)-1H-purine-2,6-dione disodium salt hydrate), in modulating cocaine- and quinpirole-induced reinstatement to cocaine seeking. Intra-NAc pretreatment of CGS 21680 reduced both cocaine- and quinpirole-induced reinstatement. These effects were specific to cocaine reinstatement as intra-NAc CGS 21680 had no effect on sucrose seeking in rats trained to self-administer sucrose pellets. Intra-NAc treatment with MSX-3 modestly reinstated cocaine seeking when given alone, and exacerbated both cocaine- and quinpirole-induced reinstatement. Interestingly, the exacerbation of cocaine seeking produced by MSX-3 was only observed at sub-threshold doses of cocaine and quinpirole, suggesting that removing tonic A(2A) receptor activity enables behaviors mediated by dopamine receptors. Taken together, these findings suggest that A(2A) receptor stimulation reduces, while A(2A) blockade amplifies, D(2) receptor signaling in the NAc that mediates cocaine relapse.
Collapse
|
8
|
Differential effects of the adenosine A₂A agonist CGS-21680 and haloperidol on food-reinforced fixed ratio responding in the rat. Psychopharmacology (Berl) 2012; 220:205-13. [PMID: 21898173 PMCID: PMC3505378 DOI: 10.1007/s00213-011-2467-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
RATIONALE Previous studies have shown that adenosine A(2A) receptors are colocalized with dopamine D(2) receptors on striatal neurons. Activation of these two receptors has antagonistic effects under a number of conditions suggesting that stimulation of adenosine A(2A) receptors may have behavioral effects resembling those produced by blockade of dopamine D(2) receptors, but this possibility has been investigated in a limited number of situations. OBJECTIVE We compared the effects of the adenosine A(2A) agonist CGS-21680 and the preferential D(2) dopamine antagonist haloperidol in a situation in which dopamine blockade produces a distinctive pattern of behavioral effects. MATERIALS AND METHODS Six rats were trained to lever press for food reward on a fixed ratio 15 schedule of reinforcement and then tested after being injected with various doses of CGS-21680 (0.064, 0.128, and 0.25 mg/kg) and haloperidol (0.25 and 0.1 mg/kg). RESULTS Haloperidol produced a dose-dependent suppression of lever pressing with mean response rates declining across the duration of the test session. CGS-21680 also produced a dose-dependent suppression of responding, but this effect was not temporally graded, and responding was equivalently suppressed across the duration of the session. Additionally, CGS-21680 increased post-reinforcement pause duration to a much greater extent than did haloperidol. CONCLUSIONS On this task, the behavioral effects of CGS-21680 do not resemble those produced by haloperidol. Several explanations of this discrepancy are possible, the most likely being that the observed behavioral effects of CGS-21680 result from an action at a site other than D(2) receptor-expressing striatal neurons.
Collapse
|
9
|
Wei CJ, Li W, Chen JF. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1358-79. [PMID: 21185258 DOI: 10.1016/j.bbamem.2010.12.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 12/17/2022]
Abstract
Endogenous adenosine is a widely distributed upstream regulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways that converge to contribute to the expression of an array of important brain functions. Over the past decade, the generation and characterization of genetic knockout models for all four G-protein coupled adenosine receptors, the A1 and A2A receptors in particular, has confirmed and extended the neuromodulatory and integrated role of adenosine receptors in the control of a broad spectrum of normal and abnormal brain functions. After a brief introduction of the available adenosine receptor knockout models, this review focuses on findings from the genetic knockout approach, placing particular emphasis on the most recent findings. This review is organized into two sections to separately address (i) the role of adenosine receptors in normal brain processes including neuroplasticity, sleep-wake cycle, motor function, cognition, and emotion-related behaviors; and (ii) their role in the response to various pathologic insults to brain such as ischemic stroke, neurodegeneration, or brain dysfunction/disorders. We largely limit our overview to the prominent adenosine receptor subtypes in brain-the A1 and A2A receptors-for which numerous genetic knockout studies on brain function are available. A1 and A2A receptor knockouts have provided significant new insights into adenosine's control of complex physiologic (e.g., cognition) and pathologic (e.g., neuroinflammation) phenomena. These findings extend and strengthen the support for A1 and A2A receptors in brain as therapeutic targets in several neurologic and psychiatric diseases. However, they also emphasize the importance of considering the disease context-dependent effect when developing adenosine receptor-based therapeutic strategies.
Collapse
Affiliation(s)
- Catherine J Wei
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
10
|
Shen HY, Chen JF. Adenosine A(2A) receptors in psychopharmacology: modulators of behavior, mood and cognition. Curr Neuropharmacol 2010; 7:195-206. [PMID: 20190961 PMCID: PMC2769003 DOI: 10.2174/157015909789152191] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/15/2009] [Accepted: 05/20/2009] [Indexed: 12/20/2022] Open
Abstract
The adenosine A(2A) receptor (A(2A)R) is in the center of a neuromodulatory network affecting a wide range of neuropsychiatric functions by interacting with and integrating several neurotransmitter systems, especially dopaminergic and glutamatergic neurotransmission. These interactions and integrations occur at multiple levels, including (1) direct receptor- receptor cross-talk at the cell membrane, (2) intracellular second messenger systems, (3) trans-synaptic actions via striatal collaterals or interneurons in the striatum, (4) and interactions at the network level of the basal ganglia. Consequently, A(2A)Rs constitute a novel target to modulate various psychiatric conditions. In the present review we will first summarize the molecular interaction of adenosine receptors with other neurotransmitter systems and then discuss the potential applications of A(2A)R agonists and antagonists in physiological and pathophysiological conditions, such as psychostimulant action, drug addiction, anxiety, depression, schizophrenia and learning and memory.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
| | | |
Collapse
|
11
|
Blockade of adenosine A2A receptors downregulates DARPP-32 but increases ERK1/2 activity in striatum of dopamine deficient "weaver" mouse. Neurochem Int 2009; 56:245-9. [PMID: 19852993 DOI: 10.1016/j.neuint.2009.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 12/18/2022]
Abstract
In the present study we investigated the signal transduction cascade modulated by adenosine A(2A) receptors under chronic dopamine deficiency in the "weaver" mouse. We determined the phosphorylation state of cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) at Thr34 and of Extracellular Signal-regulated Protein Kinases 1/2 (ERK1/2), under basal conditions and after in vivo stimulation of A(2A) receptors by administration of the agonist CGS21680. Our results revealed that the endogenous levels of phospho-DARPPP-32 and phospho-ERK1/2 are elevated in "weaver" striatum probably as an adaptation phenomenon to gradual dopaminergic neurodegeneration appearing in this animal model, characterized as phenocopy of Parkinson's disease. Stimulation of A(2A) receptors by CGS21680 further increases phospho-DARPP-32 but downregulates significantly the elevated phospho-ERK1/2 levels bringing them close to those observed in wild type animals. Consistently, blockade of A(2A) receptors by MSX-3 (A(2A) receptor antagonist) downregulates phospho-DARPP-32 but significantly increases even more the phosphorylation/activation of ERK1/2. These results indicate that under chronic dopamine deficiency (a) the A(2A)/cAMP/PKA/DARPP-32 cascade is overactive due to the elevated endogenous phospho-DARPP-32 levels and (b) the A(2A) receptor modulatory effect on ERK1/2 signaling is dysregulated exerting opposing action compared to that observed in normal animals (Quiroz et al., 2006), i.e. in "weaver" animals A(2A) receptor blockade increases the activity of ERK1/2 cascade. This could be of clinical relevance since A(2A) antagonists are already used in clinical trials for ameliorating Parkinson's disease (PD) symptoms.
Collapse
|
12
|
Bachtell RK, Self DW. Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats. Psychopharmacology (Berl) 2009; 206:469-78. [PMID: 19641899 PMCID: PMC2759773 DOI: 10.1007/s00213-009-1624-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/12/2009] [Indexed: 11/30/2022]
Abstract
RATIONALE Dopamine (DA) receptor stimulation in the nucleus accumbens (NAc) plays an important role in regulating cocaine-seeking behavior. Adenosine receptors antagonize the effects of DA receptor stimulation on intracellular signaling, neuronal output, and behavior. OBJECTIVES The goal of the present study is to determine the effects of adenosine A(2A) receptor stimulation on reinstatement of cocaine-seeking behavior in rats. METHODS Rats were trained to lever press for cocaine in daily self-administration sessions on a fixed-ratio 1 schedule for 3 weeks. After 1 week of abstinence, lever pressing was extinguished in six daily extinction sessions. We subsequently assessed the effects of the adenosine A(2A) receptor agonist, CGS 21680, on cocaine-, quinpirole (D(2) agonist)-, and cue-induced reinstatement to cocaine seeking. We also assessed the effects of CGS 21680 on sucrose seeking in rats extinguished from sucrose self-administration. RESULTS Pretreatment of CGS 21680 dose-dependently blunted cocaine-induced reinstatement (15 mg/kg, i.p.). Pretreatment with CGS 21680 (0.03 mg/kg, i.p.) also attenuated quinpirole- and cue-induced reinstatement. A minimally effective dose of CGS 21680 failed to alter cocaine-induced locomotor activity or sucrose seeking. CONCLUSIONS Stimulation of adenosine A(2A) receptors antagonizes reinstatement of cocaine seeking elicited by cocaine, DA D(2)-receptor stimulation, and cocaine-conditioned cues. These findings suggest that adenosine A(2A) receptor stimulation may oppose DA D(2) receptor signaling in the NAc that mediates cocaine relapse.
Collapse
Affiliation(s)
- Ryan K. Bachtell
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309-0345
| | - David W. Self
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070
| |
Collapse
|
13
|
Dopamine D1 Receptor Gene Expression Studies in Unilateral 6-Hydroxydopamine-Lesioned Parkinson’s Rat: Effect of 5-HT, GABA, and Bone Marrow Cell Supplementation. J Mol Neurosci 2009; 41:1-11. [DOI: 10.1007/s12031-009-9213-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 06/16/2009] [Indexed: 01/10/2023]
|
14
|
Abstract
The drug treatment of Parkinson's disease (PD) is accompanied by a loss of drug efficacy, the onset of motor complications, lack of effect on non-motor symptoms, and a failure to modify disease progression. As a consequence, novel approaches to therapy are sought, and adenosine A(2A) receptors (A(2A)ARs) provide a viable target. A(2A)ARs are highly localized to the basal ganglia and specifically to the indirect output pathway, which is highly important in the control of voluntary movement. A(2A)AR antagonists can modulate gamma-aminobutyric acid (GABA) and glutamate release in basal ganglia and other key neurotransmitters that modulate motor activity. In both rodent and primate models of PD, A(2A)AR antagonists produce alterations in motor behavior, either alone or in combination with dopaminergic drugs, which suggest that they will be effective in the symptomatic treatment of PD. In clinical trials, the A(2A)AR antagonist istradefylline reduces "off" time in patients with PD receiving optimal dopaminergic therapy. However, these effects have proven difficult to demonstrate on a consistent basis, and further clinical trials are required to establish the clinical utility of this drug class. Based on preclinical studies, A(2A)AR antagonists may also be neuroprotective and have utility in the treatment of neuropsychiatric disorders. We are only now starting to explore the range of potential uses of A(2A)AR antagonists in central nervous system disorders, and their full utility is still to be uncovered.
Collapse
Affiliation(s)
- Micaela Morelli
- Department of Toxicology and Center of Excellence for Neurobiology of Addiction, University of Cagliari, 09124 Cagliari, Italy.
| | | | | |
Collapse
|
15
|
Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA. Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog Neurobiol 2007; 83:293-309. [PMID: 17826884 DOI: 10.1016/j.pneurobio.2007.07.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/18/2007] [Accepted: 07/19/2007] [Indexed: 10/23/2022]
Abstract
Adenosine A2A receptors have a unique cellular and regional distribution in the basal ganglia, being particularly concentrated in areas richly innervated by dopamine such as the caudate-putamen and the globus pallidus. Adenosine A2A receptors are selectively located on striatopallidal neurons and are capable of forming functional heteromeric complexes with dopamine D2 and metabotropic glutamate mGlu5 receptors. Based on the unique cellular and regional distribution of this receptor and in line with data showing that A2A receptor antagonists improve motor symptoms in animal models of Parkinson's disease (PD) and in initial clinical trials, A2A receptor antagonists have emerged as an attractive non-dopaminergic target to improve the motor deficits that characterize PD. Experimental data have also shown that A2A receptor antagonists do not induce neuroplasticity phenomena that complicate long-term dopaminergic treatments. The present review provides an updated summary of results reported in the literature concerning the biochemical characteristics and basal ganglia distribution of A2A receptors. We subsequently aim to examine the effects of adenosine A2A antagonists in rodent and primate models of PD and of l-DOPA-induced dyskinesia. Finally, concluding remarks are made on post-mortem human brains and on the translation of adenosine A2A receptor antagonists in the treatment of PD.
Collapse
Affiliation(s)
- Micaela Morelli
- University of Cagliari, Department of Toxicology, Via Ospedale 72, 09124 Cagliari, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Marin C, Aguilar E, Mengod G, Cortés R, Obeso JA. Concomitant short- and long-duration response to levodopa in the 6-OHDA-lesioned rat: a behavioural and molecular study. Eur J Neurosci 2007; 25:259-69. [PMID: 17241287 DOI: 10.1111/j.1460-9568.2006.05265.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The long-duration response (LDR) is a sustained improvement in parkinsonism due to chronic levodopa therapy and lasts after discontinuation of treatment. We have investigated the molecular changes that underlie the LDR in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion. Animals were treated for 22 days with levodopa or saline. Forelimb akinesia was evaluated prior and following a test dose of levodopa. Rotational behaviour was weekly evaluated. Levodopa induced an improvement in the parkinsonian limb akinesia that lasted for 48 h after withdrawal. A shortening in the duration of rotational behaviour was observed. After 3 days of washout, levodopa treatment maintained elevated striatal preproenkephalin mRNA expression, also inducing an increase in preprodynorphin (PDyn) and dopamine D-3 receptor mRNAs, but without any modification of the adenosine A(2A) mRNA expression induced by 6-OHDA. Levodopa reversed the lesion-induced increase in the expression of cytochrome oxidase mRNA in the subthalamic nucleus and glutamate decarboxylase mRNA in the pars reticulata of the substantia nigra. After 7 days of levodopa washout, the molecular markers show a decline in the basal ganglia evolving towards the parkinsonian state, being statistically significant for the striatal PDyn mRNA. This study characterizes the concomitant presence of the short-duration response and LDR to levodopa in the 6-OHDA model of parkinsonism and shows that the molecular changes induced by levodopa in the basal ganglia are not permanent and that this reversal after levodopa washout may be responsible for the gradual motor deterioration that characterize the LDR.
Collapse
Affiliation(s)
- C Marin
- Laboratori de Neurologia Experimental, Area de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | | | | | | | |
Collapse
|
17
|
Morissette M, Dridi M, Calon F, Hadj Tahar A, Meltzer LT, Bédard PJ, Di Paolo T. Prevention of dyskinesia by an NMDA receptor antagonist in MPTP monkeys: Effect on adenosine A2A receptors. Synapse 2006; 60:239-50. [PMID: 16739115 DOI: 10.1002/syn.20295] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adenosine A(2A) receptors (A(2A)R) have received increasing attention for the treatment of L-DOPA-induced dyskinesias in Parkinson disease. In the present study, A(2A)R messenger RNA (mRNA) and receptor-specific binding in the brain of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys were studied after treatment with L-DOPA and a selective NR1A/2B NMDA receptor antagonist, CI-1041. Four MPTP monkeys received L-DOPA/benserazide and all developed dyskinesias, whereas among the four MPTP monkeys who additionally received CI-1041, only one developed mild dyskinesias. Four normal monkeys and four MPTP-treated monkeys were also studied. All MPTP monkeys had similar striatal dopamine (DA) denervation. A(2A)R mRNA levels, measured by in situ hybridization, were increased in the rostral lateral caudate and putamen of saline-treated MPTP monkeys as well as in the caudal lateral and medial putamen when compared with those of controls. A(2A)R mRNA levels remained elevated in the rostral caudate and putamen of L-DOPA-treated MPTP monkeys when compared with those of controls. A(2A)R mRNA levels of L-DOPA + CI-1041-treated monkeys were at control levels and decreased in the lateral rostral caudate and caudal putamen when compared with those of L-DOPA-treated and saline-treated MPTP monkeys respectively. No change was measured in the caudal medial putamen and caudate nucleus. A(2A)Rs labeled by autoradiography with [(3)H]SCH-58261 had lower level in the L-DOPA + CI-1041-treated MPTP monkeys compared with saline- or L-DOPA-treated MPTP and control monkeys in the rostral lateral and medial caudate and the putamen. No effect of lesion or L-DOPA treatment was measured on [(3)H]SCH-58261-specific binding. These findings suggest that blockade of NMDA receptors could prevent the development of dyskinesias by altering A(2A)Rs.
Collapse
Affiliation(s)
- Marc Morissette
- Molecular Endocrinology and Oncology Research Centre, Laval University Medical Centre (CHUL), Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Bové J, Serrats J, Mengod G, Cortés R, Aguilar E, Marin C. Reversion of levodopa-induced motor fluctuations by the A2A antagonist CSC is associated with an increase in striatal preprodynorphin mRNA expression in 6-OHDA-lesioned rats. Synapse 2006; 59:435-44. [PMID: 16498608 DOI: 10.1002/syn.20259] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The molecular mechanisms involved in the reversion of levodopa-induced motor fluctuations by the adenosine A2A antagonist 8-(3-chlorostryryl) caffeine (CSC) were investigated in rats with a 6-hydroxydopamine (6-OHDA)-induced lesion and compared with the ones achieved by the kappa-opioid agonist, U50,488. Animals were treated with levodopa (50 mg/kg/day) for 22 days and for one additional week with levodopa + CSC (5 mg/kg/day), levodopa + U50,488 (1 mg/kg/day), or levodopa + vehicle. The reversion of the decrease in the duration of levodopa-induced rotations by CSC, but not by U50,488, was maintained until the end of the treatment and was associated with a further increase in levodopa-induced preprodynorphin mRNA in the lesioned striatum, being higher in the ventromedial striatum. The increase in striatal preprodynorphin expression, particularly in the ventromedial striatum, may be related to the reversion of levodopa-induced motor fluctuations in the CSC-treated animals, suggesting a role of the direct striatal output pathway activity in the ventromedial striatum in the pathophysiology of motor fluctuations.
Collapse
Affiliation(s)
- J Bové
- Laboratori de Neurologia Experimental, Area de Neurociències, Fundació Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Harper LK, Beckett SR, Marsden CA, McCreary AC, Alexander SPH. Effects of the A2A adenosine receptor antagonist KW6002 in the nucleus accumbens in vitro and in vivo. Pharmacol Biochem Behav 2006; 83:114-21. [PMID: 16451807 DOI: 10.1016/j.pbb.2005.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/25/2005] [Accepted: 12/20/2005] [Indexed: 11/17/2022]
Abstract
In this study, we have used the selective A 2A adenosine receptor antagonist KW6002 to investigate the function of A 2A receptors in the Lister hooded rat nucleus accumbens in vitro and in vivo. Radioligand binding studies confirmed a greater than 50-fold selectivity of KW6002 for A 2A receptors compared to A1 receptors. Release of [3H]-dopamine from nucleus accumbens slices in vitro was almost doubled in the presence of 300 nM KW6002, while GABA release was inhibited by approximately one third. In vivo, intraperitoneal administration of KW6002 (4 mg kg(-1)) increased dopamine overflow almost 4-fold in the nucleus accumbens. In behavioural testing, KW6002 elicited place preference and increased locomotor activity at 1, 2 and 4 mg kg(-1). Taken together, these results suggest a role for tonic activation of A 2A adenosine receptors in reward-related phenomena.
Collapse
Affiliation(s)
- L K Harper
- School of Biomedical Sciences and Institute of Neuroscience, University of Nottingham Medical School, Nottingham, UK
| | | | | | | | | |
Collapse
|
20
|
Pinna A, Wardas J, Simola N, Morelli M. New therapies for the treatment of Parkinson's disease: Adenosine A2A receptor antagonists. Life Sci 2005; 77:3259-67. [PMID: 15979104 DOI: 10.1016/j.lfs.2005.04.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 04/23/2005] [Indexed: 11/24/2022]
Abstract
The development of non-dopaminergic therapies for the treatment of Parkinson's disease (PD) has attracted much interest in recent years. Among new different classes of drugs, adenosine A2A receptor antagonists have emerged as best candidates. The present review will provide an updated summary of the results reported in literature concerning the effects of adenosine A2A antagonists in rodent and primate models of PD. These results show that A2A receptor antagonists improve motor deficits without inducing dyskinesia and counteract parkinsonian tremor. In progress clinical trials have shown that a low dose of L-DOPA plus KW-6002 produced symptomatic relief no different from that produced by an optimal dose of L-DOPA alone, whereas dyskinesias were reduced rendering this class of compounds particularly attractive.
Collapse
|
21
|
Abstract
Caffeine is the most widely consumed psychostimulant substance, being self-administered throughout a wide range of conditions and present in numerous dietary products. Due to its widespread use and low abuse potential, caffeine is considered an atypical drug of abuse. The main mechanism of action of caffeine occurs via the blockade of adenosine A1 and A2A receptors. Adenosine is a modulator of CNS neurotransmission and its modulation of dopamine transmission through A2A receptors has been implicated in the effects of caffeine. This review provides an updated summary of the results reported in the literature concerning the behavioural pharmacology of caffeine and the neurochemical mechanisms underlying the psychostimulant effects elicited by caffeine. The review focuses on the effects of caffeine mediated by adenosine A2A receptors and on the influence that pre-exposure to caffeine may exert on the effects of classical drugs of abuse.
Collapse
Affiliation(s)
- O Cauli
- Department of Toxicology and Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
22
|
Bové J, Serrats J, Mengod G, Cortés R, Tolosa E, Marin C. Neuroprotection induced by the adenosine A2A antagonist CSC in the 6-OHDA rat model of parkinsonism: effect on the activity of striatal output pathways. Exp Brain Res 2005; 165:362-74. [PMID: 15968457 DOI: 10.1007/s00221-005-2302-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 02/02/2005] [Indexed: 12/18/2022]
Abstract
In Parkinson's disease (PD), the striatal dopamine depletion and the following overactivation of the indirect pathway of the basal ganglia leads to very early disinhibition of the subthalamic nucleus (STN) that may contribute to the progression of PD by glutamatergic overstimulation of the dopaminergic neurons in the substantia nigra. Adenosine A2A antagonism has been demonstrated to attenuate the overactivity of the striatopallidal pathway. To investigate whether neuroprotection exerted by the A2A antagonist 8-(3-chlorostyryl)caffeine (CSC) correlates with a diminution of the striatopallidal pathway activity, we have examined the changes in the mRNA encoding for enkephalin, dynorphin, and adenosine A2A receptors by in situ hybridization induced by subacute systemic pretreatment with CSC in rats with striatal 6-hydroxydopamine(6-OHDA) administration. Animals received CSC for 7 days until 30 min before 6-OHDA intrastriatal administration. Vehicle-treated group received a solution of dimethyl sulfoxide. CSC pretreatment partially attenuated the decrease in nigral tyrosine hydroxylase immunoreactivity induced by 6-OHDA, whereas no modification of the increase in preproenkephalin mRNA expression in the dorsolateral striatum was observed. The neuroprotective effect of the adenosine A2A antagonist CSC in striatal 6-OHDA-lesioned rats does not result from a normalization of the increase in striatal PPE mRNA expression in the DL striatum, suggesting that other different mechanisms may be involved.
Collapse
Affiliation(s)
- Jordi Bové
- Laboratori de Neurologia Experimental, Area de Neurociències, Fundació Clinic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Pinna A, Volpini R, Cristalli G, Morelli M. New adenosine A2A receptor antagonists: Actions on Parkinson's disease models. Eur J Pharmacol 2005; 512:157-64. [PMID: 15840400 DOI: 10.1016/j.ejphar.2005.01.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 01/25/2005] [Accepted: 01/31/2005] [Indexed: 11/30/2022]
Abstract
The 8-substituted 9-ethyladenine derivatives: 8-bromo-9-ethyladenine (ANR 82), 8-ethoxy- 9-ethyladenine (ANR 94), and 8-furyl-9-ethyladenine (ANR 152) have been characterized in vitro as adenosine receptor antagonists. Adenosine is deeply involved in the control of motor behaviour and substantial evidences indicate that adenosine A(2A) receptor antagonists improve motor deficits in animal models of Parkinson's disease. On this basis, the efficacy of ANR 82, ANR 94, and ANR 152 in rat models of Parkinson's disease was evaluated. All compounds tested reversed the catalepsy induced by haloperidol. However, in unilaterally 6-hydroxydopamine-lesioned rats, only ANR 94 and ANR 152 potentiated l-dihydroxy-phenylalanine (l-DOPA) effect on turning behaviour and induced contralateral turning behaviour in rats sensitised to l-DOPA. Taken together the results of this study indicate that some 8-substituted 9-ethyladenine derivatives ameliorate motor deficits in rat models of Parkinson's disease, suggesting a potential therapeutic role of these compounds.
Collapse
Affiliation(s)
- Annalisa Pinna
- CNR Institute for Neuroscience-section Cagliari, Cagliari, Italy
| | | | | | | |
Collapse
|
24
|
Xu K, Bastia E, Schwarzschild M. Therapeutic potential of adenosine A2A receptor antagonists in Parkinson's disease. Pharmacol Ther 2005; 105:267-310. [PMID: 15737407 DOI: 10.1016/j.pharmthera.2004.10.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
In the pursuit of improved treatments for Parkinson's disease (PD), the adenosine A(2A) receptor has emerged as an attractive nondopaminergic target. Based on the compelling behavioral pharmacology and selective basal ganglia expression of this G-protein-coupled receptor, its antagonists are now crossing the threshold of clinical development as adjunctive symptomatic treatment for relatively advanced PD. The antiparkinsonian potential of A(2A) antagonism has been boosted further by recent preclinical evidence that A(2A) antagonists might favorably alter the course as well as the symptoms of the disease. Convergent epidemiological and laboratory data have suggested that A(2A) blockade may confer neuroprotection against the underlying dopaminergic neuron degeneration. In addition, rodent and nonhuman primate studies have raised the possibility that A(2A) receptor activation contributes to the pathophysiology of dyskinesias-problematic motor complications of standard PD therapy--and that A(2A) antagonism might help prevent them. Realistically, despite being targeted to basal ganglia pathophysiology, A(2A) antagonists may be expected to have other beneficial and adverse effects elsewhere in the central nervous system (e.g., on mood and sleep) and in the periphery (e.g., on immune and inflammatory processes). The thoughtful design of new clinical trials of A(2A) antagonists should take into consideration these counterbalancing hopes and concerns and may do well to shift toward a broader set of disease-modifying as well as symptomatic indications in early PD.
Collapse
Affiliation(s)
- Kui Xu
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
25
|
Shin EJ, Nabeshima T, Suh HW, Jhoo WK, Oh KW, Lim YK, Kim DS, Choi KH, Kim HC. Ginsenosides attenuate methamphetamine-induced behavioral side effects in mice via activation of adenosine A2A receptors: possible involvements of the striatal reduction in AP-1 DNA binding activity and proenkephalin gene expression. Behav Brain Res 2005; 158:143-57. [PMID: 15680202 DOI: 10.1016/j.bbr.2004.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 08/19/2004] [Accepted: 08/25/2004] [Indexed: 11/24/2022]
Abstract
Current evidence suggests that ginsenosides inhibit methamphetamine (MA)-induced changes in behavior, but the precise mechanisms that underlie this effect are yet to be determined. We examined the role of adenosine receptors in the ginsenoside-induced changes in hyperlocomotion and conditioned place preference (CPP) in mice that occurred in response to administration of MA (2 mg/kg, i.p. x 1 or 2 mg/kg, i.p. x 6). Changes in circling behavior paralleled changes in CPP in the presence of MA. Pre-treatment with ginsenosides (50 or 150 mg/kg, i.p.) attenuated the MA-induced circling behavior and CPP. This attenuation was reversed by the adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chrostyryl)xanthine (CSC; 0.5 and 1.0 mg/kg) in a dose-dependent manner, but neither the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 0.5 and 1.0 mg/kg) nor the A2B receptor antagonist alloxazine (ALX; 1.5 and 3.0 mg/kg) had any such effect. MA-induced increases in activator protein (AP)-1 DNA binding activity, Fos-related antigen immunoreactivity (FRA-IR), proenkephalin mRNA expression, and proenkephalin-like immunoreactivity were reduced consistently in the striatum of animals that were pretreated with ginsenosides. These reductions were largely prevented by CSC, but not by CPT or ALX. Our results suggest that the stimulation of A2A receptors by ginsenosides attenuates the changes in behavior and the increases in AP-1 DNA binding activity, FRA-IR, and proenkephalin gene expression in mouse striatum that are induced by MA.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neurotoxicology Program, Department of Pharmacy, College of Pharmacy, Korea Institute of Drug Abuse, Kangwon National University, Chunchon 200-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Impagnatiello F, Bastia E, Ongini E, Monopoli A. Adenosine receptors in neurological disorders. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.5.635] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and Brain Function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 63:191-270. [PMID: 15797469 DOI: 10.1016/s0074-7742(05)63007-3] [Citation(s) in RCA: 500] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bertil B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | | | | | | | | |
Collapse
|
28
|
Domenici MR, Potenza RL, Martire A, Coccurello R, Pèzzola A, Reggio R, Tebano MT, Popoli P. Chronic treatment with the mGlu5R antagonist MPEP reduces the functional effects of the mGlu5R agonist CHPG in the striatum of 6-hydroxydopamine-lesioned rats: Possible relevance to the effects of mGlu5R blockade in Parkinson's disease. J Neurosci Res 2005; 80:646-54. [PMID: 15880742 DOI: 10.1002/jnr.20489] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study was designed to test whether chronic treatment with the metabotropic glutamate receptor 5 (mGlu5R) antagonist MPEP showed antiparkinsonian effects in rats unilaterally lesioned with 6-hydroxydopamine (6-OHDA) (a "classic" model of Parkinson's disease, PD), and to evaluate whether chronic MPEP influenced the functional properties and/or the expression of striatal mGlu5Rs. Wistar rats were lesioned with 6-OHDA and then treated with MPEP (3 mg/kg/day, i.p.) or its vehicle over 2 weeks. Chronic MPEP did not induce measurable antiparkinsonian effects, since no differences were found between MPEP- and vehicle-treated animals in the pattern of L-DOPA-induced contralateral rotations. In corticostriatal slices taken from animals chronically treated with MPEP, the functional effects of the mGlu5R agonist CHPG were significantly reduced in the lesioned vs. the intact side, while no changes were found in slices taken from vehicle-treated rats. The binding of [3H]MPEP to striatal membranes showed that neither the maximal number of binding sites (Bmax) nor the dissociation constant (Kd) were changed by the lesion and/or by chronic MPEP. While chronic MPEP did not potentiate L-DOPA-induced turning in a classical model of PD, its ability to reduce mGlu5R-associated signal could help to explain the neuroprotective/antiparkinsonian effects observed in other models of PD.
Collapse
|
29
|
Coccurello R, Breysse N, Amalric M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 2004; 29:1451-61. [PMID: 15039773 DOI: 10.1038/sj.npp.1300444] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence suggest that antagonism of adenosine A2A receptors represent an alternative therapeutic approach to Parkinson's disease (PD). Coactivation of A2A and the glutamate subtype 5 metabotropic receptors (mGlu5) synergistically stimulates DARPP-32 phosphorylation and c-fos expression in the striatum. This study therefore tested the effects of a joint blockade of these receptors to alleviate the motor dysfunction in a rat model of PD. 6-Hydroxydopamine infusions in the striatum produced akinetic deficits in rats trained to release a lever after a stimulus in a reaction time (RT) task. At 2 weeks after the lesion, A2A and mGlu5 receptors selective antagonists 8-(3-chlorostyryl)caffeine (CSC) and 2-methyl-6-(phenylethynyl)-pyridine (MPEP) were administered daily for 3 weeks either as a single or joint treatment. Injections of CSC (1.25 mg/kg) and MPEP (1.5 mg/kg) separately or in combination reduced the increase of delayed responses and RTs induced by 6-OHDA lesions, while the same treatment had no effect in controls. Furthermore, coadministration of lower doses of 0.625 mg/kg CSC and 0.375 mg/kg MPEP noneffective as a single treatment promoted a full and immediate recovery of akinesia, which was found to be more efficient than the separate blockade of these receptors. These results demonstrate that the combined inactivation of A2A and mGlu5 receptor potentiate their beneficial effects supporting this pharmacological strategy as a promising anti-Parkinsonian therapy.
Collapse
Affiliation(s)
- Roberto Coccurello
- Laboratoire de Neurobiologie de la Cognition, CNRS and Université de Provence, Marseille cedex, France
| | | | | |
Collapse
|
30
|
Tomiyama M, Kimura T, Maeda T, Tanaka H, Kannari K, Baba M. Upregulation of striatal adenosine A2A receptor mRNA in 6-hydroxydopamine-lesioned rats intermittently treated with L-DOPA. Synapse 2004; 52:218-22. [PMID: 15065221 DOI: 10.1002/syn.20011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To determine whether the adenosine A2A receptor might play a role in L-DOPA-induced dyskinesia in Parkinson's disease, we analyzed changes in the expression of A2A receptor mRNA in response to intermittent treatment with L-DOPA in rats with dopaminergic denervation by 6-hydroxydopamine (OHDA) infusion into the medial forebrain bundle. Intermittent treatment with L-DOPA increased A2A receptor mRNA levels in the dopamine-depleted striatum of 6-OHDA-lesioned rats exhibiting behavioral sensitization to L-DOPA. These results suggest that A2A receptor activation is associated with the development of motor complications induced by L-DOPA treatment.
Collapse
Affiliation(s)
- Masahiko Tomiyama
- Third Department of Medicine, Hirosaki University School of Medicine, Hirosaki 036-8216, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Carta AR, Tabrizi MA, Baraldi PG, Pinna A, Pala P, Morelli M. Blockade of A2A receptors plus l-DOPA after nigrostriatal lesion results in GAD67 mRNA changes different from l-DOPA alone in the rat globus pallidus and substantia nigra reticulata. Exp Neurol 2003; 184:679-87. [PMID: 14769359 DOI: 10.1016/s0014-4886(03)00292-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 05/19/2003] [Accepted: 05/28/2003] [Indexed: 10/27/2022]
Abstract
Studies in animal models of Parkinson's disease (PD) suggest the potential utility of adenosine A(2A) antagonists in the treatment of this disease. In the present study, unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats received chronic intermittent treatment with the adenosine A(2A) antagonist SCH58261 (5 mg/kg) plus l-DOPA (3 mg/kg) or l-DOPA (6 mg/kg) alone, at doses producing the same intensity of contralateral turning on first administration. Three days after discontinuation of treatments, GABA synthesizing enzyme glutamic acid decarboxylase (GAD67) mRNA was evaluated at cellular level in the globus pallidus (GP) and substantia nigra pars reticulata (SNr) by in situ hybridization. 6-OHDA lesion significantly increased GAD67 mRNA levels in both the GP and SNr ipsilateral to the lesion. Chronic l-DOPA (6 mg/kg), in contrast to SCH58261 plus l-DOPA (3 mg/kg), produced a sensitized contralateral turning indicative of dyskinetic potential and further increased GAD67 mRNA in the GP. In the SNr, a significant decrease in GAD67 mRNA was observed after either treatments. However, while l-DOPA (6 mg/kg) decreased SNr GAD67 mRNA below the intact side, SCH58261 plus l-DOPA (3 mg/kg) brought GAD67 mRNA to the same level of the intact SNr. l-DOPA (3 mg/kg) or SCH58261 (5 mg/kg) alone failed to modify GAD67 mRNA. Results suggest that an increase in GAD67 mRNA in GP and a decrease in SNr might underlie dyskinetic movements induced by chronic l-DOPA. In contrast, the lack of GAD67 mRNA changes in the GP and a less marked inhibition of SNr might correlate with the absence of dyskinetic potential observed after SCH58261 plus l-DOPA.
Collapse
Affiliation(s)
- Anna R Carta
- Department of Toxicology and Centre of Excellence for Neurobiology of Dependence, University of Cagliari, 09124 Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Wardas J, Konieczny J, Pietraszek M. Influence of CGS 21680, a selective adenosine A(2A) agonist, on the phencyclidine-induced sensorimotor gating deficit and motor behaviour in rats. Psychopharmacology (Berl) 2003; 168:299-306. [PMID: 12684736 DOI: 10.1007/s00213-003-1439-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Accepted: 02/24/2003] [Indexed: 02/07/2023]
Abstract
RATIONALE Recently it has been suggested that adenosine A(2A) receptor agonists may be potential antipsychotic drugs. It is, however, not clear whether these compounds may exert their antipsychotic effect without producing extrapyramidal side-effects (e.g. catalepsy, muscle rigidity, ataxia). It is known that such side-effects may be due to overactivation of the GABAergic strio-pallidal pathway, which may be estimated as an increased expression of proenkephalin (PENK) mRNA in the striatum. OBJECTIVE The aim of this study was to determine whether CGS 21680, a selective adenosine A(2A) receptor agonist, can reverse the disruption of prepulse inhibition (PPI) of the acoustic startle response induced by the non-competitive antagonist of NMDA receptors phencyclidine (PCP) without producing motor side-effects in rats. RESULTS Systemic administration of PCP (5 mg/kg) produced profound reduction of the PPI, which was reversed by CGS 21680 (1 mg/kg). CGS 21680 (0.1 and 1 mg/kg) was without effect on catalepsy, muscle rigidity and rotarod performance in rats as well as on the PENK mRNA expression in the striatum estimated by in situ hybridization. Only after the highest dose used (5 mg/kg) were signs of catalepsy (measured using a 9-cm cork test), disturbed balance and a loss of hind limb control (measured in the rotarod test) seen. Moreover, increased muscle resistance during passive extension measured mechanomyographically after this dose of CGS 21680 was observed. CONCLUSIONS The present results support the hypothesis that adenosine A(2A) receptor agonists may be potentially useful antipsychotic agents with the low incidence of extrapyramidal side-effects.
Collapse
Affiliation(s)
- Jadwiga Wardas
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland.
| | | | | |
Collapse
|
33
|
Bové J, Marin C, Bonastre M, Tolosa E. Adenosine A2A antagonism reverses levodopa-induced motor alterations in hemiparkinsonian rats. Synapse 2002; 46:251-7. [PMID: 12373740 DOI: 10.1002/syn.10112] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To evaluate the possible involvement of adenosine A(2A) receptor-mediated mechanisms in levodopa-induced motor fluctuations, we investigated the effects of CSC (8-(3-chlorostryryl) caffeine), a selective adenosine A(2A) receptor antagonist, on levodopa-induced motor alterations in rats with unilateral 6-OHDA lesion. Acute and chronic administration of CSC was studied to evaluate the possible reversion or prevention of these levodopa effects. In a first set of experiments, rats were treated with levodopa (25 mg/kg with benserazide, twice daily, i.p.) for 22 days and on day 23 CSC (5 mg/kg, i.p.) was administered immediately before levodopa. In a second set of experiments, rats were treated daily for 22 days with levodopa and CSC (5 mg/kg/day, i.p.). The duration of the rotational behavior induced by chronic levodopa decreased after 22 days (P < 0.05). Acute administration of CSC on day 23 reversed levodopa-induced shortening in motor response duration (P < 0.01). Chronic CSC administration did not prevent the shortening in response duration induced by levodopa. Our results demonstrate that the adenosine A(2A) receptor antagonist CSC reverses but does not prevent levodopa-induced motor alterations in parkinsonian rats. These results suggest a role for adenosine A(2A) receptor-mediated mechanisms in the pathophysiology of levodopa-induced motor response complications. These findings suggest that the antagonism of adenosine A(2A) receptors might confer clinical benefit to parkinsonian patients under levodopa therapy suffering from motor complication syndrome.
Collapse
Affiliation(s)
- J Bové
- Laboratori de Neurologia Experimental, Fundació Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
34
|
Aoyama S, Koga K, Mori A, Miyaji H, Sekine S, Kase H, Uchimura T, Kobayashi H, Kuwana Y. Distribution of adenosine A(2A) receptor antagonist KW-6002 and its effect on gene expression in the rat brain. Brain Res 2002; 953:119-25. [PMID: 12384245 DOI: 10.1016/s0006-8993(02)03277-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel adenosine A(2A) receptor selective antagonist, KW-6002 [(E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], possesses antiparkinsonian activities in rodent and primate models. In the present study, we investigated the distribution of [14C]KW-6002 in forebrain after oral administration at pharmacologically effective doses. Also, we monitored the effects of the compound on preproenkephalin (PPE) and preprotachykinin (PPT) gene expression in rat striatum. The highest level of radioactivity was observed in the striatum after oral administration of [14C]KW-6002; 30 min after 0.1 and 0.3 mg/kg, the density values in the striatum were 2.45 and 2.43 times higher than those in a reference region (frontal cortex), respectively. At the dose of 3 mg/kg, p.o., the ratio was only 1.58 and the compound was distributed more extensively in the brain. The distribution pattern and intensity of radioactivity were maintained even 90 min after the administration of [14C]KW-6002. Oral administration of KW-6002 (0.3 and 3 mg/kg/day) to rats for 14 days reversed the increased gene expression of PPE in striatum that had been depleted of dopamine by prior treatment with 6-hydroxydopamine (6-OHDA). On the other hand, KW-6002 did not alter the decreased gene expression of PPT in 6-OHDA-treated rats. These results are the first to show directly that orally administered KW-6002 is distributed selectively to the striatum and that it modulates the activity of striatopallidal enkephalin-containing neurons but not striatonigral substance P-containing neurons.
Collapse
Affiliation(s)
- Shiro Aoyama
- Pharmaceutical Research Institute, Kyowa Hakko Kogyo Co. Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pinna A, Corsi C, Carta AR, Valentini V, Pedata F, Morelli M. Modification of adenosine extracellular levels and adenosine A(2A) receptor mRNA by dopamine denervation. Eur J Pharmacol 2002; 446:75-82. [PMID: 12098587 DOI: 10.1016/s0014-2999(02)01818-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adenosine A(2A) receptor antagonists have been proposed as an effective therapy in the treatment of Parkinson's disease. To explore the possibility that dopamine denervation may produce modifications in adenosine A(2A) transmission, we measured the extracellular concentration of adenosine and adenosine A(2A) receptor mRNA in the striatum of rats infused unilaterally with 6-hydroxydopamine in the medial forebrain bundle. Fifteen days after 6-hydroxydopamine infusion, extracellular adenosine levels, measured by in vivo microdialysis, were significantly lower (-35%) in the dopamine-denervated striatum. At the time of the decrease in adenosine levels, an increase in striatal adenosine A(2A) receptor mRNA levels (+20%), measured by in situ hybridization, was observed. Modifications in adenosine A(2A) transmission, following nigrostriatal dopamine neuron degeneration, establish a potential neural basis for the effectiveness of adenosine A(2A) receptor antagonists in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Annalisa Pinna
- CNR Center for Neuropharmacology, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Carta AR, Pinna A, Cauli O, Morelli M. Differential regulation of GAD67, enkephalin and dynorphin mRNAs by chronic-intermittent L-dopa and A2A receptor blockade plus L-dopa in dopamine-denervated rats. Synapse 2002; 44:166-74. [PMID: 11954048 DOI: 10.1002/syn.10066] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenosine A2A receptor antagonists have been proposed as an effective therapy in the treatment of Parkinson's disease. In the present study, we compared the modifications on striatal glutamate decarboxylase (GAD67), enkephalin, and dynorphin mRNA levels produced by a chronic-intermittent administration of L-3,4-dihydroxyphenyl-alanine (L-dopa) (6 mg/kg) with those produced by the adenosine A2A receptor antagonist SCH 58261 (5 mg/kg) plus L-dopa (3 mg/kg) in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. As previously reported, L-dopa (6 mg/kg) and SCH 58261 (5 mg/kg) plus L-dopa (3 mg/kg) produced the same degree of turning behavior after the first administration. However, while L-dopa (6 mg/kg) induced a sensitized turning behavior response during the course of the treatment, which indicated a dyskinetic potential, SCH 58261 (5 mg/kg) plus L-dopa (3 mg/kg) produced a stable turning behavior response, which was predictive of absence of dyskinetic side effects. Unilateral 6-OHDA lesion produced an elevation in striatal GAD67 and enkephalin mRNA levels and to a decrease in dynorphin mRNA levels. Chronic-intermittent L-dopa (6 mg/kg) treatment increased the striatal levels of GAD67, dynorphin, and enkephalin mRNA in the lesioned side as compared to the vehicle treatment. Chronic-intermittent SCH 58261 (5 mg/kg) plus L-dopa (3 mg/kg) as well as L-dopa (3 mg/kg) or SCH 58261 (5 mg/kg) alone did not produce any significant modification in GAD67, dynorphin, or enkephalin mRNA levels in the lesioned striatum as compared to the striatum of vehicle-treated rats. The results show that combined SCH 58261 plus L-dopa did not produce long-term changes in markers of striatal efferent neurons activity and suggest that the lack of modifications in GAD67 and dynorphin mRNA after SCH 58261 plus L-dopa might correlate with the lack of turning behavior sensitization which predicts drug dyskinetic potential.
Collapse
Affiliation(s)
- Anna R Carta
- Department of Toxicology, University of Cagliari, 09124, Italy
| | | | | | | |
Collapse
|
37
|
Morelli M, Wardas J. Adenosine A(2a) receptor antagonists: potential therapeutic and neuroprotective effects in Parkinson's disease. Neurotox Res 2001; 3:545-56. [PMID: 15111244 DOI: 10.1007/bf03033210] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most effective treatment of Parkinson's disease (PD) is, at present, the dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA), however a number of disadvantages such as a loss of drug efficacy and severe side-effects (psychoses, dyskinesias and on-off phenomena) limit long-term effective utilisation of this drug. Recent experimental studies in which selective antagonists of adenosine A(2A) receptors were used, have shown an improvement in motor disabilities in animal models of PD. The A(2A) antagonist [7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-(4,3-e)-1,2,4-triazolo(1,5-c) pyrimidine] (SCH 58261) potentiated the contralateral turning behavior induced by a threshold dose of L-DOPA or direct dopamine receptor agonists in unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats, an effect accompanied by an increase in Fos-like-immunoreactivity in neurons of the lesioned striatum. Likewise, other A(2A) receptor antagonists such as (3,7-dimethyl-1-propargylxanthine) (DMPX), [E-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine] (KF 17837) and [E-1,3-diethyl-8(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6-dione] (KW 6002) antagonized catalepsy induced by haloperidol or reserpine in the rat, whereas in non-human primate models of PD, KW 6002 reduced the rigidity and improved the disability score of MPTP-treated marmosets and cynomolgus monkeys. Moreover, in contrast to L-DOPA, selective A(2A) receptor antagonists administered chronically did not produce dyskinesias and did not evoke tolerance in 6-OHDA and MPTP models of PD. An additional therapeutic potential of adenosine A(2A) antagonists emerged from studies showing neuroprotective properties of these compounds in animal models of cerebral ischemia and excitotoxicity, as well as in the MPTP model of PD. Adenosine A(2A) receptor antagonists by reversing motor impairments in animal models of PD and by contrasting cell degeneration are some of the most promising compounds for the treatment of PD.
Collapse
Affiliation(s)
- M Morelli
- Department of Toxicology, University of Cagliari, Palazzo delle Scienze, Via Ospedale 72, 09124, Cagliari, Italy
| | | |
Collapse
|
38
|
Hauber W, Neuscheler P, Nagel J, Müller CE. Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of adenosine A(2A) receptors in the caudate-putamen of rats. Eur J Neurosci 2001; 14:1287-93. [PMID: 11703457 DOI: 10.1046/j.0953-816x.2001.01759.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study sought to determine, in more detail, the effects of an unselective and a selective adenosine A(2A) receptor blockade on catalepsy induced by a blockade of dopamine D1 or D2 receptors in rats. The results demonstrated that systemic administration of the unselective A1/A2 receptor antagonist, theophylline and the selective A(2A) receptor antagonist, CSC potently reversed catalepsy induced by a systemic D2 receptor blockade with raclopride or by a bilateral blockade of D2 receptors in the caudate-putamen (CPu) with S(-)sulpiride. Likewise, systemic administration of theophylline and CSC reversed catalepsy induced by a systemic D1 receptor blockade with SCH23390; theophylline also counteracted catalepsy after an intra-CPu D1 receptor blockade with SCH23390. Intracerebral co-microinfusions of the selective A(2A) receptor antagonist, MSX-3 together with a D1 (SCH23390) or D2 receptor [S(-) sulpiride] antagonist revealed that catalepsy due to intra-CPu D1 or D2 receptor blockade can be potently reversed by an intra-CPu A2A receptor blockade. In conclusion, our results with systemic and intra-CPu drug administration demonstrate that D1 and D2 receptor-mediated catalepsy can both be reversed by a concomitant blockade of A(2A) receptors. Our results implicate that the CPu is a critical neural substrate for antagonistic interactions of a D1/D2 receptor blockade and an A(2A) receptor blockade in control of motor activity. The present results provide further support for the view that A(2A) receptor antagonists may be potential therapeutics for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- W Hauber
- Department of Animal Physiology, Institute of Biology, University of Stuttgart, D-70550 Stuttgart, Germany.
| | | | | | | |
Collapse
|
39
|
Wardas J, Konieczny J, Lorenc-Koci E. SCH 58261, an A(2A) adenosine receptor antagonist, counteracts parkinsonian-like muscle rigidity in rats. Synapse 2001; 41:160-71. [PMID: 11400182 DOI: 10.1002/syn.1070] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of the present study was to find out whether blockade of adenosine A(2A) receptors by a selective antagonist, SCH 58261, influenced parkinsonian-like muscle rigidity. Muscle tone was examined using a combined mechano- and electromyographic method which simultaneously measured muscle resistance (MMG) of a rat hindfoot to passive extension and flexion in the ankle joint and electromyographic activity (EMG) of the antagonistic muscles of that joint: gastrocnemius and tibialis anterior. Muscle rigidity produced by reserpine (5 mg/kg + alpha-methyl-p-tyrosine, 250 mg/kg) was antagonized by SCH 58261 (0.1-5 mg/kg). SCH 58261 (5 mg/kg) also reduced reserpine-enhanced tonic and reflex EMG activities in both the gastrocnemius and the tibialis muscles. Moreover, SCH 58261 in doses of 1 and 5 mg/kg abolished muscle resistance induced by haloperidol (0.5 mg/kg). However, only the highest dose of SCH 58261 (5 mg/kg) decreased tonic EMG activity enhanced by haloperidol. Administration of L-DOPA (75 and 100 mg/kg) dose-dependently decreased the muscle resistance as well as tonic EMG activity evoked by haloperidol. Combined administration of SCH 58261 (0.1 mg/kg) and L-DOPA (50 mg/kg) in doses which did not affect the haloperidol-induced muscle rigidity produced a pronounced synergistic effect. The ability of SCH 58261 to diminish the parkinsonian-like muscle rigidity and to potentiate the effect of L-DOPA in this model seems to indicate a therapeutic value of this compound in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- J Wardas
- Department of NeuroPsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, PL-31-343 Kraków, Poland.
| | | | | |
Collapse
|
40
|
Morelli M, Pinna A. Modulation by adenosine A2A receptors of dopamine-mediated motor behavior as a basis for antiparkinson?s disease drugs. Drug Dev Res 2001. [DOI: 10.1002/ddr.1138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Strömberg I, Popoli P, Müller CE, Ferré S, Fuxe K. Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum. Eur J Neurosci 2000; 12:4033-7. [PMID: 11069599 DOI: 10.1046/j.1460-9568.2000.00288.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been shown that striatal adenosine A2A receptors can antagonistically interact with dopamine D2 receptors at the membrane level leading to a decrease in the affinity and efficacy of D2 receptors. Extracellular recordings and rotational behaviour were employed to obtain a correlate to these findings in an animal model of Parkinson's disease (PD). The recordings were performed in rats with unilateral 6-hydroxydopamine (6-OHDA)-induced catecholamine depletion. While recording in the dopamine-depleted striatum, local applications of the dopamine D2 agonist quinpirole reduced neuronal activity. However, when the adenosine A2A antagonist MSX-3 was applied simultaneously with quinpirole, the inhibition of neuronal firing seen after quinpirole alone was significantly potentiated (P< 0.001, n = 11). In contrast, local application of CGS 21680 attenuated the effect of quinpirole. The doses of MSX-3 and CGS 21680 used to achieve the modulation of quinpirole action had no effect per se on striatal neuronal firing. Furthermore, rotational behaviour revealed that MSX-3 dose-dependently increased the number of turns when administrated together with a threshold dose of quinpirole while no enhancement was achieved when MSX-3 was combined with SKF 38393. MSX-3 alone did not induce rotational behaviour. In conclusion, this study shows that low ineffective doses of MSX-3 enhance the effect of quinpirole on striatal firing rate, while the A2A agonist exerts the opposite action. This mechanism gives a therapeutic potential to A2A antagonists in the treatment of PD by enhancing D2 receptor function.
Collapse
Affiliation(s)
- I Strömberg
- Department of Neuroscience, Karolinska Institute, Stockholm, S-17177 Sweden.
| | | | | | | | | |
Collapse
|
42
|
Rescue of locomotor impairment in dopamine D2 receptor-deficient mice by an adenosine A2A receptor antagonist. J Neurosci 2000. [PMID: 10908627 DOI: 10.1523/jneurosci.20-15-05848.2000] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Parkinson's disease a degeneration of dopaminergic neurons of the nigrostriatal pathway is observed. Loss of dopaminergic regulation of striatal neuron activity results in altered motor functions. Adenosine A2A (A2AR) and dopamine D2 (D2R) receptors are colocalized in striatal medium spiny neurons. It has been proposed that adenosine binding to A2AR lowers the affinity of dopamine for D2R, thus modulating the function of this receptor. Absence of D2R in knockout mice (D2R-/-) results in impaired locomotion and coordinated movements. This indicates that absence of dopamine in Parkinson's disease might principally affect D2R-mediated effects with regard to locomotor functions. A2AR-selective antagonists have been demonstrated to have anti- parkinsonian activities in various models of Parkinson's disease in rodents and nonhuman primates. In this article, D2R-/- mice were used to explore the possibility that an A2AR antagonist might reestablish their motor impairment. Interestingly, blockade of A2AR rescues the behavioral parameters altered in D2R-/- mice. In addition, the level of expression of enkephalin and substance P, which were altered in D2R-/-, were also reestablished to normal levels after A2AR antagonist treatment. These results show that A2AR and D2R have antagonistic and independent activities in controlling neuronal and motor functions in the basal ganglia. They also provide evidence that selective A2AR antagonists can exhibit their anti-parkinsonian activities through a nondopaminergic mechanism.
Collapse
|
43
|
Chen JF, Beilstein M, Xu YH, Turner TJ, Moratalla R, Standaert DG, Aloyo VJ, Fink JS, Schwarzschild MA. Selective attenuation of psychostimulant-induced behavioral responses in mice lacking A(2A) adenosine receptors. Neuroscience 2000; 97:195-204. [PMID: 10771351 DOI: 10.1016/s0306-4522(99)00604-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A(2A) adenosine receptors are highly expressed in the striatum where they modulate dopaminergic activity. The role of A(2A) receptors in psychostimulant action is less well understood because of the lack of A(2A)-selective compounds with access to the central nervous system. To investigate the A(2A) adenosinergic regulation of psychostimulant responses, we examined the consequences of genetic deletion of A(2A) receptors on psychostimulant-induced behavioral responses. The extent of dopaminergic innervation and expression of dopamine receptors in the striatum were indistinguishable between A(2A) receptor knockout and wild-type mice. However, locomotor responses to amphetamine and cocaine were attenuated in A(2A) knockout mice. In contrast, D(1)-like receptor agonists SKF81297 and SKF38393 produced identical locomotor stimulation and grooming, respectively, in wild-type and A(2A) knockout mice. Similarly, the D(2)-like agonist quinpirole produced motor-depression and stereotypy that were indistinguishable between A(2A) knockout and wild-type mice. Furthermore, attenuated amphetamine- (but not SKF81297-) induced locomotion was observed in pure 129-Steel as well as hybrid 129-SteelxC57BL/6 mice, confirming A(2A) receptor deficiency (and not genetic background) as the cause of the blunted psychostimulant responses in A(2A) knockout mice. These results demonstrate that A(2A) receptor deficiency selectively attenuates psychostimulant-induced behavioral responses and support an important role for the A(2A) receptor in modulating psychostimulant effects.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Brain/cytology
- Brain/drug effects
- Brain/metabolism
- Central Nervous System Stimulants/pharmacology
- Cocaine/pharmacology
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Uptake Inhibitors/pharmacology
- Genotype
- Locomotion/drug effects
- Locomotion/physiology
- Mice
- Mice, Knockout
- Neostriatum/cytology
- Neostriatum/drug effects
- Neostriatum/metabolism
- Phenotype
- Receptor, Adenosine A2A
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/analysis
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/analysis
- Receptors, Dopamine D2/metabolism
- Receptors, Purinergic P1/deficiency
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/genetics
Collapse
Affiliation(s)
- J F Chen
- Molecular Neurobiology Laboratory and Neurology Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Comings DE, Gade-Andavolu R, Gonzalez N, Wu S, Muhleman D, Blake H, Chiu F, Wang E, Farwell K, Darakjy S, Baker R, Dietz G, Saucier G, MacMurray JP. Multivariate analysis of associations of 42 genes in ADHD, ODD and conduct disorder. Clin Genet 2000; 58:31-40. [PMID: 10945659 DOI: 10.1034/j.1399-0004.2000.580106.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In a previous study (Comings DE et al. Comparison of the role of dopamine, serotonin, and noradrenergic genes in ADHD, ODD and conduct disorder. Multivariate regression analysis of 20 genes. Clin Genet 2000: 57: 178-196) we examined the role of 20 dopamine, serotonin and norepinephrine genes in attention deficit hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and conduct disorder (CD), using a multivariate analysis of associations (MAA) technique. We have now brought the total number of genes examined to 42 by adding an additional 22 candidate genes. These results indicate that even with the inclusion of these additional genes the noradrenergic genes still played a greater role in ADHD than any other group. Six other neurotransmitter genes were included in the regression equation - cholinergic, nicotinic, alpha 4 receptor (CHNRA4), adenosine A2A receptor (ADOA2A), nitric oxide synthase (NOS3), NMDAR1, GRIN2B, and GABRB3. In contrast to ADHD and ODD, CD preferentially utilized hormone and neuropeptide genes These included CCK, CYP19 (aromatase cytochrome P-450), ESR1, and INS (p = 0.005). This is consistent with our prior studies indicating a role of the androgen receptor (AR) gene in a range of externalizing behavors. We propose that the MAA technique, by focusing on the additive effect of multiple genes and on the cummulative effect of functionally related groups of genes, provides a powerful approach to the dissection of the genetic basis of polygenic disorders.
Collapse
Affiliation(s)
- D E Comings
- Department of Medical Genetics, City of Hope Medical Center, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Casas M, Prat G, Rubio A, Barbanoj M, Jané F. Lack of synergism between caffeine and SKF 38393 on rotational behavior in 6-hydroxydopamine-denervated rats. Eur J Pharmacol 2000; 396:93-9. [PMID: 10822061 DOI: 10.1016/s0014-2999(00)00215-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown a synergistic effect between caffeine and the dopamine D(2) receptor agonist, bromocriptine, on contralateral rotational behavior in unilaterally 6-hydroxydopamine-denervated rats. In addition, we found that bromocriptine prevented caffeine-induced tolerance to this behavior following repeated treatment. In the present study, we investigated whether or not the dopamine D(1) receptor agonist, (+/-)-phenyl-2,3,4, 5-tetrahydro-(1H)-3-benzazepine-7,8-diol (SKF 38393), presented similar characteristics. Different groups of rats received simultaneous injections of either vehicle plus vehicle, caffeine (40 mg/kg) plus vehicle, SKF 38393 (0.5, 1, 2, and 4 mg/kg) plus vehicle, or caffeine plus SKF 38393 (0.5, 1, 2, and 4 mg/kg) for 5 consecutive days, and both ipsilateral and contralateral rotational behavior was measured. Results showed that, on the first day of treatment, caffeine produced significantly more rotational behavior than did a low dose of SKF 38393 (0.5 mg/kg), and significantly less turning than at higher doses (2 and 4 mg/kg). Combined treatment with caffeine and a high dose of SKF 38393 (4 mg/kg) produced significantly more rotational behavior than did caffeine plus vehicle. With repeated administration, caffeine produced sustained tolerance to its effects on rotational behavior, whereas SKF 38393 did not. In the groups treated with low doses of SKF 38393 (0.5, and 1 mg/kg) plus caffeine, tolerance was observed while in the groups that received high doses of SKF 38393 (2 and 4 mg/kg) plus caffeine, no tolerance was observed to rotational behavior. These results suggest that maximal stimulation of dopamine D(1) receptors may be needed to prevent the tolerance effects of caffeine in this animal model. This finding may have clinical relevance to the therapeutic treatment of Parkinson's disease.
Collapse
Affiliation(s)
- M Casas
- Laboratori de Neuropsicofarmacologia, Institut de Recerca de L'Hospital de la Santa Creu i Sant Pau, Departaments de Psiquiatria i de Farmacologia, Universitat Aut¿onoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Sain
| | | | | | | | | |
Collapse
|
46
|
Khisti RT, Chopde CT, Abraham E. GABAergic involvement in motor effects of an adenosine A(2A) receptor agonist in mice. Neuropharmacology 2000; 39:1004-15. [PMID: 10727710 DOI: 10.1016/s0028-3908(99)00187-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenosine A(2A) agonists are known to induce catalepsy and inhibit dopamine mediated motor hyperactivity. An antagonistic interaction between adenosine A(2A) and dopamine D(2) receptors is known to regulate GABA-mediated neurotransmission in striatopallidal neurons. Stimulation of adenosine A(2A) and dopamine D(2) receptors has been shown to increase and inhibit GABA release respectively in pallidal GABAergic neurons. However, the role of GABAergic neurotransmission in the motor effects of adenosine A(2A) receptors is not yet known. Therefore in the present study the effect of GABAergic agents on adenosine A(2A) receptor agonist (NECA- or CGS 21680) induced catalepsy and inhibition of amphetamine elicited motor hyperactivity was examined. Pretreatment with GABA, the GABA(A) agonist muscimol or the GABA(B) agonist baclofen potentiated whereas the GABA(A) antagonist bicuculline attenuated NECA- or CGS 21680-induced catalepsy. However, the GABA(B) antagonists phaclophen and delta-aminovaleric acid had no effect. Administration of NECA or CGS 21680 not only reduced spontaneous locomotor activity but also antagonized amphetamine elicited motor hyperactivity. These effects of NECA and CGS 21680 were potentiated by GABA or muscimol and antagonized by bicuculline. These findings provide behavioral evidence for the role of GABA in the motor effects of adenosine A(2A) receptor agonists. Activation of adenosine A(2A) receptors increases GABA release which could reduce dopaminergic tone and induce catalepsy or inhibit amphetamine mediated motor hyperactivity.
Collapse
Affiliation(s)
- R T Khisti
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur 440 010, Maharashtra, India
| | | | | |
Collapse
|
47
|
Shimazoe T, Yoshimatsu A, Kawashimo A, Watanabe S. Roles of adenosine A(1) and A(2A) receptors in the expression and development of methamphetamine-induced sensitization. Eur J Pharmacol 2000; 388:249-54. [PMID: 10675733 DOI: 10.1016/s0014-2999(99)00899-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the effects of adenosine A(1) and A(2A) receptor agonists on the expression and development of methamphetamine-induced sensitization in rats. When animals were treated with the adenosine A(1) receptor agonist, N(6)-cyclohexyladenosine (CHA), along with methamphetamine every 3 days with a total of five administrations, the augmentation of hyperlocomotion by methamphetamine re-administration after 7-day withdrawal (methamphetamine challenge administration) was not inhibited. However, when the adenosine A(2A) receptor agonist, 2-p-(2-carboxyethyl) phenethyl-amino-5'-N-ethylcarboxy-amide adenosine (CGS21680), was administered according to the same schedule, the augmentation was significantly inhibited. On the other hand, when CHA or CGS21680 was administered 30 min before methamphetamine challenge, both drugs dose-dependently inhibited the augmentation of hyperlocomotion. These results suggested that both adenosine A(1) and A(2A) receptors play important roles in the expression of methamphetamine-induced sensitization, and that adenosine A(2A) receptors do so in the development of this sensitization.
Collapse
Affiliation(s)
- T Shimazoe
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyushu University 62, Fukuoka, Japan.
| | | | | | | |
Collapse
|
48
|
Role of adenosine A2 receptors in brain stimulation reward under baseline conditions and during cocaine withdrawal in rats. J Neurosci 2000. [PMID: 10594082 DOI: 10.1523/jneurosci.19-24-11017.1999] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present experiments tested the hypothesis that adenosine A2 receptors are involved in central reward function. Adenosine receptor agonists or antagonists were administered to animals that had been trained to self-stimulate in a rate-free brain stimulation reward (BSR) task that provides current thresholds as a measure of reward. The adenosine A(2A) receptor-selective agonists 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido adenosine hydrochloride (CGS 21680) (0.1-1.0 mg/kg) and 2-[(2-aminoethylamino)carbonylethyl phenylethylamino]-5'-N-ethylcarboxamido adenosine (APEC) (0.003-0.03 mg/kg) elevated reward thresholds without increasing response latencies, a measure of performance. Specifically, CGS 21680 had no effect on response latency, whereas APEC shortened latencies. Bilateral infusion of CGS 21680 (3, 10, and 30 ng/side), directly into the nucleus accumbens, elevated thresholds but shortened latencies. The highly selective A(2A) antagonist 8-(3-chlorostyryl)caffeine (0.01-10.0 mg/kg) and the A2-preferring antagonist 3,7-dimethyl-1-propargylxanthine (DMPX) (0.3-10.0 mg/kg) did not alter thresholds or latencies, but DMPX (1.0, 10.0 mg/kg) blocked the threshold-elevating effect of APEC (0.03 mg/kg). In another study, repeated administration of cocaine (eight cocaine injections of 15 mg/kg, i.p., administered over 9 hr) produced elevations in thresholds at 4, 8, and 12 hr after cocaine. DMPX (3 and 10 mg/kg), administered before both the 8 and 12 hr post-cocaine self-stimulation tests, reversed the threshold elevation produced by cocaine withdrawal. These results indicate that stimulating adenosine A(2A) receptors diminishes BSR without producing performance deficits, whereas blocking adenosine receptors reverses the reward impairment produced by cocaine withdrawal or by an A(2A) agonist. These findings indicate that adenosine, via A(2A) receptors, may inhibit central reward processes, particularly during the neuroadaptations associated with chronic drug-induced neuronal activation.
Collapse
|
49
|
Wardas J, Konieczny J, Lorenc-Koci E. The role of striatal adenosine A2A receptors in regulation of the muscle tone in rats. Neurosci Lett 1999; 276:79-82. [PMID: 10624796 DOI: 10.1016/s0304-3940(99)00779-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to assess contribution of striatal adenosine A2A receptors to regulation of the muscle tone in rats. The muscle tone was examined by a combined mechano- and electromyographic method, which measured simultaneously muscle resistance (MMG) of a rats hind foot to passive extension and flexion in the ankle joint and the electromyographic activity (EMG) of the antagonistic muscles: gastrocnemius and tibialis anterior. CGS 21680 (1 and 2 microg/0.5 microl), injected bilaterally into the rostral part of the striatum, dose-dependently increased both MMG and the EMG. The present results show that stimulation of striatal adenosine A2A receptors by CGS 21680 evokes parkinsonian-like muscle rigidity which may be due to activation of the GABAergic strio-pallidal pathway.
Collapse
Affiliation(s)
- J Wardas
- Department of NeuroPsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków.
| | | | | |
Collapse
|
50
|
Kull B, Ferré S, Arslan G, Svenningsson P, Fuxe K, Owman C, Fredholm BB. Reciprocal interactions between adenosine A2A and dopamine D2 receptors in Chinese hamster ovary cells co-transfected with the two receptors. Biochem Pharmacol 1999; 58:1035-45. [PMID: 10509756 DOI: 10.1016/s0006-2952(99)00184-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Human adenosine A2A and rat dopamine D2 receptors (A2A and D2 receptors) were co-transfected in Chinese hamster ovary (CHO) cells to study the interactions between two receptors that are co-localized in striatopallidal gamma-aminobutyric acid-(GABA)ergic neurons. Membranes from transfected cells showed a high density of D2 (3.6 pmol per mg protein) and A2A receptors (0.56 pmol per mg protein). The D2 receptors were functional: an agonist, quinpirole, could stimulate GTPgammaS binding and reduce stimulated adenylyl cyclase activity. The A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) decreased high-affinity binding of the agonist dopamine at D2 receptors. Activation of adenosine A2A receptors shifted the dose-response curve for quinpirole on adenosine 3',5'-cyclic monophosphate (cAMP) to the right. However, CGS 21680 did not affect dopamine D2 receptor-induced GTPgammaS binding, but did cause a concentration-dependent increase in cAMP accumulation. The maximal cAMP response was decreased by the D2 agonist quinpirole in a concentration-dependent manner, but there was no change in EC50 and no effect in cells transfected only with adenosine A2A receptors. A2A receptor activation also increased phosphorylation of cAMP response element-binding protein and expression of c-fos mRNA. These effects were also strongly counteracted by quinpirole. These results show that the antagonistic actions between adenosine A2A and dopamine D2 receptors noted previously in vivo can also be observed in CHO cells where the two receptors are co-transfected. Thus, no brain cell-specific factors are required for such interactions. Furthermore, the interaction at the second messenger level and beyond may be quantitatively more important than A2A receptor-mediated inhibition of high affinity D2 agonist binding to the receptor.
Collapse
Affiliation(s)
- B Kull
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|